
SIAM J. SCl. STAT. COMPUT.
Vol. 6, No. 1, January 1985

(C) 1985 Society for Industrial and Applied Mathematics

001

GLOBAL ERROR ESTIMATES FOR ODEs BASED ON
EXTRAPOLATION METHODS*

L. F. SHAMPINE" AND L. S. BACA’

Abstract. It is shown how to exploit the powerful codes based on extrapolation of the midpoint rule
so as to solve the initial value problem for a system of ordinary differential equations (ODEs) and to provide
estimates of the global (true) error in the solution values. Particular attention is given to the reliability of
the estimates and to the overall efficiency of the integration.

Key words. ODE, global error, true error, extrapolation, midpoint rule

AMS(MOS) subject classifications. 65LO5
CR categories. 5.17

1. Introduction. Typical codes for the numerical integration of the initial value
problem for a system of ordinary differential equations,

y’=f(x, y), a<=x<=b, y(a) given,

step through the interval producing approximate solutions Ym’-Y(X,,) on a mesh
a Xo < Xl <" < XN b. At each x,, the code adjusts the step size h x,/l- x,, so
as to produce a solution Y,,/I satisfying an accuracy requirement specified by the user
of the code. A quantity called the local error is controlled at each step. Although
natural from a technical point of view, local error is only indirectly related to the
global, or true, error, y(x,+)--ym+, which is of most interest to the user. For this
reason there has been quite a lot of research devoted to the question of estimating
global errors. Excellent surveys by Prothero [4] and Stetter [11] provide an overview
of this research.

There exist production-grade codes which solve nonstiff initial value problems
and provide global error estimates. Although these codes are quite useful, there is a
need for more reliable and more efficient procedures. We shall present an approach
based on extrapolation of a modified midpoint rule. The approach could be based on
any of the popular codes of this kind, but we shall take advantage of certain aspects
of the effective code DIFEX1 of Deuflhard [2]. One of the features of our approach
is the use of variation of order to achieve efficiency over a wide range of tolerances.
Another is stringent testing of our basic hypothesis so as to result in a reliable estimate
of the global error. This reliability holds rather well even at the extremes of crude
and stringent tolerances which strain all the approaches to estimating global error (or
integrating the equation, for that matter).

In the next section we describe how our approach has evolved from others and
make general observations as to what quality estimate we might expect. In 3 we
describe how to carry out the basic idea in the context of extrapolation and point out
a novel solution to a surprising difficulty. Sections 4 and 5 are devoted to difficulties
arising from stiffness and precision, respectively. A selection of illustrative examples
follows. Besides illuminating facets of our approach, comparative results for several
codes are presented. The paper concludes with a few final observations.

* Received by the editors March 29, 1983, and in revised form July 25, 1983. This work was performed
at Sandia National Laboratories supported by the U.S. Department of Energy under contract DE-AC04-
76DP00789.

t Numerical Mathematics Division, Sandia National Laboratories, Albuquerque, New Mexico 87185.

2 L.F. SHAMPINE AND L. S. BACA

2. Some methods for global error estimation. A number of methods for
approximating the global error of a numerical solution of

(2.1) y’=f(x,y), a<=x<-b,

(2.2) y(a) given,

generate two approximate solutions {Yn}, {Y*} in order to estimate the error of one.
Let {y,*} be the more accurate solution. A time honored scheme is to generate {yn}
for a tolerance r and then to generate {y,*} for a tolerance rr with r < 1. If one assumes
that the global error is approximately proportional to the local error tolerance, then

y(x,)-y* "-r(y(xn)-y,)

whence one can estimate the global error of the more accurate result y,* in terms of
y, and y,*. Tests by Enright [3] show that the better items of mathematical software
do rather well at producing proportional error behavior, at least for routine problems.
Shampine [7] has emphasized that this behavior is at most a secondary objective in
the construction of the software and Stetter [12] has detailed the technical difficulties
in achieving proportionality. In our considerable experience with this approach, the
proportionality is not good enough to produce a reliable estimate of the more accurate
result.

A much more reliable way to estimate global errors with two independent integra-
tions is to estimate the global error of the less accurate integration by y,*-y,. This
requires only that y* be more accurate than yn. Seemingly this is almost certain to be
so. The difficulty is that for technical reasons both results might pass the local error
test at each step but that the local error of Y*m is actually larger than that of y,, for a
significant number of steps x,, and as a consequence y,* is less accurate than y,.
Nonetheless, this method, which we call reintegration, has important virtues and is
reasonably reliable.

It is a virtue that the two integrations are completely independent, but unfortu-
nately the results are not closely enough related to yield truly reliable global error
estimates. A natural idea is to couple the integrations more closely. The classical
development of the asymptotic behavior of the global error of a one-step method of
order p, which for fixed step size h has the form

(2.3) y(xn) y, + hPe(xn)+ O(hp+l),

suggests estimation of hPe(xn) by two parallel integrations done with step sizes h and
hi2. Shampine and Watts [10] have considered the many practical details involved in
turning the idea into a production-grade code GERK. Here the two integrations, which
are done simultaneously, are so closely coupled that one again estimates the global
error of the more accurate result. GERK is an effective code which we shall use as a
standard in our numerical examples.

There are two ways in which GERK could be improved. It has been found that
variation of the order of formula is important to efficiency. The fixed order of GERK
is a good choice for general use, but is too low for efficient integration at stringent
accuracies. It is not clear how one could accommodate variation of order with global
extrapolation. One of the virtues of reintegration is that it is applicable to variable
order codes. We present in this paper a scheme built on the variable order (one-step)
method resulting from extrapolation of the midpoint rule. Another difficulty with
global extrapolation is its relatively restricted applicability. A lack of smoothness of f
at one point x can destroy the relation (2.3) at later points. At crude tolerances and

GLOBAL ERROR ESTIMATES BASED ON EXTRAPOLATION METHODS 3

in the presence of mild stiffness the leading term in (2.3) might not dominate sufficiently
to get a reliable, much less accurate, estimate. At stringent tolerances the relation
(2.3) is ruined by the effects of finite precision. Dekker and Verwer 1 have considered
how to recognize when the global extrapolation is invalid and how accurate the estimate
is. Some results from their code RGERK will be quoted later. This is a valuable
development of the global extrapolation approach, but it does not address the question
of a more broadly applicable method and is comparatively expensive.

To fully appreciate our approach, it is worth mentioning another technique
described by Shampine and Watts. Global extrapolation pairs a single step from xn to
Xn+ to generate Yn+l with two half steps by the same method to generate Y*n+lo It is
supposed that using half the step size results in a more accurate solution Y,*/I. An
alternative is to generate Y,*/I by a single step taken with a higher order method.
Shampine and Watts call this "order extrapolation". For this procedure one estimates
the error of the less accurate result Yn because the exact relationship of the global
errors of the two integrations is not known. The point we wish to make is that if the
{y,} represent the "primary" integration, a more accurate result {y,*} could be gener-
ated by using a smaller step size or a higher order. Our new approach in effect does
both. Unfortunately it is not always the case that a more accurate result is obtained
in this way. One of the key ideas in our attempt to get reliability is that we test the
hypothesis that the secondary integration produce a result with smaller local error.
By coupling the integrations and by doing this test, we avoid the principal source of
unreliability with the method of reintegration.

We shall produce two sequences {y,}, {y*} for which the estimated local error at
each step in the construction of the secondary sequence {y,*} has a norm no greater
than half that of the primary sequence {y,}. This is a way to generate a {y,*} more
reliably than the alternatives, but it is not certain to yield smaller errors. A little
reflection about the nature of local error shows how it could happen that Y*m have a
larger global error than Ym. We shall give numerical examples.

The global error of yn is to be estimated by comparison to y,*,

ge, y(xn)- Yn Y*,- Yn.

Let us compare this estimate to the true global error:

y*- y, (y(x,)- y,)-(y(x,)- y*,) gen-ge*
ratio

ge, ge, ge,

Obviously

These bounds on the quality of the estimated global error depend, as might be expected,
on y,* being more accurate than yn. Notice that if ratio <0 or ratio > 2, then Ige*.[> Ige.I.
In our tests we describe such a value of ratio as "unacceptable" because the basic
hypothesis that [ge*,[< [gel is not true. This is despite the fact that a ratio > 2 might
be perfectly satisfactory for practical purposes. Considering that we ask only that the
local error associated with y,* be half that associated with y,, we really cannot expect
any more than Ige*.l <- 0.5]ge, l, in general. This implies 0.5 <- ratio <- 1.5. Such a ratio
will be described as "good". It might well turn out that, say, Ige*,l <-0.9 Ige, which
would imply 0.1 <- ratio <- 1.9. We would describe this as "adequate". Our construction
tends to result in y,* with a local error much smaller than that of y,. For this reason

4 L. F. SHAMPINE AND L. S. BACA

0.9=<ratio=< 1.1 is not unusual and can be fairly described as saying that we have an
"excellent" estimate of the true global error. These simple observations give us an
idea what to expect of the numerical realization of our approach to global error
estimation.

3. The practical process. Our idea for a variable order code with global error
estimates is developed for implementations of the extrapolated midpoint rule. The
code used for our experiments is a modification of the April 30, 1981, version of the
code DIFEX1 of Deuflhard. The idea is generally applicable to extrapolation codes,
but certain aspects of Deuflhard’s order and step size algorithm [2] will be exploited.
It will be necessary first to review the basic integration scheme in order to explain
how we proceed. Suppose one has an approximation Y0 to the solution y(xo) of (2.1),
(2.2) and wishes to produce an approximation to y(xo+H). An integer ni is chosen,
a step size hi H! ni is defined, and a subintegration to x0 +H is done:

rl0 Y0,

rii rio + hif(xo, rio),

ri+ ri_ + 2hf xo + jhi, ri j=l,... ni --1.

The smoothed value

S(hi) --1[ri,,, + rin,-, + hif(Xo + H, rin,)]
is taken as the result of the subintegration. In polynomial extrapolation a tableau is
now formed by the recipe

Ti,1-- S(hi), i=1,2,...,

r/,k_ r/_l,k_
ri,k ri,k_ -I-

(tell ni_k+l)2 1’
k 2," i.

This amounts to a convenient way of forming a family of Runge-Kutta formulas
Ti, k. A standard result [2] is that the local error of T,k is asymptotically

1
(3.1) ei, k (ni-k+l nk) 2"rkH2k+l + O(Hk+2),

so that Ti,k is a formula of order 2k. To form any element T,k in row of the
extrapolation tableau, subintegrations have to be made with hi, h2," , hi. The evalu-
ation of f(xo, ri0) can be saved and used in all the subintegrations. The cost, in terms
of the number of evaluations of f, of forming T,k is Ai where

(3.2) Al=nl+l, Aj+l=Aj+n+l, j=l,2,....

The code DIFEX1 takes {ni} {2, 4, 6, 8, 10, 12, 14, 16, 18,20}.
An important improvement due to Deuflhard (see [9] for just how much) is to

take a subdiagonal element Tk/l,k as the one to be used from row k + 1 and to estimate
its local error by

(3.3) Tk+l,k+l-- Tk+l,k.

If the local error of Tk+l,k is not satisfactory, one has the choice of raising the order
by generating row k 4-2 of the extrapolation tableau and considering Tk+2,k+ or of
reducing H and trying again. As the error expression (3.1) makes clear, considering
Tk+e,k corresponds essentially to reducing the step size, and considering Tk+e.k+

GLOBAL ERROR ESTIMATES BASED ON EXTRAPOLATION METHODS 5

corresponds to reducing the step size and raising the order. It is not necessary for us
to go into the various step size and order selection algorithms.

When the local error of Tk/l,k is acceptable, there is implicitly an assumption that
Tk/l,k/l has a smaller local error so that the local error estimate (3.3) is valid. All the
current codes actually advance the integration with the value Tk/l,k+l (local extrapola-
tion). This value is presumably more accurate, but it is not known how much. We
must deviate from standard practice here and advance the integration with Tk+l,k. It
is essential in our approach that we have an estimate of the local error of the value
accepted rather than a sort of bound on its local error.

Suppose that the primary integration is advanced from xn to Xn+l and

Yn+l Zk+l,k, le Tk+l,k+l Tk+,k est.

In the secondary integration we go to (at least) row k + 2 in the extrapolation tableau,
thereby in effect resorting to a smaller step size. We also raise the order. We attempt
to take

(3.4) Y*+I Tk+2,k+l.

A key point is that we approximate the local error in the secondary integration

le* Tk+2,k+2-- Tk+2,k+l "-est*

and insist that this error be smaller than that made in the primary integration.
Specifically we require that

3.5 est* <- 0.5 est II.
If all is going well, the secondary integration should be quite a lot more accurate.

As pointed out, the code for the primary integration is attempting to adjust k and H
so that Tk/,k/l is more accurate than Tk/l,k. According to (3.1), the value Tk/2,k/l
is asymptotically more accurate than Tk/l,k/l by a factor of (nl/nk/.)2, therefore
ordinarily quite a lot more accurate. A local error expression like (3.1) holds for the
secondary integration too. The only term depending on the problem is Zk. If the
secondary integration is producing values close to those of the primary integration,
i.e., the global errors of {y,} are not "too" large, the factors should be similar. This
means that the local error of Tk+2,k+l* is then likely to be comparable to that of Tk+2,k+
hence quite a lot smaller than that of Tk/l,k+l, which is expected to be smaller than
that of Tk+l,k. Furthermore, it is expected that the higher order result *Tk+2,k+2 will
have a smaller local error than *Tk+2,k+ 1. Putting this all together, it is likely that (3.4)
yield a much more accurate solution locally than y,,+l. In any case, we test the hypothesis
and insist that Yn*+l be more accurate according to the standard local error estimates.

Suppose Yn*+l is not accurate enough to pass the test (3.5). What can we do then?
An obvious possibility is to raise the order still more by going to *Tk+3,k+2. This is not
very appealing because the work increases significantly on raising the order. Experi-
ments brought to our attention a fact well-known, namely that the algorithms often
result in a Y,+I which is much more accurate than required. Generally speaking this
does no harm but here we may have difficulty in achieving still more accuracy in Yn*+l.
We were led to an action we have never seen before.

If (3.5) is not passed, we consider the possibility of changing Yn+l to make it less
accurate. Specifically, we consider the use of the formula

(3.6) yn+l(a)=OTk+l,k d-(1--ot)Tk+l,k+l Tk+l,k+l-- Ce est.

6 L.F. SHAMPINE AND L. S. BACA

An estimate for its local error is

est (a)ll Tk+ 1,k+1 Y.+1 O)11 I II1 est II.
The least that the local error of Y.+I can be increased and pass (3.5) is for a such that

Ilest*ll- 0.5llest ()11,
hence

(3.7) a 2[[est*ll/[[estl].
It is permissible to increase the local error of the primary integration as long as the
local error test with the specified tolerance " can still be passed:

(3.8) Ilest ()11 21lest*l] =< r.

Thus we proceed as follows: The code generates Y,/I T/I, and in a parallel
integration computes (3.4). If (3.5) is true, we go on to the next step. If it is not true,
we test (3.8). When (3.8) holds, we "spoil" the accuracy of the step by accepting
yn/l(c) from (3.6), (3.7) instead of Y,/I. This solution for the primary integration
does pass the required test on the local error, and Yn*+l is sufficiently more accurate
that we can proceed on to the next step.

If y*/ is not accurate enough, and if we cannot recover by decreasing the accuracy
of Yn+, we go to the expense of raising the order in the secondary integration and try

y.*+ *Tk+3,k+2.

If (3.5) then holds, we go on to the next step. If it does not, we try again to recover
by decreasing the accuracy of yn+. If this is not possible, an error return is made from
the code.

The primary and secondary integrations are coupled in our approach so that they
produce results at the same points. The essentially new feature is that we manipulate
the order and step size in the secondary integration and possibly even later the primary
integration so as to verify that the estimated local error of the secondary integration
is no more than half that of the primary integration. Error returns are made when
this is not possible. In succeeding sections we shall study circumstances leading to such
returns. Arguments already made suggest that in normal circumstances (3.4) not only
suffices, it produces a Yn*+l with a local error much smaller than that of Yn+m.

The bulk of the storage needed in an extrapolation code is to hold intermediate
results of the extrapolation tableau. For this reason the maximum number of subintegra-
tions is limited. In DIFEX1 this limit is 10. Because of our algorithm for global error
estimation we limit the number of subintegrations in the primary integration to 8 and
in the secondary integration to 10. The secondary integration is advanced a step only
after the primary integration achieves a successful step. In this way no effort is wasted
on an unsuccessful step in the primary integration. Furthermore, the secondary integra-
tion can use the same storage area for its extrapolation tableau and so avoid any
significant increase in storage.

If the primary integration does k subintegrations and is successful, the step costs
Ak function evaluations. The secondary integration normally does k + 1 subintegrations
at a cost of A+ evaluations. From this we can get an idea of the cost of the global
error estimate. When a successful step of the basic code costs A evaluations, the code
with global error estimate will cost normally A +A+ evaluations. There must be at
least k 2 subintegrations. With the restriction k_-< 8 and the sequence {n} used in
DIFEX1 this cost ranges from a factor of 2.86 larger at k 2 down to 2.25 at k 8.

GLOBAL ERROR ESTIMATES BASED ON EXTRAPOLATION METHODS 7

Of course the handling of failed steps in the primary integration and the possibility of
having to raise the order in the secondary integration means that these factors are a
very rough guide. Still, the cost is comparable to that of other procedures for estimating
global errors.

Advantage can be taken of Deuflhard’s order and step size selection algorithm
[2]. Unlike, say, Adams codes, the cost of a step depends on the order used and the
sequence {ni} implemented. Deuflhard properly accounts for the cost in the selection
algorithm in terms of costs normally set according to the recipe (3.2). If we realize
that our scheme normally does Ak + Ak+l evaluations instead of Ak in carrying out k
subintegrations, a simple alteration of the setting of the costs in DIFEX1 allows the
code to take into account the secondary integration when selecting the most efficient
step size and order. This is quite a nice aspect of Deuflhard’s algorithm from our point
of view.

It is not our intention to offer a replacement for the codes, such as DIFEX1,
being used to solve ODEs routinely, rather to offer a capability for the occasional
assessment of true errors or for the solution of problems with special requirements of
reliability. Our code will ordinarily be significantly more expensive than DIFEX1 for
two reasons: It does more work at each step because of the secondary integration. It
produces a less accurate result because it does not perform local extrapolation and
may produce a still less accurate result as a by-product of the process for getting a
reliable global error estimate. We have given an indication of the difference in cost
arising from the first consideration and then immediately blurred the picture by reducing
this cost through manipulation of the order chosen. It is not at all clear what the net
difference in cost of the original DIFEX1 code and our modification would be, but
this is not important in our use of global error estimation. The important question,
which we will address, is how the effectiveness of our code compares to that of other
codes which estimate the true error.

4. Stiffness. Shampine and Watts [10] have pointed out certain practical and
theoretical difficulties associated with global extrapolation in the presence of stiffness.
This is to be expected because the postulated asymptotic behavior is disturbed. Perhaps
surprisingly, there are analogous difficulties with our approach.

A practical matter requiring some care with global extrapolation is that the step
size is selected in one integration and a multiple of it is simply used in the other
integration. One must be sure that if the step size is selected so as to keep the one
integration stable, the other integration will also be stable. The same is true with our
scheme. By computation of the regions of absolute stability, we have verified that if
the step size chosen in the primary integration to advance with the formula Tk/l,k is
stable, then it is also stable with the formulas Tk+2,k+ and Tk+3,k+2 used in the secondary
integration. This fact is not surprising in view of the smaller step size(s) used in the
additional subintegration(s) to raise the order. Because of the rather uniform improve-
ment, there is little point in our reproducing the plots here. We comment that this
issue was brought to our attention by the observation of instability in a cheaper
implementation of our basic idea that we tried out first.

It has been argued [6] that in the presence of stiffness, reasonable step size selection
algorithms for one-step methods will lead to step sizes which correspond to being on
the boundary of the stability region, on the average. This is what disturbs the expected
asymptotic behavior of global extrapolation. However, it also disturbs our scheme in
a perhaps unexpected way. We obtain reliable estimates of the global error by compar-
ing the size of the estimated local errors in two parallel integrations. The thing that

8 L. F. SHAMPINE AND L. S. BACA

causes the step size to fluctuate about the value corresponding to the boundary of the
stability region is the fact that the local error estimates become large outside the
region. This may be due to a large local error, but it may also be due to an inaccurate
estimate. If the local error estimates are not reliable, neither is our global error estimate.

As with global extrapolation, if the step size is artificially restrained by a specified
maximum step size, or output, so as to correspond to being well inside the region of
absolute stability, the global error estimate will be reliable. In our case this is because
the local error estimate is then reliable.

5. Precision ditliculties. In this section we take up several issues loosely connected
by their relation to the accuracy tolerance. At crude tolerances the integral curves
followed by the primary and secondary integrations might be quite different and so
present differing degrees of difficulty for their integration over a step. It can happen
that the secondary integration is unable to achieve the smaller local error required
even when all the devices described in 3 are brought to bear on the task. An error
return is made. This was unexpected for us, but we have seen a number of examples
and now do not think it rare. A suitable action is to reduce the tolerance and try again
to complete the integration.

At the opposite end of the tolerance range, we expect that at very stringent
tolerances it will be difficult to produce y* with a smaller local error than Yn and near
machine unit roundoff, impossible. In addition, the estimates of the local error are so
disturbed by roundoff near limiting precision that they cannot be believed and the
global error estimate is unreliable. This is the analogue of the asymptotic error behavior
being disturbed for global extrapolation. In [5] a couple of very simple devices are
presented which recognize when the tolerances approach limiting precision. They have
proven very useful and were taken into account in GERK. DIFEX1 has one device
but not the other. We modified the code to add it. DIFEX1 implements an error
control which is (almost) a pure relative error test. We modified it as described in [8]
to get a sound pure relative error test, which is convenient in the present context but
not necessary. The device added then is very simple. The code accepts an input tolerance
e and internally requires a norm of the estimated local error to be less than or equal
to e/4. This will be required of Yn+l. We ask in the secondary integration that y*+l
have a local error no more than half as big, hence certainly no more than e! 8. However,
to estimate the local error of y,*/ a still more accurate value **y,+ is formed. The
fundamental limit is that this last value cannot be more accurate than the correctly
rounded solution, that is, its local error is at least as great as a unit roundoff u in the
true solution. It is more realistic to say that we cannot ask for a local error less than
several units of roundoff in the true solution. Tracing our way back we see that the
relative error tolerance e must be a fairly large multiple of the unit roundoff u on the
machine used if the results are to be meaningful. We therefore insist that the relative
error tolerance e-> 100u and return an error message if it is not. This is simple and
obvious when a pure relative error test is used. To compare with other codes we also
altered DIFEX1 to provide it with a pure absolute error test. The complication this
causes is that the precision requirement must be tested at every stage. When the code
has a tentative solution, the absolute error test is converted to an equivalent relative
error test and it is asked if the relative error to be imposed is less than 100u.

Even when the code is working with a pure absolute error control, the device
described has a negligible cost. In experiments without it, we found that we might well
get a failure return because the secondary integration could not be made accurate
enough. However, we often got very poor global error estimates without any sign of

GLOBAL ERROR ESTIMATES BASED ON EXTRAPOLATION METHODS 9

difficulty because the local error estimates were disturbed. Adding the device greatly
enhanced the reliability at stringent tolerances.

There is a difficulty in interpretation of global error estimates which must be
understood to assess properly the performance of methods. It is reasonable to consider
the ratio of the estimated global error to the true global error, as we proposed in 2,
at points where the global error is comparatively large. It is not, however, reasonable
to do this near points where the global error changes sign. Perhaps the matter is
clearest with the method of global extrapolation which uses

y(x,,) y,, + hPe(xn)+ O(hp+I)

and approximates

y(x,,)-y,, "--hPe(x,,).

Obviously this approximation breaks down where e(x) vanishes. Near a change of sign
of the global error it is clear that we must expect, in general, that e(x) not always
have even the correct sign. Less dramatic are the large relative (but not absolute)
errors in the estimation of the global error which will be observed. These facts make
it difficult to present simple but meaningful statistics at all mesh points. They also pose
a practical difficulty. When should the user ignore the global error estimate as being
potentially of the wrong sign or wrong order of magnitude? We can proceed much as
with the local error estimates. For the global error estimate to be any good, y,* must
be more accurate than Yn. Obviously we cannot expect it to be correct to more than
a few units of roundoff and correspondingly yn must be still less accurate. This says
that an estimated global error in y, less than a modest number of units of roundoff
in y, cannot be trusted. In our tests we disregard estimates less than 100u[y,[to

provide a measure of protection. This could be implemented in the form of a warning
to the user, but in our research code we have left this issue to the user who, after all,
has all the data needed to test the values. Of course, if one were to focus merely on
the absolute error of the global error estimate there would be no difficulty of this kind.
This is not a very satisfactory remedy since for both intrinsic and technical reasons,
the true global error can range over several orders of magnitude in a normal integration.

6. Numerical examples. A number of authors have considered the problem

(6.1)

1
Y 2 (x + 1)

2xy2, ym(0) 1,

1 Y2Y 21+(x+ 2xyl, y2(0) 0,

on various intervals. The solution components are

yl(x) =/x + 1 cos (x2), yz(x) =/x + 1 sin (x2).
As x increases, this problem becomes increasingly difficult to solve because the
components oscillate with increasing frequency. Prothero [4] has plotted the true global
errors and their estimates for the first component when the equation is integrated on
[0, 3] with a pure absolute error test using two codes. One code is the GERK code
based on global extrapolation. In 1971 Stetter proposed a way of estimating global
errors by the use of formulas having exact principal error equations. This approach is
the basis of a code written by Merluzzi and Brosilow which was also tested by Prothero.
The two plots give some feeling as to the issue of the quality of the estimate near a
change of sign of the true error. It is difficult to quantify the quality of the estimates.

10 L. F. SHAMPINE AND L. S. BACA

In a general way, the plots show the estimates to be surprisingly good even though
their relative error is large in places. Plotting is very attractive, but scaling plots
appropriately is difficult. Dekker and Verwer [1] have compared GERK and RGERK
on (6.1) with the interval [0, 8]. They measure the ratio of the estimated to the true
global error.

We wanted a fairly difficult example, so we solved (6.1) on [0, 10]. This was done
for a wide range of tolerances to study possible variation of reliability and the effect
on the cost of our variable order code. The same computations were done with GERK
so as to contrast our results with a fixed order code. As described in 2, we measured
the ratio of the estimated global error to the true global error except when the estimate
is less in magnitude than 100 units of roundoff in the solution itself (for reasons
presented in 5). For reasons given there we describe a value of ratio such that

ratio < 0 or ratio > 2 as unacceptablemU,

0.1-<ratio -< 1.9 adequate--A,

0.5-< ratio-< 1.5 goodmG,

0.9-< ratio-< 1.1 excellentnE.

Recall that a ratio > 2 might be acceptable for prictical use, but we describe it as
"unacceptable" for the technical reason that the estimate is not justified by our usual
argument. This may not be a reasonable label for the results of the GERK code. Table
1 gives the percentage of steps which gave an estimate of the specified quality for the
first solution component as a function of the pure absolute error tolerance "tol". Table
2 gives the same quantity for the second solution component. Notice that we have not
rated 0-<ratio<0.1, which does occur at tolerance 10-4 with component 2, nor
1.9 < ratio -< 2, which does occur at tolerance 10-11 with component 2.

TABLE
Quality of estimates of solution of first component of (6.1) on [0, 10].

extrapolation

-loglo tol U A G E FCN

100 98 85 2,202
2 100 99 97 4,248
3 0 100 100 100 4,388
4 0 100 100 100 4,546
5 0 100 98 96 5,340
6 0 100 100 96 6,198
7 2 98 98 93 7,414
8 0 100 100 98 8,614
9 0 100 100 99 10,196

10 0 100 97 88 12,072
11 8 91 81 44 14,308
12 quitmtolerancetoo small

GERK

U A G E FCN

53 44 27 8 1,088
19 63 48 10 1,674
11 78 63 16 2,551
5 86 73 26 4,019
4 91 83 39 6,326
2 85 81 48 10,011

67 65 47 15,856
58 56 41 25,111

7 43 35 15 39,619
23 21 10 3 60,013
27 10 3 0 77,887

not attempted

We think the results for our approach are extraordinarily good. The high percen-
tage of steps with "excellent" error estimates means that the local errors made in the
secondary integration are significantly smaller than those in the primary integration,
as we thought likely. The computations were all performed on a computer with about
14 decimal digits precision. The quality of the estimates is disturbed at the absolute

GLOBAL ERROR ESTIMATES BASED ON EXTRAPOLATION METHODS 11

TABLE 2
Results corresponding to Table for the second solution component.

extrapolation

-loglo tol U A G E U

99 99 85 49
2 0 100 100 98 30
3 0 100 99 98 20
4 0 98 98 94 14
5 0 100 100 96 8
6 0 100 100 96 4
7 0 100 100 93 3
8 0 100 100 100 2
9 0 100 100 100 12

10 0 100 96 88 26
11 10 89 81 44 28
12"

GERK

A G E

47 27 3
67 49 14
79 64 20
86 76 27
90 83 42
85 81 49
67 65 47
59 57 41
43 35 15
21 10 4
10 3 1

error tolerance 10-11 but we were successful at avoiding the poor estimates which
would have been seen at 10-12 The quality of the estimates is notably insensitive to
the tolerance. In contrast, the quality of the estimates provided by GERK is seriously
disturbed at both crude and stringent tolerances. It is never of quality comparable to
the new code.

Its authors emphasize that the fixed order code GERK will not be efficient at
stringent tolerances. The costs, measured by the number of function evaluations FCN,
displayed in Table 1 illustrate this. The higher orders allowed by our code are of great
advantage at stringent tolerances. On the other hand, GERK is significantly cheaper
at crude tolerances. In part this is because it does not strive so hard for reliability, but
in part it is intrinsic to the approaches. We consider the reliability worth the extra
cost since, after all, this is the range of tolerances where the total cost is least.

The problem

y’=-32xyln2, y(-1)=2-1, -l _-< x-<_ l,

has the peaked solution

y(x)=26-16x:z.

For x < 0 the problem is unstable so that the global error grows rapidly from the initial
point to x 0. For x > 0 the problem becomes increasingly stable and the global error
decays rapidly. Dekker and Verwer [1] present some results for GERK and RGERK
for integration with the pure relative error tolerance 10-4. They display in their Table
5 the values of "ratio" at only 8 points and state that the results are similar at other
points. By our characterization of the quality, GERK gave good results at all the
points reported and excellent results at 3 of the 8 points. The integration cost 810
function evaluations. RGERK gave excellent results at all 8 points reported at a cost
of 1584 evaluations. Our code solved this problem in 15 steps. The results were good
at all steps and excellent at 14 of the 15 steps. The cost was 986 evaluations.

The problem

y’=10(y-x2), y(0)=0.02, 0-<_x-<2,

12 L. F. SHAMPINE AND L. S. BACA

TABLE 3
Solution of mathematically unstable problem.

-loglo tol

GERK

ratio FCN

.11 91
2 .38 150
3 .68 314
4 .83 517
5 .90 771
6 .94 1,021
7 .96 1,348
8 .97 2,050
9 .98 3,228

10 .93 5,136
11 .80 6,522

RGERK

ratio FCN

.77 181

.96 294
1.00 602
1.00 1,003
1.00 1,491
1.00 2,011
1.00 2,680
1.00 4,084
.95 6,450
.49 10,266
.14 13,038

extrapolation

ratio max/min FCN

.95 1.0/.95 332

.94 1.0/.94 482

.97 1.0/.97 554

.99 1.0/.99 580

.98 1.0/.98 764

.99 1.0/.99 850

.99 1.0/.99 978
1.0 1.0/1.0 1,176
.99 1.0/.97 1,306
.99 1.0/.97 1,634

1.0 1.0/.97 1,798

is mathematically unstable as the general solution of the differential equation

y(x) =0.02 +0.2x + X2"] e lx

makes clear. It has been used as a test problem by a number of authors. In Table 3
we present results for GERK, RGERK, and our extrapolation code. The results for
GERK and RGERK are taken from [1]. They were obtained on the same kind of
computer as we used for our code; indeed, we verified the results for GERK. The
ratio of the estimated to true global error is computed only at the endpoint x 2. To
provide a better assessment of the quality of the estimate, we report the maximum
and minimum over all the steps of the integration for this ratio with our code. GERK
does commendably well. RGERK was intended to provide a better, though more
expensive, estimate and this is observed to be the case here. The costs of the integrations
cannot be taken at face value. All the codes are "tuned" differently so that, for example,
the solution by RGERK is roughly an order of magnitude more accurate than that of
GERK. Our intention is to show the general size of the costs, especially the behavior
as a function of the tolerance. For most practical purposes all the codes produce
adequate estimates of the global error at x 2. The most interesting point about the
quality is that our approach produced significantly better estimates at both extremes
of the range of tolerances. The results for the maximum and minimum value of ratio
show that our approach is uniformly good. The dependence of the cost in function
evaluations, FCN, on the tolerance is illuminating. Our variable order code has a cost
much less sensitive to the tolerance and because it can resort to much higher orders,
the cost is much lower at stringent tolerances. Considering the cost of the lowest order
procedure in the variable order code, it is not surprising that RGERK, and especially
GERK, are cheaper at crude tolerances. However, this difference in cost is partly due
to the additional attention given to reliability.

Dekker and Verwer [1, p. 14tt] present some results of RGERK applied to the
mildly stiff problem

(x) x
(6.2) y’=-100 Y-x + 1

+
(x + 1)---’ y(0) =0.

GLOBAL ERROR ESTIMATES BASED ON EXTRAPOLATION METHODS 13

The general solution is

X -100xy(x)=+y(O) e
x+l

so that the initial condition has been chosen so as to eliminate the initial transient.
They considered the integration of this problem with a pure absolute error tolerance
of 10-3. We also did this on [0, 2] for several initial step sizes. With the initial step
size 10-1, 10-2, 10-3, our code successfully completed 0, 2, 1 steps, respectively, before
returning with the message that it was unable to achieve sufficient accuracy in the
secondary integration. This is not surprising. With the special initial condition, the
character of integral curves close to y(x) differ markedly from y(x) itself. An unfortu-
nate aspect of the problem specification is the pure absolute error criterion. In view
of the fact that y(0)= 0, the accuracy control is very lax at x 0 which causes codes
difficulty in adjusting a guessed initial step size to an appropriate value. We also solved
this problem with the step size limited to 0.02, which assures absolute stability. Our
initial step size was 0.01. The final step size was also less than 0.02 in order to hit
x 2. The other 99 steps were of maximum size. The ratio of the estimated to true
global error at the first step was .97, excellent, and at the last step .81, which we call
good. The ratio was remarkably constant on the other 99 steps since it ranged from
.68 to only .70, which represents a good quality estimate.

We also solved the equation of (6.2) with the initial condition changed to y(0) 1.
With initial step size 10-2 the first part of the integration is then not particularly stiff
because of the initial transient. As a consequence the code reached x 1.64 in 45
steps before returning with a message that the secondary integration was insufficiently
accurate. The ratio of estimated to true global error had a quality characterized as
follows: 33% of the values of ratio were excellent, 84% were good, 98% were adequate,
and only one estimate (2%) was unacceptable.

7. Conclusions. The simple theoretical foundations of our approach to global
error estimation promise a reliable estimate at a cost relatively insensitive to the
accuracy desired. The numerical results of the last section confirm this promise. The
performance of our research code is gratifyingly good in comparison with codes based
on other approaches.

Although our approach to global error estimation could be grafted on to any code
based on extrapolation, we have taken significant advantage of certain aspects of
Deuflhard’s step and order selection algorithms [2]. As a consequence, the order
selected in the modified code is not necessarily the same as that selected in the original
code DIFEX1. In addition, we had to take out the local extrapolation which is standard
for such codes with the consequence that the result of a step is not the same in modified
and original code even if both choose the same order. The importance of these
observations is that often users want to make only spot checks on the global error.
They would prefer to turn off this feature for production runs if so doing would
significantly reduce the cost. Although our code is an efficient one, it is significantly
more expensive than the original DIFEX1. It would be nice if both codes gave the
same results so that one could use the cheaper code when global error estimates are
not required. Unfortunately this goal was not realized. We point out that essentially
the same can be said of the global extrapolation code GERK which also does not
produce the same results as its "original" Runge-Kutta code RKF45.

14 L. F. SHAMPINE AND L. S. BACA

REFERENCES

[1] K. DEKKER AND J. G. VERWER, Estimating the global error of Runge-Kutta approximations, Rept.
NW 130/82, Math. Centrum, Amsterdam, 1982.

[2] P. DEUFLHARD, Order and stepsize control in extrapolation methods, Numer. Math., to appear.
[3] W. H. ENRIGHT, Using a testing package for the automatic assessment of numerical methods for

O.D.E.’s, in Performance Evaluation of Numerical Software, L. D. Fosdick, ed., North-Holland,
Amsterdam, 1979, pp. 199-213.

[4] A. PROTHERO, Estimating the accuracy of numerical solutions to ordinary differential equations, in
Computational Techniques for Ordinary Differential Equations, I. Gladwell and D. K. Sayers,
eds., Academic Press, London, 1980, pp. 103-128.

[5] L. F. SHAMPINE, Limiting precision in differential equation solvers, Math. Comp., 28 (1974), pp. 141-
144.

[6], Stiffness and nonstiff differential equation solvers, II: detecting stiffness with Runge-Kutta
methods, ACM Trans. Math. Software, 3 (1977), pp. 44-53.

[7] ., Discussion ofsession on performance evaluation in ordinary differential equations, in Performance
Evaluation of Numerical Software, L. D. Fosdick, ed., North-Holland, Amsterdam, 1979, pp. 215-
217.

[8],Robust relative error control, Rept. SAND82-2320, Sandia National Laboratories, Albuquerque,
NM, 1982.

[9],Efficient extrapolation methods for ODEs, Rept. SAND83-0041, Sandia National Laboratories,
Albuquerque, NM, 1983.

[10] L. F. SHAMPINE AND H. A. WATTS, Global error estimation for ordinary differential equations, ACM
Trans. Math. Software, 2 (1976), pp. 172-186.

[11] H.J. STETTER, Global error estimation in ODE-solvers, in Lecture Notes in Mathematics 630, Springer,
Berlin, 1978, pp. 179-189.

[12] ., Tolerance proportionality in ODE-codes, in Seminarberichte Nr. 32 Sektion Math., R. M/irz,
ed., Humboldt Univ., Berlin, 1980, pp. 109-123.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 1, January 1985

1985 Society for Industrial and Applied Mathematics

002

THE TUNNELING ALGORITHM FOR THE GLOBAL
MINIMIZATION OF FUNCTIONS*

A. V. LEVY" AND A. MONTALVO

Abstract. This paper considers the problem of finding the global minima of a function f(x): f n .
For this purpose we present an algorithm composed of a sequence of cycles, each cycle consisting of two
phases: (a) a minimization phase having the purpose of lowering the current function value until a local
minimizer is found and, (b) a tunneling phase that has the purpose of finding a point x f, other than the
last minimizer found, such that when employed as starting point for the next minimization phase, the new
stationary point will have a function value no greater than the previous minimum found.

In order to test the algorithm, several numerical examples are presented. The functions considered are
such that the number of relative minima varies between a few and several thousand; in all cases, the algorithm
presented here was able to find the global minimizer(s). When compared with alternate procedures, the
results show that the new algorithm converges more often to the global minimizer(s) than its competitors;
additionally, it becomes more efficient than the other procedures for problems with increasing density of
relative minima.

Key words, global optimization, nonlinear programming, unconstrained minimization

1. Introduction. One of the most interesting research areas in nonlinear program-
ming is that of finding the global minimizer of a function defined in an n-dimensional
linear space. Until recent years this problem has been almost completely ignored and
only few numerical methods have been developed to solve it. Among these, three
approaches have been used: (a) In the hill climbing approach, all the extremal points
are found sequentially in a deterministic fashion and comparing the values of f(x) at
all the local minimizers, the global is identified (Brannin [3]; Hardy [6]). (b) In the
multiple random start approach, a very large number of starting points are given and
any minimization algorithm is used to find the corresponding local minimizer. By
comparing the values of f(x) at all the local minimizers the global is identified
(Anderssen [1]). (c) In the function modification approach, an auxiliary function is
defined as whose function value at the local minimizer is lower than the value of the
function at all the local minimizers previously found. Using this algorithm recursively,
the global could be approached (Goldstein [5]).

Most of the algorithms so far developed along these lines, are practical only for
low dimensionality problems. In this paper we present a new algorithm which retains
the best properties of each approach, while avoiding their main disadvantages, such
as unpredictable performance while approaching the global minimizer(s), large comput-
ing time and the evaluation of higher order derivatives. The new method (Tunneling
Algorithm) consists of two phases, a minimization phase and a tunneling phase. These
phases are used sequentially to approach the global minimizer of f(x). In the minimiz-
ation phase, for a given starting point x, any minimization algorithm with a local
descent property on f(x) can be used to find a local minimum of f(x), say at x*.

In the tunneling phase, an auxiliary function T(x), is defined, where T, the
tunneling function, is a scalar function with continuous first derivatives, whose zero-set

* Received by the editors March 15, 1982, and in revised form August 23, 1983. This work was partially
supported by the National Science Foundation Grant NSF-MCS-76-21657.

" Postdoctoral Fellow in Aero-Astronautics, Rice University, Houston, Texas, Professor of IIMAS,
Universidad Nacional Aut6noma de Mexico, Mexico City, DF, Mexico.

t Research Associate, IIMAS, Universidad Nacional Aut6noma de Mexico, Apdo. Postal 20-726, Deleg.
A. Obreg6n, 01000 Mexico, DF, Mexico.

15

16 A. V. LEVY AND A. MONTALVO

coincides with the set where .f(x)=f(x*) and which depends on a set of parameters
that are chosen automatically by the algorithm with the purpose of stabilizing the
method. The objective of this phase is the following: starting at any point in a
neighborhood of x*, we seek a new point x such that T(x) <-0.

By using these two phases alternately, the sequence of minimizers found are such
that the function value at each of these minimizers is never greater than any of the
function values at the previously found minimizers; that is, the function value at the
local minimizers is nonincreasing.

Numerical results are presented for sixteen examples which are solved by the
present method and by two versions of the multiple random start approach. These
examples vary from two to ten variables, from one strict global minimum to eighteen
global minima and up to several thousands of stationary points.

The numerical results show that the present method is usually faster than the
other methods and more important, it converges more often to the global minimizer
than the other methods. In particular, the numerical results indicate that these relative
advantages increase with the density of relative minima.

2. Derivation of the algorithm. Let f(x) be a twice continuously differentiable
function on the set fl={xRn: a<=x<= b}, with a and bern. We will assume that all
the minima of f(x) are isolated minima and that there is a finite number of them.

In this paper we consider the problem of finding all the global minimizers of f(x)
in [l. For solving this problem, we will present an algorithm that consists of two

separate phases. The objective of the first phase is to find a local minimizer x* of f(x);
the second phase is designed to move from this point to a point x x* with f(x) <=
f(x*). These two phases are described next.

2.1. Minimization phase. Given a starting point x we use any minimization
algorithm to find a local minimizer of f(x), say x*. This algorithm can be any
unconstrained minimization method with descent property, e.g., steepest descent,
conjugate gradient, Newton’s method. We will assume that at the end of this phase a
local minimizer has been found.

2.2. Tunneling phase. We start this phase at x*, the exit point of the minimization
phase, and its purpose is to find a point xe fl such that

f(x) _-< f(x*),

X X*.

This can be formally stated as follows: find x Z={xfl-{x*}: f(x)<=f(x*)}.
We now have the following dichotomy, whenever Z is not empty:

i) x is also a local minimizer of f(x) and x# x*;
ii) if x is not a minimizer of f(x); then a further descent on the function value

can be achieved, e.g., by moving along the direction given by -f(x).
In the former case we have located a new minimizer of f(x) where the function

value is not higher than the previous one, f(x*); in the latter case we have found a
point that can be used to start a new minimization phase that will locate a new minimizer
with a function value lower than f(x*). (In the case when Z , then the algorithm
goes to the boundary of

In order to move from x*, consider the function

f(x-f(x*)
(2) T(x) [(x-x*)’(x-x*)]"

TUNNELING ALGORITHM FOR GLOBAL MINIMIZATION 17

(where denotes transposition) which has a pole at x* for rt sufficiently large. Note
that all x x* satisfying T(x) <= 0 are contained in Z. Therefore, we will consider
the problem of finding a nonpositive minimum of T(x). In practice, after several
applications of the two phases the function T(x) will have the general form (Appendix I)

(3) T(x)
f(x)-f*

{lq,=, [(x- x*) (x- x,*)],}[(x x.) (x- x.)]o"

The purpose of each of the terms in (3) is the following" The difference in the
numerator eliminates as possible solutions of this phase all those points x satisfying
f(x) > f*. The first term in the denominator prevents the algorithm to locate as solutions
of this phase all previous minimizers found at x*, i= 1, 2,. , l, with a function value
f(x*)--f(x*2) f(x*l)--f*; that is, the algorithm will not cycle between previous
solutions with the same function value (Remark. is always taken as one whenever
the new minimizer found produces a function value strictly lower than the previous
one, and is increased by one if the new minimizer produces a function value equal to
the previous one). The second term in the denominator of (3) is designed to smooth
out, in an adaptive fashion, any irrelevant local minimizer of T(x) that might attract
any particular minimization algorithm during the search for x (points where Tx(x) 0
and T(x) > 0).

Finally, the tunneling phase can be actually implemented by using any minimization
algorithm with descent property on T(x). The rules needed to determine the correct
value of all the parameters involved in T(x) are presented in Appendix I.

2.3. Minimization algorithms. Next, we present three different algorithms
employed in the minimization phase; namely, ordinary gradient, conjugate gradient
and Newton’s methods as well as a modified version of Newton’s method as employed
in the tunneling phase.

2.3.1. Ordinary gradient (Himmelblau [7]). For this method, the displacements
Ax are generated according to

Ax -fx(X)

where a, the step size, is chosen such that

f(x+ax)<f(x)

by using a bisection procedure on a, starting at a 1 and up to Nb bisections.

2.3.2. Conjugate gradient. This method was implemented following the Fletcher-
Reeves method (Himmelblau [7]) as follows:

a. Set k 0 and Ax=-fx(x) as the first search direction;
b. find a, the step size, such that

df(x’ + ceAx k)
=0;

da
C. X

k+
X
: + aAxk"

d. The new search direction is evaluated according to

AX+’ -fx(X t’+’ + f’x(x’+’) fx(X !+1 AX k

f’x(X’)f,,(x ’)
e. k k + 1 and repeat the procedure from step b. Whenever k n + 1, the entire

procedure is restarted at step a, by taking x= xk.

18 A. V. LEVY AND A. MONTALVO

Finally, to accomplish step b, the minimum of f(x) along the search direction Ax k,
is first bracketed; once this is done, the optimum value of a is found by using quadratic
interpolation.

2.3.3. Newton’s method (Himmelblau [7]). This method generates displacements
Ax according to

AX --ozpf-ax(X)fx(X)

where a, the step size is determined as in the ordinary gradient method and p, a
direction factor, is defined according to

1 if f(x- 2-uf-x(X) fx(X)) < f(x),
P= -1 if f(x-2-uf-(X)fx(X))>f(x).

2.3.4. Modified Newton’s method (Miele [8]). The displacements Ax, in the
tunneling phase are generated according to

T(x)
Ax -a T,(x)

T’x(x)Tx(x)

and a, the step size, is determined as in the ordinary gradient and Newton’s methods.
In all four methods described above, provisions must be taken in order to prevent

that any point generated by the procedures lies outside the admissible region.

3. Some properties of the tunneling algorithm. Using the material presented in
the previous section, we now exhibit the following descent property of the tunneling
algorithm obtained by successive applications of minimization and tunneling phases.

a) If any of the minimization phases uses x as a starting point, a local minimizer
of f(x) will be found, say x*, whose function values satisfy

(4) f(x* <- f(x).
b) Similarly, if any of the tunneling phases uses x* as starting point, the solution

point of the corresponding tunneling function T(x), say 0
X i+ 1, satisfies

(5) f(X+) <(X*), ox+ x*.
c) Combining (4) and (5), and suppressing the intermediate solution of the

tunneling phases, the descent property of the algorithm is given by

(6) f(x* >= f(x*2) >=’’" >= f(x_,) >= f(x*)
where x* corresponds to the global minimizer of f(x) and where x* s x for j.

4. Numerical experiments. It is the purpose of this section to illustrate the
characteristics of the Tunneling Algorithm as well as the methods already mentioned
in 1, namely, two versions of the random starting method. For this purpose, sixteen
numerical examples were solved in a CDC-6400 computer, using single precision
arithmetic, with all the algorithm coded in standard FORTRAN IV.

4.1. Stopping conditions.
4.1.1. Tunneling algorithm. The value assigned to the different parameters in-

volved in the minimization phase were the following: the convergence criteria were
chosen as

e 10-9

TUNNELING ALGORITHM FOR GLOBAL MINIMIZATION 19

and the nonconvergence criteria were set to

Nb =20.

The values assigned to those parameters involved in the tunneling phase are given
in Appendix I.

4.1.2. Multiple random start method (MRS). This algorithm is made-up of a
random number generator which gives the starting point of any minimization phase.
The actual implementation of this technique is the following. For a given minimization
algorithm we ran it for different starting points, selected at random, and stored the
obtained local minima of f(x) and their location. (Note that in this method neither
the number of starting points nor their location are known in advance.)

The stopping condition employed in this algorithm to denote convergence at any
local minimum was

(7) fx(X)fx(X)<=e=lO-9.

Nonconvergence is defined to occur whenever the number of bisections in a given
minimization step is greater than 20 or when the limiting computing time is reached.

4.1.3. Modified multiple random start method (MMRS). This algorithm is in the
same line as the previous one. The only modification involved in MMRS is as follows:
Let x* be the location where a minimum of f(x) occurs, say f(x*). To continue the
search for additional minima, a random point x is generated and used as the location
to start the next minimization phase provided

(8) f(xO) f(X) 10-3

is satisfied. If for a given x, (8) is not satisfied, a new point x is generated at random
and satisfaction of (8) is tested; this procedure is repeated until inequality (8) is satisfied
or a time limit is reached. (As in the MRS method neither the number of starting
points nor their location are known in advance.)

4.2. Measurement of success. Each of the problems presented in 4.4 was solved
several times starting each run at different points. Let N denote the number of global
minima exhibited by a particular problem (N 1 for problems with one strict global
minimum); Nr the number of starting points employed in each problem and
i= 1, 2,..., Nr the number of different global minima found when starting at each
one of the N starting points; under these conditions we define a quantity p, a measure
of success, as

(9) p E M,
NN

From this equation we observe that 0-< p <- 1, and the larger value of p, the more
robust is the algorithm since more often finds all the N global minimizers.

4.3. Running time. Each of the problems presented in the following section was
first solved using the tunneling algorithm. Let t, i= 1, 2,..., N denote the time
consumed by the tunneling algorithm, in CPU secs, from the beginning of the first
minimization phase up to the end of the last minimization phase. With these times,
we define an average running time as

(10) tav- EiN=rl t,.
N

20 A. V. LEVY AND A. MONTALVO

This average time, tav, was employed as limiting time when running the alternate
methods, giving this a basis to compare all different methods.

4.4. Examples. In this section we describe the sixteen examples employed to
compare the algorithms. The region of interest, where the examples were considered
as well as the starting points employed in each example, is given.

Example 1. "Two-dimensional Shubert function" (Shubert [10]).

f(xl’x2)={ i=1 icos[(i+l)Xl+i]}{i=l icos[(i/l)xe/i]),
(11)

-10 <= X 10, 1, 2.

This function exhibits 760 local minima in the region considered, eighteen of
which are also global minima. The value of f(x) at these global minima is f(Xl, X2)---
-186.73091 and the coordinates of each one of the minimizers are the following:

(-7.08350,-7.70831), (-0.80032,-7.70831), (5.48286,-7.70831),

(-7.70831,-7.08350), (-1.42513,-7.08350), (4.85805,-7.08350),

(-7.08350,-1.42513), (-0.80032,-1.42513), (5.48286,-1.42513),

(-7.70831,-0.80032), (-1.42513,-0.80032), (4.85805,-0.80032),

(-7.08350, 4.85805), (-0.80032, 4.85805), (5.48286, 4.85805),

(-7.70831, 5.48286), (-1.42513, 5.48286), (4.85805, 5.48286).

The starting points for this example were (7, 7), (7,-7), (-7, 7), (0, 0).
Example 2. "Two-dimensional Shubert function".
Case 1.

f(Xl’X2)={ i=1 icos[(i+l)xa+i]}{i=l icos[(i-t-1)X2q-i]}
(12)

+1/2[(Xl+ 1.42513)2 + (x2 + 0.80032)2], -10_-< x =< 10, i= 1,2.

This function exhibits the same characteristics as Example 3 with only one global
minimum located at

Xl -1.42513, x2 -0.80032

with a function value f(x)=-186.73091. The starting points were the same as those
in Example 1.

Example 3. "Two-dimensional" Shubert function".
Case 2.

(
+(x+l.42513)+(x+0.80032), -10_-<x_-<10, i-1,2.

This example has the same characteristics of Examples 3 and 4, with only one
global minimum located at

x =-1.42513, x. -0.80032

with a function value f(x) =-186.73091. The starting points were the same as for
Example 1.

TUNNELING ALGORITHM FOR GLOBAL MINIMIZATION 21

Example 4. "Six-hump camelback function" (Hardy [6]).

4 2(14) f(xl, x2)=[4-2.1x+XllXl+XlX2+[-4+4x]x, -3<_x1=<3, -2<_x2<_2.

This function exhibits 6 local minimizers, two of which are also global, located at
(-0.08983,0.7126) and (0.08983,-0.7126) and the function value is f(x)=
-1.0316285.

The starting points employed in this example were (-2.9,-1.9), (-2.9, 1.9),
(2.9,-1.9), and (2.9, 1.9).

Examples 5 through 7 are taken from the general formula

(15)
f(x) =Tr k sin2 (ry)+ Z [(Yi-A)2(1 + k sin2 (Tryi+l))]+(y,-A)2

n i=1

yi=1+0.25(x-l), -10=<xi -<10, i=l,2,...,n

where the constants k and A were fixed at 10 and 1 respectively, and n denotes the
dimensionality of the problem.

The function given by (15) exhibits many local minima but only one of these is
also a global minimum. The location of this global minimizer is fixed at

xi=l, i=1,2,... ,n

and the function attains the value f(x)= 0, irrespective of the dimensionality of the
problem.

Example 5. Equation (15), n 2. The starting points used in this example were
(-8, 8), (8, 8), (-5, 5), and (-8, 8).

Example 6. Equation (15), n 3. The starting points used in this example were
(8, 8, 8), (-5, 5,-5), (8,-8, 8), and (-8,-8,-8).

Example 7. Equation (15), n 4. The starting points used in this example were
(-5,-5,-5,-5), (5, 5, 5, 5), (-5,-5, 5, 5), and (5, 5,-5,-5).

Examples 8 through 10 are taken from the general formula

f(x) k sin2 (’xl) + 2 [(x-A)(1 + k sin (rx/))]+(x-A)
i=1

(16)
-10-< x-< 10, i=l,2,...,n,

where the constants k and A were fixed at 10 and 1 respectively and n denotes the
dimensionality of the problem.

Example 8. Equation (16), n 5. The starting points used for this example were
(8, 8, 8, 8, 8), (-8,-8, 0, 8, 8), (8, 8, 0,-8,-8), and (-8,-8,-8,-8,-8).

Example 9. Equation (16), n 8. The starting points used in this example were
a) x=8, i=1,2,...,8,
b) xi=-8, i=1,2,...,6, xi=O, i=7,8,
c) xi=8(-1) i, i=1,2,...,6, xi=O, i=7,8,
d) xi=O, i=1,2,...,8.
Example 10. Equation (16), n 10. The starting points used in this example were
a) x=O, i=1,2,...,10,
b) x=2, i=1,2,...,10,
c) x=6, i=1,2,...,10,
d) xi =-1, i= 1, 2,..., 10.

22 A. V. LEVY AND A. MONTALVO

Examples 11 through 16 have been taken from the general formula
n--1

f(X)-- k sin2 7rlox + k Y [(xi-A)2(1 + ko sin2 7r/oXi+l)]
i=1

(17)
+ k(xn-A)2(1 + kosin2 "n’loXn),

where the constants in this equation have been fixed as follows: k0 1, kl -0.1, A 1,
10 3, and ll 2. The examples generated by using (17) exhibit many local minimizers,
but only one of these is also global located at x* 1, 1, 2,. , n and the function
value at this point is f(x*)= O.

Example 11. Equation (17), n 2, 10 =< x =< 10, 1, 2. The starting points for
this example were (9, 9), (-9,-9), (-9, 9), and (9,-9).

Example 12. Equation (17), n 3, 10 <- xi <= 10, 1, 2, 3. The starting points
were (5, 5, 5), (5,-5, 5), (-5, 5,-5), and (-5,-5,-5).

Example 13. Equation (17), n 4, 10 -< x -< 10, 1, 2, 3, 4. The starting
nominal points for this example were (5, 5, 5, 5), (5, 5,-5,-5), (-5,-5, 5, 5), and
(-5,0,0,5).

Example 14. Equation (17), n 5, -5 _-< xi <- 5, 1, 2,. , 5. The starting points
for this example were

a) xi=3, i-1,2,...,5,
b) x =3(-1)-, i- 1, 2,..., 5,
c) xi=3(-1) i, i=1,2,...,5,
d) xi=-3, i=1,2,...,5.
Example 15. Equation (17), n =6,-5 <- xi _-<5, 1, 2,. , 6. The starting points

used for this example were
a) xi=3, i=1,2,...,6,
b) xi=3, i=1,2,3, xi=-3, i-4,5,6,
c) xi=-3, i=1,2,3, xi=3, i=4,5,6,
d) xi=-3, i=1,2,...,6.
Example 16. Equation (17), n 7, -5 _-< xi <- 5, 1, 2, , 7. The starting points

for this example were
a) x =-3, i= 1, 2,..., 7,
b) x=-3, i=1,2,3, x4=0, x=3, i=5,6,7,
c) x=3, i=1,2,3, x4=0, xi=-3, i=5,6,7,
d) xj=3, i=1,2,...,7.

5. Analysis of the numerical results. In this section we present the results obtained
for the sixteen examples mentioned in the previous section when solved using the
various methods previously described. Additionally we present the result obtained
when running the tunneling algorithm coupled to several local minimization techniques.

Next, we present the results obtained by the tunneling, MRS and MMRS methods,
using in their corresponding minimization phases the ordinary gradient method to find
the local minimizers (Montalvo [9]).

With the purpose of having as much information as possible to have a better idea
on the performance of the methods, we report the following data for each one of the
sixteen examples.

a) Total time required for reaching the global minimizers.
b) Total number of functions and gradient evaluations.
c) Partial time spent in the minimization phases.
d) Total number of functions and gradient evaluation during the minimization

phases.

TUNNELING ALGORITHM FOR GLOBAL MINIMIZATION 23

e) Minimization phases required to reach the global minimizers.
f) Measurement of success (p). Here we have to differentiate the following

situations"
f.1) For functions exhibiting only one global minimum, the reported value for

the tunneling algorithm varies between zero and one, since this value corresponds to
the number of times that, in the average, the global minimum was reached starting at
four different points. For MRS and MMRS methods, the reported values are either
zero or one depending whether or not the global minimum was located or missed.

f.2) For functions exhibiting more than one global minimum the reported value
is obtained as follows: for each one of the runs starting at different points, we counted
the number of different global minima found and then an average between these four
numbers is computed; the final number is obtained dividing the latter by the total
number of global minima exhibited by the function.

From the results shown in Table 1, we can make the following observations.
a) In all sixteen examples, the tunneling algorithm was the only one in locating

all global minimizers, except in Example 1 where the method located seventeen out
of the eighteen globals.

b) On Examples 5, 6, 7, 11 and, 12, the MMRS algorithm out-performed the
tunneling algorithm as it was able to find the global minimizers faster than the tunneling
algorithm.

c) On Examples 2, 3, 8, 10, and 13-16 both MRS and MMRS were not able to
locate the global minimizers, while the tunneling algorithm did; these examples include
the one with n 10.

Taking into account the above statements we reach the conclusion that the
tunneling algorithm is usually faster and more often converges to the global minimizers
than the other methods; this advantage increases with the density of relative minima.
In particular, the starting point generated by the tunneling algorithm (exit point
generated by the tunneling phase), can be considered as a "highly educated" random
starting point for initiating each of the minimization phases.

Use of alternate local minimization techniques. In Table 2 we present the results
obtained when running the tunneling algorithm coupled to different local minimization
techniques, namely: (a) ordinary gradient, (b) conjugate gradient and (c) Newton’s
method.

For the ten examples analyzed (Examples 1-10) we have focused the comparison
on the time spent by the algorithms in (a) the minimization phases and (b) reaching
the global; that is, we allowed the program to reach the global minimizer. For each
case we report the above mentioned two times as well as the average number of
minimizations performed and the average number of times the global minimizer was
located.

We observe that in all cases the tunneling algorithm was always able to locate the
global, independently of the local minimization technique being used. However, one
can observe the following anomalous results in Table 2.

a) The ordinary gradient method took the least total times for reaching the global
in Examples 1, 3, 8, and 10.

b) The conjugate gradient method was the best in Examples 2, 3, and 9.
c) Newton’s method became the best method for Examples 4, 5, 6, and 7.
Another important fact that can also be observed in Table 2, is that in seven of

the ten examples, the ordinary gradient method required the least minimization phases.
It is the authors’ opinion that this characteristic was probably due to the fact that even
during the search for local minimizers the minimization method was also "tunneling";

24 A. V. LEVY AND A. MONTALVO

TABLE
Summary of numerical results for the tunneling, MRS, and MMRS methods.

Total
time

Ex/dim. Method (CPU-secs) Functions

1/2

2/2

3/2

S/2

5/3

7/4

10/10

11/2

12/3

13/4

14/5

15/6

16/7

Tunnel 87.045
MRS 88.089
MMRS 87.066

Tunnel
MRS
MMRS

8.478
5.197
4.313

Tunnel
MRS
MMRS

5.984
2.094
6.018

Tunnel
MRS
MMRS

1.984
0.036
2.036

Tunnel
MRS
MMRS

3.238
64.0
1.062

Tunnel
MRS
MMRS

12.915
3.516
4.024

Tunnel
MRS
MMRS

20.450
3.391
4.335

Tunnel
MRS
MMRS

11.885
8.107
11.925

Tunnel
MRS
MMRS

45.474
38.091
45.535

Tunnel
MRS
MMRS

68.22
192.0
68.26

Tunnel
MRS
MMRS

4.364
6.308
1.792

Tunnel
MRS
MMRS

12.378
13.291
2.975

Tunnel
MRS
MMRS

8.35
9.851
8.376

Tunnel
MRS
MMRS

28.33
51.707
28.362

Tunnel
MRS
MMRS

33.173
41.065
33.231

Tunnel 71.981
MRS 92.615
MMRS 72.027

Evaluations during
Total evaluations Minimization minimization phase

time

Gradient (CPU-secs) Functions Gradient

12,160 1,731 2.113 1,047 97
35,479 9,572 87.845 35,479 9,572
50,462 0.148 75

2,912 390 1.045 525 53

2,180 274 1.409 710 69

3,350 19 0.292 136 19

1,496 148 0.033 57 17
61 19 0.034 61 19

6,000 10 0.016 32 10

2,443 416 0.947 1,116 273

1,241 287 0.997 1,195 287

7,325 1,328 4.435 3,823 848
2,861 784 3.485 2,861 784
3,443 726 3.231 2,647 726

4,881 1,371 1.91 1,126 376

3,076 457 2.289 1,369 457

7,540 1,122 9.32 6,471 881

9,458 171 2.112 1,506 171

19,366 2,370 35.644 16,138 2,011
17,229 2,143 38.091 17,229 2,143
22,193 1,771 30.757 14,126 1,771

23,982 3,272 67.283 22,191 3,135

25,966 2,913 62.47 23,093 2,913

2,613 322 0.762 736 158
6,851 876 6.308 6,851 876
1,867 250 1.406 1,441 250

6,955 754 3.927 3,142 479
10,566 1,652 13.227 10,566 1,652
2,316 359 2.139 2,316 359

3,861 588 3.076 1,863 390
6,659 740 9.821 6,659 740
6,234 273 2.294 1,419 273

10,715 1,507 7.249 3,565 797
28,347 4,002 51.712 28,347 4,002
17,339 1,098 11.150 5,746 1,098

12,786 1,777 17.282 7,839 1,329
19,301 2,784 41.028 19,301 2,784
18,985 132 1.263 479 132

16,063 2,792 15.350 6,142 1,013
38,483 5,411 92.546 38,483 5,411
36,195 435 5.977 2,132 435

Number of
minimizations

17
244

2.75

3.25

3

4.25
6
2

2.5

2.5

2.5

4

4.25

3.75

5.5

3.5

7.5

0.9445
0.5
0.0555

0.5

0.5
0

0.75
0

0.75
0
0

0.75
0
0

0.75
0
0

Failure in convergence.

TUNNELING ALGORITHM FOR GLOBAL MINIMIZATION 25

TABLE 2
Results for the tunneling algorithm coupled with alternate local minimization procedures.

Ex/Dim.

1/2

2/2

3/2

4/2

5/2

6/3

7/4

8/5

9/8

lO/lO

Minimization
phase

Ord. grad.
Conj. grad.
Newton

Ord. grad.
Conj. grad.
Newton

Ord. grad.
Conj. grad.
Newton

Ord. grad.
Conj. grad.
Newton

Ord. grad.
Conj. grad.
Newton

Ord. grad.
Conj. grad.
Newton

Ord. grad.
Conj. grad.
Newton

Ord. grad.
Conj. grad.
Newton

Ord. grad.
Conj. grad.
Newton

Ord. grad.
Conj. grad.
Newton

87.045
105.474
128.656

8.478
4.656
8.173

5.984
5.944

10.466

1.984
0.586
0.43

3.283
1.052
0.327

12.915
7.218
5.863

20.45
11.782
5.29

11.885
15.850
46.195

45.474
24.773
157.830

68.220
118.737
230.381

train

2.113
4.283
3.210

1.054
0.064
2.157

1.409
0.446
1.699

0.033
0.070
0.061

0.947
0.091
0.110

4.435
0.187
0.377

1.910
0.323
3.480

9.320
1.593
6.829

35.644
6.001

78.941

67.283
7.890

208.570

Total no. of
minimizations

17
19.75
18

3
6.75
7

3
4.75
7

2
2
3.5

2.75
3.75
2.125

3.25
3
2.75

4.25
3.125
2

2
5.25

11.25

2.5
4.75

15

2.5
11.25
6.75

Globals
found

17
17.25
17

this means that the ordinary gradient method was not easily trapped by local minimizers
as it probably occurred to the alternate procedures. (Obviously, this depends on the
one-dimensional search being used.) Hovever, this behavior has not yet been satisfac-
torily explained.

6. Final comments. Based on the material previously presented we conclude that
the Tunneling Algorithm has the following characteristics that make it very attractive
for finding global minima.

a) It is superior to several other methods previously reported since generally, it
locates the global minimizer(s) faster than do the other methods. It should be pointed
out that even in the case when the tunneling algorithm is not highly efficient (for
several examples) it still locates them.

26 A. V. LEVY AND A. MONTALVO

b) It was experimentally observed that the efficiency (q the tunneling algorithm
is not affected by the density of relative (nonglobal) minimizers, while the other
methods tested are strongly affected, in a negative direction, by this property of the
objective function.

c) When comparing different local minimization methods coupled to the tunneling
algorithm, no one of these showed to be more efficient than the others. However, it
should be pointed out that when the tunneling algorithm was coupled to the ordinary
gradient method, this version required the least amount of minimization phases.

Appendix I.
Determination of the tunneling function. In this appendix we present the necessary

steps to determine the actual parameters involved in the definition of T(x), namely

[l, (x*, i= 1, 2,..., l), (rt,, i= 1, 2,..., l), x,,, a0,f*]

where T(x) was defined as

(A.0) T(x)
f(x)-f*

(II,= [(x- x*,)’(x- x,*)]",}[(x x..)’(x- x)]o"

Step 1. Determination of f*. Once any local minimum has been found at x*, we
want the tunneling algorithm to ignore all the local minima whose function value are
higher than f(x*), since they are irrelevant for approaching the global minimizer. This
objective can be achieved by letting f* be the lowest function value obtained so far.
With this selection of f* we accomplish our objective of tunneling below irrelevant
local minima even if we do not know how many they are nor their location.

Step 2. Determination of rti and x’i, 1, 2,. , I. To clearly illustrate this step,
let us assume that 1 that is the algorithm has found only one local minimum at Xl*,
with a function value f* =f(xl*). We employ Equation (A.0) with A0=0, thus the
tunneling function simplifies to (,1 replacing

(A.1) T(x)
f(x)-f*

[(x- x*)’(x- x*)]
where x Xl* + e. The correct value of TI is found iteratively starting from A1 1, until
the following descent property holds.

(A.2) T’x(x)Ax<O

provided

(A.2a) e’Ax>O

where e is a random vector with Ilell << 1, Ax is the displacement produced by the
tunneling algorithm using the trial value of A1 in (A.2). It can easily be proved that
(A.2) and (A.2a) are simultaneously satisfied provided T(x) has a pole at x Xl*.

If for a given A1, inequalities (A.2) are not satisfied, increase A1 by AA1 until the
above descent property is satisfied. For subsequent steps the actual value of r/1 is
determined according to

0 if y _-> 1 + e2,

(A.3) A1 if y-<_ 1 e2,

(A/2)[1+ (1- W)/e2] if 1-e2_--<y--<l+e2

where IIx-x*ll and ez is a small prescribed number. Note that Equation (A.3) is

TUNNELING ALGORITHM FOR GLOBAL MINIMIZATION 27

a ramp function which continuously switches the denominator in Equation (A.1), when
crossing the unit circle centered at Xl*. This switching procedure is necessary because
for some functions, as the tunneling algorithm iterates, the denominator in Equation
(A.I) might become very large when IIx-x,*ll > 1, forcing the tunneling function to
become very fiat and close to zero, thus slowing down the convergence of the tunneling
algorithm.

Let us now consider the case of > 1, that is, when the function has multiple local
minima at the level f*, and successive applications of the minimization phase with
(l-l) tunneling phases have identified the points x/*, i= 1, 2,..., l-1 as local
minimizers of f(x) at the level f*. As each x/*, 1, 2,. , l- 1 is found and having
computed ri, 1, 2, , 1, ’F/I is computed employing the above iterative procedure
using the function

f(x)-f*
l--1(A.4) T(x)

l-[i=, [(x- x*i)’((x- x*i)]"[(x- x*t)’(x- x*)]"
The actual value of r/, is determined as in (A.3), that is

0 if 3’ -> 1 +
(A.5) T/l /l if ’)t 1 e2,

(A/2)[l +(1--Yl)/e2] if

where y x- x* II.
Remark. The value of is reset to 1 whenever the new local minimum found

has a lower value than the previous one.
Step 3. Determination of xm and)to. For the first iteration of each tunneling phase

we set

(A.6) x,,=x/* and h0=0.
For subsequent iterations within the tunneling phase the position Xm and pole

strength A0 of the movable pole are automatically computed in order to cancel out
any undesirable relative minimum that the function T(x) might have. Once any of
these minima is detected we proceed as follows.

Let x be the present point and the previous point generated by the tunneling
algorithm. Then the position of x,, is determined as follows

if []-xl[< 1,
(A.7) x,=

:+(l_sC)x if [l -xll ->1

where 0 < : =< 1 is chosen such that x-x < 1. We note that the movable pole thus
located will always be within the unit circle centered at the current position x of the
zero finding algorithm, so we are free to choose the pole strength as large as it is
required to cancel out any undesirable minimum that T(x) might have in the neighbor-
hood of x. To achieve this, let A0 be the pole strength value employed when moving
from the previous point to x: let Ax be the displacement produced by the tunneling
algorithm leading from x to the new point and consider the inner product

(A.8) u=(x-)’ax.

If u > 0, we can retain the pole strength while moving from x to . If u < 0, the
value of A0 is no longer appropriate, and a new A0 is found iteratively starting from
Ao 0 and increasing it by AA0 until u > 0.

Once the tunneling algorithm has moved away from the local minimum of T(x)

28 A. V. LEVY AND A. MONTALVO

which motivated the increase of the pole strength, one could return to a simpler
tunneling function with a simpler geometry, by resetting the movable pole strength
A0 to zero.

A heuristic rule to detect when the tunneling algorithm has left the undesirable
neighborhood of the local minimum of T(x) is as follows. Compute the displacement
that would be produced by the tunneling algorithm, for two values of A0, namely, for
the current value of Ao we compute Ax(Ao); for Ao=0 we compute Ax(0). Next, we
measure the angle between these two displacements and update the value of the pole
strength ho according to the following rule:

(A.9) Ao={0ho if Ax’(0)Ax(Ao) > 0,
if Ax’(0)Ax(Ao) 0.

Step 4. Stopping condition for the tunneling phase.
Case 1. Recall that the tunneling algorithm should be stopped whenever T(x) <- O.

In the actual implementation of this phase this condition has been replaced by

(A. 10) T(x)e3

We note that any x satisfying (A.10) is an acceptable starting point for the next
minimization phase.

Case 2. This case occurs when for a given e-vector, in a given number of iterations,
N,, the zero finding algorithm fails to locate x l) such that T(x) <= e3. If this is the
case we are in the position of selecting another e-vector, different from the previous
one, and restart the tunneling phase for this new e-vector, until satisfaction of inequality
(A.10) is achieved; this procedure is repeated N times.

Finally, without changing any of the parameters of the tunneling function T(x),
we initiate the tunneling phase from any starting point selected at random x fl, that
is, no longer within an e-neighborhood of the last minimum found; this procedure is
repeated NR times.

The 0search for a.ny point x such that T(x) <=0 was implemented using the
so-called Restoration lgorithm (Miele [8]), as described in 2.3.4, to produce the
displacements Ax. The values assigned to the parameters involved in this phase were
the following:

The convergence criteria were chosen as

e3 10-3;

the r/-switching parameter was fixed at

e2-- 10-5;

and the nonconvergence criteria were the following:

hmax’-5

/3R 2-20

Number of bisections: Nb 20

Number of search steps: Ns 100

Number of e-vectors: N 2n

Number of final random vectors: Nn 2n

where n denotes the dimensionality of the problem.

TUNNELING ALGORITHM FOR GLOBAL MINIMIZATION 29

REFERENCES

[1] R. S. ANDERSSEN AND P. BLOOMFIELD, Properties of the random search in global optimization, J.
Optim. Theory Appl., 16 (1975), pp. 383-398.

[2] M. AVrIEL, NonlinearProgramming Analysis and Methods, Prentice-Hall, Englewood Cliffs, NJ, 1976.
[3] F. H. BRANNIN, JR., Widely convergent method for finding multiple solutions of simultaneous nonlinear

equations, IBM J. Res. Dev. (September 1972), pp. 504-522.
[4] L. DIxorq ,rqD G. P. SZrGO, eds., Towards Global Optimization, North-Holland, Amsterdam, 1975.
[5] A. A. GotDSTrrq rqD J. F. Prtcw, On descent from local minima, Math. Comp., 25 (1971), pp.

569-574.
[6] J. HARDY, An implemented extension of Brannin’s method, in Towards Global Optimization, North-

Holland, Amsterdam, 1975.
[7] D. M. HIMMELBLAU, Applied Nonlinear Programming, McGraw-Hill, New York, 1972.
[8] A. MIELE, H. Y. HUANG AND J. C. HEIDEMAN, Sequential gradient-restoration algorithm for the

minimization of constrained functions--ordinary and con.iugate gradient versions, J. Optim. Theory
Appl., 4 (1969), pp. 213-243.

[9] A. MONTVO, Desarrollo de un nuevo algoritmo para la minimizaci6n global de funciones, Ph.D.
thesis, School of Engineering, National Autonomous University of Mexico, 1979.

[10] B. O. SHU3ET, A sequential method seeking the global maximum of a function, SIAM J. Numer.
Anal., 9 (1972), pp. 379-388.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 1, January 1985

1985 Society for Industrial and Applied Mathematics
003

ON FITTING EXPONENTIALS BY NONLINEAR LEAST SQUARES*

J. M. VARAHf

Abstract. This paper is concerned with the problem of fitting discrete data or a continuous function

by least squares using exponential functions. We examine the questions of uniqueness and sensitivity of the
best least squares solution, and provide analytic and numerical examples showing the possible nonuniqueness
and extreme sensitivity of these solutions.

Key words, exponential fitting, nonlinear least squares

1. Introduction. The discrete problem of fitting data (ti, yi), 1,. , n by a sum
of exponentials y(t)= Yj=l aJeb/in the best least squares sense so as to minimize

I(a, b) (y(t,)- y,)2,
i=1

is well known to be difficult computationally. The extreme sensitivity of the exponential
powers {b} (assumed throughout to be real and negative) was pointed out by Lanczos
(1956, pp. 276ff), who showed for a particular example that various parameter values
can give near-optimal results. Since then, special algorithms have been proposed (for
example Osborne (1975)) and problems of this type have been used to test more
general nonlinear least squares algorithms (Golub and Pereyra (1973), Kaufman
(1978)).

We are attracted to this problem because of its relation to the general problem
of fitting parameters in differential equations. Indeed, if we consider a constant
coefficient model

y(m) + Cm_ly(m-1) +. + CO O,

then the general solution y(t) is as above, with the (b} the roots of the associated
polynomial (assumed real and negative). Notice that we must also allow for the
possibility of multiple roots or confluences, as pointed out by Rice (1968).

Recently, there has been interest in this problem in the more restrictive setting
a > 0, 1,. , m (the completely monotone case). Here a convex cone characteriz-
ation is possible, some uniqueness results are known, and special algorithms have been
proposed. See Evans et al. (1980), Kammler (1979), and Ruhe (1980). Although this
positivity assumption is reasonable for some applications, we feel that in the context
of parameter estimation it is more reasonable to allow the {a} to vary freely.

In 2, we consider this (discrete) problem and show that the example of Lanczos
is not at all pathological. For a given data set, and only 2 exponentials, not only can
the coefficients of the best approximation be very sensitive to the data, but there can
easily-be more than one local or global best approximation.

This discrete problem is closely related to the continuous problem of fitting an
exponential sum to a given function f(t) so as to minimize

I(a, b)= (y(t)-f(t)) dr.

* Received by the editors November 30, 1982, and in revised form August 1, 1983.
Department of Computer Science, University of British Columbia, Vancouver, British Columbia,

Canada V6T 1W5.

30

FITTING EXPONENTIALS BY NONLINEAR LEAST SQUARES 31

This problem is more amenable to analysis than the discrete one, and in 3 we examine
the question of uniqueness, and give examples of nonunique solutions, extending the
work of Kammler (1979). Then in 4 we treat the special case where f(t) is itself an
exponential sum; in this case one can be more explicit about nonuniqueness, and we
give several examples. Finally in 5 we try to draw some conclusions and give some
recommendations for treating such problems in general.

2. The discrete problem. We consider only two exponentials, since all the aspects
of the problem can be seen in this case, and the necessary extensions to three or more
exponentials are easily seen.

Thus the problem can be stated easily enough: we have a least squares function

(2.1) 2I(a, b) (al e bl’’ + a2 e b2’ yi)2= ri

with first order minimum conditions

(2.2)

aI oI
2 Y ri e bl ti O, 2 ritia e bl ti O,

Oal Obl
ai ai

2 Y ri e b2t --O, 2 Y ritia2 e bzti "-0
Oa2 Ob2

or JTr 0, where J is the Jacobian matrix Jij Ori/0aj, t (al, a2, bl, b2). The 0I/Oai
0 equations can be used to solve for the linear parameters a l, a2, and these substituted
to give I as a function of bl, b2 only, but this is messy and does not provide much insight.

Some idea of the nature of the critical point(s) arrived at by solving (2.2) can be
obtained by evaluating the 4 4 Hessian matrix H,

Y l]l } h-iri
riH

(2.3)
=JTj+G.

Most of G is zero at a solution of (2.2), the only nonzero terms being

G33 al E rit2i e b’, G44 a2 Y rit2i e b:’’.

We should mention here that we are assuming bl b2; in the confluent case bl b2
we must adjust I accordingly. We will consider this more explicitly when dealing with
the continuous problem in 3 and 4.

This natural splitting of H into jTj + G has been used by several authors as a
way of measuring intrinsic and parameter-dependent sensitivity. Ramsin and Wedin
(1977) define for this purpose curvatures -/’i as generalized eigenvalues of Gx tZJTJx,
and Bates and Watts (1980) define similarly normal and tangential curvatures as
measures of intrinsic and parameter-dependent sensitivities. The idea is that with a
different choice of parameterization, the ill-condition of H caused by jTj might be
removed. This is of course interesting and useful; however, we take the view here that
we are specifically concerned with the parameters {ai, bi} as given, so that we are
"stuck" with the ill-condition caused by the particular parameterization using powers
of exponentials. Hence in particular we feel that the eigenvalues of the Hessian matrix
H do provide a reasonable measure of the local sensitivity of the problem, that is, of
the least squares function I(a, b).

This preamble on sensitivity is important because even the simple problem (2.1)
can be very ill-conditioned. We give some indication of this using two well-known

32 J.M. VARAH

examples" that of Lanczos mentioned earlier, and one due to Osborne (1972). The
Osborne data are given in Table 1, after subtracting the asymptotic constant 0.3754.
The Lanczos data (see Lanczos (1956, p. 276)) are generated from three exponentials,

(2.4) .0951 e-t +.8607 e-3’+ 1.5576 e-5’

using At .05 and generating 24 points and truncating the values to two decimal places.
We give this in Table 1 as well. Both data sets appear to have unique minima, given
in Table 2.

TABLE

y

0.0 .4686
0.1 .5326
0.2 .5566
0.3 .5606
0.4 .5496
0.5 .5326
0.6 .5056
0.7 .4746
0.8 .4426
0.9 .4086
1.0 .3756
1.1 .3426
1.2 .3096
1.3 .2826
14 .2526
1.5 .2276
1.6 .2046

Osborne data Lanczos data

y y

1.7 .1826 0.0 2.51
1.8 .1626 .05 2.04
1.9 .1466 .10 1.67
2.0 .1306 .15 1.37
2.1 .1146 .20 1.12
2.2- .1036 .25 0.93
2.3 .0916 .30 0.77
2.4 .0816 .35 0.64
2.5 .0726 .40 0.53
2.6 .0626 .45 0.45
2.7 .0556 .50 0.38
2.8 .0486 .55 0.32
2.9 .0446
3.0 .0336
3.1 .0356
3.2 .0306

y

.60 .27

.65 .23

.70 .20

.75 .17

.80 .15

.85 .13

.90 .11

.95 .10
1.00 .09
1.05 .08
1.10 .07
1.15 .06

TABLE 2

Osborne

Lanczos

a a b b I hi(H) A2(H)

1.93 -1.46 -1.29 -2.22 .55)<10-4 .00011 .06

0.40 2.11 -1.81 -4.57 1.0)<10-4 .00027 .03

Some idea of the ill-condition of these problems can be seen from the size of the
Hessian eigenvalues; however, this is very local information and an understanding of
the global behavior is really more helpful. Thus we give as well in Figs. 1 and 2 a
geometrical picture with a 3-dimensional plot of the function x/I(bl, b2) using the
appropriate linear parameters al, a2 for each bl, b2. The ranges involved were -0.4_->

bl, b2->--7.0 for Osborne, -0.4_-> bl, b2->--10.0 for Lanczos. Of course the plots are
symmetric about the line bl--bE. We add that although the actual location of the
minimum point is sensitive to the data, the global nature of the least squares surface
is not; thus the same kind of surface is obtained, for example, using exact values of
the Lanczos data (i.e. not truncated to 2 decimal places).

Notice that the Osborne data gives rise to a rather narrow valley to the minimum
and beyond. This results from the fact that one exponential fits the data surprisingly
well. The Lanczos plot is rather different: the valley is broader, in a different direction,

FITTING EXPONENTIALS BY NONLINEAR LEAST SQUARES 33

and not so easily distinguished. Both surfaces appear convex in the region ba > b2 with
unique minima, although verifying convexity appears to be difficult, and we have not
been able to characterize those data which lead to convex surfaces, or even give
sufficient conditions. We shall return to this problem in the continuous case.

To appreciate the ill-condition involved here, we can try to measure the sensitivity
of the parameters to changes in the data. For example, suppose the data values are
in error by no more than 6. Then we can tolerate a change in / of e 6/.
Following Bard (1974, p. 171), this gives rise to an uncertainty region about the
minimum which, assuming I is locally quadratic, is the ellipse (6b)TH(6b) <-_ 2e 2, where
H is the 2 2 Hessian using only bl, b2 as variables (not the 4 4 Hessian used earlier).
Thus 116b]l can be as large as e/X/Zl(H). With 6=.001 in the above cases, this
uncertainty region is quite large; we have not computed it precisely but we know it
contains the points in Table 3.

TABLE 3

Osborne

Lanczos

bl b2

-1.2 -2.5

-1.6 -4.4

bl b2

-1.4 -1.9

-2.1 -4.7

Yet these data sets are not in the least pathological; other data sets give comparable
results. Indeed, one can devise data sets where the situation is much worse, i.e. with
a flatter, yet nonconvex surface, merely by forming a different exponential sum in
(2.4). We consider one specific example briefly here, and return to it in 4 where we
discuss the continuous approximation problem. We use the general sum

(2.5) am e-t + O2 e-3t + 03 e--St,

choosing the special case a (.1, .4, 3).
The difference in the nature of the surface I(ba, b2) can be seen by examining the

confluent case ba b2. Along this line the Osborne and Lanczos data appear to give
rise to a convex function I(bm, ba), with a unique minimum at some finite (negative)
value of ba. This point is in fact a saddle point of the surface, with the surface decreasing
in value away from ba b2 until the (apparent) global minimum is reached (see Figs.
1 and 2). However the new example is not convex along bm= b2.

Algebraically, the confluent case has the form (c+ dti) e bt’, with
N

I(b) E [(c + dti) e t, y,]2.

The first order conditions for a critical point are

N

Y [(c + dt,) e b’’ y,]tk O, k O, 1, 2.

If we define

Sk tki e2bt, k O, 1, 2, 3,

Zk yitk e b’i, k O, 1, 2,

and solve for the linear parameters c and d, we get a single equation for b:

(2.6) S2 S1S3) Z0 dt- SoS3 S $2) Z SoS2 S) Z2.

34 J.M. VARAH

This equation is rather nasty, and it appears very difficult in general to give criteria
for a unique solution, so as to make I(b) convex. We conjecture that this will imply
a unique global minimum for bl <--b2, much as in Figs. 1 and 2.

FIG. 1. Discrete least squares surface (I(bl, b2)) 1/2]’or Osborne data.
Range: -0.4-> bl, b2 -> -7.0, vertical scale: (0.0, 1.0).

Now consider the special case mentioned earlier. For a (.1, .4, -.3), we generate
33 data points from (2.5) using tl =0 and At =0.1. Examination of the confluent case
reveals 3 critical points, as shown in Table 4.

This case has two distinct minima; one as above at bl b2 =-.98, and the other
(global) minimum at bl =-1.55, b2 =-10.5 with I(bl, b2) .15 10-3. The/-function
is very fiat near both minima, with the 4 4 Hessian having an eigenvalue of .33 10-5

in the latter case. The 3-D plot of the surface [I(bl, b2)] 1/2, for -.4>_-bl, b2->--10.0
is given in Fig. 3. In the neighborhood of the local minimum (-.98, -.98), I is very
flat: for -.9 _-> b, b2 => -1.5, 1.68 10-3 =< I _-< 2.02 x 10-3. Moreover, near the global
minimum (-1.55, -10.5), it is also flat; if we again allow .001 error in each data point,
we find the uncertainty region contains (-1.45,-20) and (-1.7,-5.7).

A similar situation occurs for very many data sets; because of this we feel that
the fitting of exponentials must be attempted with great care. Moreover, there seems
to be little correlation between this sensitivity and monotonicity of the data. In the
following sections, we shall discuss the continuous problem in greater analytic detail.

FITTING EXPONENTIALS BY NONLINEAR LEAST SQUARES 35

FIG. 2. Discrete least squares surface (I(b, b2)) 1/z for Lanczos data.
Range" -0.4_- bl, b2->-10.0, vertical scale: (0.0, 1.0).

I(b)

nature

TABLE 4

a (.1, .4,-.3)

-.98

1.68x 10-3

min

-1.34

1.85X10-3

saddle

-2.38

0.78X 10-3

saddle

3. The continuous problem. Here we are given a function f(t), 0=< < c, and
wish to approximate it by an exponential sum y(t) =i= ajeb so as to minimize

(3.1) I(a, b) = (y(t)-f(t))z dr.

We assume the exponentials are decaying, i.e. bj<0, j= 1,... m. The first-order
conditions for a minimum (or more generally for any critical point) are, for j 1,. m,

OI

Oaj
(y -f) eb/dt 0

36 J.M. VARAH

FIG. 3. Discrete least squares surface (I(bl, b2)) 1/2 for exponential data.
Range: -0.4>_ bl, bz>--10.0, vertical scale: (0.0, 1.0).

and

OI Io e b/
O-ffj aj (y f) dt O.

If we define what are essentially the Laplace transforms of y and f,

aiz(b) y(t) eb dt
b + b

and

g(b) f(t) e bt dt,

then these first-order conditions are equivalent (assuming no aj 0) to the functions
z(b), z’(b) interpolating g(b), g’(b) at the solution points {bj}, j= 1,.-., m;

ai bitz(b) Y f(t) e dt g(b),
i=1 bi+bj

(3.2)

z’(b) 2 ai

= (b+ bj) tf(t) edt=g’(bj).

These equations are sometimes called the Aigrain/Williams equations (see Kammler
(1979)) and of course make the error (y-f) orthogonal to e and eb over [0,

FITTING EXPONENTIALS BY NONLINEAR LEAST SQUARES 37

They are linear in the {aj}, but nonlinear in the { bj}, so the existence and uniqueness
of solutions is not clear, and may vary with the function f(t).

It is of interest to compute the Hessian matrix H of second partial derivatives of
1; we get

021 bt ebt -1

Oa2 Oak
e dt

b + b-----’
f2i

e bt e2bt a____2__
OaOb- (y-f)t dt+aj dt=O-

(2b)2 (at a critical point),

021 ebt bt ak

Oa Obk ak e dt
b + bk 2’

021 b ebk --2aiak
Obj Obk

ajak e dt
b + bk) 3’

021 2 2 2bit f)tz ebj, -2a.
Ob--7 ai e dt + a (y dt (2bi)3 + g?

Thus, as in the discrete case, the Hessian consists of two parts,

H=Ho+G,

with Ho depending explicitly on the {a, b} and G explicitly on f(t). If we order the
variable a1,"’, am, bl,’", b,,, then Ho has the form

(3.3)

-1

m= b,+b
ak t

_z2aa]’
(b+ bk)3/

If we factor out the {aj} by a diagonal congruency transformation, the remaining matrix
is the Gram matrix for the functions eb/, eb/, j 1,. , m. Thus H0 is positive definite
and the nature of a particular critical point depends on G. If the solution y(t) is a
good fit, so that the terms & are small, H will be very close to H0, and in this case
the sensitivity of the solution parameters will depend effectively on the eigenvalues
of Ho.

However, H0 can be very ill-conditioned: for b.], the top left block is the Hilbert
matrix of order m, and H0 is in fact much more ill-conditioned than this. Even for
m =2, A(H) < 10-4; for m =3, AI(H)< 10-7, and for m=4, AI(H)< 10-. In prac-
tice, at least for our examples, we have found that the Hessian eigenvalues are indeed
very close to those of H0 (at the minimum point), so that our problem is intrinsically
very ill-conditioned. More on this can be found in Ruhe (1980).

Moreover, the situation is really much worse than this: there is the strong possibility
of multiple solutions of (3.2) for a given function f(t), even in very simple cases. We
illustrate this by extending an example of Kammler (1979), fitting two exponentials
by one,

(3.4) f(t) e-t+ a em, y(t) a e bt.

38 J.M. VARAH

We assume a and/3 are given, a and b are to be found, and that b and/3 are negative.
The equations (3.2) are as follows:

Ol a 1 a
0==> ---I

0a 2b b-1 b+/3’
0I

(3.5) 0b-0:=>a=0 or

However, using (3.4) gives

a 2 1 a 2 2a
(3.6) I=-+22/3 /3-1"
So I is always smaller if a 0, i.e. a =0 never gives a minimum. Using (3.4) to define
a, and substituting in (3.5) gives

(3.7) (b+ 1)(b+/3)2+ a(b-)(b- 1)z=0
which is a cubic for b b(a,) with one or three real solutions. To see when three
real solutions can exist, express I as a function of b alone (using (3.4))"

(1 a)21a2 2a-(3.8) I(b) 2b b_i+O+fl 22fl fl- l"

Now dI/db =0 gives a =0 or (3.7) as above; however at solutions of (3.7)

dE___/= 4(/3 + 1)2b
[3bz + b- bfl 3/3]

db2 (b-fl)2(b-1)5(b+fl)
whose sign is completely determined by the quantity in square brackets. A plot of this
in the b, /3)-plane is shown in Fig. 4.

.1
-3

FIG. 4

b

Notice that the only chance for having three real roots is for (b,/3) to be in the
) region (i.e. with I"(b)<0) for one of the roots b, so that a local maximum is
achieved. Now consider b,/3 as our free parameters (not a,/3) with a given by (3.7).
We can restrict our attention to the small) region R near zero and below the b 0

FITTING EXPONENTIALS BY NONLINEAR LEAST SQUARES 39

axis; the other region is obtained by a simple transformation: b-+ 1/b, fl-+ 1/fl;
a -+ a/fl, the other b-roots-+ reciprocals, a -+-a/b, and I-+ I. That is, for each (b,/3)
pair in R, there is a reciprocal pair (1/b, 1//3) with the same solution. However in R,
we have three b-solutions; there is one b for which I"(b)< 0, i.e. a local maximum.
However we must have two other local minima (say Xl, Xa) with -oo < Xl < b < x. < 0,
since I’ (b) > 0 for b 0-, and I’ (b) - 0- for b -+ -oo. Actually, this holds for interior
points of R only; on the boundary, we get a double root (say xl b) and even a triple
root at the minimum of the b-/3 curve (i.e. b =x/-3).

Of particular interest are cases where the two local minima xl, xa have identical
I-values, so we in fact have a nonunique global minimum. This occurs for a continuum
of values (b,/3) inside R given by/3 =-ba (notice this curve leaves R at the minimum
b =x/-3). On this curve, the other b-roots Xl, x2 are given by (for x/-3 < b < 0)

x2+(b2+4b+ 1)x+ b2 =0

or

X1,2
-(bE+4b + 1) +/- (b+ 1)x/b2 + 6b + 1

At these x-values, the corresponding a-values from (3.4) are

x-1 x_b2 =2
1-1/x 1-b2/x

Notice that if xb2/x, a(x)-+a(b2/x)=2b(1/(x-1)-b/(x-b2))=(b/x)a(x), and
hence

aZ(x) a(x)a(ba/x) aa(b2/x)
2x 2b 2(bZ/x)

Thus since X2--" bZ/Xl for the two roots, we have a2(xl)/2Xl =aZ(xz)/2x2 and thus
from (3.6), I(x)= I(xz).

Thus we can have multiple solutions and nonunique minima even in this relatively
simple case; as Kammler (1979) notes, such problems are extremely ill-conditioned
numerically, particularly for b near the triple root.

From now on, we again specialize to the case of two exponentials, i.e. y(t)=
aa ebl’+ a2 e bzt. Then the variational equations are (see (3.2))

(3.9)

--a2a__+ --a2 g(bl) -= gl,
-a____l / g(b2) =-

2bl ba/b2 bl/bE 2 g2,

al a2 g’(bl)-- g al + a2 =g,4b (b + b2)2= (bl / b2----- 22 (b2)-- g.

The first two equations define a, a2 via Ba=g, with

-1 -1

2bl b-b2
b+b2 2 /

40 J.M. VARAH

Then the remaining two are

(12b
(3.0)

2bz 2 b2
blSb2]g +

bl (bl b2)
g2

-bl (1 2b12)b2)
gl + + bl" b2] g2 --g"

Moreover, the functional

I(a(b), b)=- (y-f)2 dr= f dt-grB-Ig

which after some manipulation can be expressed as

(3.11) I= f2 dt+2(bl+b2) bgl-bzg2] 2

bl-b2]

This last form is particularly useful, as it holds in the confluent case (bl- b2) as
well if limits are used. If b b2 b, then y(t) (ct + d) e bt, and the variational equations
give

c=-4b2(g+2bg’), d =-4b(g + bg’)

where g g(b), g’= g’(b) as before. Then in terms of b only,

Io(3.12) I f dt + 4bg + 8bgg + 863(g’)2

which indeed is the limit of (3.11) as b2 bl b. The conditions for a critical point in
this case boil down to one equation"

I’(b) 4[g2 + 6bgg’ + 8 b2(g’) 2 + 2b2gg"+ 4b3g’g’’] 0.

Because of the symmetry in I(b, b2) across b b2, any solutions of this equation are
critical points of I in the (bl- b)-plane, and may be local minima, maxima, or saddle
points.

In principle, for a given function f(t), equations (3.10) could be used to find
solutions and (3.11) could be differentiated to find the Hessian. However this appears
to be difficult in any specific practical case, and we prefer to try to understand the
problem by plotting the surface I(bl, b2).

As an example, consider f(t)= 2 e-t. Then
2 6 24

g(bl=(l_b), g’(b)=(l_b), g"(bl=(l_b).
The variational equations (3.10) are difficult to analyze; however the confluent case
b b. b is somewhat easier:

3 4
b2 12

I(b)=-+4b(lb)6+8 (1b)------5
and it is easy to check that I’(b)= 0 at three points:

b (1) -.118, I(b(1)) .202
13

b(2) -0.2,

+8b3
36

(l-b)8

(local minimum),

I(b(2)) .214 (saddle point),

FITTING EXPONENTIALS BY NONLINEAR LEAST SQUARES 41

b3) -.651, l(b3)) .0125 (global minimum).
13

There appear to be no critical points for bl # b2, and we plot the surface [I(bl, b2)]1/2
in Fig. 5, with -.05 -> bl, b2 => -2.0.

FIG. 5. Continuous least squares surface (I(ba, b2)) 1/2 for f(t)= e-’.
Range: -0.5 >-bl, bz >---2.0, vertical scale: (0.0, 1.0).

Other choices of f(t)will give very different surfaces, of course, and in the next

section we consider the special case where f(t) is itself an exponential sum.

4. Exponential data. Here we consider fitting two exponentials y(t)=al ebl’+
a2 e b2t to f(t) =Yi= aiet3jt as we did in the discrete case in 2. Thus g(b)=Y -ai/
(b +/3i) and the variational equations (3.10) can, after some manipulation, be written

(4.1)

bl Si)(b2 Si)
ceJ(b -t-i)2(b2-t-i)i=1

(bl-/3,)(b2-/,)
i= ai(bl + fli)(b2 + i)2

=0,

Clearly, some results about the location of roots (b, b2) can be inferred from (4.1).
For example, if the a > 0 for all j, and/3n <" </31 < 0, then at least one of (b, b2)
must lie inside (/3n,/31).

However, it is very difficult to give any more general results about the nature of
the solutions (bl, be): even if the/3 are fixed, the nature of the surface I(b, b2) varies

42 J.M. VARAH

tremendously with the choice of a (a 1," an). From (3.11), we can express I bl, b2)
as

-1
(4.2) I ogTcI--gTB-lg-- oTAo, CiJ [i

with A DCD, and D diagonal with

(bl fl)(b2- fl)
d (bl +/31)(b2 + fl)"

Moreover, we can express the Hessian similarly:

T 02A T o2A

H=
T o2A T o2A
Ob Ob2

One can explicitly compute the partial derivatives; indeed,

O2A
ob=4b(OGO)

where D is diagonal,

b2-#i
di b2 + i)(ba + i)3,

and

gis 1-3b---+ --12tl+"l)
However, to show uniqueness of a minimum point, (bl, b2) for example, we need
convexity of I(bl, b2), i.e. H positive definite for all bl < 0, b2 < 0, for some particular
choice of a and 1. This seems to be very difficult: the matrix G is unfortunately
indefinite over much of the region bl < 0.

Even the confluent case is intractable, although interesting: one can readily express
the function I(b) from (4.2) and its derivatives; for example

dI
4a’DGDo,

db

with D diagonal, i (b [i)/(b + i)3, and gis b2- [i[j Again, however, the nature
of the function varies tremendously with a. For some a, dI/db 0 at only one point
(a minimum), and for these it appears that I(bl, b2) has a unique minimum as well;
for others however, the confluent case admits 3 or more solutions and the full function
I(bl, b2) can have several minima. As well, I(bl, b2) can be very flat over a large range
of bl, b2. We can illustrate these different aspects with examples, all taken with n- 3
and/31 =-1, 2 =-3, /3 =--5.

Example 1 (the Lanczos data). t=(.0951, .8607, 1.5576).
Here the confluent case has one minimum, which is a saddle point for the full

function I(bl, b2). This in turn has a unique minimum for bl->-b2 at (-1.47,-4.42)
wth I=.85x10-5 and Amin(H)=.0021. The surface is very similar to that of the
discrete problem, given in Fig. 2.

FITTING EXPONENTIALS BY NONLINEAR LEAST SQUARES 43

Example 2. t (.1, .4, -.3).
Here (as in the discrete problem) the confluent case has three critical points, one

a local minimum and two saddle points for the full problem. In addition, the full
problem has a minimum for bl > b2. The minima are:

(-1.17,-1.17), I=.99x10-4

(-1.54,-11.2), I=.18x10-4, Amin(H)=.4810-6.

Again the surface is similar to that in Fig. 3.
Notice also that this surface is very flat" indeed for the whole region -1 >- bl, b2

-3, we have

.06 10-3 I bl, b2) <- .25 10-3.

Example 3. t (.14, -.70, .70).
Here the confluent case has 5 critical points, listed in Table 5.

TABLE 5

I(b)

nature

-0.20 -0.33 -0.73 -2.11 -7.2

.116510-2 .117410-2 .112410-2 .145610-2 .078 10-2

minimum saddle minimum maximum minimum

FIG. 6. Continuous least squares surface (I(bl, b2)) 1/2 for f(t) exp sum.
Range" -0.1 _-> bl, b2 -10.0, vertical scale: (0.0, 0.12).

44 J.M. VARAH

The surface is incredibly flat in this case; over the whole range -0.1 _-> bl, b2 =>
--10.0, .078 10-2-< I(bl, b2)-<.146 x 10-2. Thus if the surface is scaled like the others
(where max I(bl, b2) 1.0), it would appear totally flat. Scaled up however, it is much
more interesting: see Fig. 6. The three local minima from the confluent case bl--b2
appear to be the only minima; however the flatness indicates that the original fitting
problem can be solved by using any values of bl and b2 in this range. Notice that for
this problem at is very nearly the eigenvector corresponding to the smallest eigenvalue
of A in (4.2).

5. Conclusions. Although we have emphasized the possibility of ill-conditioning
in exponential fitting, we do not mean to imply that every such problem is ill-
conditioned, or admits multiple solutions. If the best fit has powers (bj} which are
widely separated, then the Hessian matrix H of 3 can be well-conditioned and the
corresponding least squares surface convex and not flat.

However it is exceedingly difficult to judge this from the data: because of the
nonlinearity of the problem, the condition will depend on the data and on the solution
generated. Thus we recommend that when solving such problems, the eigenvalues of
the Hessian near the solution be calculated, at the very least, and if possible, a plot
of the least squares surface (projected into two-dimensional planes for more than two
exponents) be computed as well, to give a more global picture of the possible ill-
condition of the problem.

REFERENCES

Y. BARD (1974), Nonlinear Parameter Estimation, Academic Press, New York.
D. M. BATES AND D. G. WATTS (1980), Relative curvature measures of nonlinearity, J. Royal Stat. Soc.,

Ser. B, 42, pp. 1-25.
J. W. EVANS, W. B. GRAGG, AND R. J. LE VEQUE (1980), On least squares exponential sum approximation

with positive coefficients, Math. Comp., 34, pp. 203-211.
G. H. GOLUB AND V. PEREYRA, The differentiation ofpseudoinverses and nonlinear least squares problems

whose variables separate, SIAM J. Numer. Anal., 10, pp. 413-432.
D. W. KAMMLER (1979), Least squares approximation of completely monotonic functions by sums of

exponentials, SIAM J. Numer. Anal., 16, pp. 801-818.
L. KAUFMAN (1978), A program for solving separable nonlinear least squares problems, Bell Labs. Technical

Memo 78-1274-7.
C. LANCZOS (1956), Applied Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1956.
M. R. OSBORNE (1972), Some aspects of nonlinear least squares calculations, in Numerical Methods for

Nonlinear Optimization, F. A. Lootsma, ed., Academic Press, New York.
(1975), Some special nonlinear least squares problems, SIAM J. Numer. Anal., 12, pp. 571-592.

H. RAMSIN AND P.-A. WEDIN (1977). A comparison of some algorithms for the nonlinear least squares
problem, BIT, 17, pp. 72-90.

A. RUHE (1980), Fitting empirical data by positive sums of exponentials, this Journal, 1, pp. 481-498.
J. M. VARAH (1982), A spline least squares method for numerical parameter estimation in differential

equations, this Journal, 2, pp. 28-46.

SIAM J. ScI. STAT. COMPUT.
Voi. 6, No. 1, January 1985

1985 Society for Industrial and Applied Mathematics
004

SYMMETRIC VERSUS NONSYMMETRIC DIFFERENCING*

WAYNE R. DYKSEN" AND JOHN R. RICE?

Abstract. Consider the self-adjoint elliptic problem (pUx)x +(qUy)y + ru =f with Dirichlet boundary
conditions on the unit square. This problem is symmetric in the sense that if the data is symmetric then so
is the solution. The straightforward finite difference discretization has one expand the derivatives and apply
differences to pUxx+pxux+’". Alternatively there are symmetric discretizations which are attractive
intuitively and which are usually recommended. We have observed that symmetric discretizations are
sometimes much less accurate; a simple analysis is made to compare the expected behavior of the two
discretizations. Data from a simplified model problem confirms the expectations that nonsymmetric differen-
ces are more accurate than symmetric differences much more often than vice versa. We conclude for elliptic
problems that unless it is known that u varies much more rapidly than p and q, one should use nonsymmetric
differences.

Key words, finite difference, elliptic differential equations, symmetric discretizations, experimental study

1. The difference approximations. We have observed differences in the discretiz-
ation errors of finite difference approximations for several elliptic problems. These
were large enough to completely change the expected outcomes of substantial software
performance evaluations. We believe the underlying phenomenon has nothing to do
with the dirnensionality, so we restrict ourselves to one-dimensional problems here.

Consider the finite difference discretizations of the terms

pUg)x and pUxx + pxUx.

One introduces a grid xi ih for 0=< i=< n+ 1 l/h, and uses the variables ui to
approximate u(x) and p =p(x). The symmetric discretization of (pUx)x at x is

pi-1/2ui-l -(pi-1/2-I-pi+l/2)ui-t-pi+l/2Ui+l] hZ[(PU’") + pu’)’;:]
-t- -I- O(h4),

hz 24

where primes indicate differentiation with respect to x. The nonsymmetric discretization
of pux + pxUx at x is

.ttt "1,,, ,,;1 herpiuliV, .i;iJLh hjU,--LhJ u+ -5+2hjU/l+-L---+ +O(h4).

Note that p’(x) is computed symbolically in the nonsymmetric discretization.
The error terms of these two approximations are substantially different and it is

clear that one can construct problems (chose p(x) and u(x)) so that either approxima-
tion is much more accurate than the other. Intuitively, one would expect the nonsym-
metric difference to be more accurate when p(x) is rapidly varying because the
derivative p is computed symbolically. This is indicated also by the presence of the
third derivative of p(x) in the leading error term for the symmetric difference while
the nonsymmetric difference has only the first derivative of p(x) in the leading error
term. On the other hand, if the derivative p cannot be computed symbolically (say p
is piecewise constant) and the product pu is smooth, then one would expect the
symmetric difference to be more accurate.

* Received by the editors December 7, 1982. This work was supported in part by Department of Energy
contract DE-AC02-81ER10997.

Division of Mathematical Sciences, Purdue University, West Lafayette, Indiana 47907.

45

46 WAYNE R. DYKSEN AND JOHN R. RICE

2. An experimental study. To study experimentally the nature of the situation,
we consider the one-dimensional model problem

-(p(X)Ux)x =f in [0, 1], u(0), u(1) given.

The function f(x) is chosen to make the model problem solution be as specified. We
choose ten functions for u(x)"

1
ex2, x4, e sin x,

1 + x2’

and ten functions for p(x)"

lox 1
1 + lOx2’ sin lOx, sin lOOx, x

1 1
e lx, 1 1 +sin 100x,

1 + 10X2"1, x, x2, x4, e x, sin x,
1 + X

2’

lO

Then all 100 combinations of elliptic problems are solved. We compute the maximum
relative errors eN and es of the nonsymmetric and symmetric differences, respectively.
The results are tabulated in the following manner. A factor R is chosen, the two
discretizations are said to tie if either

or max (eN, es) <- round-off.
max (e, es <_ R
min (e, es)

The computation is made on a VAX 11/780 (6 decimal digit arithmetic) and the
round-off level is determined from those cases where the discretization is theoretically
exact. Table 1 has four arrays with entry "-" if the methods tie, "N" if the nonsymmetric

TABLE
Arrays showing the error performance of the two discretizations. The columns correspond to the ten p(x)

functions, the rows to the ten u(x) functions. A dash means the discretizations tie, N and S mean that
nonsyrnmetric and symmetric are better, respectively.

N N N N N N N N
N N N S

N N N S N N N
N N N N N N

N N N
N N

S N N
S N

N N
33N’s 5S’s 62 ties

h= R=1.4

N N N N N N N N
N N S

N N N
N N N
N N N

S N
N

N
23N’s 3S’s 74 ties

h= R=4.0

N N N N N N N N
N

N N N
N N N

N
N
N
N

20N’s 0S’s 80 ties

h= R 10.0

N N N N N N N N

N N N N N N
N N N N

N

N

N
24N’s 1S 76 ties
h a-o R 10.0

SYMMETRIC VERSUS NONSYMMETRIC DIFFERENCING 47

error eN is smaller and there is no tie, "S" if the symmetric error es is smaller and
there is no tie. Data are given for h 2-t6 with R 1.4, 4.0 and 10.0 and for h
with R 10.0.

The main observation to be made is that most of the time (at least) it does not
make any difference which discretization is used. It is probably "fairer" to exclude the
first row of the arrays where u x and the nonsymmetric difference is exact. However,
the general conclusion is unchanged if this is done. In those cases where it does make
a difference which discretization is used, the nonsymmetric one is much more likely
to be the best and often by a substantial amount. The eight largest differences in
discretization errors are shown in Table 2 for h 0 (excluding the case u x2).

TABLE 2

eN

0.0052
0.00021
0.072
0.013
0.076
0.067
0.00039
0.00064

3.7
0.69
5.8
1.9

16.0
6.5
0.011
0.023

X
4

e
e 10x

1/(+ 10x2)
sin 10x
X lo

e
sin x

1.1 +sin 100x
1.1 +sin 100x
1.1 +sin 100x
1.1 +sin 100x
1.1 +sin 100x
1.1 +sin 100x

X4

X4

es/ eN

712
3,286

81
146
211
97
28
36

We have made an additional study with p(x) functions that represent sharp "wave
fronts", a case where the symmetric differences are thought to be particularly good.
We chose three functions for p(x) as follows

(x -.4)2 (x -.4)2 (x .4)2

.001 + (x-.4)2, .02+(x-4)2’ .0001 + (x -.4)2

and repeated the experiment using the same 10 true solutions u(x). With the notation
of Table 1 (with rows and columns interchanged), the results are as shown in Table 3,

TABLE 3

N N N N N N
N N N
N N N N N N N N

17N’s 0S’s 13ties

h= R=4.0

We observe that the nonsymmetric differences are more advantageous for this
case than in the general experiment. In many cases the accuracy advantage of the
nonsymmetric differences is quite large; for R 10,100 and 1,000 the number of N’s
in Table 3 is 15, 8 and 5, respectively.

These data give strong experimental support to the conclusion reached by the
analysis: Unless it is known that u varies much more rapidly than p, one should use the
nonsymmetric differences in order to obtain the best accuracy from the discretization.

3. Preservation of side conditions. It is sometimes the case that the solution of
the physical problem and its mathematical model has properties which are not preserved
in a numerical model derived from the mathematical model. In the present instance,
the nonsymmetric differencing does not preserve symmetry or, in fluid flow applications,

48 WAYNE R. DYKSEN AND JOHN R. RICE

the conservation of mass. The conservation of mass is important for numerical stability
near shock waves, but shock waves are very rarely present in elliptic problems. In fact,
the motivation for deriving the symmetric formulas in the first place was to preserve
side conditions. Many people feel that forcing the numerical model to preserve these
conditions will improve the accuracy of the results. We see that this is not the case
here and we believe that, in general, one should expect satisfaction of constraints to
be achieved at the price of reduced accuracy.

We note that sometimes side conditions can be used in a different way with
considerable advantage. A simple example of this is symmetry; if the solution is known
to be symmetric in some sense, then it is fairly easy to take the solution from the
numerical method and enforce the symmetry. One would do this with a minimal
perturbation and achieve two things: (a) a solution which satisfies the side condition
and (b) a true lower bound on the numerical error. The lower bound is the amount
of perturbation required to enforce the side conditions. For the simple model studied
here we have experimentally examined the usefulness of this error estimator and the
results are summarixed in Table 4. As before, 100 problems were created and solved;
their solutions are symmetric about x =0.5. We only consider results where the
numerical error is above round-off; 10-5 in this instance. Of the 100 problems
considered, this round-off criterion gives 78 and 93 problems for nonsymmetric and
symmetric differences, respectively. Thus we see again the superior accuracy of the
nonsymmetric differences, though it is not well quantified here.

TABLE 4
Frequency of e being contained in intervals based on

for symmetric and nonsymmetric differences.

interval

[t/2,2t)
[2t, 4t)
[4t, 10t)
[10t, 100t)
[100t, oo)

totals

symmetric

5O
12
12
12
7

93

nonsymmetric

39
11
11
9
8

78

Let e denote the maximum relative error on the grid in solving a problem with
h 0.01 and denote the maximum relative difference in symmetry on the grid. Then
we have e => t!2. Table 4 shows the number of instances that e is contained in each of
five intervals related to t. The first one is where t/2 is an excellent estimate of e and
the last is where t/2 is a grossly misleading estimate. We see that for both difference
formulas that is very close to e about half the time and is a reasonable estimate of
e about 80% of the time. We consider this to be remarkably reliable considering the
simplicity and computational cost involved. Of course, other side conditions might well
not be simple or cheap to use in this way.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 1, January 1985 005

MULTI-GRID SOLUTION OF BIFURCATION PROBLEMS*

H. D. MITTELMANN" AND H. WEBER:I:

Abstract. A continuation strategy is developed for a method of inverse iteration type to compute
solutions of nonlinear eigenvalue problems. The solution curves are parametrized by a norm of the solution.
Thus continuation near turning points does not represent any difficulties. A multi-grid version of the
algorithm is presented and successfully applied to solve problems on general two-dimensional domains.
Numerical results including a comparison with a more standard approach are also given for the continuation
strategy proposed for the basic algorithm.

Key words, nonlinear eigenvalue problem, bifurcation, turning point, continuation, inverse iteration,
multi-grid method

Introduction. Nonlinear boundary value problems with several solutions and
exhibiting bifurcation phenomena have only recently been treated with the numerical
techniques which have been quite successful in the solution of boundary value problems;
see, for example, [1]-[5], [7], [10]-[12], [16]. Preconditioned conjugate gradient
(PCCG) methods as well as multi-grid (MG) algorithms have been used extensively
for linear problems and both have been applied to nonlinear problems, too, either
after a linearization by, for example, Newton’s method or in a suitable nonlinear version.

For the treatment of parameter-dependent nonlinear boundary value problems
quite a few approaches have been proposed and used successfully; see, for example,
[6], [9], [14]. Since there is in general a sequence of linear or nonlinear problems
which has to be solved it is quite natural to combine these methods with the efficient
PCCG and MG algorithms. Here we present such a combination. The underlying
method is not classical, but it is the generalized inverse iteration of [10] for which a
first combination with multi-grid ideas has been proposed in [11]. This method is not
as general as, for example, pseudo-arclength continuation [6] and in its original form
is applicable to a certain class of nonlinear eigenvalue problems. For this class, however,
it proves to be a very robust and efficient method and it may also be generalized.

In the following we shall first describe the classes of problems treated, define the
generalized inverse iteration and state a local convergence result. We propose then a
simple but efficient way to use this algorithm for continuation purposes, i.e. for following
the solution curves of a discrete nonlinear eigenvalue problem. Then a MG version
of the method is given which is a generalization of the two-level method of [11], [12].
Numerical results for the continuation strategy are compared to those obtained with
the pseudo-arclength method as implemented in [1]. Finally, some experiments with
the MG algorithm are reported.

The contents of the following sections are:
1. Nonlinear eigenvalue problems
2. The basic algorithm
3. The continuation method
4. A multi-grid algorithm
5. Extensions
6. Continuation results
7. Multi-grid results

* Received by the editors April 11, 1983, and in revised form September 23, 1983.

" Abteilung Mathematik, Universitfit Dortmund, Postfach 500500, 4600 Dortmund 50, Federal Repub-
lic of Germany, and Department of Mathematics, Arizona State University, Tempe, Arizona 85287.

: Fachbereich Mathematik and Rechenzentrum, Johannes Gutenberg Universitfit, Postfach 3980, 6500
Mainz 1, Federal Republic of Germany.

49

50 H. D. MITTELMANN AND H. WEBER

1. Nonlinear eigenvalue problems. Instead of describing in detail the classes of
continuous nonlinear eigenvalue problems which may be considered, we assume that
by a suitable discretization with parameter h a finite-dimensional problem of the form

(1.1) f(x)=ABx, xR", AR, n=n(h)

has been obtained, where B is a symmetric and positive definite n n matrix and
f:R - R a smooth mapping. This gives some preference to a discretization by finite
element methods since these usually yield a symmetric and positive definite B as
discretization of an elliptic operator. The assumption on B may, however, be relaxed
(cf. 5).

Problem (1.1) is more general than that considered in [10] since there it was
assumed that f is the gradient of a functional or equivalently that the matrix F f’ is
symmetric. Then solutions of (1.1) may be characterized as critical points of that
functional and this was exploited in [10] to develop a global convergence theory for
the generalized inverse iteration and in [12] to distinguish between relevant and
irrelevant solutions of the discrete eigenvalue problem.

The symmetry of F together with that of B was also advantageous numerically
in [10] since it allowed to use conjugate gradient methods particularly suited for the
resulting linear systems. These methods were applied to the augmented system
(cf. (2.1), (2.2)). That this technique in general is preferable over the combination of
block-elimination [6] and conjugate gradient methods has also been confirmed for
nonsymmetric systems by the numerical results in [3].

2. The basic algorithm. The generalized inverse iteration for the solution of (1.1)
iteratively computes from a given pair (xk, Ak), IIxll- p,

,f+ x Hd(x),

(2.1a) x+,

A/+I --f(xk+I)TXk+I/p

where

[G-XB x(2.1b) H=L -xB
Here 11" lib denotes the norm introduced by B. H is the n x n principal submatrix of
the inverse of the matrix in brackets provided this is regular. We note a relationship
to Newton’s method for the augmented system

1 p2
(2.2) f(x)-ABx=O, - llxll +5--0.
+1 is the update obtained by one step of Newton’s method for (2.2) starting from
x. For ways to compute k/l for discretizations of pde problems see, for example,
[10]. The solutions of (1.1) are parametrized by their B-norm and (2.1) in contrast
to Newton’s method for (2.2) actually generates only iterates with B-norm equal to
p. The second difference is that the parameter A is updated by a Rayleigh-quotient in
(2.1). The starting values for (2.1) are thus assumed to be (Xl, /1) with Ilxlll -p and
’1-" f x1) Txl/02"

We must expect in general the existence of multiple solutions with respect to X
and p. A globally convergent method as, for example, a damped Newton method for
(2.2) or the global version of the generalized inverse iteration of [10] may converge

MULTI-GRID SOLUTIONS OF BIFURCATION PROBLEMS 51

to any of these solutions for the given parameter value. So, in order to stay on a
solution branch we rather try to exploit the local convergence properties of an
algorithm. The following result was proved in [10], [12].

TnEORZM 2.1. Letf in (1.1) be twice continuously differentiable in a neighbourhood
of a solution (Xo, A0) of (1.1) and assume that

N(Fo- AoB) span {Bx0}.

Here N(L) denotes the nullspace of the linear operator L. Then for x, I1X111 x0 p
suciently close to Xo the sequence {x} generated by (2.1) converges quadratically to Xo.

3. The continuation method. The parametrization by p in the generalized inverse
iteration is, of course, not as general as one by, for example, the pseudo-arclength
along the solution curve. In the following we shall see, however, that many problems
of the form (1.1) may be solved very eciently and reliably with a very simple
p-continuation technique. This technique may be further refined and combined, for
example, with methods to switch branches at bifurcation points or to compute singular
points. In the following we describe the basic step of the p-continuation process.

First we derive some useful formulae.
LEMMA 3.1. If the following expressions are well-defined it holds for solutions of

problem (1.1) that

/x lo,

(3.2) d<x/ttxtt. (dA :)/do dA dp P"

Pro@ We have pe f(x) TX/Z, SO

dA xTF(x)+f(x)T

From (1.1) we have, except in turning points,

dx
(3.3) (F(x)-B)=Bx
from which (3.1) follows. But by differentiation and using (3.1) we derive (3.2).

If a solution (xo, o) for a given o-level is known and one for a different level
0 + 0 is to be computed then algorithm (2.1) requires the starting guess to have that
norm. A very simple predictor-step is thus to use xo(p + @)/0 and the corresponding
I given by the Rayleigh-quotient. For the quality of this guess the derivative (3.2) is
important. We therefore propose to choose@ inversely proportional to this derivative.
With a suitable monotone function g, (see, for example, (6.1)), let

(3.4) laol=g
do

where

.’ II II (11 dxI]2 (d’2)1/2/dp s n\ dp/
-1 p.

It is necessary, however, to bound the step-length proposed by (3.4) in cases when
the change of the solution is rather small but also the slope dp/dA is small. By

52 H. D. MITTELMANN AND H. WEBER

extrapolation of dp/dA as a function of p to a zero we obtain from the recent values
Pk-1, Pk

dp p, p_
(3.6) (Pk)max :----t(Pk) dp/ dA)(p) dp/ dA)(p_l)

where 2 is usually chosen corresponding to an expected double zero, although, of
course a zero of dp/dA need not be forthcoming along the branch.

Utilizing the above ideas the following strategy was used for continuation with
the generalized inverse iteration to follow a branch from level p0 to the target level
pt. In step M1 the maximum allowable steplength IPl is determined.

The continuation strategy. Let x0 be a solution to p p0 and let

sg := signum (pt- p0); k := 0.

Let RLk, DXk, DRy, k 0, 1,... and DM, k 1, 2,... be the expressions given by
(3.1), (3.2), (3.4) and (3.6), respectively.

MI: p := if DX 0 then sg. DRk else pt-p0;

if k 0 then goto M2;
if itold -<_ 2 then p := p + p;
q := if RLk. RLk_I < 0 then 0 else DMk;
if sg > 0 and q > 0 then p := min (p, q);
if sg < 0 and q < 0 then p := max (p, q);

M2: 8p := sg.min (Ipl,lp,-pol); it := 0; k := k + 1;
M3: pk := Pk- + 8P;
M4: perform one iteration of (2.1); it := it + 1;

if stopping criterion satisfied then
i[Pk Pt then stop else begin itold := it; goto M1 end

else if it < itmax then goto M4 else
begin itold := it; it := 0; x := xk_; 8p := gp/2 end;

goto M3;

4. A multi-grid algorithm. In the following we present a MG-version of the
generalized inverse iteration of 2 which generalizes the two-level method for which
convergence was shown in [11]. We use a sequence of grids G), GI), Gl) with
grid-constants h)> h)> > hl)> 0 and assume that the coarsest grid G) is fine
enough to qualitatively approximate the solutions on the finest grid well enough. The
interpolation (restriction) operators from Gj) to Gj/) (G+1) to G)) are denoted
by I+ (Ii+1).

The following algorithm may be applied in connection with the p-continuation of
3. It is assumed that a solution on the coarsest grid has been computed and in a full

multi-grid or nested iteration way the algorithm then computes a corresponding point
on the solution curve for the finest grid. On grid G(i) we denote x x(i) B B(i)

f fi) and I1" II,- I1" I1,". An eigenvalue parameter A is always assumed to be related
to the given x by the generalized Rayleigh-quotient (cf. (2.1a)). A total of /max grids
is used. The function R relates the norms on the different levels, see (7.2) for an
example./_ denotes an interpolation which may differ from

The MG algorithm. Let x(), A () with IIxll0-p be a given solution. Set
P(i) := R (p), i), 1, /max and := 1. We present the algorithm in the usual
quasi-ALGOL form. H() formally denotes the matrix of (2.1b) on level 0 evaluated
at x() h co)

MULTI-GRID SOLUTIONS OF BIFURCATION PROBLEMS 53

for := 1 step 1 until /max do
begin x := I_1 x(/-1)" / :--/(/-1).

for j := 1 step 1 until k l) do MG (1, x, A, d);
X

(l) :--- pt>xlllxlll; A ct> :-- f(x(l))Tx(l)/[3 (1)2

end;
procedure MG (l, u, A, d);
integer l; real A; array u, d;
if =0 then u := H<)Ild else
begin integer], Ul, u2; array v;

for j := 1 step 1 until ul do u := 5el(U, d);
d := Ill-l(--f(u)d-ABu); := 0;
MG(l-l,v,A,d);
u := u+Ill_lV;
for] := 1 step 1 until ’2 do u := 52(u, d)

end;

5i, i:=1, 2, denotes smoothing w.r.t, the linear system Bu =f(u)/A if called on
the highest level and subsequent Rayleigh-quotient update of A if 1 while it denotes
smoothing w.r.t. (F(xl)-AlB)u d on lower levels.

We note that the above algorithm is completely defined if the function R is
specified and a smoothing method and a stopping criterion have been chosen. This
algorithm should have advantages over methods that make use of the parametrization
by A as, for example, is the case for the pseudo-arclength method. There s is introduced
as auxiliary parameter but A A (s) is kept and hence difficulties have to be expected
for a multi-grid version at least in regions where for a given A not on all grids solutions
exist. This will, for example, in general be the case near singular points.

In [1] (cf. also [5]) it was proposed to look for solutions on the finer grid curves
on a line orthogonal to the coarse-grid curve and to use additional diagonal shifts of
the Jacobians in order to assure that these matrices all have the same number of
negative eigenvalues but sacrificing quadratic convergence. While the first strategy is
not needed here, once a suitable function R has been chosen, the second was not
necessary for the computations reported in 7. For another technique overcoming the
first problem in the neighbourhood of simple primary bifurcation points see [16].

We do not analyse here the above MG algorithm theoretically but we present
some numerical results which show the efficiency of this approach.

5. Extensions. As mentioned earlier several extensions of the generalized inverse
iteration, the continuation strategy and the MG version are possible. We discuss here
only a few ideas most of which have been tested numerically.

In order to have a general purpose continuation procedure several features would
have to be added to the basic ideas outlined in the preceding sections. In order, for
example, to follow branches bifurcating from the trivial solution at eigenvalues of the
linearization it is not possible to follow the trivial solution and branch off since only
solutions with nonvanishing norm may be computed. The eigenvalues and -vectors of
the linear eigenvalue problems may, however, be computed by the algorithm and be
used as starting guesses.

If then along such a primary branch a secondary bifurcation point is detected one
may switch to a bifurcating branch by methods as proposed in [6] and implemented
in [1]. We have usually preferred to use a simple perturbation.

If it is desired to accurately determine singular points the present approach has
the advantage of allowing very crude initial guesses because of its robustness if an

54 H. D. MITTELMANN AND H. WEBER

appropriate method is used for computation of the singular points. For the determina-
tion of (simple) turning points we have, for example, used polynomial interpolation
in p in order to find extrema of A(p) (cf. [13]). The condition dA/dp=O may, of
course, be exploited explicitly. Since in the MG version continuation is done on the
coarsest grid a direct method will usually be used for solving the linear systems. Hence
the determinant is available for detection and computation of singular points. A point
on the curve with dp/d, =0 may, of course not be overcome in general by p-
continuation. In this case a step of A-continuation should be used as long as [dp/
is below a suitable threshold.

We conclude with a remark on the case of unsymmetric but regular B. In this
case we define the B-norm as [[x[[B [[Bx[[and formally multiply (1.1) from the left
by B T. The modifications necessary in (2.1) are, however, minimal. The Rayleigh-
quotient is replaced by h =f(x)TBx/pe and the last row of the matrix on the right of
(2.1b) becomes [-x[BTB, O]. So one additional matrix-vector product has to be
computed. An analogue of the convergence theorem holds and the method has been
used successfully, for example, to treat finite-difference discretizations of problems
with mixed boundary conditions.

We point out that this method is not equivalent to using the normal equations
but assures only that the matrix B is symmetric and positive definite. The convergence
speed, however, in general deteriorates somewhat and no MG experience has been
gathered yet.

6. Continuation results. The generalized inverse iteration for p-continuation
along solution curves of various nonlinear eigenvalue problems turned out to be very
robust and efficient. By robust we mean that rather large stepsizes were possible
without leading to divergence or to jumping to another branch. The efficiency was
measured by looking at iteration counts in case the work per iteration was similar or
otherwise by comparing computing times. A few results were reported in [12]. The
methods that were used for comparisons are the A-continuation with predictor-step,
the pseudo-arclength method of [6], continuation along a suitable component of the
solution as proposed, for example, in [14] and the method of [9]. p-continuation
required frequently half or less of the iterations needed by the other methods if
relatively small steps were chosen. It still converged in slightly more iterations for
larger stepsizes while the other methods then often exhibited convergence to another
branch or divergence. In the following we restrict the representation to a few examples
and a comparison with the pseudo-arclength method as implemented in [1], i.e., using
an adaptive strategy for choosing the parameter 0 (cf. [6]) and a step picker similar
to Rheinboldt’s [14].

Developing an automated continuation algorithm with any underlying method
usually makes it necessary to choose smaller stepsizes than the method would allow.
This is in particular true for p-continuation with the generalized inverse iteration for
which rather large steps may be taken (cf. [12]). A balance between the goals of
providing a detailed impression of the solution curve and not spending too much
computational work seems desirable.

The results in this section were obtained with the p-continuation strategy of 3
for the basic algorithm of 2. In all cases the nonlinear eigenvalue problems were
posed on the unit square O=(0, 1)x (0, 1) with homogeneous Dirichlet boundary
conditions. The Laplacian was discretized by using the usual five-point difference star
yielding the matrix B except for (6.3a). For the finite element method in [1] this was
accomplished by choosing the standard triangulation of a square mesh. The right-hand

MULTI-GRID SOLUTIONS OF BIFURCATION PROBLEMS 55

side was discretized pointwise yielding the function f(x) for the p-continuation while
a suitable quadrature formula is used in [1]. The discretization parameter was h 1/4
since that is a reasonable coarsest grid for a MG algorithm at least for bifurcation
from the lowest eigenvalues. Finally, the function g in (3.4) was chosen as

(6.1) g(s) 4- x/.

The first example is the well-known Bratu problem

(6.2) --Au /X exp
l+eu

e=>0.

The branch of positive solutions emanating from the origin has one, two or no (simple)
turning points. 0-continuation was started with the constant solution and the branch
was followed from 00 1 to p 100. Table 6.1 shows the steps taken and the accumu-
lated iteration counts denoted by iter.

TABLE 6.1
p-continuation for Bratu’ problem, e O.

p iter

1.363 2
12.45 6.670 5
19.88 5.076 9
22.23 4.205 13
26.91 2.622 17
33.03 1.309 21
42.31 .4168 24
58.80 .04711 26

100 .001466 28

Between p 20 and p 40 the continuation algorithm chooses relatively small
steps increasing the total iteration count. We did not try to modify the strategy since
it allows to solve efficiently problems with completely different solution curves.

For PLTMGC the accumulated work depended strongly on the/x-steps chosen.
Table 6.2 represents the best results we have achieved in a series of runs. The intermedi-
ate steps taken by the algorithm are not given.

TABLE 6.2
PLTMGC--results for Bratu’s problem, e O.

/, tx iter

7 7 14
8 7 43
2 2 61
.1 .1 87
.001 .001 102

Here /xt denotes the target values used. The turning point is at /2 7.3. The
algorithm starts in the origin and if /xt >/2 the algorithm tries to continue to the
previous target value but beyond the turning point. Similar results for both methods
were obtained for the case e .2 when two turning points are present.

56 H. D. MITTELMANN AND H. WEBER

We turn now to the simple bifurcation problems

(6.3a) -Au =/zu- u3,

(6.3b) -Av la.(v- v3).
These problems are equivalent for positive eigenvalue parameters via the transfor-

mation u tzl/2v. The branch bifurcating from the first eigenvalue was computed which
for problem (6.3b) does not extend beyond a certain norm-level. Hence this is a test
case with small values for dp/dA for the p-continuation. Starting solution was the first
eigenfunction. The results for both problems are in fact quite similar so we present
only those for (6.3a), which was rewritten for the generalized inverse iteration as

--AU "- U 3

The left-hand side was discretized to yield the vector f in (1.1) while B was the identity
matrix.

TABLE 6.3
p-continuation for (6.3a), Po 1, Pt =60.

p iter

18.89
19.56 63.53 5
22.09 75.33 8
37.34 176.2 11
60 421.3 14

TABLE 6.4
PLTMGC results for (6.3a).

iter

50 31
200 49

Many other examples confirmed these results. We make a final remark on the
problem

(6.4) -Au lzu p, p > 1

which has a solution branch of the form in Fig. 6.1.
No starting guess is easily available and it was suggested in [4] to perturb (6.4)

by adding 6 > 0 to the right-hand side yielding the dotted curve in order to be able
to "jump" on the branch.

For p-continuation a constant initial guess allowed computation of any point on
the branch in, for example, 7 steps for p 5. Since, however, all solutions on the
branch are proportional, the derivative (3.2) is computed as zero and any other solution
is then obtained without a single iteration by simple normalization. There is no similar
advantage in following this curve with the pseudo-arclength method.

We have seen that already the strategy proposed in 3 makes p-continuation a
very competitive method for following branches of finite-dimensional nonlinear eigen-
value problems of the form (1.1).

MULTI-GRID SOLUTIONS OF BIFURCATION PROBLEMS 57

FIG. 6.1. Solution branch for (6.3).

The numerical results of this section were obtained using single-precision
FORTRAN on the IBM 3081 at Arizona State University.

7. Multi-grid results. In this section some experience will be reported with the
MG version of the generalized inverse iteration as given in 4. The program was
written for problems of the form

--au=(u)
(7.1)

u g on 01),

where 11 c R 2 was a rather arbitrary domain as allowed in [15] from which auxiliary
routines were taken and appropriately modified.

In all computations t,1 u2 2 was chosen in the MG algorithm. The function R
was

(7.2) R(s, i)-- s" h()/h (i), i= 1,’’’,/max

and the iteration was stopped when

k+l

The smoother used was checkered Gauss-Seidel relaxation, the interpolation I-1
was of higher order, I-1 was linear interpolation while the restriction I+ was injection.
The grids had mesh-widths hi)= 2-h>, 1,..., Imax.

As alternative smoother SSOR-MINRES was used, i.e., an iterate was updated
by adding akpk where pk is the direction given by a step of the standard SSOR method
(and eventually orthogonalized w.r.t, the previous direction) starting from the current
iterate. The stepsize a) 0 ws chosen to minimize the residual of the corresponding
linear systems. For more indefinite cases this smoothing should be superior. In the
computations reported here, where never divergence or no convergence occurred, it
only increased the computing time. It was also not necessary to use the normal equations
for the smoothing.

Since the computing time is of interest for the MG version we include it in the
tables (in seconds). The computations were performed in FORTRAN on the HB 66/80
at the Computing Center of the University of Mainz. We present the results for the
MG refinement process at a few selected points on the solution curves of each of the
following examples. Q denotes the unit square while K(0, r) is the circle around the

58 H. D. MITTELMANN AND H. WEBER

origin with radius r. Homogeneous Dirichlet conditions were prescribed in all examples.
The starting solution was constant in Examples 1 and 3 and the restriction of the
eigenfunctions in the other cases.

Example 1.
--Au =/xe in Q, h) 1/4, /max 4, eps 10-5.

Example 2.
--Au z sin u in Q, branch from eigenvalue /z A22 87r2, h) , /max 5,
eps 10-6.

Example 3.
--Au=tx(l+u+u2/2)/(l+u2/lO0) in Q, h()=, /max=5, eps= 10-6.

Example 4.
--Au tz(u-- u 3) in K(0, 1/2), branch from eigenvalue tz o k2, where k is
twice the smallest zero of the Bessel function Jo, h()= 1/2, /max -4 eps 10-5.

Following the bifurcating branches in Examples 2 and 4 for large values of A required
an increasing number of iterations. The SSOR-MINRES smoother brought consider-
able improvement but the function R in (7.2) is not appropriate here for large values
of A and would have to be modified suitably if it is desired to compute such solutions.

TABLE 7.1
Multi-grid results for Example 1.

p(O) (3) k(3) time

8 6.142 3 3.731
10 6.637 4 4.281
12 6.806 4 4.288
14 6.653 4 4.471
16 6.179 4 4.607

TABLE 7.2
Multi-grid results for Example 2.

9(0) j[
(4) k(4) Ilull

5
15
25
40

79.48066 2 .280538
84.33039 2 .834066
94.83650 3 1.35935
125.3734 3 2.05389

time

9.476
9.363

12.381
12.826

(o)
P

19
20
21
22

TABLE 7.3
Multi.grid results for Example 3.

/3,
(4) k (4) u(.5, .5)

8.019515 4 2.10733
8.031423 4 2.22549
8.032892 4 2.34387
8.025606 4 2.46241

time

13.752
13.612
13.597
13.619

MULTI-GRID SOLUTIONS OF BIFURCATION PROBLEMS 59

TABLE 7.4
Multi-grid results for Example 4.

/9
(0)

/.
(3) k(3) u lifo time

23.21995 2 .0903495 2.857
4 24.93392 2 .356758 2.735
7 29.50112 3 .603734 3.847
9 35.21668 4 .745784 4.904

11 44.54570 2 .858101 3.792

Acknowledgment. The authors would like to thank the referees for valuable
comments and corrections.

Note added in proof. The final version of [1] does not use the pseudo-arclength
method for continuation but a method which may be viewed as another way to
generalize the algorithm considered here. The following features of our algorithm are
utilized in 1]" Parametrization by p and A, use of the Rayleigh-quotient in the predictor
step, the n-vector in the last row of the Jacobian is proportional to Xk (corresponding
to using the Euclidean instead of the B-norm in (2.1)), MG refinement for a fixed value
of p (or A) on all grids. This led to a drastic reduction of the number of continuation
steps compared to those in Tables 6.2 and 6.4.

REFERENCES

[1] R. E. BANK AND T. F. CHAN, PLTMGC: A multi-grid continuation package for solving parametrized
nonlinear elliptic systems, Report # 261, Dept. Computer Science, Yale Univ., New Haven, CT,
1983.

[2] T. F. CHAN AND H. B. KELLER, Arclength continuation and multi-grid techniques for nonlinear

eigenvalue problems, this Journal, 3 (1982), pp. 173-194.
[3] T.F. CHAN AND Y. SAAD, Iterative methodsfor solving bordered systems with applications to continuation

methods, Report # 235, Dept. Computer Science, Yale Univ., New Haven, CT, 1982.
[4] R. GLOWINSKI, H. B. KELLER AND L. REINHART, Continuation-conjugate gradient methods for the

least square solution of nonlinear boundary value problems, INRIA-Report # 141, LeChesnay,
France, 1982.

[5] W. HACKBUSCH, Multi-grid solution of continuation problems, in Iterative Solution of Nonlinear
Systems, R. Ansorge, T. Meis and W. T6rnig eds., Lecture Notes in Mathematics 953, Springer,
New York, 1982.

[6] H. B. KELLER, Numerical solution of bifurcation and nonlinear eigenvalue problems, in Applications
of Bifurcation Theory, P. Rabinowitz, ed., Academic Press, New York, 1977.

[7] T. MEIS, H. LEHMANN AND H. MICHAEL, Application of the multigrid method to a nonlinear indefinite
problem, in Multi-Grid Methods, W. Hackbusch and U. Trottenberg, eds., Lecture Notes in
Mathematics 960, Springer, New York, 1982.

[8] R. G. MELHEM AND W. C. RHEINBOLDT, A comparison of methods for determining turning points

of nonlinear equations, Computing, 29 (1982), pp. 201-226.
[9] R. MENZEL AND H. SCHWETLICK, Zur Lsung parameterabhiingiger nichtlinearer Gleichungen mit

singuliiren Jacobi-Matrizen, Numer. Math., 30 (1978), pp. 65-79.
[10] H. D. MITTELMANN, An efficient algorithm for bifurcation problems of variational inequalities, Math.

of Comp., 41 (1983), pp. 473-485.
11] Multi-grid methods for simple bifurcation problems, in Multi-Grid Methods, W. Hackbusch and

U. Trottenberg, eds., Lecture Notes in Mathematics 960, Springer, New York, 1982.
[12],A fast solver for nonlinear eigenvalue problems, in Iterative Solution of Nonlinear Systems, R.

Ansorge, T. Meis and W. T6rnig, eds., Lecture Notes in Mathematics 953, Springer, New York,
1982.

[13] G. PtNISCH AND H. SCHWETLICK, Ein lokal iiberlinear konvergentes Verfahren zur Bestimmung yon

Riickkehrpunkten implizit definierter Raumkurven, Numer. Math., 38 (1982), pp. 455-566.

60 H. D. MITTELMANN AND H. WEBER

[14] W. C. RHEINBOLDT, Solution fields of nonlinear equations and continuation methods, SIAM J. Numer.
Anal., 17 (1980), pp. 222-237.

[15] K. ST(3BEN, MG01: A multi-gridprogram to solve AU-c(x, y)U =f(x, y) (on), U g(x, y) (on 01)),
on nonrectangular bounded domains 1, IMA-Report # 82.02.02, Gesellschaft fiir Mathematik
und Datenverarbeitung, St. Augustin, 1982.

[16] H. WEBER, An efficient technique for the computation of stable bifurcation branches, this Journal, 5
(1984), pp. 332-348.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 1, January 1985

1985 Society for Industrial and Applied Mathematics
006

SOME COSINE SCHEMES FOR SECOND-ORDER SYSTEMS OF ODE’S
WITH TIME-VARYING COEFFICIENTS*

STEVEN M. SERBINS"

Abstract. We derive a family of two-step fourth-order approximation schemes for the second-order
linear system u, + A(t)u f(t) with initial conditions u(0) Uo, ut(0) v0. These are extensions to the case
that A is time-dependent of some previously developed methods resulting from rational approximation of
the cosine operator for time-independent A, and are unconditionally stable for choice of family parameter

1 : 1/4 q- (4) 1/2.
We first employ a three-point Hermitian expansion to develop a base scheme and then refine it so that

fourth order is maintained but only values of A(t) and f(t), not their derivatives, are required. We similarly
modify a locally fifth-order Taylor expansion to provide an easily computable starting procedure to

approximate the solution at the first time step. Our scheme has the advantage that the operator to be
"inverted" at each step is the square of a linear operator in A(t). We also identify and discuss a fourth-order
unconditionally stable method due to Hairer as another cosine scheme resulting from a different form of
rational approximation.

We present numerical evidence for both a scalar and a system problem of the fourth-order accuracy
of the base scheme through to the final form with approximate starting procedure. We finally discuss the
applicability of our schemes to implicit systems of the form Gu, + S(t)u f(t) which arise, for example, in
finite element semidiscretization of second-order hyperbolic problems with time-varying coefficients.

Key words, cosine schemes, second-order systems, time-varying coefficients

1. Introduction. In several previous papers, we have introduced and analyzed a
class of "cosine schemes" for the second-order systems

u, +Au f t), (0, T],
(1.1)

u(0) u0, u,(0) v0,

in various settings, from the concrete case where u e EN (or CN) and A is an N x N
constant matrix in [8], to the more abstract Hilbert space setting considered in [1 and
[4]. Applications to time-stepping methods for second-order hyperbolic partial differen-
tial equations are found in [2] and [5]. These methods are called cosine schemes because
they are developed so as to app.roximate the exact relation (for the homogeneous
problem)

(1.2) u(t+k)-2cos(kAa/Z)u(t)+u(t-k)=O, k<=t<= T-k,

by replacing the cosine operator in (1.2) by an appropriate rational approximation.
We have concentrated on a specific family of rational approximations (to be reviewed
below), which yield for the homogeneous case of (1.1) schemes of arbitrarily high
order which, depending upon choice of a parameter, can always be selected to be
unconditionally stable and which are efficient to implement.

In this paper, we advance to the case in which A =A(t), i.e. A depends upon
time. We shall restrict our attention in this case to the problem (1.1) where u u
and we shall assume that A(t) is a uniformly positive definite, real N N matrix for

[0, T] which is sufficiently smooth to admit all required Taylor expansions (A(t)
C4[0, T] will suffice in the case we discuss herein). Similarly, we assume f(t) 6 C6[0, T].

* Received by the editors October 26, 1982, and in revised form August 1, 1983. This research was
supported by the U.S. Army Research Office under grant DAAG29-80-K-0056.

f Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996-1300.

61

62 STEVEN M. SERBIN

The idea of the cosine schemes for this problem is as follows. Whereas (1.2) no
longer is satisfied, it suggests a certain Hermitian (i.e. multipoint Taylor) expansion
which we shall then approximate for the solution of (1.1) by replacing derivatives
using the differential equation. This idea has been used in the context of parabolic
partial differential equations by Nassif and Descloux [7] and Bramble and Sammon
[3]. In each of these schemes, greater than second-order can be achieved only at the
expense of introducing derivatives of A(t). We shall show that due to the symmetry
(i.e. use of points t+ k, t, t-k) present in our scheme, we can achieve fourth order
without requiring any derivatives of A(t); this will follow by suitable replacement of
derivatives from our original scheme by appropriate linear combinations of undifferenti-
ated terms.

Whereas we approach this problem as generalization of a class of schemes for A
time-independent, it is certainly possible to specify schemes which have been derived
for the generally nonlinear problem u, g(t, u) to our situation. Desiring high-order
and unconditional stability, this necessitates some form of implicit scheme. We shall
identify certain of our cosine schemes in this context, but the class of fourth-order
schemes we present seems to be more efficient.

Since our schemes emulate (1.2), they will be two-step methods. Hence the
problem of efficiently starting the computation (specifically, obtaining an approximation
to u(k)) will be addressed. Of course, it is always possible to convert (1.1) into an
equivalent first-order system and apply single-step methods (thus avoiding the starting
problem), but unless approximations to ut are also required, our approach continues
to be the treatment of (1.1) directly in second-order form, which we have shown for
the time-independent case to be more efficient than a similarly constructed approxima-
tion for the first order formulation.

Our paper will conclude with some numerical examples and some short remarks
on the modifications for the implicit equation

(1.3) Gu,+S(t)u=f(t)

which arises, for example, in semidiscretization of second-order hyperbolic equations
with time-dependent coefficients. A detailed analysis of our schemes for this problem
will follow in a subsequent paper.

2. Derivation of the schemes. One way to obtain the recursion (1.2) is to consider
the formal Hermitian expansion

(2.1) u(t+ k)+ u(t- k) 2 cosh (k)u(t)

where indicates the operation of differentiation with respect to t. Then, since in the
time-independent case we have

(2.2) u2’)=(-1)’Aku

(parenthesized superscripts indicating derivatives), we have cosh(k@)u(t)=
cos (KA1/2)u(t) and the result (1.2) follows. In the present case A =A(t), of course
(2.2) no longer holds, but (2.1) still suggests a way to generate a class of two-step
implicit schemes. Namely, let us formally approximate cosh (k@) by an appropriately
chosen rational operator R(k@)= P(k)/ O(k@). Then (2.1) can be approximated by

(2.3) Q(k)[u(t + k) + u(t- k)] 2P(k)u(t).

Since cosh " is an even function of ’, P(-) and Q(’) will themselves be even and so
only even powers of the differentiation operator occur in (2.3). Thus, for specific choice

COSINE SCHEMES FOR SECOND-ORDER SYSTEMS 63

of rational approximation to cosh " (chosen for accuracy and stability considerations)
a numerical approximation to the time-dependent A(t) version of 1.1 can be obtained
by operating through (2.3) with the appropriate derivatives, then substituting from
the equation, e.g.,

(2.4) U(2)(t) =-A(t)u(t)+f(t),
(2.5) u(3)(t) =-a(t)u(’)(t)-al)(t)u(t)+fl(t),
(2.6) u4)(t) =[a(t)-a:(t)]u(t)-za(t)u(t)+[f(t)-a(t)f(t)],
and so on. We observe from (2.5) and (2.6) that these replacements involve not only
u(t) and A(t), but also ul)(t) and derivatives of A(t) and f(t). Since we wish to
emulate the time-independent cosine schemes, we shall endeavor to avoid using these
latter quantities, replacing them instead with linear combinations of undifferentiated
terms.

Let us now make specific choices of the rational function R (’) which approximates
cosh ’. Note first that to each rational approximation r(-) to cos " there corresponds
naturally the approximation R (’)= r(iz) to cosh ’. Thus, our previous consideration
[1], [8] of rational approximations to the cosine motivates specific families of approxima-
tions. We could approximate cos " by, say, the Pad6 criterion or by the real part of a
Pad6 approximant to ei (as it turns out below we identify a method due to Hairer
[6]), but we shall concentrate on families of approximations to cos r, analyzed in [1],
which have the form (for parameter/3 > 0)

The functions b}"(/3) are polynomials of degree] in/3 given by

(2m))
/3ti-’a"

m=0 j-m

These rational functions have the accuracy property

(2.8) Ir=(/3; "/’)-cos 7"1 C7"2c+2 0 < "/’< -1/2

where C is a constant depending on a and /3, and the stability property that there
exists a constant/3t such that for

(2.9) Ira(/3; z)[<- 1 for all real ’>- 0.

(For conditional stability, if 0 </3 </3[J, a result like (2.9) holds for 0 <_- z <_- ft.)
The scheme obtained for a 1 is, in fact, a well-known family of two-step linear

methods, so we shall give only the result. Denoting the approximation to u(nk) by
un, n O, 1,. , Tk and letting A(J)(nk) A(J), f() nk f(, we obtain

(2.10)
[I + flkZA,+l]U,+ 211+ (f1-1/2) kZA,]u, [I + flkZA,_l]U,,_l

+ kZ[t3f,+ + (1 2/3)f, +/3f,_],

which is, in general, second-order accurate globally and from (2.1) is unconditionally
stable for/3 _-> 1/4. The (exceptional) fourth-order conditionally stable St6rmer-Numerov
method arises from/3 . Observe that approximations to ul)(t) do not appear.

64 STEVEN M. SERBIN

While there is nothing new for a 1, our approach does yield new methods for
a => 2. We could attempt to describe methods for general a, but it is our belief that
the most useful schemes and all of the relevant ideas are included in this case a 2,
to which we now proceed. Going directly to the rational approximation to cosh ’, from
[1] we deduce that

1 -I- (1/2-- 2#)’r2-F (/2--/ -- 2-) ’/"4 1/217"2 + (2-- 2/)’r4]
(2.11) R(r)= =1+(-) (1-#,)

satisfies (2.8) with a =2 and (2.9) with #(2)-----(4)1/2. Analogous to (2.10), using
(2.4)-(2.6), we obtain first

(Un+l 2un + u.-1) 2/3k2(-A.+l u.+l +f+l + 2A.u. 2f A.-1 u.-1 +

+2ka[(aZn+l-a(2) -2(A2. a -A_)u._.+,)u.+1)u.+(A2.-I
(2.12) +(..+1(z) -A.+lf.+)-2(f)-A,d’.)+(f-l-A.-lf.-1)]

-2/32k4[a(1)
.+1 u.+,

(1)

kz[-a., u. +f.] + (2- 2fl) ka[(a2. a)) u. 2A1)u + (f)- a.f)].

Now, (2.12), at first glance, appears to involve substantial differentiation of A(t) and
f(t), and the matrix to be "inverted" is (1 +/3k2A+l)2- # 21’4A(2)’n/l. The local accuracy
from (2.8) is O(-6), so (2.12) yields a globally fourth-order scheme, which, via the
usual linear stability analysis, is unconditionally stable for /3 =>+(4) 1/2. However,
even if we are willing to compute all required derivatives, we are still required to
obtain approximations to u(a)(nk), which are not provided by the scheme nor are they
in the spirit of the cosine method.

It can be seen that certain combinations of O(k2) terms of the form W(t + k)-
2 W(t)+ W(t- k) are multiplied in (2.12) by k4 and may be neglected without disturb-
ing the local O(k6) accuracy or the linear stability. In particular, though, the term

A2+ -2AZu.+A2
lUn+l n_lUn_l may not be omitted. We further replace

(2.13)

(2.14)

k2 k2

ku(nI)= U Un-- --- (-A.u. +f.)+---(-A.-lu.-1-Ffn-1) + O(k4),

k2A(n2) An+I 2A +A-I + O(k4)

and

(2.15) 2kA1 A,+I An-1 + O(k3),

and, after appropriate substitutions, use

kZf. + 2/3 --- (A.+I- A.-1)f. --- (A.+I- A.-1)f-i + k4(f)-A.)

(2.16)
k2

1- (L+I "- 10f. L-1)

+ 2,8- k4 A,, +- (A,,+,-An-1)(2fn +fn--,) + O(k6),

COSINE SCHEMES FOR SECOND-ORDER SYSTEMS 65

so that we finally arrive after rearrangement at the class of schemes

(I+k2An+l)2Un+l
)2(1+ flk2An)Zun-(I + kZAn_l un-1

(2.17)

+ k2[1- (f,,+l + 10f,,

+ (--2) kZ[-2(A,+l a,)u,

+ (A,.,+I A,-1) I+-A,_I u,,-1

which are fourth order and unconditionally stable for/3 _>-1/4+ (4) 1/2 and reduce directly
to the cosine scheme with a 2 of [1] when A is constant. Note that the operator
I + flk2A,+l is always invertible (/3 >0) under the hypotheses on A(t) and, as in the
constant coefficient case, we can decompose this operator and back solve twice. In
practice, we will probably not decompose at every time step, but rather solve (2.17)
by some preconditioned iterative method with preconditioner (I + flk2A,), holding m
fixed for many time steps (starting with m =0, of course). One final aspect of (2.17)
is noteworthy. If we denote zn=(I+flk2A)2um then we can first form z,+l

2z,-z,_l+"" (remaining terms on the right side of (2.17)), and then solve (I+
)flk2A.+l U,+l=

The only other fourth-order unconditionally stable scheme of which we are aware
results from the specification to our problem of an unconditionally stable method for
u"= g(t, u) proposed by Hairer [6]. His scheme can be written

k2

(2.18) t,, u,, -1-- (g,,+l- 2g,, + g,,-1),

(2.19)
k2

u,,+l 2u,, + u,,-1 =- (g,,+l + (10- B)g,, + g,-1 + Bg(t,, fi,,)).

k2 k4)(2.20) I +-- A,,-1+- A.A._I u.-1

Letting g(t, u)=-A(t)u+f(t), it is possible to substitute (2.18) directly into (2.19),
and, after considerable simplification, the free parameter B vanishes and there results

(k2 k4

I +- An+l+- A.A,,+

=2 I-A.+A] u.-

k2 k4

--[fn+l + 10fn "JC fn-1]4;’-’ A.[f.+l--2f. "4r fn-l].

This is, indeed, another cosine method, resulting from the rational approximation

1 5r2/12 + .4/144
(2.21) r(r)

1 + r2/12 + r4/144
which we considered in [8] as the real part of the (2, 2) Pad6 approximation to e i,
and is, indeed, unconditionally stable. Whereas the right side of (2.20) seems simpler
than that of (2.17) and the error constant will be smaller (as follows from Hairer’s

66 STEVEN M. SERBIN

analysis), it seems that the formation and factorization (which requires complex
arithmetic) of the matrix I+(k2/12)An/1+(ka/144)AnA/1 makes this scheme pos-
sibly less inviting, particularly in the case where A(t)=-G-1S(t) for G and S sparse
(which we consider below for our scheme). Certainly this is true in the time-independent
case.

Regardless of which cosine approximation scheme we use, we have to come up
with an initial approximation Ul for u(k). We shall concentrate on starting the
fourth-order schemes. This requires a fifth-order accurate local expression, but as
stability is not a consideration, the scheme being used for only one step, it appears
that the most effective starting scheme is simply a Taylor expansion with, again, certain
derivatives replaced by differences. Namely, recalling (2.4)-(2.6), it follows by standard
expansions that to fifth order, we may approximate u(k) by

(2.22)

k2
U I+- (-7Ao+6AI+Az)+-A Uo+k I--(Ao+A1) Vo

k2 k4
+m [7fo + 6fl-re] aofo.24 --3. Numerical example and some concluding remarks. We have implemented the

fourth-order cosine scheme in several versions and with several choices of parameter
and starting procedure, first on scalar problems and then on a model problem for a
system. Our results for the scalar problems indicated clearly the fourth-order conver-
gence with both the exact starting and also (2.22) and with several choices of parameter
/3 for both the base scheme (2.12) and the final scheme (2.17). To settle on the final
version of the scheme, we remark that we have shown in [5], and it also follows from
Proposition 2 of Hairer [6], that the error constant of the schemes (2.12) or (2.17),
i.e. the leading coefficient in]cos ’-r(’)] with r(-) given by (2.7) with a =2, is
C 7--o(360fl2- 60/3 + 1). From this, it follows that the minimum value of [C[among
the unconditionally stable schemes is obtained at the lower bound, namely /3-

We thus will examine the performance of the algorithm, now specified to be (2.17)
with/3 41- 4- (4) 1/2, on a model problem for a system of equations. Suppose we consider
the partial differential equation

(3.1) U,=[a(x,t)Ux]x+F(x,t), 0<x<l, 0<t=<T

with some specified initial conditions U(x, 0), Ut(x, 0) and homogeneous boundary
conditions U(0, t)= U(1, t) 0. The method of lines can be employed as follows. Let
xj jh, where (N + 1)h 1. Then, we discretize the spatial variable, replacing (3.1) by

(3.2)
Utt(xj, t)- h-2{a(xj+l/2, l)[U(Xj+l, t)- U(x, t)]

--a(Xj-1/2, t)[U(xj, t)- U(xj_I, t)]}+F(xi, t), I<_j<_N.

If we let u(t) be the N-vector whose jth component approximates U(x, t), and we
denote f(t)=F(x, t) and aj(t)=a(x, t), then the semidiscrete equation implied by
(3.2) is of the form (1.1) with A(t) the symmetric tridiagonal matrix with

(3.3)
Aji(t) {ai-1/2(t) + ai+1/2(t)}. h-2,

ALy+l(t) {-a+1/2(t)}. h-2

COSINE SCHEMES FOR SECOND-ORDER SYSTEMS 67

(where the boundary conditions U(x0, t)= U(Xn+l, t)--0 are used in the first and last
equations). In our numerical experiment, we select a(x, t)= 1 + x2+ 2. Since we are
interested in the performance of the ODE solver, we construct a known solution u(t)
with]th component (cos 7rt +sin 7rt) sin 7rjh and use the]th equation to construct f.(t)
(rather than selecting a solution to a PDE problem (3.1) with which to compare the
numerical solution). In Table 1, we exhibit the results of our study of the scheme
(2.17) with/3 =1/4+(4) 1/2 for systems of size N= 10 and N=50. We report, for both
exact starting value for u(k) and the method (2.22), two measures of the error at
T= 1, E2 N-I/2IIuM- u(1)ll= where Mk 1 and I1" I1= is the usual Euclidean vector
norm, and E= I[UM-u(1)[[the usual maximum norm. We note that for N 50,
the spectral radius of k2A(0), estimated by the power method, is approximately
18,530k2, so that for k 1-t6, the problem is moderately stiff, and an unconditionally
stable method is appropriate. By way of comparison, with/3 1/4, conditionally stable,
the scheme blows up for k => 0.

TABLE
System problem error at T= and rates of error reduction, scheme (2.17),/3 -’-14d- (4)1/2.

N=10

N=50

Exact starting

E2

.440 x 10-2

.299x 10-3 3.88

.191x 10-4 3.97

.599 x 10-2

.42510-3 3.82

.268 x 10-4 3.99

E2

.446 x 10-2

.304x10-3 3.87

.194x 10-4 3.97

(2.22) Starting

.607 x 10-2

.431x 10-3 3.82

.272x 10-4 3.99

.42410-2

.289 10-3 3.87

.184x 10-4 3.97

.61310-2

.435 10-3 3.82

.279 10-4 3.96

.430 x 10.2

.294 10-3 3.87

.187 10-4 3.97

.622 10-2

.441x 10-3 3.82

.283x 10-4 3.96

We observe that both the exact starting and the Taylor scheme (2.22) yield
essentially the same results, which are clearly fourth order in both measures of the error.

Although we used a finite difference approximation in the spatial variables to
derive our model problem, we might also have employed a Galerkin finite element
procedure, which would give rise to an implicit equation of the form

(3.4) Gu(e(t)+ S(t)u(t)= f(t)

where G is the time-independent mass matrix and S(t) is time-dependent stiffness
matrix. Both of these matrices are often large and sparse.

This leads us to the final point of the paper. One obviously can return (3.4) to
the form (1.1) by multiplying through by G-1, but of course one does not do this since
symmetry and sparsity would be lost. Suppose, however, that we would consider the
scheme (2.17), with A(t) G-1S(t). First, multiply through (2.17) by G, and let
,j GZj (G + flk2Sj)G-I(G + flk2Sj)uj be the vector stored for j n, n- 1 for

68 STEVEN M. SERBIN

advancement to step n + 1. Then, we obtain

2n+ 22 --2n_ "- k2[lG(fn+l -- lOf /f._,)- S.u]

+(-2 k2[-2(Sn+ Sn) un + k2Sn G-’Snun fn)

(3.5)
+(Sn+I-Sn_I)G-1 G+- Sn-- Un--

k2 k2 }]+--f S.u.-- G(2f. +f._,

Clearly, the right-hand side of (3.5) involves 0o difficulty. Since G is sparse, positive
definite, and time-independent, its sparse Cholesky decomposition need be performed
only once, and then the indicated multiplications by G-1 are in fact performed by
solving linear systems with the factored matrix G. All of the other indicated multiplica-
tions involve sparse matrices.

Finally, to determine u,+l, we have

(3.6) (G+k2Sn+)G-l(G+k2Sn+)Un+l=_n+.
which can obviously be solved by

(3.7) (G+kZs.+)W=.+, (GWk2Sn+)Un+l =GW.
We see that the same sparse matrix is involved in both steps of (3.7). Clearly, this
suggests an obvious preconditioner for any preconditioned iterative method (hold S
fixed over several time steps). While the treatment of the right-hand side will be similar
for other schemes, e.g. (2.20), it is not so obvious how one should proceed to solve
for u+ in the case where the (quadratic) operator to be inverted cannot be factored
into the product of linear factors in A with real coefficients. Thus the applicability of
(2.20) in the present setting would require further study, which is not the intention
of this work. It is our intention to pursue the study of all of these schemes in the
context of time-stepping for second-order hyperbolic equations in a future paper.

REFERENCES

[1] G. A. BAKER, V. A. DOUGALIS AND S. M. SERBIN, An approximation theorem for second order
evolution equations, Numer. Math., 35, (1980), pp. 127-142.

[2], High-order accurate two-step approximations for hyperbolic equations. RAIRO Anal. Numer.,
13 (1979), pp. 201-226.

[3] J. H. BRAMBLE AND P. H. SAMMON, Efficient higher order single step methods for parabolic problems,
part 1, Math. Comp., 35 (1980), pp. 655-677.

[4] g. A. DOUGALIS AND S. M. SERBIN, Two-step high-order accurate full discretization of second-order
hyperbolic equations., Proc. 3rd IMACS Symposium, Advances in Computer Methods for Partial
Differential Equations, R. Vichnevetsky and R. S. Stepleman, eds., IMACS, Rutgers Univ., New
Brunswick, NJ, 1979, pp. 214-220.

[5], On the efficiency of some fully discrete methods for second-order hyperbolic equations., Comp.
Maths. Appl., 7 (1981), pp. 261-279.

[6] E. HAIRER, Unconditionally stable methods for second-order differential equations, Numer. Math., 32
1979), pp. 373-379.

[7] N. NASSIF AND J. DESCLOUX, Stability study for time-dependent linear parabolic equations and its
application to Hermitian methods in Topics in Numerical Analysis, III, J. Miller, ed, Academic
Press, New York, 1977.

[8] S. M. SERBIN, Rational approximations of trigonometric matrices with applications to second-order systems
of differential equations, Appl. Math. Comput., 5 (1979), pp. 75-92.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 1, January 1985

1985 Society for Industrial and Applied Mathematics

007

THE SOLUTION OF SINGULAR-VALUE AND SYMMETRIC
EIGENVALUE PROBLEMS ON MULTIPROCESSOR ARRAYS*

RICHARD P. BRENT" AND FRANKLIN T. LUKt

Abstract. Parallel Jacobi-like algorithms are presented for computing a singular-value decomposition
of an m n matrix (m -> n) and an eigenvalue decomposition of an n x n symmetric matrix. A linear array
of O(n) processors is proposed for the singular-value problem; the associated algorithm requires time
O(mnS), where $ is the number of sweeps (typically S= 10). A square array of O(n2) processors with
nearest-neighbor communication is proposed for the eigenvalue problem; the associated algorithm requires
time O(nS).

Key words, multiprocessor arrays, systolic arrays, singular-value decomposition, eigenvalue decomposi-
tion, real symmetric matrices, Hestenes method, Jacobi method, VLSI, real-time computation, parallel
algorithms

1. Introduction. A singular-value decomposition (SVD) of a real m n (m >- n)
matrix A is its factorization into the product of three matrices:

(1.1) A=UEVT,
where U is an m n matrix with orthonormal columns, E is an n n nonnegative
diagonal matrix and the n n matrix V is orthogonal. This decomposition has many
important scientific and engineering applications (cf. [1], [11], [26], [27]). If the matrix
A is square (i.e., m n) and symmetric, we may adjust the sign of the elements of E
so that U V. We then obtain an eigenvalue decomposition:

(1.2) A= UDU,
where U is orthogonal and D diagonal. The advent of massively parallel computer
architectures has aroused much interest in parallel singular-value and eigenvalue
procedures, e.g. [2], [4], [5], [6], [7], [9], [13], [14], [16], [19], [20], [22], [23], [24],
[25]. Such architectures may turn out to be indispensable in settings where real-time
computation of the decompositions is required [26], [27]. Speiser and Whitehouse [26]
survey parallel processing architectures and conclude that systolic arrays offer the best
combination of characteristics for utilizing VLSI/VHSIC technology to do real-time
signal processing. (See also [17], [27].)

In this paper we present an array of O(n) linearly-connected processors which
computes an SVD in time O(mnS). Here S is a slowly growing function of n which
is conjectured to be O(log n); for practical purposes S may be regarded as a constant
(see [21] and the Appendix). Our array implements a one-sided orthogonalization
method due to Hestenes [15]. His method is essentially the serial Jacobi procedure
for finding an eigenvalue decomposition of the matrix ATA, and has been used by
Luk [20] on the ILLIAC IV computer. We also describe how one may implement a
Jacobi method on a two-dimensional array of processors to compute an eigenvalue

* Received by the editors November 12, 1982, and in revised form August 9, 1983.

" Centre for Mathematical Analysis, Australian National University, GPO Box 4, Canberra, ACT 2601,
Australia.

t Department of Computer Science, Cornell University, Ithaca, New York 14853. The research of this
author was supported in part by the U.S. Army Research Office under grant DAAG 29-79-C0124 and
the National Science Foundation under grant MCS-8213718, and in part by the Mathematical Sciences
Research Centre and the Centre for Mathematical Analysis, Australian National University.

69

70 RICHARD P. BRENT AND FRANKLIN T. LUK

decomposition of a symmetric matrix. Our array requires O(n2) processors and O(nS)
units of time. Assuming that S O(log n), this time requirement is within a factor
O(log n) of that necessary for the solution of n linear equations in n unknowns on a
systolic array [2], [3], [17], [18].

Results similar to ours have been reported in the literature. For computing the
SVD, Sameh [23] describes an implementation of Hestenes’ method on a ring of O(n)
processors. Suppose n is even (the result is similar for an odd n). At each orthogonaliz-
ation step n/2 column rotations are performed. Sameh’s permutation scheme requires
3n- 2 steps to ensure the execution of every possible pairwise rotation at least once;
our permutation scheme (presented in 3) requires only n-1 steps.

Parallel Jacobi methods for computing eigenvalues are given in [7], [16], [22].
However, the procedure of Sameh [22] may be unsuitable for multiprocessor arrays.
For simplicity, assume again that n is even, so n/2 off-diagonal elements can be set
to zero at each elimination step. Let us compare the number of permutations necessary
for the annihilation of each off-diagonal element at least once. Our procedure (see

3 and 6) requires n-1 permutations, which is optimal; that of Chen and Irani [7]
requires n permutations. The scheme of Kuck and Sameh [16] is worse. Their basic
scheme appears to cycle every 2n-2 steps and to miss some off-diagonal elements.
A modification ("the second row and column are shifted to the nth position after
every (n- 1) orthogonal transformations") can be made to overcome this problem,
but the modified scheme requires (n-1)2 permutations [7].

Let us generalize the notion of a "sweep" and use it to denote a minimum-length
sequence of rotations that eliminates each off-diagonal element at least once [7]. It is
probably fair to assume that the Jacobi procedures in [7], [16] and in this paper require
an equal number (say S) of sweeps for convergence. For the algorithms presented in
this paper a sweep always consists of n(n-1)/2 rotations (the minimal number
possible), but this is not the case for the Chen and Irani or Kuck and Sameh algorithms
mentioned above. The architecture proposed in [7] is a linear array of O(n) processors;
the associated Jacobi method requires time O(rt2S). The architecture described in [16]
is a square array of O(n) processors, with boundary wraparounds and a broadcast
unit. The associated algorithm requires time O(n3S). In comparison, our procedure
requires O(n2) processors and O(nS) units of time.

The principal results of this paper were first reported in [4], [5]. A related
(generalized) SVD algorithm is presented by the authors and Van Loan in [6]. It
requires O(n2) processors and O(nS) time to compute the (generalized) singular
values of n x n matrices.

This paper is organized as follows. Sections 2-4 are devoted to the singular-value
problem and 5-8 to the eigenvalue problem. Hestenes’ method is reviewed in 2.
The new ordering is described in 3 and the corresponding SVD algorithm in 4.
The serial Jacobi method is outlined in 5. Details are filled in and some variations
and extensions of the basic algorithm are given in 7 and 8. The results of some
numerical simulations are presented in the Appendix.

The SVD algorithm described in 3-4 below is being implemented on an
experimental 64-processor systolic array by Speiser at the Naval Ocean Systems Center
(San Diego).

2. l-lestenes method. We wish to compute an SVD of an m n matrix A, where
m >- n. An idea is to generate an orthogonal matrix V such that the transformed matrix
AV W has orthogonal columns. Normalizing the Euclidean length of each nonnull
column to unity, we get the relation

(2.1) W 0E,

SINGULAR-VALUE AND SYMMETRIC EIGENVALUE PROBLEMS 71

where U is a matrix whose nonnull columns form an orthonormal set of vectors and
E is a nonnegative diagonal matrix. An SVD of A is given by

1.1 ’) A =/]EV.
As a null column of U is always associated with a zero diagonal element of E, there
is no essential difference between (1.1) and (1.1’).

Hestenes [15] uses plane rotations to construct V. He generates a sequence of
matrices {Ak} using the relation

Ak/l =AkQk,

where A1 A and Qk is a plane rotation. Let Ak (ak), ,a)) and Qk (q),
and suppose Qk represents a rotation in the (i,]) plane, with </’, i.e.

(2.2)
qlp) cos O, q) sin O,

qP) -sin O, q) cos O.

We note that postmultiplication by O affects only two columns:

(2.3) (a}k+l)’ a}k+l)) (ak)’ a}k))
-sin 0 cos

The rotation angle 0 is chosen so that the two new columns are orthogonal. Adopting
the formulas of Rutishauser [21], we let

(2.4) aj

We set 0 0 if y 0; otherwise we compute

(2.5) fl a sign () 1

and

sin 0 t. cos 0.

The rotation angle always satisfies

(2.6) 101 ,
However, there remains the problem of choosing (i,), which is usually done according
to some fixed cycle. An objective is to go through all column pairs exactly once in any
sequence (a sweep) of n(n- 1)/2 rotations. A simple sweep consists of a cyclic-by-rows
ordering:

(2.7) (1, 2), (1, 3),..., (1, n), (2, 3),..., (2, n), (3,4),..., (n-l, n).

Forsythe and Henrici [10] prove that, subject to (2.6), the cyclic-by-rows Jacobi method
always converges. Convergence of the cyclic-by-rows Hestenes method thus follows.

Unfortunately, the cyclic-by-rows scheme is apparently not amenable to parallel
processing. In 3 we present an ordering that enables us to do [n/2J rotations
simultaneously. The (theoretical) price we pay is the loss of guaranteed convergence.
Hansen [12] discusses the convergence properties associated with various orderings
for the serial Jacobi method. He defines a certain "preference factor" for comparing
different ordering schemes. Our new ordering is in fact quite desirable, for it asymptoti-
cally optimizes the preference factor as n . Thus, although the convergence proof

72 RICHARD P. BRENT AND FRANKLIN T. LUK

of [10] does not apply, we expect convergence in practice to be faster than for the
cyclic-by-rows ordering. Simulation results (presented in the Appendix) support this
conclusion.

To enforce convergence, we may choose a threshold approach [29, pp. 277-278].
That is, we associate with each sweep a threshold value, and when making the
transformations of that sweep, we omit any rotation based on a normalized inner
product

a}k)T-(k)

which is below the threshold value. Although such a strategy guarantees convergence,
we do not know any example for which our new ordering fails to give convergence
even without using thresholds. Our method, like the cyclic-by-rows method, is ulti-
mately quadratically convergent [28].

The plane rotations are accumulated if the matrix V is desired. We compute

V+ VQ,

with V1 L Denoting the rth column of Vk (respectively Vk+l) by vk) (respectively
we may update both Ak and Vk simultaneously:

(2.8) vlk+l) V5k+l) k) V5k --sin0 cos0

3. Generation of all pairs (i, j). In this section we show how O(n) linearly-
connected processors can generate all pairs (i,j), l<-_i<j<=n, in O(n) steps. The
application to the computation of the SVD and of the symmetric eigenvalue decomposi-
tion is described in 4 and in 6-8, respectively.

First, suppose n is even. We use n/2 processors P1,""", Pn/2, where Pk and Pk/I
communicate (k 1, 2,. , n2 1). Each processor Pk has registers Lk and Rk, output
lines out Lk and out Rk, and input lines in Lk and in Rk, except that out L1, in L1,
out Rn/2 and in R/2 are omitted. The output out gk is connected to the input in Lk/l
as shown in Fig. 1.

out R in L out R in L out R in L

in R1 out L in R out L in R out L

P2 P3 P4

FIG. 1. Inter-processor connections for n 8.

Initially Lk "-2k-1 and Rk--2k. At each time step processor Pk executes the
following program:

if Lk < Rk then process (Lk, Rk) else process (Rg, Lk)’,
if k 1 then out Rk - Rk

else if k < n/2 then out Rk - Lk;
if k > 1 then out Lk - Rk;
{wait for outputs to propagate to inputs of adjacent processors}
if k < n/2 then Rk - in Rk else Rk Lk;
if k > 1 then Lk - in Lk;

SINGULAR-VALUE AND SYMMETRIC EIGENVALUE PROBLEMS 73

Here "process (i,])" means perform whatever operations are required on the pair
(i,]), 1-< <]-<_ n. The operation of the systolic array is illustrated in Fig. 2.

We see that the index 1 stays in the register L1 of processor P1. Indices 2,..., n
travel through a cycle of length n-1 consisting of the registers
L2, L3, Ln/2, Rn/2, Rn/2-1," R1. During any n 1 consecutive steps a pair (i, j)
or (j, i) can appear in a register pair (Lk, Rk) at most once. A parity argument shows
that (i, j) and (j, i) cannot both occur (see Fig. 2). Since there are n/2 register pairs
at each of n- 1 time steps, each possible pair (i, j), 1-<_i< j_-< n, is processed exactly
once during a cycle of n- 1 consecutive steps.

step 0

step

step 2

step 3

step 4

step 5

step 6

FIG. 2. Full cycle of the systolic array for n 8.

If n is odd, we use In/2 processors but initialize L 2k 2, R 2k 1 for
k 1,..., In/2] and omit any "process" calls from processor P1.

It is interesting to note that similar permutations are "well known" for use in
chess and bridge tournaments, but have apparently not been applied to parallel
computation.

4. A one-dimensional systolic array for SVD computation. Assume that n is even
(else we can add a zero column to A or modify the algorithm as described at the end
of 3). We use n/2 processors P1,""", Pn/2, as described in 3, except that L and
R are now local memories large enough to store a column of A (i.e., Lk and R .each
has at least m floating-point words). Shift registers or other sequential access memories
are sufficient as we do not need random access to the elements of each column.

Suppose processor P contains column a in L and column a in R. It is clear
that Pk can implement the column orthogonalization scheme in time O(rn) by making
one pass through a and a7 to compute the inner products (2.4), and another pass to

74 RICHARD P. BRENT AND FRANKLIN T. LUK

perform the transformations (2.3) or (2.8). Adjacent processors can then exchange
columns in the same way that the processors of 3 exchange indices. This takes time
O(m) if the bandwidth between adjacent processors is one floating-point word.
(Alternatively, exchanges can be combined with the transformations (2.3) or (2.8).)

Consequently, we see that n!2 processors can perform a full sweep of the Hestenes
method in n-1 steps of time O(m) each, i.e., in total time O(mn). Initialization
requires that the (2k-1)th and 2kth columns of A be stored in the local memory of
processor Pk for k 1,..., n/2; clearly this can also be performed in time O(mn).

The process is iterative. Suppose S sweeps are required to orthogonalize the
columns to full machine accuracy. We then have a systolic array of n/2 processors
which computes the SVD in time O(mnS). By comparison, the serial Hestenes
algorithm takes time O(mn2S). Our simulation results suggest that S is O(log n),
although for practical purposes we can regard S as a constant in the range six to
ten [21].

After an integral number of sweeps the columns of the matrix W AV (see (2.1))
will be stored in the systolic array (two per processor). If V is required, it can be
accumulated at the same time that W is accumulated, at the expense of increasing
each processor’s local memory (but the computation time remains O(mnS)); see (2.8).

5. Serial Jacobi method. We now consider the related problem of diagonalizing
a given n n symmetric A Aa. The serial Jacobi method generates a sequence of
symmetric matrices {Ak} via the relation

where Qk is a plane rotation. Let Ak =--(a (k))rs and suppose Qk represents a rotation
through angle 0 in the (i, j) plane, with < j (see (2.2)). We choose the rotation angle
to annihilate the (i, j) element of Ak. If all)= 0, we do not rotate, i.e., 0 0. Otherwise
we use the formulas in [21] to compute sin 0 and cos 0"

(5.1)

jk (k) 1a..)--aii:=
2alk)

cosO
x/l+t2’

sign (:)
tan 0, sin 0 t. cos 0.

Note that the rotation angle 0 may be chosen to satisfy

The new matrix Ak+a differs from Ak only in rows and columns and j. The modified
values are defined by

ii =a.. t" ij

.) (k)
=a +t. aq

(5.2)

a(k+l) (k+l) (k)--sin 0" ,.(k)
iq aqi =cos 0. aiq Ujq

(q # i, j).
(k) +COS 0 a (k),.,(k+l) (k+l)-sin 0. aiq4jq a qj jq

Again we choose (i, j) in accordance to the new ordering introduced in 3. The
comments that were made in 2 concerning various aspects (convergence proof,

SINGULAR-VALUE AND SYMMETRIC EIGENVALUE PROBLEMS 75

convergence rate, threshold approach, etc.) of the Hestenes method apply equally well
here to the Jacobi procedure.

6. An idealized systolic architecture. In this section we describe an idealized
systolic architecture for implementing the Jacobi method to compute an eigenvalue
decomposition of A. The architecture is idealized in that it assumes the ability to
broadcast row and column rotation parameters in constant time. In 8 we show how
to avoid this assumption, after showing in 7 how to take advantage of symmetry,
compute eigenvectors, etc.

Assume that the order n is even and that we have a square array of n/2 by n!2
processors, each processor containing a 2 2 submatrix of A (a0). Initially processor
P0 contains

for
a2i,2j-1 a2i,2j /

and P0 is connected to its nearest neighbors ei+l,j and Pi,+/-l (see Fig. 3). In general
P0 contains four real numbers

’ij ij/

where ao txji tij--ji and o "ji by symmetry.
The diagonal processors eii (i-- 1," ’’, n/2) act differently from the off-diagonal

processors Po (i j, 1 <= i, j<= n/2). Each time step the diagonal processors Pii compute
rotations

Si Ci

to annihilate their off-diagonal elements ft, and y,, (actually ft, ,), i.e., so that
c/ + s/2 1 and

Ci Si Olii

Si Ci ii ii S C 0 ii

all a12
el

a21 a22

a31 a32

a41 a42

a61 a62

al a14. P12
a23 a24

a33 a34

a43 a44

P3-
a63 a64

a15

a25

a35 a36

a45 a46

a55 a56
P33

a65 a66

a16
P13

a26

FIG. 3. Initial configuration (idealized, n 6).

76 RICHARD P. BRENT AND FRANKLIN T. LUK

is diagonal. From (5.1) and (5.2) with a change of notation we find that

S 4i’q-t2i

and

Olii "+- ti[3ii

where

(6.2)
0 if [3ii O,

li sign i
if ii 0

[:il +/1 + /2

and

2flii

To complete the rotations which annihilate ii and ")/ii, 1,..., n/2, the off-
diagonal processors Pij (iS j) must perform the transformations

aij fli
6Yij ij Y ij q

where

Ogij [3"" Ci --Si Oij [3ij Cj Sj

j 6 q. S Ci ")/ij 6ij S] Cj

We assume that the diagonal processor Pii broadcasts the rotation parameters ci and
si to processors Pi and Pi (j 1,..., n/2) in constant time, so that the off-diagonal
processor Pi has access to the parameters ci, si, cj and si when required. (This assumption
is removed in 8.)

To complete a step, columns (and corresponding rows) are interchanged between
adjacent processors so that a new set of n off-diagonal elements is ready to be
annihilated by the diagonal processors during the next time step. This is done in two
sub-steps. First, adjacent columns are exchanged as in the SVD algorithm described
in 3-4 and as illustrated in Fig. 2. Next, the same permutation is applied to rows,
so as to maintain symmetry. Formally, we can specify the operations performed by a
processor Pi] with outputs out haij,"" out hti] out l)ceij, "’’, out l)6ij and inputs
in haii," , in v6ii by Program 1. Note that outputs of one processor are connected to
inputs of adjacent processors in the obvious way, e.g. out hi is connected to in hc/.y+l
(1 <- <= n/2, 1 <= j < n/2): see Fig. 4. In Fig. 4 and elsewhere, we have omitted subscripts
(i, j) if no ambiguity arises, e.g. in vc is used instead of in vaij.

SINGULAR-VALUE AND SYMMETRIC EIGENVALUE PROBLEMS 77

{subscripts (i, j) omitted if no ambiguity results}
{column interchanges}

if then [out h/3 -/3; out h6 6]
else if < n/2 then [out h/3 a; out h6 3’];

if i> then [out ha /3; out hy 6];
{wait for outputs to propagate to inputs of adjacent processors}
if < n/2 then [/3 in h/3; 6 in h6]

else [/3 a; 6 y];
if > then [a in ha; 3’ in hy];

{row interchanges}
if] then [out vy 3’; out v6 6]

else if j < n/2 then [out vy a; out v6 /3];
if j > then [out va y; out v/3 -6];
{wait for outputs to propagate to inputs of adjacent processors}
if j < n/2 then

else [ya;
if > then [a in va;/3 in v/3];

PROGRAM 1. Column and row interchanges for idealized processor Pij.

The only difference between the data flow here and that in 4 is that here rows
are permuted as well as columns in order to maintain the symmetry of A and move
the elements to be annihilated during the next time step into the diagonal processors.
Hence, from 3 it is clear that a complete sweep is performed every n-1 steps,
because each off-diagonal element of A is moved into one of the diagonal processors
in exactly one of the steps. Each sweep takes time O(n) so, assuming that O(log n)
sweeps are required for convergence, the total time required to diagonalize A is
O(n log n).

in ha

out ha

outva inva out

invy outv3, inv6 outv6

out

in

out h6

in h

FIG. 4. Input and output lines for idealized processor Pij with nearest-neighbor connections.

7. Further details. Several assumptions were made in 6 to simplify the exposi-
tion. In this section we show how to remove these assumptions (except for the broadcast
of rotation parameters, discussed in 8) and we also suggest some practical optimiz-
ations.

7.1. Threshold strategy. It is clear that a diagonal processor Pii might omit
rotations if its off-diagonal elements/3, 3’, were sufficiently small. All that is required
is to broadcast

78 RICHARD P. BRENT AND FRANKLIN T. LUK

along processor row and column i. As discussed in 2, a suitable threshold strategy
guarantees convergence, although we do not know any example for which our ordering
fails to give convergence even without a threshold strategy.

7.2. Computation ot eigenvectors. If eigenvectors are required, the matrix U of
eigenvectors can be accumulated at the same time as A is being diagonalized. Each
systolic processor Pu (1 <= i, j <= n/2) needs four additional memory cells

O’ij 7"0/

and during each step sets

cru ru/ o-u ru/ sj q

Each processor transmits its

values to adjacent processors in the same way as its

values (see Program 1). Initially/x0 v0 cro ru 0 if j, and [d,ii Tii 1, tri vii
0. After a sufficiently large (integral) number of sweeps, we have U defined to working
accuracy by

U2i,2j-- U2i,2j / O’ij "t’ij /

7.3. Diagonal connections. In Program 1 we assumed that only horizontal and
vertical nearest-neighbor connections were available. Except at the boundaries,
diagonal connections are more convenient. This is illustrated in Figs. 5 and 6 (with
subscripts (i, j) omitted).

in x

out a

out/3

in
ut

FIG. 5. Diagonal input and output lines for processor

Diagonal outputs and inputs are connected in the obvious way, as shown in Fig. 6,

in ’i- ,j+

in Oi,j+
e.g. out/3u is connected to

in 6i_1,

n i,j

if i> 1,j<n/2,

if 1, j < n/2,

if i> 1,j= n/2,

ifi=l,j=n/2.

SINGULAR-VALUE AND SYMMETRIC EIGENVALUE PROBLEMS 79

FIG. 6. "Diagonal" connections, n 8 (here and below stands for).

Program 2 is equivalent to Program 1 but assumes a diagonal connection pattern
as illustrated in Figs. 5 and 6. Subsequently we assume the diagonal connection pattern
for convenience, although it can easily be simulated if only horizontal and vertical
connections are available.

{subscripts (i,]) omitted for clarity}

if (i 1) and (, 1) then [ut a a; ut/3 -/3" 1out

else if then [utafl;utfl-a;1out 3’ ; out 3’"

else if j then loutout y

out

{wait for outputs to propagate to inputs of adjacent processors};

a -in a;/3 in/3;

y-in

PROGRAM 2. Diagonal interchanges for processor Pij.

7.4. Taking full advantage of symmetry. Because A is symmetric and our transfor-
mations preserve symmetry, only a triangular array of (1/2)(n/2)(n/2+l)=
n(n+2)/8 systolic processors is necessary for the eigenvalue computation. In the
description above, simply replace any reference to a below-diagonal element aij (or
processor Pij) with i>] by a reference to the corresponding above-diagonal element
aj (or processor Pj). Note, however, that this idea complicates the programs, and
cannot be used if eigenvectors as well as eigenvalues are to be computed. Hence, for
clarity of exposition we do not take advantage of symmetry in what follows, although
only straightforward modifications would be required to do so.

80 RICHARD P. BRENT AND FRANKLIN T. LUK

7.5. Odd n. So far we assumed n to be even. For odd n we can modify the
program for processors Pli and Pil (i 1,. ., In/2]) in a manner analogous to that
used in 3, or simply border A by a zero row and column. For simplicity we continue
to assume that n is even.

7.6. Rotation parameters. In 6 we assumed that the diagonal processor P, would
compute ci and si according to (6.1), and then broadcast both ci and si along processor
row and column i. It may be preferable to broadcast only ti (given by (6.2)) and let
each off-diagonal processor P0 compute ci, s, c and s from ti and t. Thus communica-
tion costs are reduced at the expense of requiring off-diagonal processors to compute
two square roots per time step (but this may not be significant since the diagonal
processors must compute one or two square roots per step in any case). In what follows
a "rotation parameter" may mean either ti or the pair

8. Avoiding broadcast of rotation parameters. The most serious assumption of
6 is that rotation parameters computed by diagonal processors can be broadcast

along rows and columns in constant time. We now show how to avoid this assumption,
and merely transmit rotation parameters at constant speed between adjacent pro-
cessors, while retaining total time O(n) for the algorithm. We use a special case of a
general procedure (due to Leiserson and Saxe) for the elimination of broadcasting.

Let mij "--li-jl denote the distance of processor Pij from the diagonal. The operation
of processor Pij will be delayed by Ai time units relative to the operation of the
diagonal processors, in order to allow time for rotation parameters to be propagated
at unit speed along each row and column of the processor array.

A processor cannot commence a rotation until data from earlier rotations is
available on all its diagonal input lines. Thus, processor Pi needs data from processors
Pi-l,j-1, Pi-l,j+l, Pi+l,j-1 and Pi+l,j+l if 1 < < n/2, 1 < j < n/2 (for the other cases see
7.3). Since

[zij-- Ai+l,j+l[<= 2
it is sufficient for processor Pij to be idle for two time steps while waiting for the
processors Pi+/-l,j+/-l to complete their (possibly delayed) steps. Thus, the price paid to
avoid broadcasting rotation parameters is that each processor is active for only one
third of the total computation time. A similar inefficiency occurs with many other
systolic algorithms, [2], [3], [17], [18]. (The fraction one-third can be increased almost
to unity if rotation parameters are propagated at greater than unit speed.)

A typical processor Piy (1 <j<-i< n/2) has input and output lines as shown in
Fig. 7 (with subscripts (i, j) or (i, i) omitted). Figure 7 differs from Fig. 5 in that it

Subdiagonal (1 < < < n/2) Diagonal (1 < < n/2)

in a in vt out/3 in a out vt

uta 1 */in/3 uta T
out ht Pi, inht

outht
any// K’,N,out, any@
out y out vt in 8 out y out vt

out ht

FIG. 7. Input and output lines for typical subdiagonal and diagonal processors.

SINGULAR-VALUE AND SYMMETRIC EIGENVALUE PROBLEMS 81

3 3 4 4 5 5 6

2 3

2

2

3 2

5 5 4 4 3 3 2

FIG. 8. Interprocessor connections (n 8). (The first times at which inputs are available are indicated.)

shows the horizontal and vertical lines in ht, out ht, in vt, out vt for transmission of
rotation parameters. Processors interconnect as shown in Fig. 8.

Assuming that the array (aij)l<=i,j<= is available in the systolic array at time T=0,
the operation of processor Pij proceeds as described by Program 3. We assume that
each time step has nonoverlapping read and write phases; the result of a write at step
T should be available at the read phase of steps T+ 1, T+ 2 and T+ 3 in a neighbouring
processor, but should not interfere with a read at step T in a neighbouring processor.
The first time steps at which data are available on various processors’ input lines are
indicated in Fig. 8.

Program 3 does not compute eigenvectors, but may easily be modified to do so
(as outlined in 7). We have also omitted a termination criterion. The simplest is to
perform a fixed number S (say conservatively 10) sweeps; then processor Pij halts
when T 3S(n 1) + z0. + 3, since a sweep takes 3(n 1) time steps. A more sophisti-
cated criterion is to stop if no nontrivial rotations were performed during the previous
sweep. This requires communication along the diagonal, which can be done in n/2
time steps.

if T >- A) and T A 0 (mod 3)) then
begin

[a 1 [ina in]if T A then
3, in 3’ in

if A 0 then {diagonal processor}
begin
if/3 =0 then :0 else :,- (,- a)/(2 /3);

if=Othen t0elset
sign (:)

82 RICHARD P. BRENT AND FRANKLIN T. LUK

a-a-t* fl; -t3+t* fl;

else {off-diagonal processor}
begin

in ht; t’ in vt;

c 1/.,/1 + ta; c’ 1/.,/1 +
s c; s’ t’ * c’;

end;

out ht t; out vt t’
if > j then set out fl as in Program 2;
if < j then set out y as in Program 2
end

else if (T_>A) and (T-A-= (mod 3)) then
begin
if (i 1) or (j 1) then set out a as in Program 2;
if (i n/2) or (j n/2) then set out 6 as in Program 2
end

else if (T_-> A) and (T-A-= 2 (mod 3)) then
begin
if (i> 1) and (] > 1) then set out a as in Program 2;
if i-<_ j then set out/3 as in Program 2;
if i_>-] then set out y as in Program 2;
if (i < n/2) and (j < n/2) then set out 6 as in Program 2
end

else {do nothing this time step}.

PROGRAM 3. Program for one time step of processor Pij.

9. Conclusion. We have presented a linear array of In processors, each able
to perform floating-point operations (including square roots) and having O(m) local
storage, for computing the SVD of a real m n matrix in time O(mn log n). We have
also described how a square array of In/2] by In processors, each with similar
arithmetical capabilities but with only O(1) local storage, and having connections to
nearest horizontal and vertical (and preferably also diagonal) neighbors, can compute
the eigenvalues and eigenvectors of a real symmetric matrix in time O(n log n). The
constant is sufficiently small that the method is competitive with the usual O(/13 serial
algorithms, e.g., tridiagonalization followed by the QR iteration, for quite small n.
The speedup should be significant for real-time computations with moderate or
large n.

The problem of computing eigenvalues and eigenvectors of an unsymmetric real
matrix on a systolic array is currently being investigated; unfortunately, the ideas used
for symmetric matrices do not all appear to carry over to Eberlein’s methods [8] in
an obvious way. However, everything that we have said concerning real symmetric
matrices goes over with the obvious changes to complex Hermitian matrices.

Appendix. Simulation results. We have compared the ordering described in 3
with the cyclic-by-rows ordering (2.7) by applying the Jacobi method with each ordering
to random n n symmetric matrices (aij), where the elements aij for 1 _-< <_- j-<_ n were

SINGULAR-VALUE AND SYMMETRIC EIGENVALUE PROBLEMS 83

uniformly and independently distributed in [-1, 1]. (Other distributions were also
tried, and similar results were obtained.) The stopping criterion was that the sum

ij a2ij of squares of off-diagonal elements was reduced to 10-12 times its initial value.
Table 1 gives the mean number of sweeps Srow and Snew for the cyclic-by-rows ordering
and the ordering of 3, respectively, where a "sweep" is n(n-1)/2 rotations. The
maximum number of sweeps required for each ordering is given in parentheses in the
Table.

TABLE
Simulation results for row and new orderings.

n trials Sro Sne

4 5,000 2.96 (4.17) 2.64 (4.00)
6 5,000 3.63 (4.87) 3.37 (4.40)
8 2,000 4.07 (5.04) 3.79 (4.75)

10 2,000 4.39 (5.56) 4.09 (5.47)
20 1,000 5.23 (5.93) 4.94 (5.81)
30 1,000 5.67 (6.62) 5.41 (6.49)
40 1,000 5.92 (6.76) 5.74 (6.54)
50 1,000 6.17 (7.13) 5.99 (6.78)

100 500 6.81 (7.42) 6.78 (7.32)

From Table 1 we see that our new ordering is better than the cyclic-by-rows
ordering, perhaps for the reason suggested in 2, although the difference between the
two orderings becomes less marked as n increases. For both ordering, the number of
sweeps S grows slowly with n. Empirically we find that S O(log n), and there are
theoretical reasons for believing this, although it has not been proved rigorously. In
practice S can be regarded as a constant (say 10) for all realistic values of n (say
n-<_ 1,000); see [21]. More extensive simulation results for six different classes of
orderings will be reported elsewhere.

Acknowledgment. We thank the referees and the editor for their comments,
which helped to improve the presentation and make the list of references more
complete.

REFERENCES

[1] H. C. ANDREWS AND C. L. PATTERSON, Singular value decomposition and digital image processing,
IEEE Trans. Acoustics, Speech and Signal Processing ASSP-24 (1976), pp. 26-53.

[2] A. BOJANCZYK, R. P. BRENT AND H. T. KUNG, Numerically stable solution of dense systems of
linear equations using mesh-connected processors, this Journal, 5 (1984), pp. 95-104. Also available
as Tech. Report. TR-CS-81-01, Dept. Computer Science, Australian National Univ., 1981.

[3] R. P. BRENT AND F. T. LUK, Computing the Cholesky factorization using a systolic architecture, Proc.
6th Australian Computer Science Conference (1983), pp. 295-302.

[4] ., A systolic architecture for the singular value decomposition, Tech. Report TR-CS-82-09, Dept.
Computer Science, Australian National Univ., August, 1982.

[5],A systolic architecture for almost linear-time solution of the symmetric eigenvalue problem, Tech.
Report TR-CS-82-10, Dept. Computer Science, Australian National Univ., 1982.

[6] R. P. BRENT, F. T. LUK AND C. VAN LOAN, Computation of the generalized singular value’decomposi-
tion using mesh-connected processors, Proc. SPIE Vol. 431, Real Time Signal Processing VI, SPIE,
Bellingham, WA, 1983, pp. 66-71.

[7] K-W. CHEN AND K. B. IRANI, A Jacobi algorithm and its implementation on parallel computers, Proc.
18th Annual Allerton Conference on Communication, Control and Computing, 1980, pp. 564-573.

[8] P. J. EBERLEIN AND J. BOOTHROYD, Solution to the eigenproblem by a norm reducing Jacobi type
method, in [30], pp. 327-338.

84 RICHARD P. BRENT AND FRANKLIN T. LUK

[9] A. M. FINN, F. T. LUK AND C. POTTLE, Systolic array computation of the singular value decomposition,
Proc. SPIE Symp. East 1982, Vol. 341, Real Time Signal Processing V, 1982, pp. 35-43.

[10] G. E. FORSYTHE AND P. HENRICI, The cyclic Jacobi method for computing the principal values o]: a
complex matric, Trans. Amer. Math. Soc., 94 (1960), pp. 1-23.

[11] G. H. GOLUB AND F. T. LUK, Singular value decomposition: applications and computations, ARO
Report 77-1, Trans. 22nd Conference of Army Mathematicians (1977), pp. 577-605.

[12] E. R. HANSEN, On cyclic Jacobi methods, J. Soc. Indust. Appl. Math., 11, 1963, pp. 448-459.
[13] D. E. HEELER AND I. C. F. IPSEN, Systolic networks for orthogonal equivalence transformations and

their applications, Proc. 1982 Conf. on Advanced Research on VLSI, Massachusetts Institute of
Technology, 1982, pp. 113-122.

[14], Systolic networks for orthogonal decompositions, this Journal, 4 (1983), pp. 261-269.
[15] M. R. HESTENES, Inversion of matrices by biorthogonalization and related results, J. Soc. Indust. Appl.

Math., 6 (1958), pp. 51-90.
[16] D. J. KUCK AND A. H. SAMEH, Parallel computation of eigenvalues of real matrices, Information

Processing 1971, North-Holland, Amsterdam, 1972, pp. 1266-1272.
[17] H. T. KUNG, Why systolic architectures, IEEE J. Comput., (1982), pp. 37-46.
[18] H. T. KUNG AND C. E. LEISERSON, Algorithms for VLSI processor arrays, in Introduction to VLSI

Systems, C. Mead and L. Conway, eds. Addison-Wesley, Reading, MA, 1980, pp. 271-292.
[19] S. Y. KUNG AND R. J. GAL-EZER, Linear or square array for eigenvalue and singular value decomposi-

tions?, Proc. USC Workshop on VLSI and Modern Signal Processing, Los Angeles, California
(Nov. 1982), pp. 89-98.

[20] F. T. LUK, Computing the singular-value decomposition on the ILLIAC IV, ACM Trans. Math. Software,
6 (1980), pp. 524-539.

[21] H. RUTISHAUSER, The Jacobi method for real symmetric matrices, in [30], pp. 202-211.
[22] A. H. SAMEH, On Jacobi and Jacobi-like algorithms for a parallel computer, Math. Comput., 25 (1971),

pp. 579-590.
[23], Solving the linear least squares problem on a linear array of processors, Proc. Purdue Workshop

on Algorithmically-specialized Computer Organizations, 1982.
[24] R. SCHREIBER, Systolic arrays for eigenvalue computation, Proc. SPIE Symp. East 1982, Vol. 341,

Real-Time Signal Processing V, 1982.
[25],A systolic architecture]or singular value decomposition, Proc. 1st International Colloquium on

Vector and Parallel Computing in Scientific Applications, Paris, Mar., 1983.
[26] J. M. SPEISER AND H. J. WHITEHOUSE, Architecture for real-time matrix operations, Proc. 1980

Government Microcircuits Applications Conference, Houston, TX, Nov., 1980.
[27] H. J. WHITEHOUSE, J. M. SPEISER AND K. BROMLEY, Signal processing applications of systolic array

technology, Proc. USC Workshop on VLSI and Modern Signal Processing, Los Angeles, CA, Nov.
1982, pp. 5-10.

[28] J. H. WILKINSON, Note oft the quadratic convergence of the cyclic Jacobi process, Numer. Math., 4
(1962), pp. 296-300.

[29], The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
[30] J. H. WILKINSON AND C. REINSCH, eds., Handbook for Automatic Computation, Vol. 2 (Linear

Algebra), Springer-Verlag, Berlin, 1971.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 1, January 1985

1985 Society for Industrial and Applied Mathematics

O08

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION*

ANDREW W. APPEL

Abstract. The simulation of N particles interacting in a gravitational force field is useful in astrophysics,
but such simulations become costly for large N. Representing the universe as a tree structure with the
particles at the leaves and internal nodes labeled with the centers of mass of their descendants allows several
simultaneous attacks on the computation time required by the problem. These approaches range from
algorithmic changes (replacing an O(N’) algorithm with an algorithm whose time-complexity is believed
to be O(N log N)) to data structure modifications, code-tuning, and hardware modifications. The changes
reduced the running time of a large problem (N 10,000) by a factor of four hundred. This paper describes
both the particular program and the methodology underlying such speedups.

1. Introduction. Isaac Newton calculated the behavior of two particles interacting
through the force of gravity, but he was unable to solve the equations for three particles.
In this he was not alone [7, p. 634], and systems of three or more particles can be
solved only numerically. Iterative methods are usually used, computing at each discrete
time interval the force on each particle, and then computing the new velocities and
positions for each particle.

A naive implementation of an iterative many-body simulator is computationally
very expensive for large numbers of particles, where "expensive" means days of Cray-1
time or a year of VAX time. This paper describes the development of an efficient
program in which several aspects of the computation were made faster. The initial
step was the use of a new algorithm with lower asymptotic time complexity; the use
of a better algorithm is often the way to achieve the greatest gains in speed [2].

Since every particle attracts each of the others by the force of gravity, there are
O(N2) interactions to compute for every iteration. Furthermore, for the same reasons
that the closed form integral diverges for small distances (since the force is proportional
to the inverse square of the distance between two bodies), the discrete time interval
must be made extremely small in the case that two particles pass very close to each
other. These are the two problems on which the algorithmic attack concentrated. By
the use of an appropriate data structure, each iteration can be done in time believed
to be O(N log N), and the time intervals may be made much larger, thus reducing
the number of iterations required. The algorithm is applicable to N-body problems in
any force field with no dipole moments; it is particularly useful when there is a severe
nonuniformity in the particle distribution or when a large dynamic range is required
(that is, when several distance scales in the simulation are of interest).

The use of an algorithm with a better asymptotic time complexity yielded a
significant improvement in running time. Four additional attacks on the problem were
also undertaken, each of which yielded at least a factor of two improvement in speed.
These attacks ranged from insights into the physics down to hand-coding a routine in
assembly language. By finding savings at many design levels, the execution time of a
large simulation was reduced from (an estimated) 8,000 hours to 20 (actual) hours.
The program was used to investigate open problems in cosmology, giving evidence to
support a model of the universe with random initial mass distribution and high mass
density.

* Received by the editors March 24, 1983, and in revised form October 1, 1983.
r Computer Science Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213. This

research was supported by a National Science Foundation Graduate Student Fellowship and by the office
of Naval Research under grant N00014-76-C-0370.

85

86 ANDREW W. APPEL

This paper describes the problem and its solution, considered from the point of
view of a computer scientist approaching a software engineering problem. Thus, only
a brief overview of the physics is given; the emphasis is on techniques of writing
efficient software. Section 2 explains the nature of the cosmological questions that can
be answered by many-body simulations. Section 3 describes some old algorithms for
such simulations, 4 introduces the data structure and the algorithm to reduce the
time per iteration, and 5 shows how to use the data structure to reduce the number
of iterations. Section 6 shows how to create the structure and how to keep it from
becoming distorted. Section 7 describes an implementation of the algorithm. The
techniques used to attain speedups at various design levels are described. These
speedups are summarized and the design methodology leading to them is discussed
in 8.

2. Applications in astrophysics. The search for a faster algorithm to compute
many-body interactions in a gravitational force field was motivated by two important
questions in cosmology that can be investigated by simulating gravitational interactions
of tens of thousands of galaxies. An efficient computer program has made it feasible
to do such simulations. This section describes the cosmological applications, and the
remaining sections describe the program.

2.1. How did galaxies orm? It is generally believed that the early universe was
radiation-dominated, that is, that most of the energy of the universe was in the form
of photons, and the forces on a typical particle were primarily electromagnetic. The
present universe, however, is mass-dominated, with most of the energy condensed into
massive bodies (such as stars), and the primary interaction between these bodies being
gravitational (the gravitational force between the Earth and Sun, for example, com-
pletely dominates the "solar wind" of photons pushing the Earth away from the Sun).

The transition between a radiation-dominated and mass-dominated universe prob-
ably took place relatively suddenly; after that, massive bodies such as galaxies began
to form (they would have been torn apart in a radiation-dominated universe). Two of
the competing theories describing the formation of galaxies [21] may be characterized
as "top-down" and "bottom-up," respectively.

In the "top-down" theory [22], galaxy clusters formed as a result of long-range
pressure waves left over from the radiation-dominated universe. A pressure wave
contains alternating regions of high and low density. When the universe "condensed"
and the radiation disappeared, there would be no medium to support the waves, but
the regions of high and low mass-density would remain. It is proposed that the regions
of high density became super-clusters of galaxies; that galaxies formed within these
super-clusters; and that stars formed within the galaxies. Two-dimensional simulations
under these assumptions have shown a cell-like structuring of the clusters [9]; it is not
clear whether the dimensionality of the simulation is responsible. It may be that these
cells exist in the present universe [14], but the observations at large distances are not
conclusive.

In the "bottom-up" theory [17], there were no pressure waves, and the universe
immediately after condensation consisted of randomly distributed hydrogen molecules.
In a random distribution, there will be local fluctuations in mass density, and as the
universe expands, the denser regions will tend to cohere, while the regions of lower
density will expand. This will tend to increase the size of the fluctuations, forming
stars. More expansion will increase the size of the fluctuations to that of galaxies and
eventually of clusters and super-clusters of galaxies. The clusters will have a more
random structure than in the "top-down" model.

....... o... ’.’....: ..-.........,..;:,’.. ..,..... ,... :.. ..:,.... :. ,:........,.... "’..;>"
,.’...." "’:’, .’. :’-: :. ,’. ".’..:.. :, ..’" "." .:" ...:’: ’".. ". :’..... "..’.: .’ :...".. ".,.,.;... :’:: .’.:....:.’..,, -’..’,....,,:,.......- .!. "..’....:’:..’.,:..:’:.’..,:..........:: -......:,: .;..".’.

.."...’...." :...’...::, ".... "..* :.’..’.. ...
o:.. .,:. ,.."., ."." ,.:..".: .."’.. ::.’.’. .’.:" ..’...’." .".’. ..:

.?’:...;....’:....’::..’.: .:.’;.. :’:..". ".. .:." .:. ?...". ";.. ,’," ;’ ".. .’..." ".’"..2 "...’:’..:.’".761 !?;’;.7 :.".?. :..’",.’,-:’,".
".;..":. 4: .’" ," :. "’" "’;’: "S ":" "’...’.".2" . .." ..t", :.

:.’..’..::... ,..’..,;.,"..’ :.’.;.t. :".;.’:::.’.’, : .’...:’.." .’?....;. "..... :.".’.. .. :.:.:2 "’:., ::".: "::.’.’.:’:’,, :’t.’...."’,
;’..," .:...:’., ..:;’." :..: ". ..". ." ".’..:’.’. :’ V....,.:’" ":.,"," ;::..X,,’:’::-.I’ 4

:’’Ul’". .’, ,"’.’ .." "’?!’..; ::.:"’>.",);:. ::.": !-(:, }:’..’: :Y ".;",. ". "":"i" :.,. ’:":::.: :i:’.’.’:’... ’’...’:."..’)
I’:’" ""’:" "’":’’:’: "" ";’" ":" "" ::""" ":"":"’"?’"""’" "’’"’"" "’"’"’" """ ":" "’"""’’" "’’’ill".’.:" ".."" ".> ".’i..?.::’". ".’:"’.’." (.’".!’::"" "" ’:.’. "":" "’...’..7.1.,?.,.;- ’}."":,:. ,"’.." .’.’...’.."".."...".

v’:"." :,’.’-’:" "’:.:: ";.-.".’. :’"..’" 3’ "."" .."." "..’. "-. ;’:" ":’: ’..;: .’..."
,,..’".’, .’.’ ":.3.’-’-." .:’": ::" """.".... :’: ’"’;" ;" "’"’.’:""< :" "" ; :"" "’" "":: "." "’,:’. """’’’", ""I i.,.:. ..-...:, :::; i’..., :.;:..i ?;:"." il,;i".: ".:..:::L .. , ::"!.!....: ;!...:; .i:...;...:.;:;;:. ;.:
n.’" ""::" ""’" ""’"" -’’ "’"’":’ .’. ’..’k .,..., ".... q
I’.::! ,...:,’... ::.:" ..,." .’.’... .:...::.’:. ,... .:.; ";,.". .:..’... ".’..’.’.:... ,:..:.., :....’.":.’...’...’ ,.,.

:." .’" :..’....I ,..:. . "..;I:.: ’. ".’," .’.’d ".:,’. "":" :.. "". .-...;’.’..." ,>.’." ..’.". P. ".t:" .:"

F: :.:: ,,... .,. .,.. ..: ,..., ...]......
3"...’:/;:".. "..’.’. ::’.... "...’.:.,:.. "..".f " ..;". "’ :’..,..:: .9.". ".". L"-::" :".,:: .". :..-.." :.:’..""f:’J;""’" :’".... "" ;:’’" "’"’" ’"’"""’" :’’"":’"::";’" "’;’;’’" ": "’’ :’" "4..’.?..’.’ ...’..:’.,..’.?..’;’.:."

Ii .:?2:..: :.:..,::, ..:.:,:.,.?. :,!-::. :.:.::..... ::..;:}:i; ?"::".:i" ::t .:. ::. ..’.,.:: ,7. Y:,.." ’:.:ii?i:".’;.:..::. ’);l..:..o..’ :’:...’:"’- .,".’,- t.’-...’:x... "’...’..,.. :’..:."" ...’. :.’. .," ..." :;...’;"’. ’ :" "’:’..’- :.’" "’.:’." ."* .’’. .:.e: "’. ..li,’.. ".. "....’. ".. ., ",.’. .’.’.’,’t. ","" .:: ;. ,:.i.,, t.’,....... ...;" :...:... .:." .:’

3" 1.o00000 (a)

87

T= 19.012801 (b)

FIG. 2.1. Result of a simulation. An initial randomly generated configuration of 10,000 galaxies, and
the result of simulating the gravitational interactions of this configuration as the universe expands by a factor
of 7.12, with mass density p Pcri, as a parameter of the simulation. The particles are in a three-dimensional
space which has been projected into two dimensions for this picture. A periodic coordinate system is used in
which the two extreme points in each dimension are identified. The pictures are scaled to the expansion factor
of the simulated universe.

88 ANDREW W. APPEL

In both theories, the only significant interactions between galaxies after the
condensation are gravitational. A simulation of the motion of many particles with
gravitational interactions can therefore test these theories. A ten-thousand-galaxy,
three-dimensional simulation testing the "bottom-up" theory (that is, starting with a
uniform random distribution of particle positions) has been done using the techniques
described in the remainder of this paper. The result of the simulation is clustering
consistent with that observed by astronomers (see Fig. 2.1 for a picture of the
simulation’s output). A similar test of the "top-down" theory has not yet been done,
but since this theory differs from the "bottom-up" theory primarily in its specification
of the distribution of the initihl placement of the particles, it could be simulated easily
using the same algorithm.

The large-scale simulations done using the program described in 3 through 6
of this paper seem to imply that the bottorh-up model can explain the present mass
distribution of the universe quite well, without the complicated assumptions inherent
in the top-down model.

2.2. Is the universe open or closed? One of the fundamental questions in cos-
mology is whether the universe will continue expanding forever, or whether it will
eventually collapse in a gigantic reversal of the "big bang." One way to answer this
question is to look at the mass density of the universe. If the density of the universemp
is below a certain "critical density"mpcritmthen expansion will continue forever;
otherwise it will contract. Unfortunately, it is difficult to measure the mass density of
the universe. Astrophysicists have been able to make estimates; most observational
estimates put the mass density at about a tenth of the critical density. There are reasons
for believing that the P/Pcrit should be exactly equal to 1. For example, any deviation
of p from Pcrit in the early universe (t 1 sec) would be enormously amplified as the
universe expanded, making the current measured value of/9 0.1pcri far too close to
have happened by chance [8].

The astronomical search for the "missing mass"--to determine whether P/Pcrit is
closer to 0.1 or to 1.0mis complicated by the fact that many forms of mass (such as
black holes) are difficult to observe directly. This problem can be avoided by approaches
that do not involve direct observation of the mass density. One such approach is
through simulation of the gravitational interactions of galaxies under different assump-
tions about the mass density. Groth et al. [12] observed in small simulations that low
mass densities will not lead to the amount of clustering actually observed, and that
the critical density would lead to such clustering. The ten-thousand-body, three-
dimensional simulation using the program described later in this paper was for the
higher-density case; large-scale clustering was observed, lending support to this theory.
The lower-density case can be examined by the same techniques.

3. Previous algorithms. Because the N-body problem cannot be done in closed
form, the calculation must be done numerically. That is, at each time t, the gravitational
forces of each mass on each of the others may be computed by Newton’s laws. (For
an appropriate range of distancesmsay, between one and a few hundred million
light-yearsmNewton’s laws are a good approximation to general relativity [17].) Using
the inverse-square force law, an approximation to the true acceleration and velocity
of each particle over a time dt can be computed. By many iterations of this method,
the position of each particle after an arbitrary length of time may be found.

3.1. A simple algorithm. Newton’s law of gravity states that the force between
any pair of particles is proportional to the product of their masses divided by the

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION 89

square of the distance between them. Stated as a vector equation,

mir’[
Grnirnj(rj ri)

where l’i is the position vector of particle i, r,’.’ is the acceleration vector of particle i,
and G is the universal gravitational constant.

When there are many particles, the acceleration of each particle is given by the
sum of the accelerations (as computed by Newton’s law) induced by all the other
particles. This is simply a large set of differential equations. For two bodies, it is
solvable in closed form; however, for more than two bodies no closed form solution
exists.

The differential equation can be integrated numerically using a "naive" algorithm.
At each iteration, compute the acceleration acting upon each particle; from this,
compute a modified velocity over the next time increment, and then compute the
position of each particle at the end of the time increment by calculating

l’new l’old -I- dt.

The time increment dt must be made small enough that the accelerations do not greatly
change between and + dt.

There are two problems with this algorithm. The first is that the number of
interactions is large as a function of the number of particles. In particular, the
gravitational action of each particle on every other particle must be computed every
iteration, requiring a total of N2-N operations. When N is large (physicists would
like to simulate tens of thousands of particles, although they are rarely able to do so),
an O(N2) algorithm is extremely costly to execute.

The second problem in many-body simulations is that it usually happens that
some pairs of particles in such a system will pass very close to each other. Nearby
particles in a gravitational field usually move at high speed with respect to each other;
the combination of high velocities and small distances necessitates an extremely small
time increment between iterations.

One approach to these problems is to use an extremely fast computer. The Cray-1
computer is very fast at algorithms that have a "vectorizable" formulation: that is,
problems which can be expressed in terms of element-by-element arithmetic operations
on long arrays of numbers. The acceleration computation can be formulated in terms
of such large vectors. If the vector instructions of the Cray-1 are used to advantage
(either by hand-coding, or by using the Cray Fortran compiler with a good understand-
ing of what sorts of programs the compiler can generate efficient code for), the time
required to calculate the acceleration between two bodies can be estimated at 100
clock cycles (40 of which are needed for a calculation of a periodic distance function
peculiar to the many-galaxy problem [3]). The time for one clock cycle is 12
nanoseconds [19], and the number of pairs of bodies is N2/2, so the time for one
iteration can be estimated at .6N2 microseconds. Using scalar instructions, or using
vector instructions with inefficient pipeline behavior, would more than double the time
taken per iteration.

Using a similar program to simulate ten thousand bodies over one thousand
iterations requires approximately 8,000 hours of VAX time (this was extrapolated
from observations of 100-particle simulations). Table 3.1 gives the times required for
various implementations of a straightforward simulator. Even on a fast vector processor
like the Cray-1, this simulation takes several hours. The disadvantage to running the

90 ANDREW W. APPEL

simulation on the Cray computer is that the Cray-1 is enormously expensive: at a cost
of eight to ten million dollars it is about 40 times as expensive as a large minicomputer
such as a VAX. A solution whereby the problem can be solved in tens of hours on
the VAX would obviously be preferable to any of the points in the solution space
described in the table below.

TABLE 3.1
Running times, in hours, of an O(N2) program for 10,000 bodies over

1,000 iterations.

VAX-11/780 Cray-1 (estimated)

Optimizing compiler 8000 30
Hand-optimized 5000 16

3.2. Other algorithms in the literature. Two approaches have been taken to
reduce the cost of the acceleration calculation in the N-body problem. One approach
is to represent the problem in a position-velocity phase space, and transform the force
field using a fast Fourier transform into a form where it can be applied in linear time
[15, 16]. This takes O(NlogN) time (dominated by the Fourier transform) per
iteration. However, the phase space must be discrete. This means that all positions
must be multiples of some lattice size a, and that all velocities must be less than some
maximum f. Thus, the (physically interesting) effects of tight clusters cannot be modeled.

Another approach is to keep track, for each particle, of the sets of "nearby"
particles and "faraway" particles [1]. The "faraway" particles may be integrated with
larger time-steps than the "nearby" particles. When the particles are uniformly dis-
tributed, this has an asymptotic complexity of O(Nl5). Unfortunately, when clustering
occurs, the number of "nearby" particles is in the same order of magnitude as the
total number of particles, and the asymptotic complexity is again O(NZ). The problem
of small time-steps is attacked by using a special-case technique for close two-body
interactions, but this technique cannot be applied for tight clusters of three or more
particles.

Another similar approach is to divide the universe into cells, computing the
particle-particle interactions within the cell, and then the cell-cell interactions [13].
This has complexity O(N4/3) for a uniform distribution. A variant of this method is
to compute the cell-cell interactions by a fast Fourier transform, reducing the com-
plexity to O(N log N)). Both variants degrade to a quadratic time-complexity when
severe clustering occurs.

These algorithms are great improvements on the "naive" algorithm, especially
for those problems with a relatively uniform mass distribution. (Problems in plasma
physics are often of this nature, as are some problems in astrophysics.) However, when
a greatly nonuniform mass density is to be simulated, their asymptotic complexity
approaches that of the "naive" algorithm. With none of these algorithms is the problem
of the vanishingly small discrete time-step solved; in the discrete phase-space approach,
the time steps cannot be made smaller and thus information is lost, while in the second
and third approaches, the problem is essentially the same as with the "naive" algorithm.

4. Reducing the complexity of each iteration. To compute the force of gravity
on an apple exerted by the Earth, it suffices to treat the Earth as a point mass; it is
not necessary to sum the forces exerted by each atom of the Earth. This is a consequence

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION 91

of the spherical symmetry of the Earth; Newton invented the integral calculus to prove
this fact.

When an attracting body is not spherically symmetric, the result obtained by
treating it as a point mass is no longer exact, but it is a good approximation. This
approximation--in which one attraction between a pair of point masses is calculated,
rather than all the attractions between all their constituent particles--is the key to
reducing the asymptotic complexity of computing the accelerations from O(N2) to
O(N log N).

4.1. The monopole approximation. A divide-and-conquer algorithm can solve
the many-body problem in O(N log N) time per iteration, and requires significantly
fewer iterations. The computational complexity has not been proved, but a reasonable
argument is given; furthermore, experience with an implementation of the algorithm
has shown that it runs as quickly as expected.

The algorithm relies upon the following approximation: suppose there are two
particles, ml and m2, each no more than dr from their center of mass (see Fig. 4.1).
The gravitational attraction they exert upon an observer situated a distance r from
the center of mass will be

Gml(r+drl) Gm2(r+dr2) G(ml+m2)r
Ig= ir+drll3

+
ir+dr213 irl3

+O(dr2)"

Because there is no term in dr in this equation, the approximation is good to first order.

observer

FIG. 4.1. The monopole approximation.

Now consider the arrangement of masses shown in Fig. 4.2, which we will suppose
to be a subset of the particles in a many-body simulation. To compute the acceleration
of each particle on every other, we may break the computation into three parts: those
interactions of two particles which are in the left-hand clump, those interactions of
which both particles are in the right-hand clump, and the interactions of a particle
from each clump. The latter interactions may be approximated to order (dr/r) 2 by
using the approximation described in the previous paragraph: by computing one
interaction, as if each of the two clumps were one large mass. The number of
computations required to calculate the intra-clump interaction has thus been reduced
from nl. n2 to 1; the intra-clump calculation remains unchanged.

nl bodies n2 bodies

FIG. 4.2. Two clumps to which the approximation can be applied.

92 ANDREW W. APPEL

Had the two clumps been closer together, then the approximation would no longer
have been as good, since it depends on the value of dr/r. In that case, more calculations
would have had to be done.

4.2. A data structure. A method is needed for finding subsets of the particles for
which the approximation can be made. This is made easier by the introduction of an
appropriate data structure--a binary tree whose leaves are particles and whose internal
nodes represent clumps of particles. Every node will have an associated mass and
position. The leaves will have the mass and position of the particles they represent;
each internal node will have a mass equal to the sum of the masses of its two child
nodes, and a position equal to the center of mass of its child nodes. Also associated
with each clump (internal node) will be the approximate radius of the clump.

It is now a simple matter to compute all of the gravitational interactions between
two clumps that are small relative to their separation, that is,

dr1 r < 6 and dr2 r < 6

for some fixed criterion of accuracy 6. The parameters dr1 and dr2 are stored in the
tree; the positions need only be subtracted and multiplied by the total masses of each
clump (also stored in the tree).

If the accuracy criterion is not satisfied (that is, if the clumps are large and close
together), then the calculation of the interaction of each of the two subclumps of one
clump with each of the two subclumps of the other clump must be made. It is not
always necessary to "break up" both clumps for this calculation; see Fig. 4.3 for an
example in which one clump satisfies the criterion and need not be split, while the
other clump is split into two pieces.

FIG. 4.3. An example of the calculation of clump interaction.

4.3. The algorithm. This algorithm can be coded as the following pair of pseudo-
Pascal recursive proceduresmprocedure ComputeAccel computes all of the acceler-
ations internal to one clump, and procedure TwoNode computes the interactions
between two clumps.

procedure ComputeAccel (B)
begin if B is a nontrivial clump

then begin ComputeAccel(Bleft_child)
ComputeAccel(Bright_child)
TwoNode(Bleft_child, Bright_child)

end
end

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION 93

procedure TwoNode(A, B)
begin d <-- rB rA

if drA/d > 8) and (drA > drB)
then begin TwoNode(Aleft-child, B)

TwoNode(Aright_child, B)
end

else if drB/ d > 8
then begin TwoNode(A, Bleft_child)

TwoNode(A, Bright_child)
end

else begin AccA <- ACCA + GmBd/d3

Acc <- Acc GmAd/d3

end
end

One detail that for clarity has so far been omitted from the description of the
algorithm pertains to the representation of position, velocity, and acceleration vectors.
Rather than storing at each node the absolute position of the clump associated with
that node, the position vector from the node’s parent to the node is stored. (The same
applies to velocities and accelerations.) This is done in order to minimize round-off
errors in subtractions, which will be discussed in 7. The absolute position of a particle
or clump may be computed by taking the sum of the position offsets of all its ancestors
up to the root, though it is rarely necessary to compute absolute positions. Note that
the algorithm assigns accelerations throughout the data structure, taking advantage of
the relativization of acceleration vectors.

4.4. Analysis of time complexity. If the parameter 8 is set to zero, then the
TwoNode procedure will always recur down to the level of individual particles, and
the accelerations assigned to the internal nodes will be zero. If 8 is not equal to zero,
then the absolute acceleration of a single particle will be an approximation to the true
acceleration. For values of 8 between 0 and 1, the time complexity of ComputeAccel
is estimated (and observed) to be O(N log N).

To see this, consider the number of times a particle X is compared with other
clumps for the purposes of adding to an acceleration vector. Suppose there is a spherical
shell around X of radius r and thickness 8.r. If this shell is filled with clumps of
diameter 8.r, then there will be 4/82 clumps in the shell. The smallest sphere will
have a size such that the expected number of galaxies contained within it is 1; the
largest will enclose a volume such that the expected number of galaxies within it is N.
The quotient of the radii of the largest and smallest spheres will therefore be N1/3.
This will be equal to (1+8) k, where k is the number of shells. Then k=
log (N)! 3 log (1 + 6), and the number of clumps for which there must be calculation
of accelerations with respect to particle X is approximately

4 log N
382 log (1 + 8)"

Note that this number overestimates the number of calculations done, in that
some of the calculation will involve not the comparison of X with another clump, but
the comparison of an enclosing clump of X with another clump. That calculation would
also be counted in this analysis as a calculation for X’s sibling clump, and all other
subclumps of the encompassing clump. However, this will do no more than change

94 ANDREW W. APPEL

the constant of proportionality" for each of the N galaxies, O(log N) calculations must
be done, giving a total execution timemfor fixed 8roof O(N log N).

4.5. Accuracy ot the algorithm. The parameter 8 is a measure of the accuracy
of the calculation. When one clump is compared with another, and the ratio of diameter
to separation is less than 8, then the computed acceleration will have a fractional error
less than 8 2. When all the accelerations that clump X feels from other clumps are
summed, the error in acceleration should be proportional to 82 divided by the square
root of the number of clumps compared with (assuming random directions of the error
vector). A more intuitive explanation of this statistical argument is that larger clumps
will tend to approach some sort of spherically symmetric distribution, simply because
of the large number of randomly positioned particles. In a perfectly spherical distribu-
tion, the error made in assuming that all the mass is positioned at the center is exactly
zero. Thus the error in acceleration, on the average, should be significantly less than 8 2

FIG. 4.4. Scatterplot of components of actual vs. computed accelerations]’or t 0.3.

In fact, in the distribution of errors (shown in Fig. 4.4) there is a maximum absolute
error range, such that for most particles the error is quite small on an absolute scale.
For particles with large accelerations, the proportional error is practically zero. Figure
4.4 was computed by taking a random distribution of particles and using the (exact)
results computed by running the algorithm with 8-0 as the "actual" acceleration
components, and using the results computed with 8 0.3 as the "Computed" acceler-

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION 95

ation components. The absolute errors are the deviations from the line y x; the
scatterplot shows a good bound on the absolute error.

In those calculations where the exact final positions of the particles is not as
important as statistics about their configurations, a relatively large value of can be
used (such as 1/2), greatly reducing the constant factor in the running time of the
O(N log N) program.

It is useful to note that although the O(N2) algorithm has theoretically complete
accuracy in computing accelerations, the fact that the time intervals must be made
discrete introduces approximations into any numerical calculation of the N-body
problem. By choosing the parameters so that the errors introduced by each part (the
clump approximation and the discrete-time approximation) are equal, the resulting
error is about equal to that of the standard algorithm.

Since the use of a clumping algorithm to study the formation of galaxy clusters
might conceivably be a cause of systematic error, the result of a simulation using this
algorithm in which no clustering occurred is of interest. In this simulation, the galaxies
were given higher initial velocities than predicted by theory, and no measurable
clustering occurred (as seen both by the human eye and by a correlation function of
interparticle distance).

5. Reducing the number of iterations. When two particles come very close to
each other in an inverse-square force field, their accelerations become extremely high.
To model their behavior accurately, extremely small time steps are required. In any
simulation with a large number of particles, there are bound to be a few such pairs at
any given time; these pairs require the time increments of the simulation to be so
small that the number of iterations required to integrate over a significant interval of
time becomes prohibitively large.

One widely used solution to this problem modifies the force law to limit the
accelerations at small distances. The inherent problem with this approach in the
modeling of galaxy clustering is that the clustering occurs (and should be examined
by the simulation) over all distance scales. To tamper with the force law at small
distances makes any conclusions about clustering at these distances suspect.

Fortunately, the data structure introduced in the previous section leads to a
solution to this problem that preserves the inverse-square properties of the force law
at all distance scales. In 5.1 an aspect of the calculation open to algorithmic attack
is described, and the attack itself is explained in 5.2 and 5.3.

5.1. Characteristic times. The time increment dt between iterations is determined
after each iteration. The usual approach is to use a global dt for all particles. In order
to avoid gross inaccuracies at very small distances, the minimum characteristic time
over all particles must be used for dt. The characteristic time of an object is a measure
of how long it takes for that object’s acceleration to change significantly; the time will
be much shorter for a particle tightly orbiting a neighbor. The occasional tight pairs
and threesomes require an expensively small value for dt in the naive algorithm.

The characteristic time for a clump C is the time in which a child of C will move
a distance of approximately times the child’s distance from C’s center of mass. The
characteristic time could come from a high velocity relative to distance (t) or from a
high acceleration (ta). This is easy to calculate, since the position vector of each child
is stored as the vector from (the center of mass of) C. So the characteristic time of C
is the minimum over both children of t and ta, where

x IPI t. x lvl, xlel=lAIx1/2t].

96 ANDREW W. APPEL

(Note that P, V, and A are the position, velocity, and acceleration vectors of the
children relative to the center of mass of C.) In each iteration, the accelerations are
computed by ComputeAccel and the minimum characteristic time dt is found. The
procedure Move calculates the new velocities and positions:

Vne Vold if- A. dt, Pnew Pond + Vnew" dr.

There are schemes such as Richardson extrapolation [6] which improve on this
"naive" method of integration and allow the use of a larger timestep with great
accuracy. However, the timestep will still be no larger than that allowed by setting
to 2 in the equations for (t) and (ta), whereas in a typical simulation using the
approximation algorithm will be on the order of a tenth anyway. Furthermore, the
extremely high accuracy produced by this method is not particularly useful in the
presence of the acceleration approximation. Finally, using the extrapolation method
would attack the wrong problem: the characteristic time is so small not because 8 is
very small, but because of the existence of a few extremely "tight" clumps where there
is a very high ratio of velocity to separation.

Calculating the minimum characteristic time of the entire universe leads to an
exceedingly small dt. Suppose two or three galaxies get into a tight orbit around each
other; their characteristic time may be an order of magnitude shorter than the charac-
teristic time of any other object in the universe.

It would be nice to be able to iterate small, very tight clusters at shorter time
intervals than the rest of the universe, saving a large amount of calculation. This is
not too difficult; what is needed is a concise criterion to distinguish such clumps.

5.2. Indivisible clumps. Let such a clump be considered to be one object, indivis-
ible, of nonzero radius. Indivisibility will be defined as follows: a clump is indivisible
if for all clumps outside it, its ratio of size to distance is less than 8. What indivisibility
effectively means is that an indivisible clump will nevermthroughout the course of the
acceleration calculations for one iteration--be "split" by procedure TwoNode to
calculate accelerations of its subclumps with respect to any other clump. This is easy
to detect--simply mark clump A in the first then clause or clump B in the second
then clause of procedure TwoNode. Any clump that is never marked during the process
of computing all the accelerations is indivisible.

The reason that this criterion is chosen is that it characterizes very well the set
of clumps such that the external gravitational field acting upon them is an almost
constant function of position within the clump. In fact, the monopole approximation
has the effect of assuming that this field is constant, and the improved moving algorithm
described below takes advantage of this fact.

Procedure Move, procedure ComputeAccel, and the procedure that determines
dt will be altered so that they never look at the internal structure of such a clump.
Note that TwoNode need not be altered, since the way indivisible clumps are defined
implies that TwoNode never looks at their internal structure. Now the problem is
gone: the small, tight cluster of galaxies has become a point (although with nonzero
radius). The time increment dt will be much larger than it could have been otherwise.

The internal motions and accelerations of these tight clumps will have to be
computed every iteration, and in fact it will take several iterations of the tight clump
to compute its motion over the time interval dt. However, these iterations of three or
four objects are replacing iterations over the entire universe.

5.3. Closed form calculations. When an indivisible object itself is a clump contain-
ing two indivisible subclumps (these will usually be simply individual galaxies), then

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION 97

its orbit may be solved in closed form. In this case, the calculations to resolve internal
motion may be postponed until another clump gets near enough to see the internal
structure of the object. This may be many iterations of the universe latermand many
times more iterations of the tight pair, which typically has a much shorter characteristic
time. Only one calculation needs to be made in closed form to replace these many
iterations; furthermore, this calculation will be exceedingly accurate, since no approxi-
mations are being made internally to the subsystem.

Since indivisibility may occur at several distance scales (indivisible clumps may
contain clumps which themselves contain indivisible clumps, and so on), the tight-clump
calculations (of which the two-body closed form calculation is a special case) may be
done recursively.

6. Managing the data structure. The efficiency of all parts of the algorithm
depends on having the structure of the tree of clumps accurately reflect the structure
of the particles in the simulated space. Under the influence of gravity, the particles
move, distorting the tree. The structure must be maintained and the distortions removed
regularly. Fortunately, this can be done in a simple way.

6.1. Reorganizing the tree. After moving clumps that are not indivisible, the
coordinates of a clump will no longer correspond exactly to the center of mass of the
two subclumps. This is due to a nearby object attracting one subclump more strongly
than the other. It is a simple matter, however, to adjust the position of each clump
after its subclumps have been moved. Sometimes, however, another subclump will
intrude into a clump so that the clumps no longer represent disjoint (in the simulated
three-space) clusters. In this case, it is necessary that the clumps be rearranged (while
keeping the actual galaxies fixed). The condition to aim for is this: for every clump C,
the closest clump to C external to C shall be its parent clump. Let Closest(C) be the
nearest clump with which C is compared during the execution of procedure TwoNode.
If the distance from C to Closest(C) is less than the distance from C to its parent,
then a new clump W will be formed, which will become the subclump of Parent(C)
in place of C. W will contain as subclumps C and Closest(C). Now the old parent
clump of Closest(C) has only one subclump, so it can be liquidated, "promoting" its
subclump. This process is represented in Fig. 6.1.

These adjustments (which shall be known as Grabs) take place immediately after
procedure ComputeAccel finishes running. Each Grab is a purely local phenomenon
in the data structure (only affecting four nodes), and preserves the positions, velocities,
accelerations, and all other important data of the clumps involved. The process of
Grabbing guarantees that close pairs will be subclumps of the same clump, and that

before after

FIG. 6.1. Rearrangement of clumps.

98 ANDREW W. APPEL

(a)

(b)

FIG. 6. Effect of the Grab algorithm. Figure 6.2 illustrates the effect of the Grab algorithm on a
two-dimensional universe. The diagram on the left depicts the clump structure as first created, by alternately
splitting at the median x and y. The diagram on the right shows the structure after several iterations of Grab.
Note that the particles are in the same positions, but the structure is cleaner--close pairs are now all linked
directly together. This improved structure may be measured by the fact that the acceleration calculation on the
improved structure is empirically observed to be about twice as efficient as on the original structure.

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION 99

the clumps will be close to optimally arranged for quickly computing accelerations.
Although the Grab algorithm does not find the "best" arrangement of clumps, it has
been observed to do a fairly good job in a very short time (see Fig. 6.2).

The TwoNode procedure that calculates the accelerations throughout the tree
also stores information that is used by the rearrangement algorithm in finding candidates
for Grabs. The rearrangement is done after every iteration; it takes time linear in the
number of particles.

6.2. Creating the tree. While grabbing is very useful in maintaining the clump
structure in the face of distortions, it will not be able to create one in the first place
from a randomly arranged set of galaxies. This will be done as follows. The universal
clump---which contains all the galaxies--will be divided initially into two subclumps
chosen so that the first contains all galaxies whose x coordinate is less than the median
x coordinate, and the other subclump will contain all galaxies with x larger than or
equal to the median x.

Each of those subclumps will be divided into two sub-clumps using the median y
as the splitting criterion. Each lower level of clump will be split on z, then x, then y
then z, until the clumps consist of one galaxy each. Note that this procedure does not
require that the number of clumps be a power of two, although that might seem most
natural.

This structure is known as a k-d tree [4]. It has a variety of applications in
multidimensional problems, including searching, nearest-neighbor calculations, classifi-
cation, numerical integration, and computing minimum spanning trees [10], [5], [11].
For a many-body application, a standard k-d tree will be far from optimalmnearby
objects will not be in the same clump much of the time. The Grab procedure, though
its behavior is difficult to analyze theoretically, has been observed to do a very good
job of cleaning up the structure in just two or three iterations (see Fig. 6.2).

7. Implementation of the program. Various algorithmic attacks using the center-
of-mass tree structure have been described in the preceding sections. It is inappropriate
to stop seeking reductions in running time after a good algorithm has been found,
however; significant efficiencies can be achieved in the implementation of a given
algorithm.

The algorithm as described was first implemented in about 1,200 lines of Pascal
on a VAX-11/780. For a problem size of 10,000 galaxies, this first implementation
runs in about forty minutes per iteration, and about 500 iterations are required to
simulate the expansion of the universe by a factor of 100. Under the general relativistic
assumptions made, letting run from 1 to 1,000 causes the distance scales to run from
1 to 100, because distance is proportional to 2/3. Accelerations are transformed at
each iteration to correspond with the changing distance scale [3]. Thus, 340 hours of
execution time would be needed for this program, as opposed to 8,000 for the O(N2)
algorithm. The times given throughout this paper are for a slight modification of the
algorithm to simulate a periodic distance function, which was necessary in the initial
application. This adds a small constant factor to all distance calculations (eighteen
floating point instructions, or about 25% of the running time).

A profiler was used to identify those parts of the program that consumed most
of the processing time [20]. The profiler operates by asynchronously sampling the
computer’s program counter 60 times per second and incrementing the appropriate
bin of a distribution function. The results showed that all but two percent of the
execution time was spent in the TwoNode procedure. This was not unexpected, as
TwoNode is the only part of the algorithm with an order time of O(N log N); the

100 ANDREW W. APPEL

rest of the procedures run in O(N) time. Since TwoNode is relatively small, hand
optimization of the machine code was an obvious step. Writing this procedure in
assembly language resulted in a speedup by a factor of two and a half. This rewriting
used standard techniques, such as keeping more quantities in registers, putting pro-
cedure calls in-line, and using the addressing modes of the VAX more effectively.

At this point we found that the use of the Floating Point Accelerator option on
the VAX significantly improves the performance of the program. The program was
sped up by a factor of two by moving the calculations to a VAX on which an FPA
had been installed.

Many-body calculations usually require double-precision arithmetic because of
the wide range of distances involved. Close orbits are often more than four orders of
magnitude--a dozen binary digits--closer than the distance to a far-away galaxy. Since
the improved algorithm stores all positions relative to the parent clump, this problem
disappears--typically only one order of magnitude, or less, is involved in the difference
between the size of a clump and the size of its parent clump. The use of 32-bit floating
point numbers in place of 64-bit floating point halved the running time of the algorithm.

The factors of two in speed from the use of the Floating Point accelerator and
from the use of single precision are approximate and interdependent. Table 7.1 shows
the running time as a function of these variables.

TABLE 7.1
Running times, in seconds, of an acceleration calculation for 1,000 bodies on a

VAX-11/780.

32-bit floating point 64-bit floating point

With FPA hardware 16 28
Without FPA hardware 25 74

Since tight, "indivisible" clumps are recognized and their small time constant does
not affect the time constant of the universe, far fewer iterations are required. Typically,
such clumps are iterated about four times for each iteration of the universal clump.
Each of those iterations would have been a global iteration in the straightforward
algorithm, as in that algorithm there is no way to detect a tight clump. A conservative
estimate of the number of iterations saved is 50%--a factor of two speedup.

In the astrophysical applications described in 2, in which galaxy clustering occurs,
the development of clusters among the particles simulated leads to greater opportunities
for procedure TwoNode to apply its approximation. The resulting gain is an empirically
observed two-fold speed-up in computation of accelerations.

The program that resulted from these modifications to a very simple iteration
method succeeded in reducing the running time of a simulation from 4,000 hours to
20 hours--a factor of two hundred (for ten thousand bodies, with t 2 0.3). This saving
was achieved by attacking the problem from several angles at once.

8. Conclusions. It is often difficult to make one change in a program that makes
it faster by more than an order of magnitude. In this case, even a change that reduced
the order time of the algorithm from O(N2) to O(N log N) increased the efficiency
for a typical problem size by only a factor of 12--one order of magnitude. The
four-hundred-fold reduction in running time was the product of savings at all levels
of the conceptual hierarchy, from the idea that some galaxies are in systems by
themselves, to the idea that keeping certain points in registers saves memory references

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION 101

(see Table 8.1). They are in some sense independent--improving the efficiency of one
level of the hierarchy does not preclude improving the efficiency of another. Most
importantly, all of the savings are multiplied together.

Reddy and Newell [18] have characterized the type of problem for which this
multiplicative speedup can be expected: such a problem has four to eight layers of
implementation, such as computer technology, architecture, algorithm, et cetera. Other
programs for the N-body problem have achieved substantial speedups over the most
simplistic implementation, by attacking two or three layers of this hierarchy. This paper
has been concerned with ways to avoid changes in the technology and architecture
layers (i.e., using Cray-1) because of their expense. Rather, the algorithms, "knowledge
sources," and implementation layers have been attacked.

TABLE 8.1
Summary of the speedups attained at various levels.

Speedup
Level factor Description

Algorithm 12
Problem-Specific 2
Knowledge
Algorithm 2
(Problem-Specific)
System-Independent 2
Code Tuning
System-Dependent 2.5
Code Tuning
Hardware 2

Changing to the O(N log N) algorithm
Iterating indivisible clumps by themselves and using closed-form
solutions, thus halving the number of global iterations
Clustering behavior in the simulation produces a clump structure
well-suited to the algorithm
Use of single precision floating point rather than double precision,
made possible by the data structure
Hand-coding the routine where most of the time was spent

Use of the Floating-Point Accelerator

This brings the running time of the algorithm on a relatively small and inexpensive
computer such as the VAX down to what it would be on a large, extremely fast, and
expensive Cray-1. Of this speedup, a factor of about two was attributable to technology
(the use of the Floating Point Accelerator) and two to implementation (hand coding
a critical routine)--these could be done for any program, probably with similar results.
The other factor of a hundred (for ten thousand bodies) came from the exploitation
of the data structure in various ways. The use of a good data structure to provide an
asymptotically fast algorithm is especially important for large problems.

Since the layers of the problem are relatively independent, the technology and
architecture layers are still available for additional speedup factors. If the program
were run on a Cray-1 or a Cyber 205, the 20 hours of runtime might be reduced to
1 or 2 hours, since most of the efficiency improvements described in this paper are
machine-independent, and these computers are much faster than the VAX (and almost
proportionally more expensive).

The data structure is a variant of one already known in the literature (the k-d
tree), but the reorganization of the tree with the Grab procedure changes it substan-
tially-it loses the useful (for some applications) property of being split along planes
of constant x, y, and z, and gains the useful (for this application) property of joining
mutually nearest neighbors at all levels of the hierarchy. For the simulation of gravita-
tional attractions, this turned out to better than halve the number of calculations.

102 ANDREW W. APPEL

Reorganized trees may have other applications as well; for example, the recognition
of individual objects from the point set obtained from a television camera might be
facilitated by an algorithm that could group points together in O(N log N) time. Some
sorts of nearest-neighbor searching might also be made easier.

It is difficult to analyze the properties of the Grab algorithm. It is low-level in
nature: when two points are found to be closer to each other than to their parent
nodes, a local rearrangement is done without regard for the global structure of the
tree. That it works as well as it does was difficult to predict. Its behavior is dependent
on 3, since these closest pairs are detected during the TwoNode procedure; the question
of what 6 to use to most efficiently produce a reorganized tree (independent of
gravitational considerations) might be investigated if reorganized trees are found to
be useful in other applications.

REFERENCES

[1 SVERRE J. AARSETH, J. RICHARD GOTT III AND EDWIN L. TURNER, N-body simulations o’galaxy
clustering; I. Initial conditions and galaxy collapse times, Astrophys. J., 228 (1979), pp. 664-683.

[2] ALFRED V. AHO, JOHN E. HOPCROFT AND JEFFREY D. ULLMAN, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, MA, 1974.

[3] ANDREWW. APPEL, An investigation ofgalaxy clustering using an asymptoticallyfastN-body algorithm,
Undergraduate Thesis, Princeton Univ., Princeton, NJ, April 1981.

[4] JON Louis BENTLEY Multidimensional binary search trees used for associative searching, Comm.
ACM, 18 (1975), pp. 509-517.

[5] JON LOUIS BENTLEY AND JEROME H. FRIEDMAN, Fast algorithms for constructing minimum

spanning trees in coordinate spaces, IEEE Trans. Comput., C-27 (1978), pp. 97ff.
[6] ROLAND BULIRSCH AND JOSEPH STOER, Numerical treatment of ordinary differettial equations by

extrapolation methods, Numer. Math., 8 (1966), pp. 1-13.
[7] EDWARD A. DESLOGE, Classical Mechanics, John Wiley, New York, 1982.
[8] R. H. DICKE AND P. J. E. PEEBLES, The big bang cosmologymenigmas and nostrums, in General

Relativity: An Einstein Centenary Survey, Cambridge Univ. Press, Cambridge, 1979, pp. 504-517.
[9] A. G. DOROSHKEVICH, E. V. KOTOK, I. O. NOVIKOV, A. N. POLYUDOV, YU. G. SIGOV AND

S. F. SHANDARIN, Dvumernaya model obrazovaniya krupnomasshtabnoi struktury vselennoi (A
two-dimensional model of the formation of large-scale structures of the universe), Preprint 83, IPM
AN SSSR (Institute for Problems of Mechanics, Academy of Science, USSR), Moscow, USSR, 1978.

[10] JEROME H. FRIEDMAN, JON LOUIS BENTLEY AND RAPHAEL ARI FINKEL, An algorithm for
finding best matches in logarithmic expected time, ACM Trans. Math. Software, 3 (1977), pp. 209ff.

[11] JEROME H. FRIEDMAN AND MARGARET H. WRIGHT, A nested partitioning procedure for numerical
multiple integration, ACM Trans. Math. Software, 7 (1981), pp. 76ff.

[12] EDWARD J. GROTH, P. JAMES E. PEEBLES, MICHAEL SELDNER AND RAYMOND M. SONEIRA,
The clustering of galaxies, Scientific American, 237 (1977), pp. 76ff.

[13] ROGER W. HOCKNEY AND JAMES W. EASTWOOD, Computer Simulation Using Particles, McGraw-
Hill, New York, 1981

[14] M. JOEVEER, J. EINASTO AND E. TAGO, Yacheiskaya struktura vselennoi (The cell structure of the
universe), Preprint A-l, AN Estonskoi SSR, Tartu, Estonian SSR, USSR, 1977.

[15] R. H. MILLER AND K. H. PRENDERGAST, Stellar dynamics in a discrete phase space, Astrophysical
J., 151 (1968), pp. 699ff.

[16] R. H. MILLER, K. H. PRENDERGAST AND WILLIAM J. QUIRK, Numerical experiments on spiral
structure, Astrophysical J., 161 (1970), pp. 903-916.

17] P. J. E. PEEBLES, The Large-Scale Structure ofthe Universe, Princeton Univ. Press, Princeton, NJ, 1980.
[18] R. REDDY AND ALLEN NEWELL, Multiplicative Speedup of Systems, in Perspectives on Computer

Science, A. K. Jones, ed., Academic Press, New York, 1977, pp. 183-198.
[19] RICHARD M. RUSSELL, The CRAY-1 computer system, in Computer Structures: Principles and

Examples, Daniel P. Siewiorek, C. Gordon Bell, and Allen Newell, eds., McGraw-Hill, New York,
1982, pp. 743-752.

AN EFFICIENT PROGRAM FOR MANY-BODY SIMULATION 103

[20] Unix Programmer’s Manual, Computer Science Division, Department of Electrical Engineering and
Computer Science, University of California, Berkeley, CA. Sections lrof(1), !(1), and
contain information about the execution profiler.

21 M. MITCHELLWALDrtor,, The large-scale structure ofthe universe, Science, 219 1983), pp. 1050-1052.
[22] YA. B. ZELDOVICH, The theory of the large scale structure of the universe, IAU symposium #79,

International Astronomical Union, Dordrecht, 1978, pp. 409ff.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 1, January 1985

1985 Society for Industrial and Applied Mathematics

009

A DIRECT EULERIAN MUSCL SCHEME FOR
GAS DYNAMICS*

PHILLIP COLELLA?

Abstract. We present a second order extension of Godunov’s method for gas dynamics in Eulerian
coordinates patterned after van Leer’s MUSCL scheme for gas dynamics in Lagrangian coordinates. The
present method performs the Eulerian calculation in a single step by solving Riemann problems and
characteristic equations for the fluxes in the Eulerian frame. We also make several modifications in the
formulation of MUSCL, applicable to both this scheme and to the original Lagrangian scheme, all aimed
at making a more robust and accurate scheme. We present the results of test caclulations in one and two
space variables.

Key words, hyperbolic conservation laws, Godunov’s method, Riemann problem

1. Introduction. In [7], van Leer described MUSCL, a second order accurate
extension of Godunov’s method [4], [5] for solving the equations of gas dynamics in
one space variable in Lagrangian coordinates, van Leer presented this Lagrangian
scheme as the core of a multidimensional Eulerian code, developed by van Leer and
Woodward [8]. One time step of a one-dimensional Eulerian calculation is done by
performing a one-dimensional Lagrangian step, then mapping the results back to a
fixed Eulerian grid. The multidimensional algorithm is obtained by using the one-
dimensional Eulerian algorithm with operator splitting.

In this paper, we present a different MUSCL algorithm, based on some of the
ideas in [7], for computing gas dynamics in Eulerian coordinates in one space dimension.
The present algorithm is not formulated as a Lagrangian step, followed by a remap,
but performs the Eulerian calculation in a single step. This direct Eulerian MUSCL
bears the same relation to the nonlinear Eulerian Godunov algorithm discussed in
[1], [5], as the Lagrangian MUSCL does to Godunov’s method in Lagrangian coordin-
ates. As in [7], the extension to multidimensional calculations is then performed using
operator splitting.

Because we work in Eulerian coordinates, the details of the direct Eulerian
algorithm are substantially different than those of the Lagrangian scheme. In MUSCL,
dissipation at shocks is introduced by the constant reaveraging of a discrete travelling
wave solution on the mesh. Since shocks always move relative to the mesh in Lagrangian
coordinates, there is always introduced a certain minimum amount of dissipation in
the solution near shocks in Lagrangian calculations. In Eulerian coordinates, it is
possible to have nearly stationary shocks where the dissipation vanishes; consequently,
it is necessary to introduce dissipative mechanisms for strong nonlinear waves beyond
those described in [7]. More generally, care is required at places where one of the
characteristic speeds associated with sound waves vanishes. This, plus the additional
logic involved with both solving the Riemann problem and tracing characteristics in
the Eulerian frame, make for a slightly more complicated algorithm than the simplest
form of the 1D Lagrange plus remap MUSCL discussed in [7]. On the other hand,
there is no remap to perform. Furthermore, we introduce some innovations whose
analogues are not present in the Lagrangian method in [7]. In particular, we use the

* Received by the editors March 16, 1982, and in revised form June 15, 1983. This work was supported
in part by the Office of Energy Research, Office of Basic Energy Sciences, Engineering, Mathematical and
Geosceinces Divsion of the U.S. Department of Energy under contract DE-AC03-76SF00098.

t Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720.

104

EULERIAN MUSCL FOR GAS DYNAMICS 105

simplified Riemann problem solver discussed in [1]. Also, we derive the slopes of the
distributions of the dependent variables from the average values, rather than treating
them as separate dependent variables, as was done in the code which generated the
results presented in [7]; thus, the present one-dimensional algorithm is compatible
with any multidimensional Eulerian code which performs its hydrodynamics calculation
in a series of one-dimensional passes. The interpolation algorithm for deriving the
slopes is slightly more complicated than the second order central difference algorithm
discussed in [7], but yields a steeper representation of discontinuities, particularly
contact discontinuities. Finally, we take advantage of the fact that for gas dynamics,
the characteristic equations for the hydrodynamic waves are well approximated by the
shock jump relations for the waves of the opposite family. We exploit this relation in
such a way that the solution of the characteristic equations reproduces the correct
shock jump relations in the presence of strong gradients.

2. Description of the method. We will be constructing approximate solutions to
Euler’s equations describing the motion of an inviscid compressible fluid in one space
variable r:

(2.1)

OU O(AF) OH
+ +=0,
Ot OV Or

tU
pu

F(U) Pbl2
pv puv
E puE + up/

H(U)

0

Here V= V(r) is a generalized volume coordinate, A(r)=dV/dr. These equations
describe one-dimensional inviscid compressible flow with either planar, cylindrical, or
spherical symmetry, or flow in a duct whose cross-section at r is A(r), depending on
whether V(r)=r, r2/2, r3/3, or o A(r) dr, respectively. Here p is the density, u is
the component of velocity in the direction of the one-dimensional sweep, v is the
component of velocity orthogonal to u (hereafter, u and v will be referred to as the
velocity and transverse velocity, respectively), and E is the total energy per unit mass.
We define e, the internal energy per unit mass, and p, the pressure, as

e E 1/2(U 2 -t" V2), P 3’ 1)pe

where y is the ratio of specific heats. Throughout this paper, y will be assumed to be
a constant, y > 1 (polytropic gas); for a discussion of the modifications required for a
more general equation of state, see Colella and Glaz [2].

There are several other derived quantities which will be of interest: r, the specific
volume, c, the speed of sound, and A+.o, the three characteristic velocities:

(u) /=-, c=c(W)= ,--,p =(W)=u+/-c, 0(W)=u.
p

Let At be a time increment, rj+l/2 the boundary between zones j and j+ 1, and
define rj=1/2(rj+l/2+rj-1/2), Arj=rj+l/2-r_l/2, and AV=V(r+I/2)-V(r_I/2). We
assume that, at time n, we know U’, the averages of the conserved quantities across
each zone:

1 f rJ+l/2

U’ U(r, t") dV.
rj-1/2

106 PHILLIP COLELLA

n+l,We wish to compute Uj the averages of the conserved quantities at the new time
n+l + At:

uT+l
1 r+1/2

U(r, n+l) dV.
rj-1/2

In outline, the procedure followed by MUSCL for calculating U’+1 can be divided
into five steps:

1) Compute linear profiles of the dependent variables in each zone by interpolating
slopes at the centers of zones, subject to certain monotonicity constraints. This gives
rise to a global distribution of the dependent variables which is piecewise linear, linear
in each zone, with jump discontinuities at the edges of zones.

2) Compute Uj+l/2, the solution at the old time at the edges of zones, by solving
the Riemann problems which resolve the jump discontinuities at the edges of the zones.

/- ,n+l3) Compute ,-,+1/2, an approximation to the solution at the edge of the zones at
the new time, by tracing approximate characteristics, and solving difference approxima-
tions to the characteristic equations.

4) Compute time-averaged values of F and H, using the values computed in 2)
and 3), and the following formula:

Fj+l/2_ At2 (F(U?+I/z)+F(rrn+’ a/n+lt+1/2,) F(U(5+1/, t) at + O(a?+ ar}at),

+1/2 2 ,+1/2/) H(U(5+/2, t)) dt + O(At + AtAr).

5) Calculate the conserved quantities using divided differences of the values
calculated in 4):

a+/z+a/z-a-1/2-/2 (+/2--1/2)(2.2) U7+a= U7-

Clearly, most of the work in this algorithm is in steps 1)-3). We will proceed to describe
those steps in more detail.

Step 1. Interpolation of slopes. Given our discrete data UT, we will interpolate a
global description for our dependent variables at all points (r, ") which is piecewise
linear, and linear in each zone:

(r- r)(2.3) q(r) q7 +aq, r-/2 < r < r+/2.Ar
Here q q(U) represents any useful flow variable, conserved or not. For q p, p, u, v,
we will take q7 q(UT), and construct the slopes 6q by a suitable difference formula.
The distributions of other quantities h h(p, p, u, v) are then derived from those of
p, p, u, v in the following fashion:

q+/2. q +6qi, q+/2, q,%-6q+1, q p, p, u, v,

hj+l/Z,S h(pj+l/z,s, pj+l/z,s, uj+l/z,s, j+l/Z,S), S L, R,

(2.4) 6h (h+/2.- h,-/2,),

h(r) h7 + ah, r, r,-/2 < r < r,+,/2.

EULERIAN MUSCL FOR GAS DYNAMICS 107

In the case of equally spaced zones Ar At, 6qj is calculated using the following
two-step algorithm. We first calculate 6qj, a first guess to the slope using the monoton-
ized central difference algorithm discussed in [7].

fmin(lq,/+l_q,/l lq,._ q_l)2 if(q+ q)(q’/ q’_)>0,
81imq otherwise,

(2.5)
6rqj min (Iq+l qj-ll limqj)sgn (qj+l--qj-1)

2

Finally, we calculate 6qi by differencing the values at two points on either side of
r obtained by using the interpolant given using 6rq as the slope:

q min {-[qy+a--1/4fqj+l--q]_--1/4fqj_l[, limqy} sgn (qj+l--qj-1),
(2.6)

q (q-2, q+2).

To obtain 6q in the case of unequal zones, calculate 6qj= 6(q-2,"" ", q/2), 6r=
6(r_2,’", rj/2), using (2.6). Then we calculate

[gq], 2[q.+-q.] 2[q.-q._]} sgn (q+-q_).(2.7) qj Ar man
[Igr l Ary Ary

In the case where the minima in (2.5)-(2.7) are obtained in the first arguments, one
obtains

q (-23(qy+1- q-l)-(qj+2- qj-2))
Ar/ ((rj+ r/_)-(ry+- r/_e))’

which is a fourth order finite difference approximation to dq/dr[ry, and thus is well
behaved in regions where the solution is smooth. The fact that qj is obtained from
$/q, a monotonized first guess, gives rise to steeper profiles representing discontinuities
than those obtained using either the fourth order accurate formula by itself, or by
setting 6q/= 6q/, as was suggested in [7].

There are situations, however, in which the above slope setting procedure leads
to profiles which are too steep, in the sense that the scheme will not provide sufficient
dissipation to ensure that the correct amount of entropy production occurs. This
situation arises when the speed of the characteristic of the family associated with the
shock changes sign across the shock, i.e., where the shock is nearly stagnant. In such
situations, the calculation remains stable, but there is a small amplitude (<5%), low
frequency error in the post shock values generated at the shock. In this case, we reduce
the slopes computed by the above procedure by some fraction X, 0 < Xy < 1" oq"reduced____
qjx. We want Xy to have the following properties. If the jth zone is not inside a shock,
or if the jth zone is inside the shock, but the speed of the characteristics of the family
associated with that shock does not change sign, then X 1. If the jth zone is inside a
shock having zero velocity, then X 0, thus reducing the method locally to Godunov’s
method. Intermediate cases should have an intermediate amount of flattening. Finally,
Xj 1 if there is not the possibility of a significant amount of entropy production across
the zone. The formula given below for X satisfies the above requirements.

W. lpj+l_Pj_l]/ 1 1,
P+ P-I

si sgn (pj_-p+),

108 PHILLIP COLELLA

tj,R /gj+l + SjCj+I, tj,L Uj-1 -[- SjCj-1,

u= W +su+s,,
Pi+j

= iU.[+min (iAi,/] IA,,] if %-min (pi+l,p-,)’
1 otherwise,

and u+ ui_ 1) < 0,

X max (0, 1 (1 2i)//).
Here 0 < /_-< 1 and ep is the minimum pressure jump which would be considered a
shock" in the calculations presented here /= 1/2, 8p- 1

W4o
iFn+lSteps 2-3. Calculation of interface values. We must calculate U+1/2, ,-,i+1/2,

approximate values to the solution at the old and new times, at the zone edges ri/1/2.
To obtain Un+I/2, we calculate the solution to the Riemann problem. Since the solution
to be obtained from the Riemann problem is for an infinitesimal time after the
breakdown of the initial jump, the geometric source terms have no effect on the
solution, so that the Riemann problem we solve is for the equations of gas dynamics
in Cartesian coordinates. As is well known (for a detailed discussion, see Collella [1],
and the references cited there), the solution to that Riemann problem with left and
fight states U, Un is ((r/t), U, Un); i.e., it depends on r, only in the ratio r t.

To calculate U+I/2, we take our states

UL, UR Uj%I/2,L, Uj%I/2,R

(see Fig. 1), and set

Ujn+l/2-- ./(0; U_/., UR).

q

qj+ l/2,L
,

qj+l/2,R

ri+/

FIG. 1. Spatial distribution of q at initial time

EULERIAN MUSCL FOR GAS DYNAMICS 109

If U"(r, t) is the exact solution to the initial value problem given by the global piecewise
U"linear distribution (2.3) then lim,+,- (rj+l/2, t) U’/+1/2. As was the case for the

Eulerian Godunov’s method, the approximate Riemann problem solver described in
[1] appears to be both inexpensive and sufficiently accurate, without introducing
rarefaction shocks into the solution.

To calculate U’+1, we solve a finite difference approximation to the characteristic
equations, which we review briefly below. Given a solution U(x, t) to (2.1), we say
that a curve r+,o- (r(r+,o), t(r+/-,o)) is a characteristic of the +,-, 0 family if U is
continuous in a neighborhood of that curve, and if the following ordinary differential
equations hold

dr dt
(2.8),o &r+, A+/-,o,

do"
1,

du A’1 clp
+/-+-uc=O,(2.9):

pc dcr+ der
dr 1 dp

(2.9)o do’o (pc)2 do’o"
Here dh/dtr=(d/&r)(h(r(tr),t(tr))) and all functions of (r,t) are evaluated at
(r(o-), t(tr)).

The equations (2.8), (2.9) completely describe the solution in regions where U
is continuous or near contact discontinuities. However, in the neighborhood of a shock,
the equations (2.9) no longer hold along the curves described by (2.8), and some
modification to the equations must be introduced which takes into account this fact.

]r [n+Our strategy for calculating j+1/2 proceed as follows, considering, for the
moment, the case dA/dr =-O. First, we find approximations to the paths described by
(2.8)=,o which intersect the point(r/l/2, tn+l), taking due care to trace backwards to
the origins of centered rarefaction fans if (r/1/2, t) > t" is inside such a fan. Then we

t n+lcalculate i/1/2 in three stages. First, we solve a pair of nonlinear algebraic equations
for n+l n+l

P+1/2, u+1/2, given the values of the solution at the base of the +, characteristics.
These are the same nonlinear algebraic equations as those for the values of p, u between
the two sonic waves in the Riemann problem with left and right states, given by,
respectively, the values of the solution at the base of the + and characteristics.
Intuitively, what we are doing is lumping all the waves of the + (resp.-) family which
are crossed by the (resp. +) characteristic into a single shock or rarefaction shock
jump. In the case where the solution is continuously ditterentiable, we obtain a nonlinear
finite difference approximation to (2.9)+/-. If the solution is not smooth, this procedure
gives values for- ,+1 ,+1 which are well behaved. We then solve an explicit equationPj+/2, /gj+l/2
for the ,+1

Pj+/2, given the value of the solution at time t" and that of pj+l/2,-"+a which again
lumps the pressure wave crossing the streamline into a single shock or rarefaction
shock. In the limit that the pressure jump is small, we similarly obtain a solution to a
finite difference approximation to (2.9)0 Finally -,+1

v+/2 is just set equal to its value at
the base of the approximate characteristic of the 0-family.

We now give the details of the procedure outlined above. First, we want to
determine points (rj+/2,#,) such that (rj+l/2,#,) and (rj+l/2, "+1) are connected
by a straight line which approximates a solution to (2.8)#. To this end, we define

tr tr tr tr tr
rj+l/2,#, s rj+l/2,#, qj+l/2,#, tqj+l/2,#, q P, P, u, v, A#, as follows:

(qj+l/2,#, aqj+l/2,#, Arj+l/2,#, Sj+l/2,#)
qj, 6q,, Ar,, r, if a#(U7+1/2) < 0.

110 PHILLIP COLELLA

These are the quantities which describe the linear distribution of the dependent
variables in the zone which contains (rj+l/2,#,). Given these quantities we define
rj+l/2,# to be

(2.10)

tr tr tr
---:Sj+I/2,# + A At/Aj+l/2,# rj+1

1 "-A tr
+1/2,# At/A t

ry+/2,#
tr

rj+l/2,# rj+l/2 Sj+I/2,# max (min (d, 1/2),-) A tr
rj+l/2,#.

In the case where the maxima and minima are obtained in their first arguments,
this is a formula for the point where a straight line with slope A#(ri+l/2,#) passing
through the point (rj+l/2, n+l) intersects the line {t t"} (Fig. 2). If we were integrating
a single conservation law, this line would coincide exactly with the characteristic through
(r+1/2, t"+l), given that the characteristic velocity had the linear distribution given by
(2.4). To the extent that we use (2.10) for a system, we are neglecting the effect of
the interaction between waves of different families on the wave speeds in tracing the

trcharacteristics. This introduces an O(Ari+l/2.#At) error into the value of ri+1/2,#.

q/+l/2,# q(r(t"),t")
rj-l/2 (/+1/2

(j+3/2

FIG. 2. Approximate solution to the characteristic equation of the # family.

ln+l

Given rj+l/2,#, we can also define qj+l/2,#, the value of the solution at the base of
the characteristic passing through (rj+l/2,

(2.11) qi+l/2,# q(ry+l/2,#) q.r+l/2,#_ rj+l/2,#-- rjr+l/2,# ,r
tr 6qs+I/Z,# q p, p, U, V.

Ars+l/2,#

In the case that Uj"+a/2 came from evaluating the solution of the Riemann problem
inside a centered rarefaction fan of the + or family, we assume that the characteristic
of that family passing through the point (rj+a/2, n+a) originates from the Riemann
problem at (r]+l/2, n) and define rj+l/2,#, q+1/2,# accordingly:

rj+l/2,# rj+l/2, qj+l/2,# qjn+l/2, q p, p, u, v.

Given qj+l/2,#, q P, p, u, v, # 0, +,-, we can now express Pj+I/2,-
n+l

Pj+I/2,-
n+l

gn+l n+l
j+1/2, Uj+I/2 in terms of those quantities. First, we require that _.+1 .+1

p+1/2, uj+i/2 satisfy
the pair of equations

__n+lPj+I/z--Pj+I/2,+) n+l+ (Uj+I/2-- Uj+I/2,+) --’O,W(-Pj+I/2, Pj+I/2,+, Pj+I/2,+/-)
(2.12)

2y p

EULERIAN MUSCL FOR GAS DYNAMICS 111

If Ipj+l/2,+-pj+l/2-l, luj+l/2,+ are O(Ar, Ar]+l) then this is just a finite differ-
ence approximation to (2.9)+/-. If either the quantities IP]+I/2,+--Pj+I/2,-I, lUj+I/2,--u+/2,+l is O(1), then we have the interpretation of the equations (2.12) given above.
The equations (2.12) for p"+, u"+1 are exactly the ones given in [1] for the central
pressure and velocity for the approximate Riemann problem solver given in [1], and
the iteration scheme given there can be used to solve (2.12) for pn+l, u,+l.

The value for n+l n+l
pi+a/2, vi+/2 are given by the following explicit expressions"

Pj+l/2--Pj+l/2,0)
Pj+I/2-- W(n+l

(2.13) &+1/2,o Pj+I/2, Pj+l/2,o, pj+l/2,o) 2

]+ 1/2 /)+ 1/2,0.

Again, if]pj+I/2-p]+/n+I2,0[is small, then (2.13) is a finite difference approximation to
(2.9)0. If the pressure jump is large, then the change in density is given by lumping
all of the pressure variation along the streamline into a single shock or rarefaction
shock jump. An immediate consequence of the above formulas is that, if all of the

I/-n+lslopes on either side Fj+I/2 are zero, then ,_,+1/2 U, and we recover Godunov’s
method, with the Riemann problem solution algorithm in [1], for calculating the fluxes.

In the case where A’ 0, we want to include the effect of the source terms in the
calculation of p,+l, pn+l, un+l, vn+l. Let p,,+l, t,,+l, be the values obtained by the
procedure leading up to the equations (2.12) i.e., not including the effect of source
terms. We obtain _,+1 n+

pj+l/2, Uj+l/2, by solving the following set of linear equations, which
approximate (2.9)+

1 n+l n+l A’(r+l/2,+)
Pj+I/2 Uj+l/2 A(r]+l/2,+W+ -PJ+I/2’+)+(-Uj+l/2’+/-)-- blj+l/Z’+/-Cj+l/2’+--O’

where W+ W(--+1
Pj+I/2, Pj+I/2,+, Pj+I/2,+) and Cj+I/2,+-- C(I’j+I/2,+ have already been

obtained above in calculating the solution without source terms. After a little algebra,
one finds

(2.14)

_-_n+, (A_:!r,+l_/2,+)j+l/2 =Pj+l/2--\ A(rj+l/2,+ Uj+l/2,+Cj+l/2,+

A’(rj+l/2’-))A(I’J+I/2,-) blj+l/2,_Cj+l/2,_ At W+ W_
W++ W_’

n+l
j+l/2 Uj+I/2

At (W_A’(Fj+_._I 2__

W+q- W_ ’-1/2,--) U]+1/2’-C’+1/2’-

W+A’(I’J+I/2’+))A(t.j+I/2,+) u+1/2,++1/2,+

Given n+l n+l
Pj/I/2, u//2, the values for the other variables are obtained using (2.13).

/- Tn+lThis completes the calculation of Ui+1/2, ,-,+1/2. These values are then inserted
into (2.2) to obtain U’+a, the conserved quantities at the new time. The time step
must satisfy the usual CFL condition for stability:

(2.15) At=< r ax
where 0 < cr < 1. The smallest cr for which (2.15) is satisfied is called the CFL number
for that time step of the calculation.

112 PHILLIP COLELLA

3. Numerical results.
Boundary conditions. In order to calculate Ujn+l, j "-ML,’’’, MR, it suffices to

specify q."j, (6q)j, j= ML-1 ..., MR + 1. Then one has sufficient data to calculate- ’n+lUT+a/2, ,-,j+a/2, j=ML-1,’" ",Mn, and the UT+’s. If we can specify q,j=
ML-3,’’’ ,Mn+3, then it follows from (2.6) that we can calculate 6q,j=
ML-1,..., Mn + 1. In one dimension, or for two-dimensional problems for which
the boundaries are aligned with the mesh directions, this is straightforward. For
example, for the left boundary, we have

Reflecting wall: qML--l qML+l--1, UML--l glML+l-1,
Continuation: qML--I qML+I--1,
lnfiow qML- qo(tn

where q p, p, v for the reflecting wall, and q p, p, v, u for the subsequent boundary
conditions, with 1, 2, 3. For a reflecting wall, we have chosen to change the slope
limiting procedure slightly. We allow the values extrapolated to the wall to take on
the values which are obtained at the wall by solving a Riemann problem with left and
right states UL, UR) U4,-l, UTw). This procedure seems to improve the resolution
of shock reflections in multidimensional calculations.

Specifically, we define Plim to be one of the roots of

(3.1) uZL W(pim, PML, PM)2--(Pim--PM)2--0
where Pim is the root X Po if uX 0. Then we define

1 Plim--PML -1

Uli 0, Plim " J
These are used in the equations for tlimqML.ML_l, q =p, p, u:

min (2lqM,.- qM+, l, 21qM q,iml)
limqML---

0

tlimqML_, {nin (2lqML- qM_,[, 2]qM- qlim[)

if (qM qlim) qlim qML+, > 0,
otherwise,

if (qM qlim) (qlim qML-1) > 0,
otherwise.

The corresponding procedure for a reflecting wall at MR is obtained by exchanging
>, < in choosing the root of (3.1), and replacing ML + 1, ML, ML--1 with MR- 1,
MR, MR + 1.

If UM,_,/ is the axis of symmetry for a cylindrically or spherically symmetric
problem, then we treat it as a reflecting wall, except that the geometric source terms
+ucA’/A in the characteristic equations (2.9) are set equal to zero in calculating
Un+l _-n+l _n+l

M,-l/e, i.e., qML-1/2--qM-l/2.
Finally, in the diverging duct problem discussed below, we use a characteristic

boundary condition at the right-hand side of the duct. The density p0 is specified to
be a constant at the right end of the duct. Then, as a function of time values of p, u
are specified using the characteristic equations, using the assumption that the -, 0
characteristics point to the right:

(3.2)
PMn+I PO, PMR+l PMR,

UMR+ l’lM
(PMR+I--PMn)

P--’ 1/2(/PM.PM./ +/PMR+lPMR+I/),

EULERIAN MUSCL FOR GAS DYNAMICS 113

Test problems. This method has been tested on a variety of test problems in one
space dimension, including shock tubes in Cartesian, cylindrical and spherical geometry.
Results were obtained for one-dimensinal problems which were indistinguishable from
those shown in [7] and [1], obtained using the Lagrange plus remap MUSCL. This
method has also been used to calculate the oblique reflection of a shock against an
inclined plane in two space variables [11], successfully resolving multiple Mach stem
configurations.

We present here two test calculations. As a one-dimensional test problem, we
calculated the steady state solution to the duct flow problem in Shubin, Stephens, and
Glaz [6], marching in time until the steady state was reached. The duct is specified by
A(r)= 1.398+.347 tanh (.8r-4), 0_<-r=< 10, with boundary conditions

p(0, t)=.3809, p(0, t)=.502, u(0, t)=1.299, p(10, t)=.776, t>=0.

The initial conditions are given by setting q(x, 0)= q(0, 0), i.e., impulsive start.
Inflow boundary conditions are imposed at the left boundary, and the characteristic
boundary conditions (3.2) are imposed at the right boundary. The density profiles at

200 are shown in Fig. 3, for Ar =- and Ar , plotted as a dotted line, with circles

1.00

0.80

0.60

0.40

0.20

DT 0.21189E + 00 TIME 0.20000E+ 03 NSTP 942

0.0 2.0 4.0 6.0 8.0 10.0

distance

(a)
FIG. 3. Steady state density profiles for one-dimensional duct problem, a) Ar =-, b) Ar .

114 PHILLIP COLELLA

1.00

0.80

0.60

0.40

DT 0.10614E +00 TIME 0.20008E+ 03 NSTP 1883

0.20 [__ .1 _._
0.0 2.0 4.0 6.0 8.0

distance

FIG. 3 (cont.).

10.0

at the data points. This is to be compared with the exact solution, plotted as a solid
line. We obtain good agreement with the exact solution, even for the coarsely zoned
calculation.

We also calculated the two-dimensional Cartesian shock reflection problem used
by van Leer [7] as a test problem for the Lagrange plus remap versions of MUSCL;
see also Woodward and Colella [9]. The computational domain is a channel of length
3 in the x direction, and of width 1 at the left end in the y direction, with a step of
height 2 extending to the right beginning at x 6. The step and the upper and lower
walls of the channel are reflecting boundaries, with a Mach 3 uniform inflow on the
left, and continuation boundary conditions on the right. The initial conditions are that
of uniform flow throughout the channel:

p(x, y, O) l, p(x, y, O)= l.4, Ux(X, y, O)= 3, uy(x, y, O)=O.
In Figs. 4 and 5, we show the density and pressure contours of the solution at

t=4, with Ax--Ay=.l and .05, respectively. The first shock reflection point along
the upper wall has been seen in other calculations [9] to be a Mach reflection, located
directly above the edge of the step. The present calculations obtain the correct location
of the reflection point, although the Mach stem in the Ax-.1 is two zones long;

EULERIAN MUSCL FOR GAS DYNAMICS 115

0

8

6

0
t’LI ..-1- (.13 (30 fU _-t- ((30 ft.l _-t- (.13 O0

(a)

0

ft.] ..1- (.0 130 t’Li ..t- (.19 (30 (LI _1- (.13 120

(b)

FIG. 4. Contour plots for two-dimensional test problem, Ax .1. a) Density, 30 contours between .98 and
6.38. b) Pressure, 30 contours between 1.11 and 11.6.

consequently, the slip line extending to the right from the triple point is not resolved,
as it is in the Ax .05 calculation. The other reflected shocks are well resolved in both
calculations, even though they are quite weak.

These results represent an improvement over the the results in [7] in two respects.
First, the overall resolution of the shocks, particularly in the Ax =.1 calculation, is
substantially better. Second, the numerical boundary layer generated at the corner
along the upper surface of the step is far weaker than that generated in the Lagrange
plus remap results. In the latter calculation, the boundary layer separates at x 1,
changing somewhat the shock pattern downstream. The numerical boundary layer
does not separate in the present calculations.

These two-dimensional problems were run on the Cray-1 at LLNL using a fully
vectorized implementation of the algorithm, the Ax .1 calculation taking .066 minutes
to run 194 time steps, and the Ax .05 calculation taking .36 minutes to run 376 time
steps. However, the vector lengths in these calculations were that of the number of
zones in a one-dimensional sweep, and were hence too short to observe the full speed
of a fully vectorized calculation on the Cray. A more typical speed for larger problems
is 20 s/zone/time step/dimension.

116 PHILLIP COLELLA

0

8

6

0
CLI _n’- qO O0 CLI _-I- LO O0 CU ..1- LO O0

(a)

0

8

6

CU _.1" (D O0 CU ..1- LO O0 OJ _’t (.13 CO

(b)

FIG. 5. Contour plots for two-dimensional test problem, Ax .05 a) Density, 30 contours between .68
and 6.29. b) Pressure, 30 contours between .72 and 11.8.

4. Discussion and conclusions. The direct Eulerian MUSCL algorithm described
above follows the basic conceptual framework given by van Leer for the Lagrangian
MUSCL scheme. There are, however, substantial technical differences, all aimed at
producing a more robust, and in certain ways, simpler scheme. A central feature to
the engineering of the scheme is that of solving the characteristic equations (2.8)-(2.9)
directly, rather than, as in [7], deriving a formula based on Taylor expansions, for the
time derivative of the flux. The present approach makes it much easier to account
correctly for sonic points in rarefaction waves (2.11), to introduce tracing characteristics
forward in time (2.10); and to exploit the duality between the Riemann problem and
the characteristic equations for gas dynamics by introducing the nonlinear algorithm- n+lfor calculating i+/2. The latter two procedures were essential for calculating strong
shocks with CFL numbers close to 1, and appear to be necessary for Lagrangian
calculations using MUSCL as well [12].

We have presented here the basic framework for extending the Lagrangian
algorithm of van Leer to Eulerian gas dynamics. This approach can be easily modified
to an arbitrary moving coordinate system, in one dimension, or a moving rectangular

EULERIAN MUSCL FOR GAS DYNAMICS 117

coordinate system in more than one dimension. A central issue which remains to be
fully resolved for this method, as well as other higher order extensions of Godunov’s
method is controlling the behavior of such schemes when one of the characteristic
speeds, measured relative to the mesh motion, vanishes. The treatment of sonic centered
rarefaction waves and the flattening of slopes at nearly stationary shocks constitute a
first step, but more work is required. A fuller analysis of these problems appears in
[3], [10], along with some proposals for ameliorating them.

Acknowledgments. The author wishes to thank Paul Woodward for many helpful
discussions, and Bram van Leer for a critical reading of the manuscript. The author
also wishes to thank the Theoretical Physics Division at LLNL for making available
the time on the LLNL Cray I.

REFERENCES

[1] P. COLELLA, Glimm’s method]’or gas dynamics, this Journal, 3 (1982), pp. 76-110.
[2] P. COLELLA AND H. M. GLAZ, Efficient solution algorithms for the Riemann problem for real gases,

Lawrence Berkeley Lab., Report LBL-15776, Univ. California, Berkeley, 1983.
[3] P. COLELLA AND P. R. WOODWARD, The piecewise parabolic method for gas-dynamical simulations,

Report LBL-14661, Lawrence Berkeley Lab., Univ. California, Berkeley 1982, J. Comp. Phys.,
to appear.

[4] S. K. GODUNOV, Difference methods for the numerical calculation of the equations of fluid dynamics,
Mat. Sb., 47, (1959), pp. 271-306. (In Russian.)

[5] S. K. GODUNOV, A. W. ZABRODYN AND G. P. PROKOPOV, A computational scheme for two-
dimensional nonstationary problems of gas dynamics and calculations of the flow from a shock wave
approaching a stationary state, USSR Comput. Math. Math. Phys., 1, (1961), pp. 1187-1218.

[6] G. R. SHUBIN, A. B. STEPHENS AND H. M. GLAZ, Steady shock tracking and Newton’s method
applied to one-dimensional flow, J. Comp. Phys., 39, (1981), pp. 364-374.

[7] B. VAN LEER, Towards the ultimate conservative differences scheme, V. A second order sequel to
Godunov’s methods, J. Comp. Phys., 32 (1979), pp. 101-136.

[8] B. VAN LEER AND P. R. WOODWARD, The MUSCL code for compressible flow: philosophy and
results, Proc. TICOM Conf., Austin, TX, 1979.

[9] P. R. WOODWARD AND P. COLELLA, High resolution difference schemes]’or compressible gas dynamics,
Lecture Notes in Physics 141, Springer-Verlag, New York, 1979.

[10] The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comp. Phys., to
appear.

11] P. COLELLA AND H. M. GLAZ, Calculation of complex shocked flows using a direct Eulerian MUSCL
algorithm, paper presented at the 5th AIAA CFD Conference, PaiD Alto, CA, June 1981.

[12] P. R. WOODWARD, private communication.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 1, January 1985

(C) 1985 Society for Industrial and Applied Mathematics

010

A ROOTFINDER USING A NONMONOTONE
RATIONAL APPROXIMATION*

G. K. KRISTIANSEN"

Abstract. A rootfinder using a nonmonotone rational approximation is described. To aid the analysis,
a general expression in terms of divided differences is derived for the error associated with rational
approximation.

Key words. Cauchy interpolation, rational interpolation, rootfinder

1. Interpolation by means of rational functions. First some notation: The set S
of real-valued functions defined on a real interval I is an algebra over the real field
with multiplication and addition defined pointwise. The function x- x will be denoted
simply by x, so that, for instance, for Xo I and f S, we have (xJf)(xo) xof(Xo). Let
f S, n be a nonnegative integer, and {x0, Xl," , x,, x} be a set of n + 2 different
points in/. Then, the (n + 1)th divided difference f[Xo, xl,’", x,, x] can be defined
as the ratio

(f(x)-P,(x))/ I (x-x),
j=O

where P, is the polynomial in x coinciding with f at the points x.(O =< j =< n).
If we define the Oth divided difference by f[Xo]-f(Xo), we can construct the

divided differences recursively.

f[xo, x.] (fix,,..., x.]-f[xo, x._,])/(x.- Xo).

For fixed values of the abscissas, the divided difference f[Xo,’", x,] is a linear
functional of f. For fixed f it is a symmetric function of the abscissas.

Finally we memion the useful identity

((x- x.)f)[Xo,’", x.] fix0, , x._].

The general theory of Cauchy interpolation, i.e. pointwise interpolation by means of
rational functions, is discussed for instance in [5]. We shall recall some facts: Let P
and O,, be polynomials of degree at most l, resp. m, with l+ m n, such that
(Pl O,f)(xj) 0 (0 <- j <- n). There is at least one set, but there may be several linearly
independent sets of coefficients of Pl and 0,, solving this system of equations. However,
the function Rl, Pl/O,, is uniquely determined. If, for some point x, Rl,m(X) does
not have a limit equal to f(x) for x x, the Cauchy interpolation problem is unsolvable
and the point x is called unattainable. We shall prove the following result.

THEOREM. Let f: I be a function defined on the real interval L and let xj(O <= j <-_

n + 1) be n + 2 different points of L Assume that the Cauchy interpolation problem
f(x])=Rl,m(Xj) (Oj <- n) is solvable. In the expression Rl,m--Pl/ Om, where Pl and O,
are polynomials of degree at most l, resp. m, with + m n, we assume that PI and Qm
have no common factors. The exact degree of Qm is m <- m. Then

(1) Qm(Xn+l) qx+l =det (qr,s),
./=0

* Received by the editors February 17, 1983, and in revised form August 30, 1983.
Ris0 National Laboratory, Postbox 49, DK-4000 Roskilde, Denmark.

118

NONMONOTONE RATIONAL APPROXIMATION 119

(2)

where, for 0 <- s <-_ ml,

det (tr,s)
(Xn+I__Xj),(f Rl’m)(Xn+l)

det (q,.,s j=o

to,s f[xs, Xn+l], tr.s f[Xs,. Xn+l--r for 1 <-_ r

s--1

qo,s H (Xn+l--Xj), qr, --f[Xs,’’’, Xn+l--r] for 1 <= r<= ml.
]=0

Remark. In the limit where the points x(0 <_- j _-< n + 1) coincide, we get Tornheim’s
result [7] for the ratio

(f -Rt,m)(xn+l)/ =o (Xn+l-x).

The above expression for the error in rational approximation is, of course, valid also
under weaker assumptions than those stated.

Proof. The polynomial of degree at most n coinciding with the function Pl-
at the points x(0 -< <-n) must be identically zero. Therefore, it follows from the
definition of the divided difference that for xn+ I\{xo, x,..., xn}

H=0 (x.+- x;)
(Pt- Omf)(Xn+l) (Pl-- (mf)[Xo, Xn+,]

2 qj(xT)[Xo, Xn+l]"

(3)

We have used that Pt is of degree at most n- m <_- n, so that any divided difference
of Pl of order at least n + 1 will be 0. Similarly, we get for 0 _-< k _-< m- 1,

XkQmf)[Xo, Xn] xkpl)[Xo, Xn] O,

(4) Y q(x+kf)[Xo, X,]=0.
=0

As noted above we assume that the given rational interpolation problem has a solution
which is then unique. But we cannot be certain that the polynomial Q,, has exact
degree m (i.e., qm # 0). Let ml be the exact degree of Qm. Then (4) is equivalent to

(5) 1 q(xj+,f)[xo, x,,] O.
j=0

This is true for 0 -<_ k _-< m 1. We shall show that the rank of this system of equations
is m. It cannot be greater since we know that a nonvanishing solution 0,, exists. If
it were smaller, the null-space of the coefficient matrix of (5) would have dimension
at least two; thus we would have two linearly independent solutions (qi]0_-<j_-< m)
and (q’)10-< j =< ml), corresponding to the polynomials O. and Oral.

But from the equations

(6) (P6-Qmaf)(xy) =0 (O_-<j_-< l)

the coefficients of Pll (where 11--< l) are determined uniquely from those of Qml (the
coefficient matrix is of Vandermonde-type). If Pll and Qml satisfy (5) and (6), we can
show (see below) that the equations of the form (6), but with + 1 _-< =< n, are satisfied
too.

120 . K. KRISTIANSEN

But then we must have PlQml "-PI, Qm; as Pl and Qm have no common factors,
Q,, must divide Qml. The degree of Q,-1 is at most equal to ml, the degree of Q,,, so
that Q,,I/Qm must be constant, which contradicts the linear independence of the two
solutions.

Assume, then, that we have already shown that (Pll Q-I f) (xJ) 0 for 0 <_- j =< L,
where l<=L<=n-1. To deduce that (Pll -Q-I f)(XL+1.) =0, we need only show that
(Pl, -Q,,1 f)[x0,’’’, XL+I]=0, i.e., that

Y’. q’)(xf)[xo, x/+,]=0.
j=0

However, from (5) it follows that

q(’l)(Pm_lXf)[Xo,’’" X,]=0,
j=0

where Pm- is an arbitrary polynomial of degree at most m- 1 n- l- 1 >= n-L- 1.
If we choose

e.,_,(x) I (X--
j=L+2

we get the desired result.
The set of coefficients of Q, can then be chosen proportional to the set of cofactors

to the last row in the coefficient matrix of (5). Both Qm(Xn+l) and the right-hand side
of (3) can then be written as determinants. After some elementary transformations
we get the equations (1) and (2).

2. Description of the rootfinder HYPAR. The most efficient rootfinders in com-
mon use employ monotone functions for higher order approximation (for instance
inverse interpolation [1] or homographic interpolation [4]. Often the given function f
has several roots (perhaps an infinite number), and although it is usually possible in
a simple way to find an interval [a, b] containing the wanted root ’, it is more difficult
to ensure that the restriction of f to [a, b] is monotone. If a traditional rootfinder is
used, an interval of monotonicity containing the root is found by primitive methods
(for instance bisection). Parabolic interpolation does not seem to be much better than
these methods (apparently the approximation of nonmonotone functions is usually too
inaccurate); however, the method described below using an R2,1 rational approximation
has proved satisfactory.

Going back for a moment to the general situation discussed earlier, we shall briefly
discuss the occurrence of unattainable points. As noted above, we can always determine
solutions Pl and O, to the equations (PI-Omf)(xi)= 0 (0 <= j <= n). Each unattainable
point is a root of both Pl and Ore, which means that the rational function

after removal of common nonconstant factors of Pl and ()m has a sum of degrees of
numerator- and denominator-polynomials which is less than the number of attainable
points, so that Rl, is, in fact, the unique solution to the Cauchy problem restricted
to these points. For the present case (l 2, m 1, n 3), an unattainable point is a
point not on some straight line, which contains the remaining three points. Moreover,
we should avoid the case where the singularity of R is in the smallest interval containing

NONMONOTONE RATIONAL APPROXIMATION 121

the four interpolation points. To find a simple criterion we write

R(x)=ax+b+
x-d"

Evidently the graph {(x, R(x))x R} is a hyperbola with asymptotes y ax + b and
x d. Let x0 < xl < x2 < x3. Then

2

R[xo, Xl, x2]R[Xl, x2, x3]--
(Xo- d)(xl- d)2(x2 d)2(x3 d)’

which is positive if and only if all points are on the same branch, and c 0 (c-0
would mean that all points were on the same straight line).

But the requirement f[xo, Xl, x2]f[xl, x2, x3] > 0 is, in fact, sufficient to ensure that
the R2,1-approximation is applicable since it is violated if just 3 of the points are on
a line.

If, for instance, f[xo, Xl, X3] 0, but f[xo, xl, X2] 0, we have

f[Xo, Xl, X2, /3] fix0’ xl’ x2] _f[xl, Xz, x3]
X2 X3 X2- X0

so that f[xo, x, x2] and f[x, x2, x3] have opposite signs.
To explain the use of Rz,l-approximation HYPAR we change the notation to

that used in this procedure and set zj=(xj, yj) (1 _-<-<4) for four point of the graph
of f. The root sought, ’, is in the interval [x2, x3], while y has the same sign as Y2,
and z4 is the point that was z in the previous step; the point z2 is always the latest
point calculated. We see that z2 becomes either za or z3 in the next step; zl becomes
z4, and z4 is forgotten; but z3 may stay z3, namely, if the new ordinate Y2 has the
same sign as the old ordinate Y2 (which now becomes y). This shows that even if the
Rz,l-approximation is applicable in each step, only the three most recent points are
certain to be among the four interpolation points. If the Rz,-approximation is not
possible, parabolic (i.e., R2,0- interpolation is used. If the average convergence rate
for the latest hypmax+ 1 iterations (hypmax is a built-in parameter with 10 as its
recommended value) is below that of bisection, all future steps use bisection. Thus
there is a difference in strategy between this method and the usual approach (see the
next section).

An investigation of the asymptotic error for rootfinding based on Cauchy interpola-
tion using only the latest calculated points is given in [7]. An error analysis for the
special case of Rz,-approximation, when we are not very close to the solution, is given
in the following. It should be noted that some of the results below may be found
elsewhere in the literature (see for instance [8, pp. 336-338]).

Substituting 2 and m m 1 in (1), we get

Q(x4)- f[x, x2, x3]-(x4-xo)f[xo, xa, x2,

X3 Xo

1

(7) X3 Xo)f[Xl, X2, X3]- (X4- Xo)(f[Xl, X2, X3]- f[Xo, Xl, X2]))

X x4)f[Xl, X2, X3] "k- (X4 Xo)f[Xo, Xl,
X3 X0

where we have used some elementary identities satisfied by divided differences. If
xo < xl < xz < x3, and if x4 (Xo, x3), we see that Q(x4) has the same sign as f[x, xz, x3]
and f[Xo, x, x2] (remember that the Rz,a-approximation is used only if f[xl, x2, x3]

122 G.K. KRISTIANSEN

f[Xo, Xl, X2]> 0). The error in X4 is determined by substitution in equation (2):

(f _e21)(X4) ((X4- XO)(X4- X1)(X4- X2)(X4- X3))O(X4

(f[Xo, xl, x2, x3, X4]" f[Xl, X2, X3]--f[x1, X2, X3, x4]f[Xo, X1, X2, X3]).

We see that if f has a bounded 4th derivative, and if If"l has a positive lower bound
in either [Xo, x2] or Ix1, x3], we can find a constant A, such that

(8) [f(x4)--R2,1(X4)IAI(x4--Xo)(X4--X1)(X4--X2)(X4--X3)I
for x4 e [Xo, x3].

If f" assumes the value 0 in both intervals, but f[xo, xl, x2] fix1, x2, x3]> 0, we
may still obtain an error-estimate of this type, if we assume that If’"l has a positive
lower bound in [Xo, x3]. We have, in fact,

max {]f[Xo, Xl, X2] l, [f[Xl, X2, X2]]}
> fix1, x2, x3]-f[xo, xl, x231

(x- xo)lf[xo, x, x2, x]l >- x- Xo min (If’"(x)llx [Xo, x]}.
6

This gives IO(x4)l > A1 min {(x3-x4), (x4-Xo)}, with A1 a positive constant.
Thus, in this case,

(9) f(x4)- R2,1 (x4) -< m2l(x4 Xl)(X4 X2) max {x4 Xo, x3 x4}

for x4 [Xo, x3]. (Of course, we still have f(xj)= R2,1(xj) for j=0, 1, 2, 3.)
If the R2,o-approximation is used, we have an inequality of the type

(10) If(x3)-R2,o(X3)l<-_A31(x3-xo)(X3-X)(x3-x2)l
for x3 [Xo, x2] (assuming that f, for instance, has a bounded third derivative in [Xo, x2],
where Xo < xl < x2)?Here we must also admit the fact that not all three points (but
two of them) need be recent.

In conclusion, the interpolation error in point number n + 1 will, for reasonably
well-behaved functions, have a bound

(11) A H IX,/l-Xyl,
j=n-p

where A is a positive constant, and p may be 1, 2, or 3.
From this point onwards we can use the traditional arguments to derive lower

bounds for the weak convergence order in the various cases. The convergence order
is usually not very important for the success of a rootfinder; a value of 1.6 (correspond-
ing to p 1 in (11)) suffices for most practical problems.

3. A comparison with the rootfinder ZEROIN. One of the best procedures
available for solving real transcendental equations in one variable is ZEROIN, Brent’s
improvement of Dekker’s algorithm (see [3]). One of its distinctive features is that it
never gives up, but tries in each step to find a higher order approximation to the root.
This is sometimes a drawback, since the number of function calls may be very large
for pathological functions. In the example of the next section the necessary number
of steps with ZEROIN is 264, while the number, n, of bisections needed is 29, and
the number of iterations with HYPAR is 36. In general, the maximum number of

NONMONOTONE RATIONAL APPROXIMATION 123

function calls in HYPAR is n + max {hypmax, n 1 }, while the bound given by Brent
[1] for the number of ZEROIN function calls is n 2 (the example shows that something
like this can be attained, although only by means of specially contrived examples).
HYPAR changes to bisection for all future steps, as soon as the apparent convergence
rate is slower than for bisection, or when the distance between the two latest approxima-
tions to the root has come down to the user-specified tolerance, eps. One might say
that HYPAR assumes that the function f has the same character far from the root "as close to ’. In case f changes character, being difficult far from the root and
well-behaved close to sr, the procedure ZEROIN should be preferred. In [2] a good
example is given of a type of function changing character: Set f(x)= x"-", where

" 0, and n is a large odd integer. This function looks like x n, a difficult function with
a multiple root, seen from afar, but well-behaved close to the root sr. The algorithms
of Bus and Dekker [2] are quite successful for these functions, in particular the
procedure ZEROINRAT, which has a high asymptotic order of convergence.

ZEROIN does not answer all meaningful questions. Assume that a user wants to
determine the root sr of a function with the greatest possible accuracy; that is, if
macheps is the least positive number such that x and x. (1 + macheps) are distinguish-
able by the computer for all nonzero values of x that are of interest, the user wants
two numbers xl and X2, such that f(xl), f(x2)=<0, with X2--X (1 +macheps). This is
impossible in ZEROIN (but not in HYPAR), since the internal tolerance in ZEROIN
is corrected for round-off.

4. Examples. The first version of HYPAR was written in 1965, so that some
experience with this procedure has accumulated over the years. To get an idea of its
performance relative to ZEROIN we used Naur’s set of functions (see [6]), designed
for testing of students’ algorithms. The total number of function calls for ZEROIN
was 105, which is as good as any of the results obtained with the algorithms tested by
Naur. The number of function calls for the improved algorithms ZEROIN and
ZEROINRAT of Bus and Dekker were 127 and 151, resp. But HYPAR did with the

TABLE

HYPAR ZEROIN

x f(x) x

-5 -121 -5 -121
10 989 10 989
2.5 12.1 -3.3648649 -35.7
2.3333333 9.37 -2.7035154 -18.1
1.7705266 2.78 -2.0435732 -7.49
1.5466392 1.15 3.9782134 58.0
1.4004592 0.35 1.3546140 -2.13
1.3421611 7.61o-2 -1.0903881 -1.21
1.3264413 7.410-3 -0.7544571 -0.67
1.3247613 1.810 1.6118782 1.58
1.3247181 4.71o-7 -0.0448915 -0.96
1.3247180 1.510-11 0.7834933 -1.30
1.3247170 -4.31o 1.1976857 -0.48

1.3736061 0.22
1.3186178 -2.61o
1.3244480 -1.21o
1.3247181 4.91o
1.3247176 1.610

124 G.K. KRISTIANSEN

amazing number of 77 function calls. Of course, a bit of luck is involved, but some of
the functions have some of the features which HYPAR was designed to handle. Take,
for instance, the function f._(x)=x3-1-x in the interval [-5, 10]. Its intervals of
monotonicity are [-5,-1/(3], [-1//, 1//] and [1//, 10]. The accuracy required
is 10-6. HYPAR exhibits one-sided convergence with the point (-5,-121) fixed; the
order of convergence is 1.84; the number of function calls is 13. It takes ZEROIN
12 iterations to find the interval of monotonicity containing the root, and the total
number of function calls is 18 (the order of convergence is again 1.84). This example
also shows one of the less elegant features of HYPAR: In case of one-sided convergence
an "e-step" is taken to ensure that a root has been found. If this fails, the function is
considered pathological, and the method changes to bisection. The list of function calls
is given in Table 1.

The function constructed to fool ZEROIN is the following (described as an Algol
procedure; the interval is [0, 1], and the tolerance eps 10-8).

real procedure f(x);
value x; real x;
begin
integer m; real t, e;
e := In (3)/ln (2);
m :=if x> 2*eps then entier (In ((x-eps)/2)/ln (0.4)) else 18;
:= (0.4)**m;

f := if m > 17 then -1 else ((5*x/t-4)**e)/9;
end;

(remark concerning notation: the exponentiation operator is written **).

The graph of this function consists of a number of arcs, each pointing towards a
false root. After the procedure has been led down one arc with an apparent convergence
rate better than for bisection, it continues on the next arc.

HYPAR has been used, for instance, for determination of extremal eigenvalues
of differential operators on R with piecewise constant coefficients. In each region the
eigenfunction is written as a linear combination of particular solutions. For each
interface or boundary-condition we get a linear equation in the expansion coefficients.
The eigenvalue sought is a root of the determinant of the resulting system of
homogeneous linear equations. Bounds for the eigenvalue are easy to find; but they
are not sufficiently accurate to guarantee monotonicity of the determinant.

Appendix.
The Algol procedure HYPAR
boolean procedure hypar (f, x, y, d, eps);
real x, y, d, eps; real procedure f;
comment

purpose: The boolean procedure hypar assumes the value true if the values f(x) and f(x + d) have the same
sign, otherwise it changes the values of x and d so that we still have f(x)*f(x + d)<=O, but so that abs(d)
is not greater than max (eps, mini*abs(x)), where mini is the relative machine precision.

description of parameters:
input parameters

f: real procedure, defining the number f(x), when x belongs to the interval Ix, x + d].
x: real, one of the endpoints of the initial interval.
y: real, equals f(x).
d: real, nonzero, x + d is the other endpoint of the initial interval.
eps: real, positive, the user-specified tolerance, see the explanation above.

NONMONOTONE RATIONAL APPROXIMATION 125

output parameters
x: real, one endpoint of final interval.
y: real, equals f(x). we have abs (y) <_-abs (f(x + d)).
d: real, x + d is the other endpoint of the final interval, if y 0, d is 0.

begin real xl, x2, x3, x4, yl, y2, y3, y4, a, b, c, mini, epsl;
integer p, hypmax; boolean bool, full; real delta;
comment
the following value of mini is appropriate for a B7800 computer;
mini := 4"8"*(-13);

comment
the latest hypmax+ function evaluations are used to estimate the convergence rate;
hypmax := 10;
delta :- 1/2**hypmax;
begin array cr [0: hypmax- 1]; integer q;
label out, par, hyp, bis;
full := false;
bool :-false; x := x; yl := y;
if y =0 then go to out;
x2:=x:=x+d; y2:=y:=f(x);
if y =0 then go to out;
if sign (yl)* sign (y2)>O then
begin bool :--true; go to out end;
d:=-d/2; cr [0]:= abs(d);
x:= x+d; y:=f(x);
if y 0 then go to out;
x3:= x2; y3:= y2;
if sign (y)=sign (y2) then
begin x3: xl; xl := x2; y3:= yl; yl := y2 end;
x2:=x; y2:=y;p:=O;
go to par;
hyp: a := (yl- y4)*(y2- y3)*(xl-x2)*(x4-x3)+(x3-x2)*(xl-x4)*(yl- y2)

*(y4- y3);
b := (yl*(x3- x2)- y3*(xl x2))*(y4- y2)*(xl x2)*(x3- x2)

+ (y4*(x3- x2)- y3*(x4- x2))*(y2- yl)*(x3- x2)*(x4- x2)
+ (y l*(x4 x2) y4*(x x2))*(y2 y3)*(x x2)*(x4 x2);

c := (xl x2)*(x3- x2)*(x4- x2)*y2*((x4- x3)*(y y3) + (x3- xl)*(y4- y3));

comment

r2,1-approximation if permitted, otherwise r2,o-approximation;
if sign ((xl-x2)*(y3-y2)+(x3-x2)*(y2-yl))
(if (x4-x2)*(x3-x2)<O then sign ((xl-x2)*(y4-y2)+(x4-x2)*(y2-yl))
else
sign((x4- x2)*(y3- y2) + (x3- x2)*(y2- y4)) then
par: begin a := (y2- yl)*(x3- x2) + (y3- y2)*(xl x2);

b := (y2- yl)*(x3- x2)*’2 + (y3- y2)*(xl x2)*’2;
c:= y2*(xl-x2)*(x3-x2)*(x3-xl)’,

end;

y:= b**2-4*a*c;
if y < 0 then y := O; y := sqrt(y);
y:=if b=O then (if a SO then sign (x3-x2)*y/2/abs(a)

else (x3-x2)/2) else if b*c*(x3-x2)>O then
2*c/(b+sign(b)*y) else if a SO then
(b+sign(b)*y)/2/a else c/b;

126 . K. KRISTIANSEN

comment
the new approximation must lie in [x2, x3];
if sign (y) sign (x3- x2) then y :- 0;
if sign (y-x3+x2)=sign(x3-x2) then y:= x3-x2;
p := (p + 1) mod hypmax; if not full then full := p 0;

comment
change to bisection if this appears to be faster;
if full then
begin if abs(y)> delta*cr[p] then to to bis;
cr[p]:= abs(y);
end;
x:=x+y;
d:=abs(x2-x); x4:= xl; y4:= yl; y:=f(x);
if y- 0 then go to out;
if sign (y) sign (y3) then
begir, xl := x3; x3:= x2; yl := y3; y3:= y2 end
else begin xl := x2; yl := y2 end;
x2:= x; y2:= y;
if abs (x3-x2)< eps then to to out;
if d > eps then go to hyp;
epsl :- max (eps, mini*abs(x));
comment eps-step;
x:= x+epsl*sign(x3-x2); y := f(x);
if sign (y)*sign(y2)=<0 then
begin x3 := x; y3 :-y; go to out end;
x2:= x; y2:= y;
comment bisection;
bis: for x:=(x3-x2)/2 while abs(x)

max (eps/2, mini*abs (x2)) do
begin x:= x2+x; y:=f(x); if y-0 then go to out;

if sign (y) sign (y3) then
begin x3 := x; y3 := y end else
begin x2 := x; y2 := y end;

end bis;
out. if y 0 then d := 0 else if not bool then
begin if abs(y2) < abs(y3) then

begin x := x2; y := y2; d := x3- x2 end else
begin x := x3; y := y3; d := x2- x3 end;
end not bool;
hypar := bool;

end;
end of hypar;

(Remarks concerning notation" Labels are declared. The expression x mod y, where
x is an integer and y a positive integer, means that integer in [0, y-1] which is
congruent to x modulo y. Capitals have been replaced by small letters throughout to
make the reading easier.)

Acknowledgments. I am indebted to mag. scient. O. Lang Rasmussen, Rise, for
critical reading of the manuscript, and to Professor ke Bj6rck for bringing Bus and
Dekker’s paper [2] to my attention.

REFERENCES

[1] R. P. BRENT, Algorithms for Minimization Without Derivatives, Prentice-Hall, Englewood Cliffs, NJ,
1973.

[2] J. C. P. Bus AND T. J. DEKKER, Two efficient algorithms with guaranteed convergence for finding a
zero of a function, ACM Trans. Math. Software, (1975), pp. 330-345.

NONMONOTONE RATIONAL APPROXIMATION 127

[3] G. E. FORSYTHE, M. A. MALCOLM, AND C. B. MOLER, Computer Methods for Mathematical
Computations, Prentice-Hall, Englewood Cliffs, NJ, 1977.

[4] G. K. KRISTIANSEN, Zeros of arbitrary function, BIT, 3 (1963), pp. 205-206.
[5] J. MEINGUET, On the solubility of the Cauchy interpolation problem, in Approximation Theory, Proceed-

ings of a symposium held in Lancaster, July 1969, Academic Press, London and New York, 1970,
pp. 137-163.

[6] P. NAUR, Automatic grading of students’ Algol programming, BIT, 4 (1964), pp. 177-188.
[7] L. TORNHEIM, Convergence of multipoint iterative methods, J. Assoc. Comp. Mach., 11 (1964), pp. 210-

220.
[8] H. WERNER, Rationale Tschebyscheff-Approximation, Eigenwerttheorie und Differenzenrechnung, Arch.

Ratt. Mech. Anal., 13 (1963), pp. 330-347.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 1, January 1985

1985 Society for Industrial and Applied Mathematics

011

THE GRAND TOUR:
A TOOL FOR VIEWING MULTIDIMENSIONAL DATA*

DANIEL ASIMOV?

Abstract. The grand tour is a method for viewing multivariate statistical data via orthogonal projections
onto a sequence of two-dimensional subspaces. The sequence of subspaces is chosen so that it is dense in
the set of all two-dimensional subspaces. Desirable properties of such sequences of subspaces are considered,
and several specific types of sequences are tested for rapidity of becoming dense. Tabulations are provided
of the minimum length of a grand tour sequence necessary to achieve various degrees of denseness in
dimensions up to 20.

Key words, multivariate data, multidimensional data, exploratory data analysis, computer graphics,
scatterplots, Andrews plot, grand tour

1. Introduction. The familiar "scatterplot" (of a finite sample of ordered pairs
of variables) can be extraordinarily informative. Thus, it is very tempting to consider
the p-dimensional scatterplotma finite sample of ordered p-tuples of variables--and
to devise ways to view it.

Even for p 3, we have no magic pen that draws points in mid-air. Resorting to
computer graphics [FFT], however, will permit us to see the three-dimensional scatter-
plot on a display screen just as if the points were drawn in mid-air. With the aid of a
graphical input device like a "trackball," we may even rotate the scatterplot in real time.

For p greater than 3, we are faced with serious problems. How can computer
graphics technology be used, in conjunction with our visual abilities, to better grasp
the structure of the p-dimensional data?

A simple answer to this question is to project the data orthogonally onto some
two-dimensional subspace of p-dimensional Euclidean space, and then to view the
resulting projected image.

A problem immediately arises: Which of the infinitely many two-dimensional
subspaces shall we choose for viewing? The idea of the grand tour is to move through
a sequence of projections, chosen to be dense in the set of all projections. As a result,
we can view (or else have the computer apply some analysis or measurement to) a
sequence of two-dimensional scatterplots which, asymptotically, come arbitrarily close
to all 2-dimensional scatterplots projectable from the given data.

Historically, the grand tour is a descendant of the Andrews plot [Andr] which
dates to 1972. This plot is often realized as a stationary set of function graphs y =fi(t)
where f(t) xl//-+ X2 sin + X3 COS + X4 sin 2t + x5 cos 2t +. for the ith data point
(xl, x2, x3,"" ,xv). This can, however, be interpreted also as a time sequence
{fl(t), , fN(t)} of points in R, where at time to we are viewing the dot-products of
all the data points with the vector given by (1/x/, sin to, cos to, sin 2to, cos 2t0," ").

Then, in 1977, Paul and John Tukey [TT77] presented some further thoughts on
Andrews plots, including an example of a dense curve of directions in R 4. They also
considered briefly a two-dimensional (not necessarily dense) version of Andrews plots
which they called "ouija" plots.

* Received by the editors November 8, 1983. This work was supported by the U.S. Department of
Energy under contracts DE-AC03-76SF00515 and DE-AT03-81-ER10843.

t Department of Computer Science, University of California, Berkeley, California 94720.

128

Meanwhile, real-time computer graphical visualization of three-dimensional (or
higher) rotation had been achieved when the PRIM-9 system was implemented at the
Stanford Linear Accelerator Center (SLAC) in the early 1970’s [FFT].

Much of the work described herein was performed at Harvard University in
1980-81 and at SLAC in 1981-83.

2. Overview. In order to implement a grand tour on a computer graphics system,
it is necessary to have an explicitly computable sequence of orthonormal 2-frames (a
2-frame is an orthonormal pair of vectors) in p-dimensional Euclidean space. The
p-dimensional data is then projected, in turn, onto the 2-plane spanned by each
2-frame. If desired, each projected image may be displayed on the screen, or else
processed somehow by the computer (or both). We list below some desiderata for this
sequence of 2-frames:

Desiderata. A) The sequence of planes should be dense in the space of all planes.
Precisely, let Gz,,p stand for the space of unoriented 2-planes through the origin in
Euclidean p-space (a so-called "Grassmannian manifold"’). Let PI, P2,"" be the
infinite sequence of 2-planes (spanned by the infinite sequence of 2-frames generating
the grand tour). Then our condition A says that for every 2-plane P and for every
e > 0, there exists an n such that the distance d(P, Pn) from P to Pn is less than e.

(Our definition of the distance function d is in 4.) Note that this denseness is not
just a desideratum, but part of our definition of "grand tour."

B) Our sequence of planes should become dense in Gz,p rapidly. This means
finding an efficient algorithm to compute the sequence of 2-frames and to project the
p-dimensional date onto each pair of vectors in turn.

C) It would be useful for the sequence of planes to be uniformly distributed in
Gz,p. That is to say, for each open measurable subset A of Gz,p, our sequence of planes
P, P2"’" should pass through A with frequency proportional to the measure of A.
We refer here to the invariant measure/_ on G2,p (which is uniquely determined up
to a positive constant factor). Precisely, we want

lim
1

Ia(Pi)--- (A),
neo F/ i=

where Ia is the characteristic function of the set A.
D) Our sequence of planes should be continuous, in some sense, if its projections

are to be apprehended by a human observer. Each plane should be perceptibly close
to those planes just before and after it in the sequence. (This condition is of no
importance in many applications of the grand tour in which no human observing occurs.)

E) For human observers, our sequence of planes should be as straight as possible.
That is, if we think of the planes as being evenly-spaced points on a curve in G2,p.
then we should be able to choose that curve so that it is almost a geodesic. This is
another way of assuring that the sequence of planes is both comprehensible to the
observer, and also that it moves rapidly to new views, giving new information about
the data being projected.

F) The grand tour ought to have a built-in degree of flexibility about it. This
would enable the user to better optimize those qualities (among A) through E, for
example) which may be important for the particular purpose he or she has in mind.
Flexibility may be obtained by finding a parametric family of sequences of planes.
There should then be some clear relationship between the parameter(s) and the desired

Note. Unless otherwise specified, all "planes" referred to herein will be planes through the origin.

130 DANIEL ASIMOV

properties, so that the user can choose the parameter(s) wisely. It should also be
possible to interactively change parameters after the grand tour has begun.

G) The sequence of planes should be reconstructible at any later occasion. In
practice, this simply means that either the sequence of planes is chosen from a
parametric family with parameters known to the user, or else there may be a pseudo-
random component whose random number algorithm(s) and seeds(s) are known. It
is, of.course, desirable that in reconstructing a particular plane of our sequence, the
other planes preceding it need not be computed all over again.

Remarks. R1. To require bona fide denseness of the infinite sequence of planes
P1, P2,"" is unnecessary for any real-world implementation of the grand tour. In
particular, if we know in advance the number L of planes P1, P2,""", PL we will be
using, we can dispense entirely with the idea of an infinite sequence. We may also be
able to better optimize the seven properties A) through G) once L is known.

R2. If the method for producing the sequence P1, P2, is based on some random
process, we will generally be able to claim properties such as denseness or uniformity
as being "almost sure" rather than certain. (But this is almost surely sufficient for our
purposes!)

R3. There is evidently a tradeoff between rapidity and continuity. This suggests
using a curve of points in Gz,p, and obtaining a sequence P, P2," by walking along
this curve after choosing an appropriate stepsize. The human observer, of course,
desires continuity. A machine alone, processing many planes, will rather need rapidity.

R4. To date, the known sequences P, P2," that are both uniform and rapid
require sequences of pseudo-random numbers to compute them. Thus to achieve
reconstructability the algorithm and seed value of the pseudo-random sequence must
be retained.

R5. Minor violations of uniformity are acceptable for the human observer. Strict
uniformity is needed only when the computer is determining distributional properties
of some statistic of two-dimensional scatterplots (see 5).

R6. In all of the above, we have emphasized the choice of 2-planes P1, P2,"
In practice, however, when displaying a two-dimensional picture we must also choose
its rotational position on the screen. This is accomplished by choosing not just a mere
plane Pi but rather a pair of orthonormal vectors (vi, w) spanning P: these are to be
identified with the X and Y directions of the display screen. Even when no display is
required, the computer must still hold internally a description of each plane P. The
"2-frame" (v, wi) is a convenient form for this information.

3. Some specific grand tours. In this section, we present three general methods
for producing grand tours.

I. Torus method. The N-dimensional torus TN may be defined as the Cartesian
product of N identical unit circles. Equivalently, TN may be thought of as Euclidean
space RN in which all arithmetic is performed modulo one. Symbolically, T
RN/(2rZN) where ZN is the integer lattice in R N. It is well-known that dense curves
may be found on TN via the following.

PROPOSITION [HWTN]. Let {A1,. ", AN} be a set of real numbers that are linearly
independent over the integers. 2 Then the curve a" R TN via a (t) =(Alt,. , ANt)has
dense image in TN. (Note that the coordinates Ait are interpreted modulo 27r.)

Real numbers ul," , uN are said to be linearly independent over the integers if the only sequence of

integers {K1,..., KN} for which the equation Yi=l Kiui =0 holds is with all K =0.

THE GRAND TOUR 131

The special orthogonal group in dimension p, denoted SO(p), is the set of all
orthogonal pp matrices having determinant =+1. SO(p) has a topology induced
from R p2, the space of all real p p matrices, and is in this way a compact manifold
of dimension 1/2(p2_p). SO(p) may equivalently be thought of as the space of all
rotations of the unit sphere in R p. (As such, it is a "Lie group" [Chev].)

We let Rq(0) denote the element of SO(p) which rotates the standard basis vector
ei through an angle 0 towards the standard basis vector ej inside the i, j coordinate
2-plane of R p, leaving fixed the orthogonal complement of this 2-plane.

We let G2,p denote the space of all 2-planes in R p. We also let V2,p denote the
space of all ordered pairs of orthonormal vectors in RP. V2,p is topologized as a subset
of Rp Rp and is compact.) We have the natural continuous surjections r: SO(p) V2,p
and p: V2,p-G2,p given by "rr(Q)-(Qel, Qe2) for any QSO(p), and p(v,w) =the
2-plane spanned by v and w, for any (v, w) V2.p.

We are now ready to describe explicitly the torus method.
1. Let N 1/2(p)-p) and think of the coordinates of Tn as being indexed by all

pairs i, j with 1 _-< < j _-< p.
2. Define a map f: T - SO(p) via

f(Xl,2,""", Xp-l,p)-- R12(Xl,2) oRp_l,p(Xp_l,p)"

In words: f is the product of coordinate-plane rotations through angles determined
by the toral coordinates. (Note: each xq is only well defined modulo 2r, but since
Rq(0 + 2r) Rq(0), f is well defined.)

3. We claim that f is a surjection. This fact was in essence discovered by L. Euler
[MMCM]; the angles {xq} are referred to as "Euler angles."

4. Choose real numbers A1,." ", An and a stepsize STEP such that the numbers
{2r, STEP" A1,’" .,STEP. An} are linearly independent over the integers. Use
A1,""", AN to define the curve a: R - TN via a(t)= (Alt,’’’, ANt) as in Proposition
1. Thus, we know that the image a(R) of a is dense in TN.

5. We conclude, therefore that foa:R-SO(p) has dense image f(a(R)) in
SO(p).

6. The discrete sequence {foa(K. STEP), K--1, 2,...} must therefore also be
dense in SO(p).

7. Finally, we define our sequence of 2-frames (vn, w) as (v,w)--
rofoa(K. STEP), K 1, 2,’". By 6 above, this sequence must be dense in V2.p.

8. We define our sequence of 2-planes P, P2, as, of course, P p V, W
po rof a(K STEP).

It follows from 7 above that this sequence is dense in G2,p. This concludes our
description of how to compute a grand tour by the torus method.

Remarks. R1. The number N, the dimension of the torus used here, can be"
reduced from 1/2(p2-p) to 2p- 3 (see Appendix). The resulting sequence of orthogonal
matrices will no longer be dense in SO(p) but will be dense when pushed via rr and
p into V2,p and G2,p. This reduction achieves a considerable savings in computation time.

R2. The sequence given by zK -(K. STEP. A1,’’’, K. STEP. AN) Ts is uni-
formly distributed on Ts. But the maps f, r, and p do not respect volumes. Thus, the
sequences of 2-frames {(vK, wK)} and planes {PK} are not uniformly distributed. This
remark applies equally to the 2p-3 version in the Appendix.

R3. The parameter STEP may be varied before, or even during, each run of the
grand tour. The effect of increasing the size of STEP is to trade continuity for rapidity.
More accurately, this is true for some range of values 0 < STEP-< M, after which there

132 DANIEL ASIMOV

is very little noticeable effect of STEP on either continuity (which is totally lost) or
rapidity (which is at a maximal level).

R4. Although it is convenient to fix the values of ‘il,." ", ,in and vary STEP, it
is in fact the vector x (STEP. 11,. , STEP. ‘in) in the torus TN which determines
the characteristics of the grand tour, torus method. If the total number L of planes
to be used is known, then Korobov [MCTP] has deter’mined vectors x which behave
optimally vis-a-vis the distribution of the sequence x, 2.x, 3.x,... in TN. It seems
likely that Korobov coefficients will give rise to sequences of 2-frames and 2-planes
which become dense rapidly, but their use is restricted to occasions when L is known
in advance. Alternatively, some easy-to-compute values of x seem to work very well.
For example, two choices are

a) Let ‘i: =/p/ =the square root of the Kth prime (p=2, p2=3, .). Let
STEP almost any irrational positive real.

b) Let ‘in e: mod 1 (e 2.71828 .) and again let STEP almost any irra-
tional positive real.

If. At-random method. In this method, each 2-frame is chosen independently,
from the "uniform" distribution on Vz,p. This distribution is more accurately termed
the "invariant" measure on Vz,p, because it is characterized up to constant factor by
its invariance under the action of SO(p) on Vz,p. That is, if O SO(p) and A Vz,p,
then we have for the invariant measure m,

m(a) m{(Ov, Ow)(v, w) A}.

To pick the sequence {(v/, wn)} of 2-frames, we use the "rejection" method as follows"
1. Generate a sequence of pseudorandom numbers x, x2," in the unit interval.
2. Sety 2x- 1, Y2 2X2-- 1,"
3. Assume we have already used the random numbers yl,..., y, (at the start

n =0). Set zi Y,,+i for i= 1,...,p.
2 1.0. If not, return to Step 3 and try again.4. Test for 0 < z2 +. + z

5. Go through Step 3 again until a second set of p numbers are found (call them
2<1.0u, , Up this time) with 0 < u2 +. + Up

6. Letting z=(za,..., z) and u= (u,..., u), apply the Gram-Schmidt pro-
cedure to obtain an orthonormal pair of vectors

u- (u v<)v:
v,, -z/llzll and w/]]u-(u. v:)v:ll

These constitute the next 2-frame (v:, v:) of our sequence. It is easy to verify that
despite the apparent asymmetry in the use of the Gram-Schmidt procedure, (v:, w:)
is in fact selected at random from the invariant distribution.

7. It follows immediately that the corresponding sequence of planes P/ (v, w/)
may be thought of as being selected from the corresponding invariant distribution on

Gz,p.
Remarks. R1. The at-random method has in its favor the extreme ease of concept

and computation. It is too discontinuous (totally) for movie viewing. (This is, of course,
no problem if the viewer prefers to see only a sequence of still pictures.)

R2. The at-random method will produce, almost surely, a uniformly distributed
sequence.

R3. There is no flexibility in the at-random method.
R4. The at-random method becomes dense about as fast as the torus method

with large stepsize.

TI-IE rtArD TOUr 133

III. Random-walk method. The random-walk method was devised in an attempt
to unite the flexibility of the torus method with the guaranteed uniform distribution
of the at-random method. We describe here two methods, the plain random walk and
the smoother random walk.

A. The plain random walk. Let /Z denote a measure on SO(p) satisfying the
following condition:

Condition D. The support of/z (i.e., the complement of the union of all open
/z-null sets) generates a dense subgroup of SO(p). Then we obtain a sequence of
orthogonal matrices OK SO(p) as follows:

1. Set O0 Ip, the identity matrix.
2. For K 1, 2,... we let gl, g2," be selected i.i.d., according to the law

from SO(p).
3. For K 1, 2,. we set OK gK OK-1.
To now obtain our 2-frames and 2-planes, we proceed as usual.
4. (VK, WK r(OK (OKel, OKe2).
5. PK =p(VK, WK)=(OKel, OKe2). (ei is the ith canonical basis vector in RP.)
Remarks. R1. As a concrete example of an appropriate measure /z, we take a

discrete/z concentrated on the finite set of rotations supp (/z) {Rq(Ai/)I1 -<_ < j <= p},
where (,qll--< < j-< p} U {1} is a set of real numbers linearly independent over the
integers. We simply set

2
/z Rq(*q) p2_p

for all i, j with 1 <=i< j<= p. We shall denote /z by U{Rq(Aq)}. By our discussion of
the torus method, it is easy to see that supp (/z) generates a dense subgroup of SO(p).
Thus, Condition D is satisfied by

R2. As long as p_-__ 2, Condition D guarantees that the distribution of OK (the
position of the random walk at time K) approaches the invariant distribution on
SO(p). Precisely,

lim/z*n invariant measure

where /z*n denotes the nth convolution power of /z with itself, and the limit is
understood in the sense of weak convergence [MAGL]. (Note: the invariant measure
on SO(p) is what is sometimes referred to as the Haar measure.)

R3. The random walk achieves its flexibility through the available choice of
measures/z satisfying Condition D. By using such a measure with supp (/z) lying close
to Ip, we may maintain a slow rate of change in the sequences of rotations, 2-frames,
and 2-planes, and thus a high degree of continuity.

R4. The use of a measure U{Rij(&q)}, as described in R1 above, has the following
drawback. Regardless of the choice of parameters &q, 1 =< < j =< p, the resulting random
walk will be as unstraight as can be. Thus, the human viewer may experience disorienta-
tion in attempting to follow the resulting sequence of scatterplots. To remedy this, we
hereby propose the use of the following type of measure

B. The smoother random walk. For convenience, we first introduce the size of
an orthogonal matrix M SO(p) as follows:

size (M) max (angle (v, Mv)}
v0

(where angle is always chosen to lie between 0 and 180). Now pick any orthogonal

134 DANIEL ASIMOV

matrix Q having size (O) e where e is small. Also, pick a set of numbers ,ij, 1 <- < j <=
p, such that {ijl I -< < j _-< p} [.J { I} is linearly independent over the integers. Also, have
the ij satisfy

6<-j<=26, l<=i<j<=p

for some 6 > 0 satisfying 6 < e(6- e2 seems to work well). Finally, we define to be

2
l<-i<j<=pt(QoRj(Ai)) pZ_p

on supp(l)={QoR(Ai)]l<=i<j<=p}. We denote/ by U{QoRi(Aj)}.
It is easy to verify that this / satisfies Condition D above and thus, as long as

p _-> 2,/*"--> invariant measure on SO(p) as n--> oo. The smaller the choice of e, the
smoother the grand tour will turn out to be.

4. Testing of grand tours. In order to assess the suitability of a grand tour for a
specific application, we need to perform statistical tests on it. Two characteristics of
particular concern to us are the rapidity with which a sequence of 2-planes becomes
dense, and the asymptotic uniformity of the limiting distribution, if any. For each of
these characteristics, there is a multitude of possible choices of how to measure them.
We have chosen one test that we feel measures well the most important characteristic.

Rapidity. Here we rely on the following:
FACT. Given two 2-planes P, Q Gz,p, the relative position of P and Q in Rp is

described by two angles 01, 02 with 0<= O1 <- 02 <- 7r/2. Precisely, there exists a rotation
M SO(p) such that M(P) =(e, ez) and M(Q) =(cos 01el+sin 0lea, cos 02e2+
sin 02e4).

The cosines of 01 and 02 are the correlations encountered in canonical correlation
analysis. Thus, we use the terminology "canonical angles" for 01 and 02.

We define the distance between P and Q as the larger canonical angle: d (P, Q) 02.
(It may happen that 01- 02.)

Now let S {P1, ,Pn} be a finite set of planes. Then we define the gap of S via

gap (S)- max min {d(P, Pi)}.
PG2, li<=n

(We are justified in using "min" and "max" rather than "inf" and "sup" since n is
finite and G2.p is compact.) Let us define the e-neighborhood of a plane Po to be

DEFINITION.

N(eo) {e Oz.pld(P, Po) < e}.

The number e will be called the radius of N(Po). In terms of this definition, it is clear
that gap (S) is the radius of the largest neighborhood in Gz,p which lies in the
complement of the set S of planes:

gap (S) sup { e > O]::lPo G2,p N(Po) = Gz,p S}.

Or expressed yet another way,

gap(S)=inf e>O G,p= U N(P)
i=1

We now use this last equation to establish lower bounds for n n(e), where n(e) is
the smallest number of planes needed to have gap <_-e. Namely,

G, N(Pi) (except for a set of measure O)

THE GRAND TOUR 135

and so

vol (G.,p)<- E vol (N(Pi))
i=1

where "vol" stands for the invariant (Haar) measure on G2,p. By invariance,
vol (N (Pi)) is independent of i, so

vol (G2,p) =< n. vol (g(Po))

where Po is, let us say, (el, e2).
Thus

vol (G2,p)
n=n(e) >- or

vol (N (Po))
n(e) >-_ [Prob (d(P, P0) < e)]-1,

where Pc G2,p is distributed according to the invariant measure. It can be shown
[Hote] that the canonical angles 01, 02 between P and P0 have joint density function
given by the following:

/(p-2)(p- 3)(sin 01-" sin 02)p-4(sin2 02-sin2 01)f(O1, 02)’-
otherwise.

0 01 02 7r/2,

If p 3, we have 01 0 always, and 02 has density given by g(02) sin 02, 0 __--< 02 <---- 7r/2,
and g(02) 0 otherwise.

We shall use the terminology "the 2-planes P and Q lie within angle Ang" to
mean that the larger canonical angle d(P, Q)= 02 is less than Ang (where 0=<Ang <-

r/2).
In the tables in Table 1, obtained by Monte Carlo methods, the probability shown

is the fraction of random pairs of 2-planes in Euclidean space of the given dimension
which lie within angle Ang. The column labeled "No. of planes" gives a theoretical
lower bound for the number of 2-planes which can be chosen in that Euclidean space
so that all 2-planes lie within angle Ang of one of the chosen ones. Namely, that
theoretical lower bound is the quantity: greatest integer in 1/Prob (d(P, Q)< Ang).

These tables should be thought of as a standard against which to measure the
rapidity with which a sequence of planes becomes dense. In fact, if we set Nposs(e) the
smallest possible number of planes needed to achieve a gap of e, and Ng,(e)=the
smallest number of planes (in sequence), from some particular choice of grand tour,
needed to achieve a gap of e, we have

n(e) <= Nposs(e) <- Ngt(e)

for all e > 0. These inequalities are, with very few exceptions, actually strict ones.
Figures 1-6 display the gap as a function of the number of planes, for three types

of grand tour: (1) planes picked at random, (2) planes picked by the torus method,
and (3) planes picked via plain random walk on SO(p). The gap was not, in fact,
computed but was instead estimated via gap(N) maxl<=i=<10o minl=<j<__N d(Qi, Pj) where
{ Q} is a fixed set of planes picked at random. Due to the vast quantity of computing
time necessary, we have restricted the calculations to only two values of the dimen-
sion: p=4 (using the average of 5 repetitions) and p=8 (using the average of 3
repetitions).

136 DANIEL ASIMOV

TABLE
Oimenston 3

Ang Probability Ho. of planes

5 ,38E-0 63 5
10 .15E-01 66 10

15 .3E-OI 30 15
0 .60E-01 17 0
25 .9E-01 I1 25
30 .13 8 30
35 .18 6 35

65 .29 6 65
50 .36 3 50
55 .3 3 55
60 .50 3 60
65 .58 65
70 .66 70
75 .76 75

.3 8O
85 .91 85
90 1.0 2 90

Probability Ho. of planes

.19E=06 51686

.31E-03 3:’58
15E-02 650
,48E=02 209
,12Eo01 67
.23E-01
.2E-01
.69E-01 15
.11
.16 7
.Z 5
,30
.39 3
,9 3
.61
.73
.6
1.0

DImion 5 Dtmml 6

Ang Probabt iV

5 .11E-06
10 .70E-05
15 .78E-04
20 .63E-03
25 .16E-02
30 .5E-02
35 .11E-01
40 .23E-01
45 .3E-01
50 ,75E-01

55
60 .19
65 .27
70 .38
75 .51
80 .66
85 .83
90 1.0

No. of planes

0.9E+07
163529
12805
2369
636
222
93

9
6

3

Ang Probabi It iV No. of planes

5
10
15
20
25
30
35

50
55

65
70
75
80
85
90

.67E-09 0.2E+I0

.17E-06 0.6E+07

.C2E-05 2390.8

.OE-06 ’980

.23E-0 4607

.91E-03 1096

.29E-02 35

.77E-02 130

.1BE-O! 56

.37E-01 27

.70E-OI 15

.12 9

.20 6

.30 6

.46 3

.61 2
,80 2
1.0 2

Olmerlon 7

Arlg Probability

5
10
15
20
:’5
30
35
40

50
55
60
65
70
75
80
85
?0

.42E-II

.2E-06
,23E-06

.39E-05
,34E-06
,19E-03
.81E-03

.77E-02

.19E-01

.42E-01

.15

38
.56
.77
1.0

Ho. of p]ars

0.2E)12
0.2E+09
O.,E+07
25912
29331
5185
1230
366
130

25
t3
7
5
3
2

2

5
10
15

30
35

50
55
60
65
70
75
8O
85
90

Dimension 8

Probability 14o. of planes

.27E-13

.1 IE-09 O. 9E)10
13E-07 0.7E+O
.39E-06 O. 3E’07
.52E-05 190626
,42E-04 :73917
.23E-03 6305
.qgE-03 1011
.3E-02 :’93
.99E-02
.25E-01 +1
.56E-01 18
.11 9
.20 5
.36 3
.52 2
75 2

1,0

THE GRAND TOUR 137

Dlmslon

TABLE (cont.)
Dimension

J Probbllity

10 .29E-I1
15 .79[-09
20 .40E-07

30 .92E-05
35 .68E-0
0 .36E-03
5 .15E-0
50 .5E-O
55 ,15E-01

60 .38E-01
65 .8E-01
70 ,17

75 .30
80 .9
85 .73
90 1.0

No, of plan

0.6E+16
0.3E’12
0,IE’I0
0,2E*08
0,1E+07
0858
14768
2755
657

67
27

6

3

Ar Probability No. of planes

5 .12E-17 0.8E+18
I0 .77E-13 0.1E+1
15 ,q7E-10 0.2E+11
20 ,2E-08 0.2E+09
25 .13E-06 0.8E07
30 .21E-05 486134
35 .20E-0 50072
0 .1E-03 7398
5 .69E-03 1453
50 .28E-02 359
55 ,93E-02 108
60 .26E-01 39
65 .6E-01 16
70 .I 8
75 ,27 6
80 .6 3
85 .71
90 1.0

Ol mrm on 12 Dlmmrm|on 14

Ang Probabi ty

5 ,58E-22
10 .57E-16
15 ,17E-12
20 ,;7E-I0

15 .34E-08
30 ,11E-06

35 ,18E-05
40 .19E-04
45 .IE-0]
50 .81E-03
55 .36E-02
60 .13E-01
65 .38E-01
70 .97E-0!
75 .21
80 .40
8S .67
90 1.0

No. of planes

0.2E’23
0.2E’17
0,6E’13
0,2E’11
0,3E*09
0,9E+07
55817
52000
6921
1229

78

11
5
3

Ar Probabt 11 ty

5 .28E-26
10 .E-19
15 .65E-15
20 .55E-12
25 .93E-10
30 .56E-08
35 .17E-06
40 .28E-05
45 .31E-0
50 .Z,E-03
55 .14E-02
60 .6E-O:
65 .23E-01
70 .66E-01
75 .17
80 .36
85 .64
90 1.0

No. of planes

0.4E+27
0.2E+Z0
0 2E’16
0.2E*13
0.1E’11
0.2E*09
0.6E*07
355768
32130
<121
70
157

15
6

O mn’ on 16 Ol|o 2:0

AnJ Probabt 11 ty No. of planes

5 .14E-30 0.7E’31
10 .34E-2 0,3E’23
15 ,5E-17 0.E’18
20 .65E-1 0.ZE*15
25 .26E-11 O.qE*12

30 .31E-09 0.3E’I0
35 .16E-07 0.6E* 08
40 .42E-06 0.2E+07
45 .68E-05 146196
50 .7,E-04 13516
55 .57E-03 1767
60 .32E-02 311
65 .14E-01 71
70 .9E-01 21
75 .14 8
80 .3
85 .61
90 1.0

S
10
15
20
25
30
35

45
50
55
60
65
70
75

85
90

Probabt tty

.36E-39

.22E-28

.40E-22

.95E-18

.21E-14

.95E-12

.15E-09

.98E-08

.3E-06

.71E-05

.94E-04

.85E-03

.54E-02

.26E-01

.92E-01

.26

.57
1.0

No. of planes

O. 3E’40
0.5E’2’9
0.3E*23
0.1E’t9
0.5E’15
0.1E’13
0,7E+I0
0.1E*09
0.3E*07
1o2r3
1060
1160

39
11

138 DANIEL ASIMOV

DEGREES go

8O

7O

6O

5O

4O

3O

2O

I0

TORUS METHOD, DIM. 4, SP =25.oAVG. OF REP

,1 I,,,,1,,,,I I,
0 1000 200030’0040005000600070008000g001:]10000

NO, OF PLANES

FIG. 1.

DEGREES 9O

O0

7O

6O

5O

4O

3O

2O

10

AT RANDOM, DIM.

i,l,,,,I.,,,l 1,,,,1,,,,1,,,,I,,,,I,,,,1,.,,I,,,,1,
0 1000 20003000400050006000700080009001:10000

NO. OF PLANES

FIG. 2.

DEGREES 9O

80

70

60

50

4O

3O

20

I0

THE GRAND TOUR 139

PLAIN RANDOM WALK, DIH. 4, STEP 25.o, AVG OF REPS.

:

I
0 1000 2000300040005000600070008000900010000

NO. OF PLANES
FG. 3.

DEGREES

80

70

60

50

40

30

2(3,--

0--

0

TORUS METHOD, DIM. 8, STEP 25.0, AVG OF REPS.

IF

0 1000 2000300040005000600070008000900(310000

NO. OF PLANES

FIG. 4.

140 DANIEL ASIMOV

DE6REES 9O

80

70

60--

50--

40---

30--

20--

10--

0

AT RANDOM, DIM. 8, AVG OF REPS.

0 1000 2000 3000 40005000 6000 7000000g00C110000

FIG. 5.

NO. OF PLANES

DEGREES

PLAIN RANDOH WALK, DIM. 8, STEP 25.0, AVG OF REPS.

6O

5O

4O

3O

2O

10

1111--111I
0 lO00

NO, OF PLANES

FIG. 6.

THE GRAND TOUR 141

5. Some applications of grand tours. The most basic purpose to which one may
put a grand tour is to try to understand the shape of data. This understanding will
presumably be applied to interpreting the datadrawing real-world conclusions.

Unfortunately, we are a long way from the point where we can do this confidently.
The grand tour can be said to approximate the information content of a p-dimensional
scatterplot by a time-indexed family of two-dimensional images, i.e., a movie. In order
that human observers be able to interpret this kind of movie visually, a great deal of
experience viewing such movies would be advantageous.

Much is still to be learned when p 3, and the case p 4 already presents a major
challenge. Perhaps it would be of value to develop a taxonomy of scatterplots based
on extensive experience with actual data. This may lead to the use of certain adjectives
to describe the shapes of scatter-diagrams in greater than two dimensions. These
adjectives would ideally correspond to measurements which the computer could make
with great speed. An example of one such adjective-measurement pair might be the
idea of "clottedness" as defined in Friedman-Tukey [PP] as their figure of merit for
projection pursuit.

A useful genre of statistics may be compiled by applying a uniformly distributed
grand tour to a particular scatterplot S in R p. Let 0 be any measurement that can be
applied to two-dimensional scatterplots, such as their clottedness. Then, for each
2-plane Q in R, we may apply q, to the result of projecting S onto Q, obtaining
(’n’o(S)). As O ranges over all 2-planes in Rp (with the invariant measure), there is
a measure induced on the set of real numbers {(ro(S))}. This measure carries
significance especially when all coordinates represent identical units.

Statistics of this distribution of real numbers may be estimated by letting O run
through a long sequence Pi,’", PN of a uniformly distributed grand tour. To take,
for example, the mean m of this distribution, we may estimate rn via

1 N

E (,(s)),rtl =!
where 71" denotes orthogonal projection onto the 2-plane Pi. This is a deep fact,
provable by standard techniques in ergodic theory [Brei].

The advantages of using such measurements (and their corresponding adjectives)
include 1) they are easy to compute, and 2) they convey an intuitive content based
on the user’s knowledge of two-dimensional scatterplots.

Projection pursuit methods can be described as the study of the above paradigm
where the maximum or minimum of the set {O(ro(S))} is the statistic of interest.
These extreme values are usually sought via hill-climbing algorithms as in [PP].

One great mystery in projection pursuit is endemic to hill-climbing algorithms"
how can we be confident that a local maximum is in fact the absolute maximum (or
at least very near to it)? A grand tour which rapidly becomes dense in G2,p may be
used to help with this problem. Using, e.g., the torus method with large stepsize
(step= 25.0 will work), we may let each grand tour plane P, P2,"" be the starting
point for a hill-climbing procedure to maximize O(rro(S)) locally. When the local max
is found, a record is kept of that value maxi. One may then determine from the
distribution of {maxi} an estimate of the absolute max.

Perhaps a better procedure would be to use the torus method with an intermediate
stepsize, say step- 1.0. Then hill-climbing may be initiated from Pi whenever

0(7"J’i__l(S)) < t(,7l’i(S) >

142 DANIEL ASIMOV

(where rj again denotes orthogonal projection onto Pj). Once again the local max
values {maxi} may be stored and eventually used to estimate the absolute max.

Several films demonstrating the SLAC implementation of the grand tour have
been created by the author and in collaboration with A. Buja [AsiBu].

Appendix. We describe here a method for reducing the number of matrix multipli-
cations in the grand tour, torus method to 2p-3.

1. Let N 2p-3 and think of the coordinates xi of Tu as being indexed by all
pairsi, jwherei=l or 2, and2-<_j-pif i=l, but 3 -<_ j =< p if i=2.

2. Define a map f" T --> SO(p) via f(Xl,2, X2,p) RI,2(X1,2) "R2,p(X2,p).
3. Define a map F" T --> Gz,p via F po rof where r" SO(p) --> Vz,p and p" Vz,p ->

Gz,p are as in 3, part I above.
4. We shall prove the
THEOREM. F: TN -) Gz,p is a surjection.
Proof. Let P G2,p be an arbitrary 2-plane. We must find Xl,2,’", X2,p (real

numbers mod 27r) such that Rl,E(X1,2) R2,p(X2,p)(el, e2 p. Letting O,j =-xi,j, this
is equivalent to finding 0, (real numbers mod 27r) such that

R2,p(02,p) R12(01,2)P (el, e2).

Now pick any orthonormal basis v, w for P. First, we pick 01,2 SO as to satisfy

-sin 01,2/)1 "- cos 01,2/)2 0.

This assures that R1,2(01,2) annihilates the second component of/).

We similarly choose 01, so that

-sin Ol,jU + cos Ol,j/)

where /) the first component of

R 1,j--1 01,j-- 1) R 1,2(01,2)V

and v is the jth component (in fact, v=/)i for j-> 3). Thus, Rl,p(Ol,p) .oR1,2(01,2)
must have its 2nd through pth components equal to 0, and since it is a unit vector, it
must, in fact, be el.

We now similarly choose 02,3," , 02,p so the 3rd through pth components of w’
are annihilated by R2,3(02,3)," ,R2,p(02,p) in turn, where w’ denotes
Rl,p(Ol,p) .oR1,2(01,2)w. As a result, the vector R2,p(O2,p) "R1,2(01,2)w lies in
the plane (el, e2). But, since the orthogonal pair v, w is taken to an orthonormal pair
by the orthogonal transformation R2,p(O2,p) "R1,2(01,2) and since v is taken to el,

we must have that w is taken to e2. Thus, we have chosen 01,2,"’, 02,p so that
R2,p(O2,p) "oR1,2(01,2) takes the frame v,w to the frame el, e2 (more than we
needed!). As a result the plane P (v, w) is taken to (el, e2) as desired.

5. Since F" T - G2,p is a surjection, it now follows, just as in 3, part I, that a
dense curve a in TN will be taken by F to a dense curve Fo a in G2,p. We then just
let the Kth plane of our grand tour be defined as

PK F(a(K. STEP)), K 1, 2...

for some appropriate choice of stepsize STEP.

Acknowledgments. The author would like to thank Persi Diaconis, Jerry Fried-
man, Peter J. Huber, Ingram Olkin, Mathis Thoma, and above all, Andreas Buja, for
valuable conversations. He is also extremely grateful to Harriet Canfield for the lengthy
task of typing this paper.

THE GRAND TOUR 143

REFERENCES

[Andr] D.F. ANDREWS, Plots of high-dimensional data, Biometrics, 28 (1972), pp. 125-136.
[AsiBu] D. ASIMOV AND m. BUJA, Finding structure in unstructured data (a short film), Computation

Research Group, SLAC, 1983.
[Brei] L. BREIMAN, Probability, Addison-Wesley, Reading, MA, 1968.
[Chev] C. CHEVALLEY, Theory of Lie Groups, Princeton Univ. Press, Princeton, NJ, 1946.
[FFT] J. FRIEDMAN, M. A. FISHERKELLER AND J. TUKEY, PRIM-9: An interactive multidimensional

data display and analysis system, Proc. Fourth International Congress for Stereology, 1974.
[Hotel] H. HOTELLING, Relations between two sets of variates, Biometrika, 28 (1936), pp. 321-377.
[HWTN] G. H. HARDY AND E. M. WRIGHT, Theory of Numbers, Clarendon Press, Oxford, p. 381ff.
[MAGL] Y. GUIVARC’H, M. KEANE AND B. ROYNETTE, Marches al.atoires sur les groupes de Lie,

Springer-Verlag, New York, 1977.
[MCTP] F. JAMES, Monte Carlo Theory and Practice, CERN, 1980, p. 38.
[MMCM] V. ARNOLD, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1978,

pp. 148ff.
[PP] J. FRIEDMAN AND J. TUKEY, A projection pursuit algorithm for exploratory data analysis, IEEE

Trans. Comp., C-23 (1974), pp. 881-890.
[TT77] J. TUKEY AND P. TUKEY, Methods for direct and indirect graphic display for data sets in three

and more dimensions, Bell Laboratories, Murray Hill, NJ, 1977.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 1, January 1985

(C) 1985 Society for Industrial and Applied Mathematics
012

FAST HIGH ORDER ACCURATE SOLUTION OF LAPLACE’S EQUATION
ON IRREGULAR REGIONS*

ANITA MAYO

Abstract. Fast methods are developed for the numerical solution of Laplace’s equation on irregular
regions with smooth boundaries. The methods use an integral equation formulation in a small carefully
chosen region near the boundary, and use fast solvers to extend the solution to the rest of the region. Our
experiments show the method works well for problems on interior, multiconnected and exterior regions.
Moreover, we have found the computation of fourth order accurate solutions to be only slightly more
expensive than those of second order. In addition, since we use integral equations we find that when we

compute a harmonic function its conjugate can be computed at small additional cost.

Key words, fast, high order accurate solver, Poisson’s equation, integral equations, irregular regions

1. Introduction. In this paper we develop an efficient and high order accurate
numerical method for solving Laplace’s equation on general regions with smooth
boundaries. In the past fifteen years many methods have been developed for solving
the linear systems of equations that arise from discretizing separable elliptic equations
on regular regions, that is on regions that are rectangular with respect to some
coordinates. Specifically, methods are available for solving Poisson’s equation which
use techniques such as the fast Fourier transform and odd-even reduction (see Hockney
[8], Buneman [3]). There are others which use Fourier Toeplitz factorization (Fisher
et al. [7]). These methods are fast and require relatively low storage. For example,
one can obtain a second order accurate solution to Poisson’s equation on a square
with n equally spaced points in each direction using only err 2 log2 n operations and
/12+ Crt storage locations.

One means by which these techniques can be applied to irregular regions is through
the use of capacitance matrix methods. (See [4], [12], [13].) In this paper we develop
a different method for solving Laplace’s equation on such regions. It relies on the use
of an integral equation formulation of the problem and is meant to be used when the
solution is required at a large number of mesh points.

Because we use integral equation formulations our method has the advantage of
being particularly well suited to problems on exterior regions. It is also sufficiently
flexible to allow the use of extra data points on the boundary curve mesh where the
boundary data is more oscillatory or where the boundary has high curvature.

We note that by using an appropriate integral equation formulation and the proper
quadrature formula the solution of Laplace’s equation can be computed surprisingly
accurately at mesh points which aren’t too close to the boundary of the given region.
We use Fredholm integral equations of the second kind, and have found them relatively
inexpensive to solve accurately. This is primarily because we use a Nystrom method
with the trapezoid rule as the quadrature formula to discretize the integral equation,
and because the trapezoid rule is so accurate on periodic regions. Since the accuracy
of the solution of the integral equation is the same as the accuracy of the quadrature
formula, we need very few mesh points on the boundary curve. However, it would
still be quite expensive to compute the solution at many points by evaluating an integral.
Instead, we imbed the irregular region in a regular region and only compute the
solution by evaluating an integral at a small number of carefully chosen mesh points

* Received by the editors June 4, 1981, and in final revised form July 29, 1983.
t Department of Mathematics, University of California at Berkeley, Berkeley, California 94720.

1.44

FAST SOLUTION OF LAPLACE’S EQUATION 145

inside the irregular region. Then a fast Poisson solver is used to extend the solution
to the rest of the irregular region.

Since we use integral equations which can be solved so accurately, we have found
that other calculations such as computing the conjugate of a harmonic function or

computing a fourth order accurate solution can be done at small additional cost. By
using an appropriate integral equation formulation we have also been able to solve a

modified Dirichlet problem. This is a Dirichlet problem on a nonsimply connected

region where the solution is required to be the real part of single valued analytic
function. In this case the boundary values can be specified only up to an additive

constant on all but one of the boundary components. We also note that the methods
were all easily programmed. Moreover, additional problems on the same region are
less expensive to solve than the original calculation. This is because we solve the matrix

equation that arises in the solution of the integral equation by Gaussian elimination.
Since the matrix depends only on the geometry of the region, the same LU decomposi-
tion of the matrix can be used for subsequent calculations. Finally, we mention that

although the following have not yet been tested, this method can be easily used to

compute the solution on only a part of the region, to compute a higher order accurate

solution on just part of the region, and to compute derivatives of the solution directly.

2. The extension of the solution from mesh points near the boundary. First we
show how fast solvers can be used to extend the solution of an elliptic equation from
mesh points near the boundary of a region to those in the interior.

Suppose Lu =0 is a linear elliptic equation. Let Lh be an mth order accurate
discrete approximation to L which has a fast mth order accurate solver L on some
regular region R, and let D be a set of mesh points contained in R.

Let Sq be the set of mesh points used in forming (Lhu)q at the point (i, j)= (x, Yi).
For example, Sq would be the point (i,) and its four nearest neighbors if Lh A,,
the standard 5-point approximation to the Laplacian.

We define B {(i, j) Sq (’1D , and Sq fq DC }. Thus B is the set of mesh
points near the boundary of D where values from both inside and outside D are
needed to form Lh. In the case of A,, B would consist of 2 rings of points, one inside
and one outside D. For higher order accurate approximations B would be larger.

Let u(x, y) be a solution of Lu 0 on a region which includes all the mesh points
of D. We define the mesh function

u(xi, y), i, j) e D,
O, (i,j)Dc.

Consider the set of points S (_J Sq where the union is over (i, j) B. Let 0R be
the set of mesh points at the boundary of R, and suppose for the moment that we can
find Uq for (i, j) S and (i, j) OR. In the part of S which is outside of D this is trivial
since Uq 0. Assume that in S VI D an approximation to Uq can be found by using
integral equation methods. We note that S fq D contains a small number of mesh points
so this is much less expensive than evaluating U0- throughout D by integral equation
methods. Once we know Uq for all points of S we can compute (LhU)q at all points
of B. Then by using the fast solver L we can find the mesh function vq such that

(i,j)B,
(LhV)q

O, (i, j) R B,

vq=O, (i,j)OR.

146 ANITA MAYO

1

FIG.

It follows that vii satisfies the following equations:

(LhV)ij=O and(LhU)q=O(hm), (i,j)D-B,

and

(LhV)q (LhU)q, (i, j) e B,

(Lhtg)ii (Lhg)ij O, (i,j)R-D-B,

vii Uq, i, j) OR.

Therefore (Lhg)q-(Lhv)q--O(hm) at all points of R. Now L is an mth order
accurate solver, and consequently Uq- vii O(hm). It follows that { vq} will be an ruth
order accurate solution to Lu- 0 on D.

3. Second order accurate solution to Dirichlet problem. We consider the problem
Au=0 on an irregular domain 1 with boundary Ol)=(x(s), y(s)) Ca(O, 1) on which
u =f(s) is specified (s need not be arc length). We embed 1 (or part of it when 1) is
an exterior region) in some larger domain which has a fast second order accurate
Poisson solver. For example, we can let R be a square with a uniform mesh in each
direction. We then extend the function u to be 0 on 1) and discretize 01 with some
other mesh of width k.

Suppose we let D be the set of mesh points in f. Then by using an integral
equation formulation we could try to compute u at points of S fl D. The difficulty is
that integral equation formulations are not well suited to standard numerical methods
very close to the boundary for the following reason. The methods all require solving
an integral equation on the boundary, and then computing an integral at points in the
interior. The integral equations can be chosen to be Fredholm integral equations of
the second kind, and effective methods are available for solving them, but the integrals
have a kernel which becomes unbounded as the point at which the solution is to be
evaluated approaches the boundary.

FAST SOLUTION OF LAPLACE’S EQUATION 147

For example, we have used the formulation of the solution in terms of a double
layer density function:

(3.1) u(t)
1 I 0 log r(s, t)

Ons
tx(s) ds.

The integral equation for the density function/x is

1 01ogr(s,t)
(3.2) /x(t) +-- j x(s) ds=2f(s)"

Olls

see [5 p. 229]. Here r(s, t) is the distance between the point (x(s), y(s)) and the point
(x(t), y(t)).

Since the interval of integration is periodic and since the kernel

0log r(s, t) y’(s)(x(s)-x(t))-x’(s)(y(s)- y(t))
ORs (x(s) x(t)) 2 + (y(s) y(t)) 2

is bounded along the curve, (3.1) can be solved very accurately (see 4). However,
since the same kernel grows like 1/r as the point approaches the boundary point s
from the interior, it is expensive to compute the integral (3.1) with any accuracy. The
same type of difficulty occurs when other integral equation formulations are used.

Fortunately, this problem can be circumvented by choosing D to be smaller, so
that the points of D fq S are not too close to the boundary of f. Let B1 be the set of
irregular points in , i.e., the set of points in f which have neighboring mesh points
outside f. Let B2 be the set of points in f which have neighboring mesh points in
B1 but are not themselves in B1, and let B3 be the set of points in f which have
neighboring mesh points in B2, but which are not in B1 or B2. These points form
three nested sets of points in f. See Fig. 2.

Let D l)f3 B1 , that is, let D consist of all the mesh points in l) except those
in B1. Since B consists of points in D with neighbors outside D as well as points
exterior to D which have neighbors inside D, we have B B1 t_J B2.

We note that our definitions do not imply that the region is always six mesh widths
wide. In fact, if the region is narrow and the mesh is coarse, then points of B1 need

FIG. 2

148 ANITA MAYO

not have any neighboring mesh points in B2, and points of B2 need not have any
neighboring mesh points in B3. However, no special programming need be done in
these cases and the method is still effective.

Since they are at least at distance h away from 0f, we can compute the solution
accurately at points of S f-I D= B2U B3. (See 4.) Therefore we can compute an
accurate approximation to the discrete Laplacian A, at points of B and apply a fast
Poisson solver on R. This method, of course, does not provide the potential at points
of B1. However, since the potential is known on the boundary, once we obtain the
solution at the other points in the interior we can use various types of interpolation
procedures to obtain the solution there. In our experiments we used third order
Lagrange polynomials.

This method can clearly be extended to other types of regions. We need only find
a suitable integral equation formulation. For example, we next consider the case where
the region 1 is doubly connected and where the solution u is specified on the outer
boundary curve L0 and on the inner one L1. In this case we assume that the solution
has the form

1 f Ologr(s,t)
#(s) ds+Allog[(x(t)-x*)2+(y(t)-y*)2],

where (x*, y*) is any point inside the region bounded by L1. The density function
is the solution of the integral equation

1 f 010gr(s,t)
(t)+-g(s) ds=2u(t)+2A log[(x(t)-x*)e+(y(t)-y*)2],

(3.3)
on

In order to find the solution we must determine the coecient A1 of the logarithm
term as well as the density function g. To do this we first find the function 1 which
satisfies the integral equation

1 [0 log r(s, t)
l(t) +-- l(s) ds=2A1 log[(x(t)-x*)2+(y(t)-y*)2],

(3.4)

lf [logr(s,t)/xl(t) +-- /x l(s)
7r 3 rt

on LO,

log[(x(t)-x*)2+(y(t)- y*)2],+ 1| ds=2al

on L1,

and then we find the function/x2 which satisfies

log r(s, t)
ds 2u(t), on LO,

O rls
/x2(t) +-- /x2(s)

+1] ds =2u(t), onL1.
1 f [Ologr(s,t)/x2(t) +-- /x2(s)
7r O rt

The coefficient and density function can be computed in terms of/x 1 and tz2:

Al fcl tzl ds/IL1 ix2 ds,

and/x =/zl +A1/xl.

FAST SOLUTION OF LAPLACE’S EQUATION 149

Both equations (3.4) and (3.5) are Fredholm integral equations of the second
kind with bounded kernels. See [10], [11, p. 145-147]. Furthermore, the matrices
obtained from discretizing the left-hand sides of (3.4) and (3.5) are the same. Therefore
if the matrix equations that arise from using a Nystrom method are solved by Gaussian
elimination then the same LU decomposition can be used for both calculations.

In some applications it is necessary to solve a modified Dirichlet problem, that is
to find a function u that is harmonic on a multiconnected region if on each of the
curves forming the boundary of the region u is prescribed up to an additive constant.
More precisely, if {Lk} are the boundary curves, then u satisfies conditions of the form

u=f(t)+bk onLk.

Only one of the constants, say b0, may be specified arbitrarily. The others are
determined by the condition that u be the real part of an analytic function which is
single valued in the region.

In our experiments we considered an example where the region is doubly con-
nected. In that case one assumes that u has the form

1 1" 0log r(s, t)
j (s)u(t) - n On

ds.

It can be shown [11, p. 152] that tz will be the solution of (3.5) and that bo

z(s) ds.

0 and

We have also used the method to solve exterior Dirichlet problems. In order to
solve Au 0 in a finite region exterior to a simply connected domain we assume that
u has the form

l O log r(s, t) l
Ix(s) ds+ Ix(s) ds.

See [11, p. 140]. The dipole density is then the solution of the equation

/x(t)+l_I [O log r(s, t)]tx(s) +1 ds= 2u(t).
2 rr Ons

It is now necessary to compute at approximation to u by evaluating an integral
at the edge of the regular region as well as on the two exterior rings of mesh points
B2 and B3.

We note that without an integral equation formulation it is quite difficult to decide
how to specify data on the edge of the grid when solving an exterior problem.

4. Method of computation and estimate of accuracy.
4.1. Solution of the integral equation. We first solve the integral equation. In

order to do this we use the Nystrom method with the trapezoid rule with uniform
mesh width as the quadrature formula.

The integral equations which we solve are always Fredholm integral equations of
the second kind, that is equations of the form:

(4.1) tx(s)g(s, t) ds= f(s).

150 ANITA MAYO

The Nystrom method for (4.1) uses a quadrature formula to obtain the approximat-
ing equation:

(4.2) i,(s)+ g(s, ti)lx,(t)=f(s)
j=l

where t, 12,’’’, tn are the nodes.
Equation (4.2) is solved by reducing it to the equivalent linear system (see

[1, p. 13]):

(4.3) /z,(t) +E g(t, t)lz,(t)= f(t).

We have chosen to use the trapezoid rule with mesh points equally spaced with
respect to the boundary parameter as the quadrature formula in our experiments
because it is extremely accurate on periodic regions. We can see why this is so by
examining the Euler-Maclaurin summation formula. It says that if T(k) is the approxi-
mation to the integral of a function f cZr(a, b) using the trapezoid rule with uniform
mesh width k then

T(k)= f(x) dx+k2/12[f’(b)-f’(a)]-k4[f’"(b)-f’"(a)]
b

+ k6/30,240[f’ (b) -f’(a)] +... + 2rk2r[f2r-l(b)- f2r--1 (a)]+ 0(k2r+2),

Here c= (-1)r+lB/(2r)! where {B} are the Bernoulli numbers. See [6, p. 297].
If f(x) is periodic and infinitely differentiable then all the boundary terms vanish, and
so we see that the error approaches 0 faster than any power of the mesh width.

This fact guarantees the accuracy of the solution of (4.3). Specifically, Anselone
[1, p. 297] has proved a result that shows that if n is sufficiently large then the accuracy
of the solution of a Fredholm integral equation of the second kind with a unique
solution is the same as the accuracy of the quadrature formula. This explains the
unusually high accuracy we obtained when we solved problems on regions with smooth
boundaries.

4.2. Evaluation ot the integrals. Once the integral equation is solved we compute
the solution by evaluating integrals at the appropriate mesh points.

In most of our experiments we used the trapezoid rule with uniform mesh width
k to evaluate the integrals. The accuracy we can achieve when we have smooth data
depends on the relative sizes of k and h, the mesh widths on the curve and on the
regular region. Because the points at which we evaluate the integrals are no closer
than distance h from 012 and because of our regularity assumptions we have [g(s, t)[<
C/h. Similarly, since #(s), x(s), y(s) and their derivatives are bounded we have
I(di/dsi)g(s, t)l(S)l O(1/hi+’).

Therefore, if we choose k 0(h3/2), then by using only the first three terms in
the Euler-Maclaurin formula we see that the error we make in computing the integral
is in theory O(k4/h4) O(h2). Evidently we must choose k O(h7/4) to obtain third
order accuracy in h. This relationship has not been fully tested in experiments, but we
did of course find that when we decreased the ratio k h the accuracy we achieved in
computing the integrals increased, and that when the boundary data was more oscilla-
tory the accuracy decreased.

In any case, choosing k too small can be prohibitively expensive for solving the
integral equations. However, since we solve the integral equation so accurately it is

FAST SOLUTION OF LAPLACE’S EQUATION 151

easy to overcome this problem. In some examples we first solved the integral equation
with a relatively large mesh width and then interpolated the values of discrete density
function with a cubic spline Ix. Then we refined the mesh on the boundary and used
the trapezoid rule on the refined mesh to compute the solution at the interior points.

4.3. The ettect of the error due to forming the discrete Laplacian. Once we have
computed the approximation { Uq} to the potential function u on B2 and B3 we then
form the discrete Laplacian (A U)ij at points of B and apply the fast solver on R. In
this way we obtain values { vi} for the potential function throughout D. If the discrete
Laplacian of U is second order accurate, then v will also be second order accurate.
This follows from the standard error estimate using the maximum norm for the solution
of A, W/ fq on a rectangle R with sides a and b [14, p. 221]:

(4.4) max Wi[< 1/4(a e + be) rnax If/l + m0ax Wl.
R

Letting Wii uii-vii and noting that uii vii on OR the result follows. However
we could, it seems, lose two orders of accuracy by computing the discrete Laplacian.
Indeed, if Ig-uil- o(e) on B2 and B3, then we only have [A, U-A,vii[O(e/h2)
on those points. Then (4.4) only implies max luii-vi[O(e/h2).

Fortunately better bounds are possible. Certainly empirical evidence indicates
that this is so. In fact we found that there was little or no loss of accuracy due to
forming the discrete Laplacian and applying the fast solver. Part of the reason for this
is because the values of the computed discrete Laplacian can be less than second order
accurate only on B which is sparse in R.

In the appendix we present a result that shows why in many cases we can expect
small loss of accuracy due to forming the discrete Laplacian and applying the fast
solver, and that even in some bad cases we can only expect to lose one order of
accuracy. This result also indicates that in order to minimize the possible loss of
accuracy one should choose the boundary of the regular region so the average distance
of points in B to OR will be small.

5. The computation of the conjugate function. Because we use an integral
equation formulation to solve the Dirichlet problem the dipole density is available for
further calculations. Therefore, when we compute a harmonic function u on a region
we find it inexpensive to also compute its conjugate function.

If in particular if the region is simply connected then the conjugate function v(t)
can be expressed as

1 f 0 log r(s, t)
t) Ix(s) ds.

r .Ioa os

The kernel which occurs in the formula for v(t) is very similar to the kernel for
u(t). It turns out that if w(n) is the number of operations required for a fast solver,
p is the number of interior irregular mesh points, and q is the number of nodes on
0f then only an additional 8pq + w(n) operations are needed to find v in the interior.
If one wanted to compute v on 0f then the situation would be more difficult because
the kernel is unbounded there.

We note that the conjugate of a harmonic function as well as the function itself
are needed in certain methods for conformal mapping and in certain methods for
solving the biharmonic equation. We also note that since we can compute the conjugate
of a harmonic function that we can also solve Neumann problems. This is because by
integrating Neumann data we obtain Dirichlet data for the conjugate function.

152 ANITA MAYO

6. Fourth order accurate solver. One of the most important properties of this
method is that it can be made higher order accurate so inexpensively. This is true
primarily because the most time consuming part of the calculation, solving for the
dipole density can be done so accurately with relatively few boundary nodes.

In order to obtain a fourth order accurate solution we first decide on a fourth
order accurate approximation to the Laplacian. We again let D consist of all the points
in that are at least h away from

In our experiments we used the following fourth order accurate .approximation
to the Laplacian:

1

1
-16

Lh =1o/,,2 -16 60 -16
-16

1

When we use this approximation to the Laplacian the set S at which the discrete
Laplacian is not set equal to zero consists of four rings of mesh points. It follows that
we must evaluate integrals on four rings of points. Once we have done this we form
the discrete Laplacian and apply a fast solver which uses the same approximation to
the Laplacian. We note that in some cases it might be preferable to use a different
fourth order approximation to the Laplacian.

7. Program outline and operation count. In this section we give details of the
computational method and the operation counts.

We assume that the irregular boundary is given in parametric form 0--
(x(s), y(s)). Since we need to evaluate the curvature we assume that its first two
derivatives are also available. If they are not they may be approximated by using splines.

(i) We first solve the integral equation. This requires first generating the matrix
which is the discrete form of the integral operator. If there are q points on the boundary
and the trapezoid rule is the quadrature formula then Clq2 operations are required
to generate the matrix equation. Here an operation is defined to be one multiplication
and one addition and C1 is at most 10.

(ii) Next we perform the most expensive part of the calculation, the solution of
the matrix equation. Since the matrix is dense and nonsymmetric we have been solving
the equation by Gaussian elimination. The matrix is first factored into the product of
a lower and an upper triangular matrix. This requires 1/3q3 operations. If we are
performing many calculations on the same region then we can save these factors.
Therefore, each additional calculation requires only q2 operations. We note that since
the trapezoid rule is so accurate we can sometimes choose q less than p where p is
the number of interior irregular points. When this is so the matrix we have to invert
is relatively small. One might also consider iterative methods of solving the integral
equation.

(iii) After this we compute an approximation to the potential function on points
of B2 and B3. If forming the kernel function requires C operations per point,
computing u on a ring of K points will cost CKq operations. If we are doing many
calculations on the same region we may store the values of the kernel function.

(iv) Next we form the discrete Laplacian. This requires only O(n) operations.
(v) Finally we apply a fast solver. These typically require O(n2 log2 n) opera-

tions [8].

FAST SOLUTION OF LAPLACE’S EQUATION 153

8. Results of numerical experiments. In this section we report on results of
numerical experiments. All were carried out on the CDC6600 computer at the Courant
Institute except for the ones using a fourth order accurate solver which were performed
on a CDC7600 machine at the University of California at Berkeley. In all cases the
irregular region was embedded in the unit square, and the running times quoted include
the time needed to set up the problems, to generate the data and to find the irregular
mesh points. In the tables n is the number of mesh points in each direction across the
square, and q is the number of mesh points we used on the boundary curve.

In the first set of experiments we tested our second order accurate solver on the
problem Au =0 with Dirichlet data prescribed on various regions. The results are
summarized in Table 1. Table 2 gives the results of experiments where we computed
the conjugate as well as the function. In Table 3 we give the results of solving a
modified Dirichlet problem. (Recall a modified Dirichlet problem is a Dirichlet problem
on a nonsimply connected region where the solution is required to be the real part of
a single valued analytic function.) In these examples the integrals were evaluated using
the trapezoid rule and a Buneman solver written by Anthony Jameson was used as
the fast solver.

Our main purpose throughout has been to study the effectiveness of our method
of using the fast Poisson solver to extend values of the potential function obtained
near the boundary using the integral equation formulation. Since we knew that the
fast Poisson solver was second order accurate we therefore worked primarily with the
harmonic polynomial x2- y2 for which there is no discretization error. Any errors in
the final solution were therefore due to errors in computing the integrals and the
ensuing errors in the discrete Laplacian. We note that for this test function the maximum
error in the interior was often very close to the maximum error obtained in computing
u on the ring B2. This tends to confirm what was suggested in 4. When we used test
functions for which there is discretization error, the error in the interior was of course
larger.

We note that we were not primarily interested in the method of solving the integral
equation or in the method of computing the integrals. However, we naturally found
that when the data was more oscillatory we could not achieve the same degree of
accuracy in computing u on B2 as we could when u x2- y2. We also noted that
increasing n and not q did not improve the accuracy of the solution obtained after
applying the fast solver. In particular, the error in computing x2- y2 with n 64 and
q 100 was relatively large. This occurred because by making n so large some points
at which we had to evaluate an integral were quite close to the boundary. In order to
achieve greater accuracy we would have had to increase q much more. However
increasing q too much proved very expensive. It was for this reason that in the starred
examples we interpolated the solution of the integral equation with a cubic spline and
refined the mesh on the boundary by a factor of two before computing the integrals.
Of course this increased the running time somewhat. (Note the difference in running
time for computing x2- y2 with n 32, q =60 and for x4-6xZy2+ y4 with the same
values for n and q.)

We note that in all cases tested when the test function u was the same and we
had p and q equal then we achieved essentially the same accuracy on the ellipse, on
the nonsimply connected region, and on the limacon which is nonconvex. However,
if we had used test regions which have regions of high curvature of corners then we
could not have solved the integral equation as accurately without making q much larger.

The results listed in Table 2 show that for small additional cost we can compute
the conjugate of a harmonic function as well as the function itself. Moreover, we

154 ANITA MAYO

achieved essentially the same degree of accuracy in computing the conjugate. We note
that the running time would have been approximately doubled if we had computed
the solution on the boundary as well since that requires integrating a logarithmic
singularity.

In Table 4 we give the results of experiments using our fourth order method. The
results do demonstrate that greater accuracy can be achieved by using a higher order
accurate approximation to the Laplacian. However in order to achieve this increased
accuracy one must compute the integrals much more accurately.

TABLE
Second order accurate solver.

Max. error in Max. error in Max. error in CPU time

Boundary data n q U on B2 U on B3 D (sec.)

Region: Interior of ellipse centered at (.5, .5) with semiaxes .3 and .35

x 6x.y:Z + y4

16
16
16

*32
32
64
"16
*32
*64sin 7x cosh 7y

50

80
100
60
60
70

.58 10-4

.13 10-4

.27 10-6

.12 10-5

.37 10-4

.43 10-3

.93 10-6

90 10-6

.93 10-4

.17 10-7

.14" 10-.44. 10-13

.14’ 10-6

.41" 10-7

.53" 10-4

.43" 10-7

74. 10-6

.13" 10-4

.37" 10-5

.12" 10-5

.16" 10-6

.17 10-5

.50 10-4

.44 10-3

.58 10-3

.13" 10-3

.34" 10-3

.323

.495
1.019
.590

1.126
2.76
.897

1.21
1.91

Region: Interior region bounded by ellipse with semiaxes .3 and .35, and circle of radius .2, both centered
at (.5, .5)

1321120 .33.10-3 .58.10-6 .58- 10-3 3.21x2- y

Region: .2 cos 0 + .25 (nonconvex)

x:’-y:’ 16 60 .21.10-4 .18. 10-8 .43.10-5 .521
32 60 .28. 10-3 .32.10-5 .14.10-3 .610

Region: Exterior of circle of radius .2 centered at (.5, .5)

6(x-.5)
(X--.5)2+ (y--.5)

32 8O .24 10-3 .59.10-7 .10.10-3 1.31

TABLE 2
Computation of harmonic function and conjugate. Test function, u x2- y2.

Region

3-.35 ellipse
r=.15 cos 0+.3

32
16

Max. error in u

q on D

60 .12.10-5

60 .21.10-4

Max. error in
conjugate on D

CPU time
(sec.)

.648

.677

FAST SOLUTION OF LAPLACE’S EQUATION 155

TABLE 3

Modified Dirichlet problem.

Boundary data

X y2

Interior region bounded by ellipse with semiaxes .3 and .35 and circle of
radius .2

Max. error in u CPU time
n q on D (sec.)

32 120 .44.10-3 2.78

TABLE 4
Fourth order accurate solver.

Dirichlet data given on ellipse with semiaxes .3 and .35

Boundary data n
Max. error Max. error Max. error Max. error Max. error CPU time

q on ring on ring 2 on ring 3 on ring 4 in D (sec.)

X4_6xZy2+y4 *32 80 .93" 10.6 .43" 10.7 .35" 10-11 .50" 10-12 .50’ 10-6 .356
sin 7x cosh 7y *32 60 .93.10-4 .13" 10-4 .17’ 10-7 .76.10-12 .41" 10-4 .380

9. Other extensions. In this section we report on possible extensions of this
method.

First, we need not embed the entire irregular region in the same larger regular
region. Although we must solve the integral equation on the entire boundary, we can
afterwards embed different parts of the irregular region in different regular regions.

We also expect that our method could be applied to three-dimensional and
inhomogeneous problems. Also, this method can be extended to other linear elliptic
equations in other coordinates when a fundamental solution is known and a fast solver
is possible.

Finally we mention that since we seem to be able to evaluate the density so
accurately, then we should be able to evaluate the derivative of a potential function
directly. By integrating by parts we obtain formulas for the derivatives in which the
growth of the kernel is no greater than the growth of the kernel in the formula for
the function itself. Indeed, since

1 I Ix(s)
dsu(t) Re

2ri as-t
(see [11, p. 138]) we have

1 Io d Ix(s)
Ux(t)=Re 2rr--t n dt (s-t)

ds

=Re 2r--- a (s-t)2 dt

l f, Ix’(s) [O log r(s, t)
2r a x’(s)Z+ y’(s)2

x’(s)
0log r(s, t)

Os
y’(s) ds.

156 ANITA MAYO

Appendix. We now prove a result that indicates why in many cases we can expect
little loss of accuracy due to forming the discrete five point Laplacian of Uq and
applying the fast solver, and show that in no case should more than one order of
accuracy be lost. We also show that the loss of accuracy can be decreased by choosing
the boundary of the embedding region R to be close to the boundary of the irregular
region.

We first show that it is enough to consider the effect of the error in computing
A on B3 alone.

DEFINITION. Let Sq be a mesh function defined on R. We say S is the discrete
harmonic extension of Sq on B2 if

S,jj 0,

(i,j)B2,
(i,j)eD-B,
(i,j)R-D.

CLAIM. If U*ij is the discrete harmonic extension of Uq on B2 and we apply our
procedure with Uq U on B3, then vii U on R.

This follows because (see 2)

(A5hV)ij--O on D-B,
(AU*)q (Av)q on B Ul U B2 by construction,

(Av),j=O onR-(BUD).

Letting Wq U- uq and using the discrete maximum principle for A, [9, p. 447]
we see that U- q. This shows that if the values Uq on B2 U B3 are second order
accurate, and if on B3, Uq is the discrete harmonic extension of U on B2, then v will
be second order accurate throughout R. Therefore, if]U/j-uq] -O(h2) on B2 U B3
then it suffices to consider the effect of an error of order h2 on B3 alone. We now
prove a result that indicates that the closer points of B3 are to the boundary of R,
then the smaller this effect is. We first note that the solution of (A, W)q- fq with
wq =0 on OR can be expressed as Wq =-h2 Gh(i, t, j, j’) where 0 -< Gh(i, i’, j, j’) [2].
Therefore, in the worst case the errors have the same sign.

Now let Rk be the kth ring of mesh points in R where the rings are nested and
start at the boundary. For example, R0 OR, and R1 consists of mesh points which
have neighboring mesh points in OR.

Let Ek(i, j) be the solution of

AShE(i, j) {, (i, j) R,
elsewhere,

Ek i, j) O, i, j) OR.

LEMMA. kh2
__
Ek (i, j) <= 0 for (i, j) R.

Proof. By the maximum principle Ek(i, j)<--O. Let R k* be the four corner points
of Rk. Consider the mesh function Fk(i, j) defined as the solution of

OnRk-R*k,
AShFk(i,j) 2 onR*, 1-<_A-<_k,

0 elsewhere,

Fk (i, j) 0 on OR.

FAST SOLUTION OF LAPLACE’S EQUATION 157

Fk can be found exactly:

-mh
2

Fk _kh2

onRm, l_-<m-<k-1,
elsewhere.

We note AhEk<--AShFk inside R and Fk(i,j)=Ek(i,j) on OR. It follows that
Fk i, j) <-- Ek i, j) and so kh2 <_ Ek i, j).

This shows that if B3- Rk and if the error made in computing the integral on Rk
was in absolute value less than e, then the effect of that error in the interior would be
less than k e h2. Suppose now that m is the average distance of the points of B3 from
the boundary of R. One can see that as m increases the error due to forming the
Laplacian and using the fast solver grows like mh2. Of course, in the worst case m is
close to 1/h, and so one order of accuracy is lost. Therefore one must compute the
solution to higher accuracy on both B2 and B3. But we note that our estimate is very
pessimistic since in general since the errors in the discrete Laplacian will have different
signs and some of their effects will tend to cancel.

Acknowledgments. The author would like to thank Professor Charles Peskin for
suggesting this problem and for his help during its completion. The author has also
benefitted from discussions with Professor Olof Widlund.

REFERENCES

[1] P. M. ANSELONE, Collectively Compact Operator Approximation Theory, Prentice-Hall, Englewood
Cliffs, NJ, 1971.

[2] J. H. BRAMBLE, On the convergence of difference approximations to weak solutions of Dirichlet’s
problem, Numer. Math., 13 (1969), pp. 101-111.

[3] O. BUNEMAN, A compact non-iterative Poisson solver, Rep. SUIPR-294, Institute for Plasma Research,
Stanford Univ., Stanford, CA, 1969.

[4] B. L. BUZBEE, F. W. DORR, J. A. GEORGE AND G. H. GOLUB, The direct solution of the discrete
Poisson equation on irregular domains, SIAM J. Numer. Anal., 8 (1971), pp. 722-736.

[5] R. COURANT AND D. HILBERT, Methods of Mathematical Physics, Interscience, New York, 1953.
[6] G. DAHLQUIST AND A. BJORCK, Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1974.
[7] D. FISHER, G. GOLUB, O. HALD, C. LEIVA AND O. WIDLUND, On Fourier-Toeplitz methods for

separable elliptic problems, Math. Comp., 28 (1974), pp. 349-368.
[8] R. W. HOCKNEY, The potential calculation and some applications, Methods in Computational Physics,

vol. 9, Academic Press, New York, 1970, pp. 135-211.
[9] E. ISAACSON AND H. KELLER, Analysis of Numerical Methods, John Wiley, New York, 1966.

[10] S. G. MIKHLIN, Dirichlet’s problem for regions with several closed boundaries, Dokl. Akad. Nauk,
SSSR, no. 7, 1934. (In Russian.)

[11], Integral Equations and Their Applications, Pergamon, New York, 1957.
[12] D. O’LEARY AND O. WIDLUND, Capacitance matrix methods for the Helmholtz equation on general

three dimensional regions, Math. Comp., 33 (1979), pp. 849-879.
[13] W. PROSKUROWSKI AND O. WIDLUND, On the numerical solution of Helmholtz’s equation by the

capacitance matrix method, Math. Comp. 30 (1976), pp. 433-468.
[14] G. SMITH, Numerical Solution of Partial Differential Equations: Finite Difference Methods, Oxford

Univ. Press, Oxford, 1978.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 1, January 1985

1985 Society for Industrial and Applied Mathematics

013

NUMERICAL ANALYSIS OF SPECTRAL PROPERTIES OF
COUPLED OSCILLATOR SCHRDINGER OPERATORS III.

THE DOUBLING ALGORITHM*

D. ISAACSON’, E. L. ISAACSON:]:, D. MARCHESIN AND P. J. PAES-LEME

Abstract. We describe a recursive numerical algorithm for the computation of the lowest eigenvalues
of Schr6dinger energy operators involving coupled anharmonic oscillators. Given eigenpairs for N oscillators,
the algorithm computes eigenpairs for 2N oscillators. We compute 48 of the eigenvalues of 4, 8 and 16
coupled oscillators. For large numbers of oscillators, iterative methods are used, such as block-Lanczos and
inverse iteration via pre-conditioned SYMMLO.

Key words. Schr6dinger operators, eigenvalues of coupled anharmonic oscillators, doubling algorithm,
block-Lanczos, pre-conditioned SYMMLQ

1. Introduction. We describe in detail a numerical method for approximating the
lowest eigenvalues and eigenfunctions of coupled anharmonic oscillator Schr6dinger
operators. We have used it to compute up to 48 eigenvalues for 2, 4, 8 and 16 coupled
oscillators. The method is uniformly accurate for all values of the parameters describing
the anharmonic oscillators. It can be extended to compute eigenvalues, eigenfunctions
and other quantities of physical interest for other coupled systems.

The use of numerical methods for computing spectral properties of coupled
anharmonic oscillators goes back at least as far as [17]. Much of the recent literature
has been devoted to approximating the lowest eigenvalue by constructing a trial function
for the corresponding eigenfunction of the N oscillator operator, especially as N tends
to infinity. Discussions of these methods may be found in [15], [2], [11]. For two
coupled anharmonic oscillators the only computations of spectral properties of which
we are aware are in [1] and [6]. The algorithm that we use is different from any that
have appeared in the literature. It can also be used to give approximations to the
infinite oscillator limit. However, this paper is devoted to a description of the algorithm
and of the results obtained for a few oscillators.

First we describe briefly how these operators approximate 4 quantum field theory
energy operators.

One of the gimplest classical field equations that is relativistically covariant and
has nontrivial scattering is ff)tt--(xx 3. aqb + 2bb 3 =0. The energy of a field satisfying
this equation is given by its classical Hamiltonian

Hc ffg ffg (tt2+b2x+at2+bt4) dx.

Classically a measurement of the total energy of this field can yield any value in the
range of Hcl. According to quantum mechanics, a measurement of the total energy of

* Received by the editors July 28, 1982, and in final revised form July 4, 1983.
t Rensselaer Polytechnic Institute, Troy, New York 12181. The research of this author was supported

in part by National Science Foundation grants MCS-80-02938 and INT-79207728.
University of Wyoming, Laramie, Wyoming 82071. The research of this author was supported in part

by National Science Foundation grant PHY-80-09179 and NSF Postdoctoral Fellowship SPI-8009169 while
he was at Rockefeller University, New York, New York.

Pontiffcia Universidade Cat61ica do Rio de Janeiro, Brazil. The research of this author was supported
in part by National Science Foundation grant PHY-80-09179.

Pontificia Universidade Cat61ica do Rio de Janeiro, Gavea, Brazil CEP 22453. The research of this
author was supported in part by CNPq/National Science Foundation grant 0310.1465/80.

158

NUMERICAL ANALYSIS OF SCHRIDINGER OPERATORS 159

a physical system can only yield a value in the spectrum of a certain self-adjoint
operator, the quantum mechanical Hamiltonian associated with the system. For con-
servative mechanical systems with finitely many degrees of freedom there is a recipe
(called quantization) for finding this quantum mechanical Hamiltonian. It consists of
replacing the momentum variables in the classical Hamiltonian function by the operator
-i 0/04. Thus, we approximate Hcl(d, 4’t) by a Hamiltonian of a system with finitely
many degrees of freedom. Then we apply the quantization recipe and arrive at the
coupled anharmonic oscillator Schr6dinger operators whose eigenvalues are of physical
interest.

Specifically, choose 1>0, N>0 and let 6=I/N, xj=-I/2+j& qj=dp(x), p=
bt(x) for j 0, 1, 2,. , N. Then Hc(4, bt) may be approximated by the Riemann sum

6 N

{p+aq+bq+(q+l-qj)2/62}.
2 =o

Note that we use a one-sided difference as opposed to a central one. Our algorithm,
described in 3, is recursive precisely because the cross terms in the formula above
involve only consecutive indices. We consider mainly two types of boundary conditions:
Dirichlet (q0= qN/l =0) and periodic (q0= qN/). In either case we obtain a classical
N-anharmonic oscillator Hamiltonian of the form

where
2j=

4V(q) a qy + b q,

a’-(a+2/6)& b’=bS, d=/

and the last summation goes from 1 to N-1 in the Dirichlet case, and from 1 to N
in the periodic case. For simplicity we write all of our formulas for the Dirichlet case.

Following the quantization recipe, p is replaced by -i /Oqj, yielding the N-
oscillator Schr6dinger operator

6-25_2 + V(q) d qq+.(1.1) HU)= H()(q" q)
Oqj=l j=l

The eigenvalues of H() approximate the total energy of the system described classically
by Hc(, G). (A more detailed physical description and derivation are given in [4].)

Our algorithm reduces the eigenvalue problem for H() to the diagonalization of
a sparse operator. For a small number of oscillators, a direct method can be used to

perform the diagonalization. Otherwise, iterative methods are used, e.g., block-Lanczos
and inverse iteration via pre-conditioned SYMMLQ.,

Some relevant properties of the Hamiltonian H() are listed in 2. In 3 we
describe the doubling algorithm we introduced in [4]-[6] for the purpose of numerically
approximating the eigenpairs of H() when N 2 and L 0, 1, 2, 3,. . We discuss
the implementation of the algorithm in 4. Section 5 contains the results. Useful
formulae for the Dirichlet and periodic Hamiltonians are found in the Appendices
of [9].

2. Properties of the N-oscillator Hamiltonian. We describe the analytical proper-
ties of the Hamiltonian which motivate our method.

The closure of the restriction of Hu) to the space of C rapidly decreasing
functions is a self-adjoint operator on L2(Ru). HN) is bounded from below and has

160 D. ISAACSON, E. L. ISAACSON, D. MARCHESIN AND P. J. PAES-LEME

a compact resolvent. H(N) has a complete orthonormal set of real eigenfunctions
with eigenvalues E}rq). Thus

._. -- j=1,2,3,’’"

and

All of the eigenfunctions are C and rapidly decreasing. We have

H(2N) A(2) + B(2N)

where

and

A(2>(_l, _2) H(>(_I) +H>(_2)

B2v(_l, _2)=-dqql,+,.

(Here _1 denotes the set of variables ql,"’, qv and _2 denotes the set of variables
qv/l,"" ", q2u.) The term B2) is relatively bounded with respect to A2v in the
sense of Kato (see [10, Chap. 4, 1, Section 1]). In fact a simple computation shows
that

:t:B(2N) /zA(2N) + z(I,z)L

When b’ > 0 in V(q.),/x > 0 may be chosen as small as we like. This and higher order
estimates involving powers of B(2N) and A(2v) yield a rapid convergence of the
eigenfunctions of H(2v) when expressed in terms of the eigenfunctions of A(2v). The
convergence has been proven to be faster than any polynomial and uniform away from
b 0 for two oscillators [6]. Thus, the eigenfunctions of A(2N) are a good choice for
a basis in which to represent H(2s).

The eigenfunctions of A(2N) are v)(_l))v)(_2); i.e., they are the tensor products
of the eigenfunctions of H(N)(_I) with those of H()(_2). Moreover, any function

L2(R2s) may be represented with respect to the basis {s)(1)))(_2)} by a matrix
C /2(N N); i.e., the map

is unitary where

(2.1)

c [co]

(All indices range over 1, 2,... unless stated otherwise.)
The matrix eigenvalue problem corresponding to

H(zN)xI Exit

E (N)C + CE(N)- dX()CY(N) EC.
(N) x(N) y(N)Here E() is the diagonal matrix with entries Ej and are the matrices

representing multiplication in L2(R) by q, ql respectively. That is,

(2.2)
0 (1), qrq

YI)- <I)(]),

NUMERICAL ANALYSIS OF SCHRGDINGER OPERATORS 161

(Here (., .) is the standard inner product on L2(NN).) The formula for the matrix
eigenproblem results from the formula for applying the operator H(2v) to a matrix C:

(2.3) C - E()C + CE(v)- dX()CY();
(A derivation of this formula is presented in [9].)

Formula (2.3) shows that it is easy to apply the 2N-oscillator Hamiltonian given
the N-oscillator information E(N), X(), Y(s). This allows us to compute the eigen-
values E}2) and matrix representations C of the corresponding eigenfunctions }2rq)
of H(2N). From these it is possible to compute X(2N), y(2N) through the formulae

(2.4)
XIu Cx(rq)) C’
ylu C Y(C)

where A. B =-,,, AmnBmn The first equation follows from

X}N) I/’}2N)(I _2), qZN’tI)’}ZN)(l 2_))

Y C (_l)*U)(_2), qzuq(U)(1)U)(2_))Crs
m, r/, r

E cm,(,(1), *(!))(,1,,(2_), q,,,,I,sl(2_))crs

E x(,,sc.,,, c.
ml’l,

The formula for y(ZU) is proved similarly.
Formulae (2.3), (2.4) are the basic algebraic motivation of the doubling algorithm:

information for the 2N-oscillator Hamiltonian can be computed from similar informa-
tion for the N-oscillator Hamiltonian.

To reduce computational costs, it is advantageous to diagonalize H(u) in as many
invariant subspaces as possible. Therefore we look for all of the symmetries in the
problem which are compatible with the doubling procedure.

Define the operators R (u) and S(u) on L2(ItN) by

R(l)(q, ",qu) =- (qu, ",q) and
(2.5)

s " ,i, q q =- ,i, q q,
these operators are both unitary and self-adjoint. Furthermore, H(u), R (u) and S
all commute. Thus, the eigenfunctions of H(u) may be chosen to be eigenfunctions of
both R (u) and S(u). With this choice

s, s}.]

where r-(u), su)=. 1. Therefore, it suffices to compute the eigenfunctions of H(u) in
each of the four invariant subspaces"

(N)++ { G Lz(N)" R(N) , s(N) },

(2.6)
){e Lz(NU) R(U) , S(U) =-},

O(Z{et() R(=-, S(O },

(){e Lz(u) R(U) -, S(U) =-}.

We remark that]u)eO(u). i.e. ru) su) +1

162 D. ISAACSON, E. L. ISAACSON, D. MARCHESIN AND P. J. PAES-LEME

3. The algorithm. The algorithm begins with an initialization in which the 1-
oscillator information is determined. This is followed repeatedly by a sequence of two
steps in which the 2N-oscillator information is computed from the N-oscillator informa-
tion. At the beginning of each two-step sequence, a truncation number K is chosen
to determine the size of the matrix eigenproblem to be solved.

Initialization. Set N 1. Find the eigenvalues and eigenfunctions of the one
oscillator Hamiltonian, namely

-Oq2 + V(ql) xI/}1)-- }l)xI}l),] 1, 2, 3," .
Also compute the matrices X(), Y() given by

X]= Y]= f *}l)(ql)ql*})(ql) dql.

In the present paper we are not concerned with the method for carrying out this
initialization. Instead, we refer the reader to [5].

(S) and the K x KStep 1 Choose the truncation size K. Given K eigenvalues
matrices Xs, Ys for N-oscillators, compute the eigenvalues and the eigenvectors
of the Hamiltonian of 2N coupled oscillators. The eigenvectors are represented by
matrices (2.1). The Hamiltonian acts on matrices by

C ---> E)C + CE(N)- dX(N)CY(N).

(See (2.3).) The lowest eigendata in each of the four invariant subspaces (2.6) is
computed by one of two methods.

a) Compute the matrix representation of H2u) in each subspace through formula
(2.3) and diagonalize it directly.

b) Use an iterative method in each subspace based on repeated applications of
H2u) through formula (2.3). It is shown in [9] that formula (2.3) has a simple
counterpart in each subspace.

The direct and iterative methods that we have used are described in 4.
Step 2. Given the matrix representation C, j 1, 2,... of the eigenfunctions of

H2u computed in Step 1, as well as the matrices Xu) and yu), compute the matrices
X2u) and y2U) defined by (2.2) using the formulae (2.4):

xIN) (cix(N)) cj ylN) C (yU)Cj).

Formulae which generalize (2.4) are provenin [9]. To achieve a reduction in computing
cost, we replace the matrix by the matrix X through a simple change of variable.
Before performing the computations in Step 2 the eigendata from Step 1 is reordered.
This is accomplished by interlacing the eigenpairs from the four subspaces (2.6).

Step 3. Double N and go back to Step 1.
The truncation size K is chosen in such a way that the error in the lowest eigendata

for H2u is small enough. Obviously, K cannot be larger than the number of eigenpairs
computed in the previous doubling.

We remark that the eigenfunctions 2u(_l, _2) of H(2u are not calculated. Instead,
their matrix representations with respect to the basis {N(I_)N)(2_)} are computed.
To recover the true eigenfunction it is necessary to perform a recursive procedure
using all of the intermediate matrix representations starting with the 1-oscillator
eigenfunctions. Nevertheless, our experience indicates that to compute quantities of
physical interest it is not necessary to recover the true eigenfunctions.

NUMERICAL ANALYSIS OF SCHRODINGER OPERATORS 163

Now we summarize the properties of the coupled system which are important for
the doubling algorithm.

First, an inductive formula holds such as

H2U)(!, _2) Hu)(_I + H)(_2) dOU)(!) 0)(_2).
In general Q(N)(! is an operator in the variables (ql,""", qN) and Q(N)(2_) the same
operator in the variables (q2N,’’’, qN+l). Moreover, the matrix representation of
Q2N)(I_, 2_) should be easily computable from that of QN)(I_) and the eigendata of
H(2N). (In our case, QN)(I_)--qN, and the formula for Q2N)(I_, 2_) is given in (2.4).)
These are the essential features of the problem for our algorithm.

Second, the operators R (2N), S(2N) and H(2N) commute. In addition, if , are
two functions in any of the invariant subspaces (not necessarily the same one), then

R2N)I,(!)(_2) (RN)(I_))(RN)ai,(2_)),

s’(!),(_2 (s(!))(s’,I,(_2)).
These facts let us work in each invariant subspace with representations of H(2N)

truncated to finite size, as proved in [9].
Each eigenvalue and eigenvector obtained for 2 oscillators converges faster than

any inverse power of K, as proven in [6]. A similar result holds for N oscillators.

4. Implementation of the algorithm. A simple-minded version of the algorithm
is based on the matrix representation of the operator (2.3) acting on the space spanned
by the truncated tensor product basis

(N) 2 :(4.1) {N)(_I)j (_)}i,j=l"

This is a KZ-dimensional basis leading to a Kzx K2 matrix to be diagonalized.
Taking advantage of the symmetries (2.5), the operator can be represented in

each of the four subspaces (2.6). Since each truncated subspace has dimension K2/4
(approximately), and since the cost of diagonalizing an n x n matrix via standard
methods is proportional to n 3, this restriction reduces the computing time by a factor
of sixteen. Thus, it is more efficient to compute the lowest K’ eigenpairs in each
subspace than to compute the lowest 4K’ eigenpairs overall.

The formula (2.3) has a simple counterpart in each subspace. These formulae are
employed to generate matrices which are diagonalized using EISPACK routines [19].
On the CDC 6600 and the IBM 370/165, this procedure becomes impractical when
K is greater than 20 because of both computer time and memory limitations.

Recalling (2.3), we note that the cost of applying this formula to a vector in the
subspace (4.1) is 2(K2+K3) multiplications, even though the operator is represented
in this subspace by a Kzx K2 matrix. For K large this yields an effective sparseness
of 2/K, which can be exploited through the usage of iterative diagonalization methods
based directly on (2.3).

We have employed two methods to diagonalize the operator H(2N) which are
based on repeated applications of (2.3).

The Lanczos method finds tridiagonal matrices which are unitarily equivalent to
the operator H(2N) [22], [13], [16]. For our applications the main disadvantage of this
method is that the convergence is slow for eigenvalues in clusters and is not guaranteed
for degenerate eigenvalues. There are other disadvantages as well, most of which are
solved by the block-Lanczos method [21], [14]. We use Underwood’s version.

We note that the spectrum of H(2N) is sparse at the lower end and concentrated
everywhere else (see the figures). Thus the block-Lanczos procedure is adequate to

164 D. ISAACSON, E. L. ISAACSON, D. MARCHESIN AND P. J. PAES-LEME

compute the lower part of the spectrum, which is exactly our aim. However, a severe
limitation of the block-Lanczos method did arise. Even though the accuracy of the
extreme eigenpairs was high, the accuracy of the interior eigenpairs could not be made
satisfactory by increasing the number of iterations. This problem was obviated through
the use of the second method which we now describe.

Suppose we are given a sufficiently good approximate value , of a nondegenerate
eigenvalue of the operator H2n. The corresponding eigenpair can be computed using
first the inverse power method and then inverse iteration [23], [22]. Each step in this
procedure involves solving the liner system

Pun Un-1

where P H(2N)- AL
To solve these systems we take advantage of the effective sparseness of H(2N) by

using a method which requires only a procedure that applies the operator to a vector.
For an indefinite symmetric system Pu d a good iterative scheme is SYMMLQ [12],
[20]. This algorithm is very economical in its memory requirements since it needs
storage for only a few vectors. The convergence is faster the closer P is to a multiple
of the identity. Often there is an approximation O of P which is symmetric, positive
definite and computationally inexpensive to invert. In this case the original system is
replaced by ((-l/2p(-l/Z)l)=(-l/Zd leading to a preconditioned SYMMLQ
algorithm, each step of which applies P and O-1 once.

We determine an initial approximate eigenvalue A by the block-Lanczos procedure.
As a preconditioning for SYMMLQ we use the absolute value of diag (H(ZN)--AI),
namely the operator -(4.2) Oi(1)Oj(2) IEIN +._.j

This preconditioning is about 50% more effective than the one used in [20] where A
is replaced by zero in (4.2). Moreover, it makes SYMMLQ several times faster. The
importance of the preconditioning is described in [18], [20].

The spectra for 2 and 4 oscillators were computed using EISPACK. For 8 and
16 oscillators, the block-Lanczos method was employed. For 16 oscillators, the data
from some intermediate steps were used to provide initial approximations for the
preconditioned SYMMLQ algorithm. We used an 8-byte version of Underwood’s code
with 16-byte accumulators. The block tridiagonal matrix found by the procedure was
60 60 with block size 4. The tolerance was set to 10-6 for the lowest eigenvalue. The
CPU time required to find the spectrum in the doubling from 2 to 4 oscillators was
46 seconds using EISPACK. In the doubling from 4 to 8 the time was 309 seconds
using block-Lanczos and 50 seconds using preconditioned SYMMLQ. The times
mentioned above refer to an IBM370/165.

The entire procedure gives satisfactory results as long as the eigenvalues do not
become almost degenerate. The spectrum becomes continuous as the number of
doublings is increased [4]. Our computations yield physically interesting results before
breaking down [8].

5. Results. Our main results are presented in the figures. The one oscillator
Hamiltonian is

(5.1) H(1)(ql) -SZ_ + 3 tog q2 + gq
Oql

where to is a constant which depends on the computation under consideration. We

NUMERICAL ANALYSIS OF SCHRIDINGER OPERATORS 165

use g as a parameter in all our figures. Plots for the eigenvalues of H(1) and H(2) may
be found in [5] and [6].

The lowest 12 eigenvalues of H(4) in each invariant subspace are all shown in Fig.
5.1. Similar quantities for H(8) and H(16) are shown in Figs. 5.2, 5.3.

In each figure all eigenvalues are shifted so that the lowest eigenvalue of the
corresponding Hamiltonian is zero (vacuum renormalization). The constant o in (5.1)
is chosen in such a way that the slope of the second lowest eigenvalue is zero at g 0
(Wick ordering).

We note that the gap between the lowest two eigenvalues approximates the mass
of the lightest particle in the g’b4"2 quantum field theory. The other eigenvalues
approximate the energies of higher momentum or many particle states.

We are unaware of any other method which is accurate for g in the intermediate
region (0<< g <(oo). This is especially true for the critical region in which the mass (i.e.,
the difference between the second and the first eigenvalues) tends to zero as N increases.

Plots for the periodic Hamiltonian as well as a discussion of the physical significance
of these computations may be found in [8].

For g 0 (free-field) the exact eigenvalues for any number of oscillators may be
computed explicitly. They are

jE nj + /xj, n 0, 1, 2,-

where

jrr) 1/2

t*, 1 + 4 sin2 2(] 1)

FIG. 5.1. Spectrum of H(4) as a function of g. We show the 12 lowest eigenvalues in each of the four
invariant subspace.

166 D. ISAACSON, E. L. ISAACSON, D. MARCHESIN AND P. J. PAES-LEME

o -;o o-’;.;o ,.,;o oToo ,2:oo ’,,:oo ,8:00 o:oo ,Joo

FIG. 5.2. Spectrum of H(8) shown as in Fig. 5.1.

FIG. 5.3. Spectrum of H(16) shown as in Fig. 5.1.

NUMERICAL ANALYSIS OF SCHRODINGER OPERATORS 167

This fact provides an excellent check for our computations. The relative errors
are shown in Table 5 1 for the subspace S)(r in (2.6)++

TABLE 5.1
Relative errors in the eigenvalues in the g)N)++ subspace as a function of N (number of

oscillators) for g O.

1st
5th

10th

1.1 10-7

1.1 x 10-7

2.310-7

2.010-7

1.3 10-6

1.910-5

3.6 10-6

5.510-5

1.6 10-4

16

7.910-5

4.0 10-4

1.810-3

In all figures we plot the eigenvalues with their slopes. It is easy to compute the
derivatives of the eigenvalues with respect to the parameter g [9]. To ensure graphical
accuracy of the plots, much better accuracy is required in the initial doublings. Table
5.2 presents the total number K of eigenpairs used in the doubling procedure as a
function of the number N of coupled oscillators.

TABLE 5.2
Total number K(N) of eigenpairs used in our computations in the
doubling procedure from N2 to N coupled oscillators. These numbers

ensure at least 12 accurate eigenpairs per subspace.

N 2

K(N) 14 24 32

16

32

A detailed error analysis, employed to determine these numbers, is found in [9].

REFERENCES

[1] R. BLANKENBECLER, T. DE GRAND AND R. L. SUGAR, Moment method for eigenvalues and
expectation values, Phys. Rev. D, 21 (1980), p. 1055.

[2] J. B. BRONZAN AND R. L. SUGAR, Thinning degrees of freedom in lattice field theories, Phys. Rev.
D, 21 (1980), p. 1567.

[3] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, J. Res.
Nat. Bur. Standards, 49 (1952), pp. 409-436.

[4] D. ISAACSON, D. MARCHESIN AND P. J. PAES-LEME, Numerical methods for studying anharmonic
oscillator approximations to the b quantum field theory, Int. J. Engng. Sci., 18 (1980), pp. 341-349.

[5] D. ISAACSON, E. L. ISAACSON, D. MARCHESIN AND P. J. PAES-LEME, Numerical analysis of
spectral properties of coupled oscillator Schridinger operators I--Single and double well anharmonic
oscillators, Math. Comp., 37 (1981), pp. 273-292.

[6], Numerical analysis of spectral properties of coupled oscillator Schridinger operators II--Two
coupled anharmonic oscillators, SIAM J. Numer. Anal., 19 (1982), pp. 126-141.

[7], Critical behavior of the two-state doubling algorithm, J. Math. Phys., 24 (1983), pp. 41-45.
[8], Eigenvalues of 4, 8, 16 coupled anharmonic oscillators, Phys. Rev. D, 27 (1983), pp. 3036 ft.

[9], Numerical analysis of spectral properties of coupled oscillator Schr6dinger operators III. The
doubling algorithm, Tech. Rep. MAT 014, Pontificia Universidade Cat61ica do Rio de Janeiro,
Brazil, April 1982.

[10] T. KATO, Perturbation Theory for Linear Operators, Springer, New York, 1972.
[11] A. F. PACHECO, Block-spin method for the k4 theory on a lattice, Phys. Rev. D, 23 (1981), p. 1845.
[12] C. C. PAIGE AND M. A. SAUNDERS, Solution of sparse indefinite systems of linear equations, SIAM

J. Numer. Anal., 12 (1975), pp. 617-629.

168 D. ISAACSON, E. L. ISAACSON, D. MARCHESIN AND P. J. PAES-LEME

[13] B. N. PARt.ETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[14] B. N. PARLETT AND D. S. SCOTT, The Lanczos algorithm with selective orthogonalization, Math.

Comp., 33 (1979), pp. 217-238.
[15] J. L. RICHARDSON AND R. BLANKENBECLER, Anharmonic analysis of lattice field theories, Phys.

Rev. D, 20 (1979), p. 1351.
[16] Y. SAAD, On the rates of convergence of the Lanczos and the block-Lanczos methods, SIAM J. Numer.

Anal., 17 (1980), pp. 687-706.
17] L. I. SCHFF, Lattice-space quantization ofa non-linearfield theory, Phys. Rev., 92 (1953), pp. 766-779.
[18] D. S. SCOTT, Solving sparse symmetric generalized eigenvalue problems without factorization, SIAM J.

Numer. Anal., 18 (1981), pp. 102-110.
[19] B. T. SMITH et al., Matrix Eigensystem Routines, Eispack Guide, Springer, New York, 1974.
[20] D. B. SZYLD AND O. B. WIDLUND, Application of conjugate gradient type methods to eigenvalue

calculations, in Advances in Computer Methods for Partial Differential Equations III, R. Vich-
nevetsky and P. Stepleman, eds., IMACS, Rutgers Univ., New Brunswick, NJ, 1979, pp. 167-173.

[21] R. UNDERWOOD, An iterative block-Lanczos method for the solution of large sparse symmetric
eigenproblems, Computer Science Dept. Rept. 496, Stanford Univ., Stanford, 1975.

[22] J. H. Winsor, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.
[23], Inverse iteration in theory and in practice, Symposia Mathematica, Vol. X, (1972), pp. 361ff.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 1, January 1985

1985 Society for Industrial and Applied Mathematics

014

UNBIASED MONTE CARLO INTEGRATION METHODS
WITH EXACTNESS FOR LOW ORDER POLYNOMIALS*

ANDREW F. SIEGEL" AND FANNY O’BRIEN:

Abstract. We consider methods for estimation of the integral of a given function that combine the
unbiasedness of Monte Carlo integration (which permits a simple statistical assessment of the error) with
the higher precision often attained by deterministic methods. We propose symmetric random designs with
2k + points that achieve exactness for polynomials of degree up to 2k + 1. The distribution for the three-point
method is unique, although for higher order methods there are multiple choices for the sampling distribution.
For two-dimensional multiple integration over a rectangle, we propose an unbiased five-point method that
achieves exactness for polynomials of degree up to three in both variables. Some bounds on error variances
are given.

Key words, numerical integration, random quadrature

1. Introduction and summary. Computing the integral of a given function is an
important activity of many mathematical and statistical investigations. For integrals
that are not amenable to direct calculation, either because the functional form of the
integrand is not completely specified or because of mathematical intractability, useful
approximations are provided by the many methods of numerical quadrature. We will
consider estimation of the integral

(1.1) If f(x) dx

based on weighted sums of the functional values at n points:

(1.2) If(l, :n): Wi(l, n)f(i)
i=1

and also by the averages of values of (1.2) obtained from independent replications.
Because different numerical methods choose different weightings and different

points at which to evaluate the integrand, the development and selection of good
general quadrature formulae can be viewed as a problem in the statistical field of the
design of experiments. Even with the availability of powerful computers, there remains
a need for increased accuracy with less computational effort for the routine task of
evaluating integrals. Part of our motivation for developing these hybrid methods arose
from efficiency considerations in a large-scale Monte Carlo study of the properties of
robust estimators (Tukey and Pregibon (1981), Bell and Pregibon (1981), Bell (1981)).

Many general methods fall within the weighted-sum framework of (1.2) with
various choices for the weighting functions w and for the joint distribution of the

* Received by the editors May 16, 1983, and in revised form November 7, 1983. This work was supported
in part by U.S. Army Research Office under contracts DAAG29-79-C-0205 and DAAG29-82-K-0178, and
by the U.S. Department of Energy under contract DE-AC02-81ER10841. Some revisions were made while
A. F. Siegel was on leave at the Departments of Biostatistics and Statistics, University of Washington at
Seattle. We are grateful to J. W. Tukey, S. Morgenthaler, C. Nachtsheim, and P. Bloomfield for helpful
suggestions during the development of these methods. F. O’Brien was formerly named F. Zambuto.

" Department of Statistics and Department of Finance, Business Economics and Quantitative Methods,
University of Washington, Seattle, Washington 98195.

t Department of Market Analysis and Forecasting, AT&T Communications, Bedminster, New Jersey
07921.

169

170 ANDREW F. SIEGEL AND FANNY O’BRIEN

design points

(1.3) (sc, , :,) F.

This formulation includes deterministic methods, such as Newton-Cotes and Gaussian
integration, as well as random methods such as Monte Carlo. Deterministic methods
can be represented by choosing the distribution F to be degenerate at the fixed design
points and choosing the weights to be the appropriate constants. The simple Monte
Carlo method can be represented by choosing n 1, W 1, and 1 uniformly distributed
in (-1, 1).

Some advantages and disadvantages are inherent in any method. Many determinis-
tic methods are exact for low order polynomials, thereby achieving high accuracy for
smooth functions. However, the natural error bounds associated with deterministic
methods often require extensive analytical computations involving bounds on a higher
derivative of the integrand. On the other hand, the standard error or confidence interval
for the mean computed from independent replications of unbiased Monte Carlo
methods provide a simple probabilistic error estimate requiring essentially no analytic
effort. The primary drawback of simple Monte Carlo is that while the precision is
easily assessed, this precision may not be very high. For example, simple Monte Carlo
integration of the very smooth function f(:) :2 with a sample of n 1000 replications
does not even achieve two digits of accuracy 90% of the time.

One approach that seems promising is to combine the good properties of eacla

method: the high accuracy for smooth functions of deterministic methods with the
simply-assessed error estimates of Monte Carlo. We will investigate random methods
that provide unbiased estimates of the integral of any integrable function, yet still
provide the exact answer should the function happen to be a polynomial of low order;
the variance in this case would be zero and the confidence interval would be degenerate.

Section 2 provides a review of past work in this area. In 3 we show that there
exists a unique three-point symmetric randomized design that achieves unbiasedness
in general together with exactness for polynomials up to degree three, and we provide
a variance bound for the integral estimate of a smooth function. For some nonsmooth
functions and for functions observed with additive random errors, finite variance with
exactness for cubics can only be achieved by considering designs of more than three
points. Five-point designs with exactness for quintics are considered in 4 where we
show that the design is not unique. We exhibit several design choices that provide
general unbiasedness together with exactness up to degree 5 and prove that this
nonuniqueness cannot be exploited in order to gain exactness for polynomials of even
higher degree.

In 5, for the general case of designs of 2k + points which provide exactness
up to degree 2k + we provide a class of symmetric random designs in which the joint
distribution F in (1.3) is a multivariate polynomial expressed using Vandermonde
determinants. Two-dimensional numerical integration over a rectangle is considered
in 6. In addition to the natural nine-point cross-design which is exact for polynomials
of degree up to three jointly in both variables, we exhibit an economical five-point
design which achieves polynomial accuracy of the same degree at almost half the
computational effort. In a numerical example, simple Monte Carlo is shown to require
about twenty times as many function evaluations to attain comparable accuracy.

While the methods presented here can be used directly, they can also be used
effectively in conjunction with adaptive partitioning algorithms, as in Friedman and
Wright (1981). In this case, the unbiased variance estimate could be used to provide
their required measure of "badness" of the integrand within a subregion.

UNBIASED MONTE CARLO INTEGRATION METHODS 171

2. Literature review. Several investigators have provided examples of methods
that achieve exactness for integrating polynomials while being unbiased for almost
any function. This approach represents one of several techniques available for variance
reduction in Monte Carlo investigations, which are reviewed by Hammersley and
Handscomb (1964) and by Haber (1970). These techniques are related to the method
of antithetic variables, introduced by Hammersley and Morton (1956), which exploit
negative correlation in order to reduce variance. In 5.8 of Hammersley and
Handscomb, a general method of orthogonal functions due to Ermakov and Zolotukhin
(1960) was used to find several integration formulae, including an unbiased four-point
method with exactness up to cubics. Because it allows a choice of basis functions, this
general approach is very flexible and adaptable. Other extensions and examples may
be found in Ermakov (1964) and in Handscomb (1964). Granovskii (1968) provides
some examples along similar lines with exactness for nonpolynomials. A sampling
procedure for the general method of Ermakov and Zolotukhin may be found in Bogues,
Morrow, and Patterson (1981).

Haber (1969) proved the existence of unbiased methods with exactness for any
given degree of polynomial using a very simple partially random design with a fixed
set of points together with one single additional point uniformly distributed over the
range of integration. Some general results including variance bounds were also
provided.

While the methods of Quackenbush (1969) require more than the minimal number
of function evaluations for exactness for polynomials of a given order, they provide
more stable estimates for nonsmooth functions and also in the presence of random
errors. This is important in statistical experimental design, where an experiment must
be performed in order to evaluate the function at each point and randomness is
necessarily introduced. However, for routine numerical integration this may not be an
important consideration. Cranley and Patterson (1970), (1976) also describe methods
that require more function evaluations than those to be described here.

3. Exactness for cubics. Every symmetric three-point quadrature design samples
the integrand at 0, :, and -, for some : in (0, 1). In order to achieve exactness for
quadratics, the integral estimate based on these points must be the integral of the
interpolating quadratic, which is

f(-)-2f(O)+f()
(3.1) /f(sc)

32 +2f(0).

This formula is of the form (1.2) and, due to symmetry, is exact for polynomials up
to degree three. Simpson’s rule results from the (degenerately random) choice :
and is exact up to degree three. By choosing sc .7746 , again degenerately random,
Gaussian integration is able to achieve exactness for polynomials of degree up to five.
The following theorem shows that if sc is chosen randomly from the proper distribution,
then the estimate in (3.1) can be made unbiased for the integral of any function. One
appealing interpretation of this proposed formula is as a randomized version of
Simpson’s rule, in which the spacing is chosen from a probability distribution.

THEOREM 3.1. If is a random variable on (0, 1) with density 3:2, then If() given
by (3.1) is both exact for cubic polynomials and also unbiased in general. That is,

(3.2) E {Iy()} f(x) dx for any integrable f
-1

172 ANDREW F. SIEGEL AND FANNY O’BRIEN

and

(3.3) /f(sc) f(x) dx
-1

iff is a polynomial of degree three or less, provided only that # O. Moreover, 32 is the
unique density with these properties.

Proof The potential singularity at : 0 cannot cause any problem with computa-
tion because P{ 0} 0. Exactness for polynomials of degree at most three has already
been noted for (3.1) with any choice of sc # 0. Unbiasedness follows because

E{if()}=Iol[f(-sc)-2f(O)+f(sc)3
+ 2f(0)] 32 d

f(-) dsc + f(c) d: 2f(O) + 2f(O)

f() d If.
-1

To establish uniqueness, suppose/x is a distribution on (0, 1) such that so---/x implies
E{/y(sc)} =/y for all integrable f With the choice f,,(x)= 31x1"+2/2, it follows that

(3/2)1- 1+ + (3/2)1:1+
(3.4) Ibc.,() 3:2 :".

Hence a consequence of unbiasedness (3.2) is that

c)- form=l 2,...(3.5)
3

o m/3

Because these are the moments of z, and because distributions concentrated on a
finite interval are determined by their moments (Feller (1971, VII.3)), uniqueness
follows.

If the integrand is smooth, then the variance of the error can be bounded above
in a way analogous to Simpson’s rule.

THEOREM 3.2. If the fourth derivative off is bounded, and if cs is distributed as in
Theorem 3.1, then

M
(3.6) St. Dev. {/y(:)}-< where M sup [f(4)(x)].54.991’ (_ ,)
This is about 1.6 times as large as the upper bound on the error of Simpson’s rule, which
is M/90.

Proof Using Taylor’s theorem with remainder, expanding the terms of (3.1), we
find that

(3.7) 2 If(4) /f(4))]b() 2f(o) +f"(o) +-- ,) (_
3 72

where e, and e2 are in [0, :] and are functions of sc. The variance is

UNBIASED MONTE CARLO INTEGRATION METHODS 173

(3.8)

Var {/y(s)} Var {Iy(sc)-2f(O)-f’(O)/3}

{ 72 V(4) (4)(__ }Var - (e) +f e2)]

= E [f(4)(e,) -t-f(4)(- e2)]

M2 M2

_<E{4}
1296" 3024"

The square root of this yields the bound in (3.6) for the standard error. [q

If the integrand is bounded but not smooth at zero, then the integral estimate of
Theorem 3.1 can have infinite variance. This happens, for example, with the discon-
tinuous function f(x) which is when x> 0 and is 0 when x-<_0. However, many
functions with discontinuous derivatives at zero (such as the absolute value function)
still have integral estimates with bounded variance provided they satisfy the condition
of the following theorem.

THEOREM 3.3. With the integral estimate of Theorem (3.1), if

(3.9)

then

f(x) -f(O) <- M for all x O,

M
(3.10) St. Dev. {/y(sc)} _-<.

.8660

Proof. By subtracting the constant 2f(0) and rearranging, the variance may be
written as

[f()-f(O) f(-)-f(O)]Var{/y()}=Var
(----

3:

[f(:)f(O) f(-s)-f(O)]2i-(3.11) E
3

E
9 3

Hammersley and Handscomb (1964, p. 74) also note problems with infinite
variance and obsee that in some cases a Lipschitz condition is sufficient to guarantee
finiteness. If an unbiased method exact for cubics is needed that has finite variance
for very nonsmooth functions (for example a function that is obseed with independent
random additive errors), then a design with more than three points must be used
because of the uniqueness in Theorem (3.1). A six-point method was proposed in
Quackenbush (1969) that achieves this, and Haber’s (1969) method described in
will also achieve this with three fixed and one random point. Quackenbush’s formula
is

2

where is uniformly distributed on (0, 1).

174 ANDREW F. SIEGEL AND FANNY O’BRIEN

In the presence ofrandom independent additive errors with mean zero and variance
0.2 added to each function evaluation, the variance of Quackenbush’s integral estimate
(3.12) will be exactly 20.2 larger than it would have been had the function been evaluated
without error. In particular, this will be bounded.

4. Exactness for quintics. Every symmetric five-point quadrature design samples
the integrand at 0, :, -:, r/, and -r/, for some : and r/ in (0, 1). In order to achieve
exactness for polynomials of degree up to five, the integral estimate must be the integral
of the interpolating quintic, which is

3-5r/2 3-5sc2

(4.1) If((, r/)= 15scz(.2_ r/: F()- 15,r/:(r/2_ :, F(r/) +2f(0)

where, for simplicity, we have introduced the auxiliary function

(4.2) F(x) =f(-x) 2f(O) +f(x).

The five-point closed Newton-Cotes formula will result if we choose sc .5 and r/= 1.
Choosing sc .538... and r/= .936".., we obtain the Gaussian integration formula,
which is exact for polynomials up to degree nine, the maximum possible precision for
a five-point method.

It is possible to choose the pair (sc, r/) randomly from a probability distribution
on the square (0, 1) x (0, 1) so that (4.1) is an unbiased estimate of the integral of any
function. Hammersley and Handscomb (1964) provide an example where : is fixed at
and only r/ is random. Another generalization of the results of 3 is given in the

following theorem where the distribution has a symmetric polynomial density.
THEOREM 4.1. If (, rl) is a random vector distributed with density

(4.3) b(:, 17)--90:2’02(:d-’7/)(:--)2 on (0, 1) (0, 1),

then If(, rl) given by (4.1) is both exact for quintic polynomials and also unbiased in
general That is,

(4.4)

and

E{b(, rl } f(x) dx for any integrable f
-!

(4.5) /f(, ’r/)= f(x) dx
-1

iff is a polynomial of degree five or less, provided . 0, r/ 0, and
Because this result is a special case of Theorem 5.1 of the next section, a proof will

not be given here. The variance bound will also be deferred to 5.
A contour plot of the density (4.3) is shown in Fig. 4.1. Note that and r/tend to

be chosen to be far from one another and also far from zero.
It is clear that the distibution given in Theorem 4.1 is not unique, due to the

previously mentioned results in Hammersley and Handscomb. In fact, there are many
other symmetric polynomial densities (but with higher degree than (4.3)) given by

(4.6) b(:, r/) 90:r/(: + r/)(sc- r/){1 + e[32(sc2 +sCr/+ r/)-35(:+ r/)]}

where e is any positive constant such that (4.6) is nonnegative (0 < e < .005 is sufficient).
It can be established directly that (4.6) is a density on the unit square and that (4.4)
and (4.5) also hold with this distribution.

The possibility of exploiting this nonuniqueness naturally arises, and one might
try to find a distribution that minimizes the variance for a particular integrand. The

UNBIASED MONTE CARLO INTEGRATION METHODS 175

(0,1) (I, t)

(0, O) , O)

FIG. 4.1. A contour plot of the symmetric polynomi’al density of (4.3) that leads to exactness]’or
polynomials of degree up to 5. The density is zero on the 45 line, and increases in equal steps of about .78.

following theorem shows that the nonuniqueness cannot be used, however, to achieve
exactness for polynomials of the next higher degree.

THEOREM 4.2. There is no distribution of (, rl) that yields an unbiased integral
estimate (4.1) that is also exact for all polynomials of degree six or less.

Proof. In order for (4.1) to give the exact integral off(x)= X6/2, we must have

3-5r/2 3-55c2 6(4.7) If , ,l 6 .
15:2(:2_r/2) 15r/2(r/2_:2) r/ =

which simplifies to

(4.8) 21 (2 + r/2) 3 5 :2r/2 15 O.

From this it can be verified that neither : nor r/can take on a value between .655 and
.845 (square roots of and respectively) because the solution of (4.8) would force
the other to be outside the interval (0, 1). A method that never samples the integrand
within such an interval of positive measure cannot be unbiased, say, for the integral
of a function that is zero outside that interval and positive within it. I-1

5. A general formula for degree 2k + 1. Consider symmetric quadrature designs
of 2k + points consisting of distinct points :l," ", :k together with their negatives
and zero. In order to achieve exactness for polynomials of degree up to 2k + 1, the
integral estimate must be the integral of the corresponding interpolating polynomial
which can be written as follows"

(5.1)

Iy() E w,()F(,) +2f(0)
i=1

l
5 2k+l

LF()J

176 ANDREW F. SIEGEL AND FANNY O’BRIEN

where F was defined in (4.2) The following theorem shows that there is a symmetric
polynomial density for (1, ", Ck) such that (5.1) will be unbiased for the integral of
any function.

THEOREM 5.1. If (1," ", k) is distributed according to the density function

then

k

k+2 k+4

,=, 2i k sc2 1-I [(sc+)(sc-)2]
<j

(5.3) E{/f()} 11-! f(x) dx for any integrablef.

Moreover, if 0, :1, ", k are distinct, then

I’(5.4) Iy() f(x) dx iff is a polynomial of degree 2k +1 or less.
-1

Proof. The two forms of the function in (5.2) can be shown to be equivalent with
the help of formulae for the determinant of the Vandermonde and Cauchy matrices
(e.g. Knuth, (1973, Vol. 1, p. 36, Probs. 37 and 38)). First we show that this function
is a density From the second form in (5.2) it is clearly nonnegative. Let V(xl,. , Xk)
denote the determinant of a general Vandermonde matrix, so that the integral of the
numerator in (5.2) is

(5.5) v.(,,...) v(,,...,)
d,.., d.

Let 0 denote a permutation of { 1, , k} and let (- 1) be or according to whether
0 is even or odd. Expanding the determinant on the left, (5.5) becomes

(5.6) E (-1) 2,-1 V(,, k) d, "’dk"-O(i)
0 i=l

changing to these permuted variables in the rest of the integrand, we find that all
summands are equal and (5.6) simplifies to

(5.7) k! (sl 2kk-’) V(,, k) d, dk.
o

Expanding the remaining .determinant, combining terms and integrating the resulting
monomials, (5.7) becomes

(-1) o

(5.8) kt[O(1)+2].x [0(2)+4] [O(k)+2k]

UNBIASED MONTE CARLO INTEGRATION METHODS 177

which we recognize as the expansion of the denominator of (5.2), establishing (5.2)
as a density because it integrates to 1.

To verify unbiasedness, using symmetry in (5.1) we have

E{/y(:))-2f(0) kE{wl()F(,)}.(5.9)

Using Cram6r’s rule to obtain wl() as a ratio of determinants, one of which cancels
a term in the density when integrated, then rearranging the order of integration, (5.9)
may be written as

where C is the constant term ofthe density. We now show that the bracketed (k)-fold
integral in (5.10), which is a polynomial in :1, is in fact a constant. Consider a term
in the expansion of the determinant on the right in which :l occurs raised to a positive
power. Because one entry from the leftmost column must also appear, some m is
missing from each such term. Integrating this term first with respect to :,, we see that

(5.11)

is zero because columns and m are identical Thus, for some constant C’,

(5.12) E{/f()} C’ F(x) dx +2f(0) C’ f(x) dx +2(1-C’)f(O).
-1

If we substitute the special casef(x) x2 in (5.12), we find that C’= 1, which completes
the proof of unbiasedness, l-1

THEOREM 5.2. Let (1, ", k) have any distribution for which Iy() from (5.1) is
an unbiased estimate of the integral of any integrable function f Iff is 2k +2-times
differentiable, and M is the suprernum of the magnitude of this derivative, then an upper
bound on the variance of the estimate is given by

(5.13) Var {/f(lj)} =<
[(2k + 2)t]2

E
,=,

w,(t)2k+2

Proof From Taylor’s theorem there exist el and e2 in [0, :] such that

(5.14)
/f() 2If(0)+if(0) .f(Zk+2)(0)]3i +’’" - (2k+lii

k Wi()2i k +2

+ E [f{2k+2)(e,) +f{Zk+2)(--e2)].
i=l (2k+2)!

178 ANDREW F. SIEGEL AND FANNY O’BRIEN

Omitting the leading constants, which cannot affect a variance calculation, we see that

(5.15) Var {/y()} -< E [f(2k+2)(e --62)
,= (2k +2)

1) +f(Zk+2)(

from which (5.13) follows.

6. Two-dimensional integrals. A real need for quadrature methods arises in the
estimation of integrals in more than one variable. The simple solution of representing
a multiple integral as a succession of iterated one-dimensional integrals can be too
time-consuming for some practical problems.

In this section we present two designs for two-dimensional integration over a
rectangle that are exact for bi-cubics (polynomials of joint degree at most three in two
variables) and also unbiased for the integral of any function. One is the simple iterated
solution based on the method of 3, which requires nine function evaluations. The
second design requires only five function evaluations, a substantial savings, noticeably
reducing the amount of effoa while retaining the same basic propeies. For dimension-
ality greater than two, this five-point design might be applied to disjoint pairs of
coordinates, with the one-dimensional method used on the remaining axis if the
dimensionality is odd.

Because any integral over a rectangular region can be linearly transformed to an
integral over a square, without loss of generality we will consider estimation of the
integral

(.1 f(, .
-1 -1

The iterated solution, generalizing the method of Theorem 3.1, is based on the design
shown in Fig. 611, and may be written as follows:

2 [f(, 7) +f(, -7) +f(-, 7) +f(-, -7)

(6.2) -2(3 r/Z)[f(s:, 0) +f(-s, 0)]

-2(1 3:2)[f(0, r/)+f(0,-r/)] +4(1- 3s:2)(1- 3 r/2)f(0, 0)].

It is straightforward to verify by substitution and calculation that if s and r/ are
independently and identically distributed according to the density 3X2 on (0, 1), then

0---

FIG. 6.1. The sampling pattern for the nine-point iterated solution of (6.2) that leads to exactness for
polynomials of degree up to 3 jointly in two variables.

UNBIASED MONTE CARLO INTEGRATION METHODS 179

the estimate (6.2) gives the exact integral for all bicubic polynomials and also is
unbiased for any integrable function. Generation of these random numbers is not
difficult, as this is the density ofthe cube root ofa uniformly distributed random variable.

The five-point design, which reduces the number of function evaluations nearly
to half of those required above, is shown in Fig. 6.2. The integral estimate is given by

f(sc, r/) +f(- r/, so) +f(’r/,-) +f(-sc, r/) 4f(O, O)
(6.3) Jf(, r/)=

3(so2 + r/2)/2 + 4f(O, O)

and the density function for (, r/) is

(6.4) b(:, r/)=-(sc2 + r/2), and r/in (0, 1).

It is again straightforward to verify exactness for bicubic polynomials and unbiasedness
for any integrable function.

FIG. 6.2. The sampling pattern for the five-point solution of (6.3) that leads to exactness for polynomials
of degree up to 3 jointly in two variables.

Moreover, the density (6.4) is not difficult to sample from. First choose from
its marginal density

3:z

(6.5)
2 2

which we recognize as the mixture distribution which is half the time a uniform random
variable, and the other half of the time the cube root of a uniform random variable.
Conditionally on :, the density of r/ is

32 3r/2
(6.6)

+32
q
+32

which we again recognize as a mixture. Thus with probability (3sc2)/(+32) we choose
r/ from the uniform distribution, and with probability 1!(1 +3:2) we choose r/ as the
cube root of a uniform random variable.

Variance bounds for this five-point method are given in the following theorem. It
should be emphasized that these bounds need not be calculated as part of the routine
use of these methods; an assessment of the precision comes from the standard error
obtained from repeated independent calculations. These bounds are presented instead
in order to provide some intuition about the class of functions for which these methods
work well.

THEOREM 6.1. Let f(, q) be a real integrable function defined on the square
(-l, 1) (-l, 1), and suppose that all the partial derivatives off exist up to fourth order.
Then the variance ofthe integral estimate in (6.3) when , rl is sampledfrom the density

180 ANDREW F. SIEGEL AND FANNY O’BRIEN

(6.4) cannot exceed

(6.7)
.00112 M2 +.01979 M22 +.00988 M +.00822 M,M2

+.02778 M2M +.00617 MM
where the constants are given by

M sup

(6.8) M2 sup

M3 sup

04f
a + sup

o4f

+sup

Proof. Begin by considering (sc, r/) to be fixed and expand

(6.9) g(a =f(Asc, An) +f(-Ar/, A() +f(a r/, -Asc) +f(-a, -Ar/)

in a Taylor series about zero with remainder term of fourth degree. From this we can
show that

Jf(, rl)- 4f(0, O)- (0, O) +--52 (0, O)

(6.10)

--18(2 +n2) [Ml(4 + ,ic4)+ 12M22n2 +4M3(:3y/+ 3)].

The variance of the estimate is bounded above by the expected square of (6.10).
Expanding the square ofthe right-hand side, multiplying by the density (6.4), integrating
over the unit square (0, 1) x (0, 1), and simplifying, we find

Var{J(,)}N M + _4 +:+
+ 144M + dd

(6.11) + 16M (+)dd

+24MMz 4n2+n

Using a transformation to polar coordinates, the integral of the rational function is

 4.4 f,4(6.t aean 2 tan4 (0) dO-16 6

Using this in (6.11) and integrating the polynomials directly, (6.7) follows.
We now provide an example. The double integral on the left in (6.12) can be

estimated using the very method (6.3 and 6.4) for which it provides variance bounds.

UNBIASED MONTE CARLO INTEGRATION METHODS 181

With 10,000 replications, we computed an estimate of.02965 with an estimated standard
error of .000072 and an actual error (compared to 7r/16-1/6= .02968...) of .00003.
For comparison, simple Monte Carlo with 10,000 replications of a single point in the
square provided an estimate of .03050 with an estimated standard error of .00064 and
an actual error of-.00081.

These simulations were performed on an Intersystems Z80 based S 100 microcom-
puter in Microsoft FORTRAN using a linear congruential random number generator
with a 32-bit seed and the multiplier 16807. The ratio of estimated variances is
(.00064)2/ (.000072)a, which is about 79. Discounting for the fact that simple Monte
Carlo requires only one-fourth as many function evaluations, the estimated advantage
is a factor of nearly 20. Thus to obtain comparable precision for this integral (6.12),
simple Monte Carlo requires about 20 times as many function evaluations.

REFERENCES

K. L. BELL (1981), Data modifications based on order: pushback a configural polysampling approach, Ph.D.
thesis, Dept. Statistics, Princeton Univ., Princeton, NJ.

K. L. BELL AND D. PREGIBON (1981), Some computational details of configural sampling methods, Tech.
Rep. 191, Series 2, Dept. Statistics, Princeton Univ., Princeton, NJ.

K. BOGUES, R. M. CORBETT AND Z. N. L. PATTERSON (1981), An implementation ofthe method ofErmakov
and Zolotukhin for multidimensional integration and interpolation, Numer. Math., 37, pp. 49-60.

R. CRANLEY AND T. N. L. PAT’EERSON (1970), A regression method for the Monte Carlo evaluation of
multi-dimensional integrals, Numer. Math., 16, pp. 58-72.

(1976), Randomization of number theoretic methods for multiple integration, SIAM J. Numer. Anal.,
13, pp. 904-914.

S. M. ERMAKOV AND V. G. ZOLOTUKHIN (1960), Polynomial approximations and the Monte Carlo method,
Teor. Veroyatnost. Primenen 5, pp. 473-476; Theory Prob. Appl., 5, pp. 428-43 I.

S. M. ERMAKOV (1964), Random quadratures of improved accuracy. U.S.S.R. Computational Mathematics
and Mathematical Physics, 4 (No. 3), pp. 213-219.

W. FELLER (1971), An Introduction to Probability Theory and Its Applications, second edition, volume II,
John Wiley, New York.

J. FRIEDMAN AND M. WRIGHT (1981), A nested partitioning procedure for numerical multiple integration,
ACM Trans. Math. Software, 7, pp. 76-92.

B. L. GRANOVSKII (1968), Random quadratures of the Gaussian type, U.S.S.R. Computational Mathematics
and Mathematical Physics 8 (No. 4), pp. 244-252.

S. HABER (1969), Stochastic quadrature formulas, Math. Comp., 23, pp. 751-764.
(1970), Numerical evaluation of multiple integrals, SIAM Rev., 12, pp. 481-526.

J. M. HAMMERSLEY AND D. C. HANDSCOMB (1964), Monte Carlo Methods, Methuen, London.
J. M. HAMMERSLEY AND K. W. MORTON (1956), A new Monte Carlo technique: antithetic variables, Proc.

Cambridge Philos. Soc., 52, pp. 449-475.
D. C. HANDSCOMBE (1964), Remarks on a Monte Carlo method, Numer. Math., 6, pp. 261-268.
D. E. KNUTH (1973), The Art of Computer Programming, Volume l, second edition, Addison-Wesley,

Reading, MA.
R. W. QUACKENBUSH (1969), Monte Carlo quadrature with exactnessfor polynomials, Ph.D. Thesis, Stevens

Institute of Technology, Hoboken, NJ.
J. W. TUKEY AND D. PREGIaON (1981), Assessing the behavior of robust estimates of location in small

samples l: introduction to configural polysampling, Technical Report No. 185, Series 2, Dept.
Statistics, Princeton Univ., Princeton, NJ.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 1, January 1985

1985 Society for Industrial and Applied Mathematics
015

ON THE FACTORIZATION OF BLOCK-TRIDIAGONALS
WITHOUT STORAGE CONSTRAINTS*

MARSHAL L. MERRIAM"

Abstract. In many programs solving difference equations, problem size is restricted by the number of
available memory cells. A strategy has been developed to permit trade-offs between the number of floating
point operations required and storage requirements for the solution of certain problems such as block
tridiagonal systems of equations. This is done by recomputing some intermediate results instead of storing
them. Reducing the storage to the square root of the current requirement will roughly double the number
of computations. In theory, if rn is the order of each sub-matrix in the block tridiagonal matrix, one can

solve any linear system with only 5m2+ temporary storage cells. This method lends itself to efficient use
on computers with parallel processing or vector processing architectures. On these computers the larger
number of flo.ating point operations is more than offset by the decrease in I!O and the increased percentage
of vector operations made possible by this algorithm.

Key words, block tridiagonals, storage, Thomas algorithm, decomposition

1. Introduction. The most widely used algorithm for solving general systems of
linear equations is Gaussian elimination. Other methods have appeared which take
advantage of the structure of certain problems, i.e. cyclic reduction for banded matrices
with constant coefficients. Most methods thus far devised have had the objective of
reducing the total number of floating point operations. The method described here
does not.

What one really wishes to minimize is the overall time and cost of solving a given
problem. When computers were slow and problems were small, the way to do this
was to minimize arithmetic. With the advent of supercomputers however, other
considerations have become important.

One such consideration is the ability to vectorize an algorithm. For a given
computer the speed of the vector hardware may exceed that of the scalar hardware
by a factor of ten or more. A common way of finding long vectors in a tridiagonal
solver is to solve many tridiagonals at once. The vector length then becomes the
number of simultaneously solved systems. The storage requirements of such an
approach exceed those of the scalar approach by a factor of the vector length.

Another consideration is the time spent in communication with secondary memory.
The speed of the arithmetic units makes it possible to solve, in a reasonable amount
of time, problems whose storage requirements exceed the capacity of primary memory.
On most computers it is difficult to overlap the transfer time between primary and
secondary memory. This becomes the dominant cost in some cases. In addition,
programs which use secondary memory are often significantly more complex than
those which do not. Furthermore transfers between memory levels are hardware
dependent. Programs which do explicit transfers between memory levels are not
portable for this reason. Realizing this, we turn our efforts towards an algorithm that
requires less memory, even if it requires more arithmetic.

Recomputation is such an algorithm. It offers the user a trade-off between the
number of arithmetic operations, time spent in scalar computations and time spent on
data transfers to secondary memories. A Fortran subroutine has been written which
utilizes recomputations in the solution of block tridiagonal systems. The user can

* Received by the editors August 31, 1982, and in revised form October 11, 1983.
NASA Ames Research Center, Moffett Field, California 94035.

182

FACTORIZATION OF BLOCK-TRIDIAGONALS 183

specify, with one parameter, exactly how much storage is available in primary memory
and the subroutine will minimize arithmetic subject to this constraint. If there is enough
storage the algorithm reduces to the standard, nonrecomputing case. The minimum
allowable space, not counting the solution vector, is 5 storage blocks, each an rn rn
matrix, plus one word. In the sense that this is independent of n, the number of block
unknowns, we say that there are no storage constraints.

2. Method. The algorithm described here performs Gaussian elimination to solve
a tridiagonal system of equations. This is equivalent to the Thomas algorithm [1]. The
notation used is defined by the following equations"

bl c2

(1) bl Ci+

ai bi+l

an-l" bn

ri+

rn-I

rnl

After the forward elimination has been completed (1) reduces to:

(2)

-1

Ci+l

1

q:-

X
qi

qi-I

ql

The successive steps which are normally taken to solve this problem by Gaussian
elimination are"

forward elimination

(3a) b]-- b find b
(3b) bq=rl findq

fori=l to n-1

(3c) blc’i+l Ci+l find Ci+
(3d) b’i+l bi+ --aic’i+l find

(3e) b’ find ql+i+ q i+ ri+ aiq

backward sweep

(4a) q. q’. find q.

for i= n to 2 (backward iteration)

(4b) qi-1 qi-- ciqi find qi-

184 MARSHAL L. MERRIAM

The storage problems with this method stem from the fact that one must compute
all of the elements c’ and q’ before any of the elements q can be computed. The
right-hand side is usually overwritten with the solution so that the same storage cell
is occupied at various times by ri, q, and finally qi. Traditionally, both the c’ matrices
and the right-hand side are stored for a total of (n-1)m2+ nm storage cells.

Notice that to compute c/1 we only need b and ci/l. Also, to compute b’i+1 we
need only cl/ and the matrix elements ai and bi+l. Schematically this is shown in Fig.
1. The dashed boxes contain the original matrix entries. In many applications these

bi ’+1

\ ,,,
FIG. 1. Data dependencies in the Thomas algorithm.

require no storage since they are either analytically known or can be recovered from
other information contained in memory. We consider such applications here. The main
consequence of this simplification is that if any element of the decomposition is known
(i.e. b’ or c’), then the forward elimination can be reinitiated at that point to get any
subsequent decomposition element. This is the basis for the whole scheme. We save
a few, selected, elements c’ on the forward elimination and then execute the following
sequence:

a. Execute the backward substitution in a conventional manner as far as possible.
b. When an element cl is needed and not available, recompute it by re-initiating

the forward elimination starting with a stored element c’. The best choice is that
element whose index is highest without exceeding i. All elements c’ with higher indexes
are no longer useful and may be overwritten to save other indexes of c’. If no stored
data remains, recompute from index 1. The element c is zero. When the needed
element has been recomputed resume step a.

Notice that the forward elimination in step b is analogous to the original forward
elimination. The starting and ending indexes are different as is the amount of available
storage but the form is the same. Thus we may use the same selection process to decide
which elements to save in step b that we did on the original forward elimination. What
follows is a description of and rationale for one such selection process.

3. Selection algorithm---rationale. Let be the number of unknowns. That is we
’.. in that order, starting from c to.wish to solve for Cto+t ci Cto+l

Let s be the number of storage cells. That is we can store in locations
C!so+l Ctk" Cso+s

Let p be the number of times c is computed.
Let P(t, s) be the largest value of Pi for to <iN t0+ t. P is said to be the degree

of the problem.

FACTORIZATION OF BLOCK-TRIDIAGONALS 185

Let L(P, s) be the largest value of possible given P and s. A problem is said to
be full and of degree P if L(P, s).

It can be shown that a full problem can be split into s full subproblems of degree
P-1 using only s-1 storage locations. The last storage location is used to solve for
C’to+t. The process of solving for C’to+t is considered to be part of the forward sweep
and is not counted as part of a subproblem.

The strategy for choosing which elements to save is as follows:
1. Find P(t, s). This is the smallest value of P for which L(P, s) >= t.
2. Split the problem into s subproblems. We refer to the one containing Co/t_l

as the highest subproblem and the one containing Co/1 as the lowest. Since s- 1 storage
locations are required to split the problem into subproblems, there will only be one
location left to use in solving the highest subproblem. Consequently the highest
subproblem will have at most L(P-1, 1) unknowns. The second highest will have at
most L(P-1, 2) unknowns and so forth until the lowest subproblem contains at most
L(P- 1, s) unknowns.

3. A lower bound on the number of unknowns in each subproblem can be given
by decrementing the degree of each by one. That is, the highest subproblem must have
at least L(P-2, 1) unknowns, the second highest must have at least L(P-2, 2), and
so forth. (Note that L(O, s)= 0.) When the degree of each subproblem is decremented
to P-2, what is left is a full problem of degree P-1.

4. As described here the selection algorithm uses only subproblems of degree
P-1 or P-2. At most one nonfull subproblem will be used. The following rules are
used in choosing the degree and size of the subproblems.

a. All subproblems of degree P-2 are higher than any subproblems of degree
P-1.

b. The highest subproblem of degree P-1 need not necessarily be full. If the
subproblems are numbered from lowest to highest, it is numbered k’.

4. Selection algorithm--construction. Now that we know what we want the selec-
tion algorithm to do, we have to show how to construct it. The following recipe will
work. Let Hk be the collection of saved indexes. That is c is saved in C,.

1. Initially Hk to for all So =< k-< So + s. This is a full subproblem for P 0.
2. We now guess P by guessing all possible values in order; that is P 1, 2,. , t.
3. For each P we guess k’ by guessing all possible values in order; that is

k’=l,2,... ,s.
4. At this point we add more unknowns to one of the subproblems.
There are two cases.
a. If to + t- Hs <= Hs- Hk, + 1, then we have arrived at the correct guess. We wish

to put more unknowns in subproblem k’ so that it is of degree P-1 instead
of P-2. The correct action is to add to + t--,H to H for k’=< k-< s and stop.

b. If to + t-Hs > H-Hk, + 1, then we have not yet arrived at the correct guess.
We wish to increase the number of unknowns in subproblem k’ so that it is a
full subproblem of degree P-1. The correct action is to add Hs- Hk, + 1 to

H for k’=< k-< s. In programming make sure to evaluate Hs-H, before
performing any additions since Hs and H, are affected.

5. Go back to step 3 unless all of the k’ values have been tried.
6. Go back to step 2 unless all of the P values have been tried.
7. If you get here something is wrong. All possible choices have been tried and

one of them must be right.
The flowchart in Fig. 2 illustrates the above process.

186 MARSHAL L. MERRIAM

START

H

sokSo+S

H H
k’<k<s

t-Hs

TEMP=Hs-H (STOP 3

FIG. 2. Detail of the selection algorithm.

Example. Suppose n 11 and there is only room to store 3 temporaries. The
conventional Thomas algorithm requires 10 temporaries. The selection algorithm would
proceed as follows using to 1, 10, s 3:

1. Initially Hk 1 for 1 =< k-< 3. At this point

Hi=l, H2=1, H3=l.
2. Guess P 1, k’ 1 and check on the inequality to + t- Hs =< Hs Hk, + 1. Since

11 1 > 1 1 + 1, we have not yet arrived at the correct guess. Since H Hk, + 1 1,
we add 1 to eachH for l=<k=<3.

H1=2, H2=2, H3=2.
3. Guess P 1, k’ 2 and check on the inequality to + t-H 5-H H, + 1. Since

11 2 > 2- 2 + 1, we have not yet arrived at the correct guess. Since Hs H, + 1 1,
we add 1 to each H for 2 =< k =< 3.

H1=2, H2=3, H3=3.
4. Guess P 1, k’ 3 and check on the inequality to + t-H -5 Hs- Hk, + 1. Since

11 3 > 3 3 + 1, we have not yet arrived at the correct guess. Since H H, + 1 1,
we add 1 to each H for 3 =< k =< 3. At this point

H1=2, H2=3, H3=4.
5. Guess P 2, k’ 1 and check on the inequality to + t-H 5- H H, + 1. Since

11 4 > 4- 2 + 1, we have not yet arrived at the correct guess. Since H H, + 1 3,
we add 3 to each Hk for 1 <--k 5-3. At this point

H1=5, H2=6, H3=7.

FACTORIZATION OF BLOCK-TRIDIAGONALS 187

6. Guess P 2, k’ 2 and check on the inequality to + t- Hs <- Hs Hk, + 1. Since
11 7 > 7 6 + 1, we have not yet arrived at the correct guess. Since H Hk, + 1 2,
we add 2 to each Hk for 2--< k =< 3. At this point

Ha=5, H2=8, H3=9.

7. Guess P 2, k’ 3 and check on the inequality to + t- Hs <= Hs Hk, + 1. Since
11 9 > 9 9 + 1, we have not yet arrived at the correct guess. Since H Hk, + 1 1,
we add 1 to each Hk for 3--< k =< 3. At this point

Ha=5, H2=8, H3=10.

8. Guess P 3, k’ 1 and check on the inequality to + t- Hs <= Hs Hk, + 1. Since
11 10 < 10- 5 + 1, we have arrived at the correct guess. Since to + t-H 1, we add
1 to each Hk for 1--< k-< 3. The final selections are

H1=6, H2=9, H3=ll.

This says we should save the elements c, c, and c1 on the forward elimination.
The computing algorithm would proceed as follows:

1. Initial forward sweep. Save c, c, and C]I.
2. Backward sweep. Compute qaa and qa0. To compute q9 we require c0.
3. Since qao is already computed ca is not needed. Resume forward sweep using

with c’c and overwrite caa lo.

4. Continue the backward sweep, using c0 and c; to compute q9 and q8.
5. Resume forward sweep with c;, overwriting c and c0 with c- and c.
6. Continue the backward sweep, computing qT, q6, and q5.
7. Resume forward sweep from index 1, overwriting c, c, and c with c, c;,

and c.
8. Continue backward sweep by computing q4, q3, and q2.
9. Again resume forward sweep from index 1, overwriting c with c;.
10. Conclude the backward sweep by computing

Each forward sweep except the last used all the storage that contained elements
that were no longer needed. Temporaries c, c, and ca were computed only once.
Temporary c was computed three times. All the rest were computed twice. The total
cost was almost twice that of the conventional Thomas algorithm yet the required
storage was less than the square root of that required by the conventional algorithm.
In larger problems it is often possible to reduce the storage requirements by a factor
of ten while only doubling the arithmetic, a paying proposition if I/O is expensive. It
is interesting to note that the minimum required storage space is five blocks, each an
m m matrix, plus one word. This is extremely expensive, however, since the computa-
tional effort is higher than the nonrecomputing case by a factor of roughly n2! 2. Three
of the blocks are needed for the elements a, b, and c. One is needed for the intermediate
b’ and the last is needed for the temporary c’. One additional word is needed for the
pointer Ha to keep track of the one temporary. The flowchart in Fig. 3 illustrates how
the selection process and the recomputation algorithm fit into the Thomas algorithm.

5. Optimality. One can always raise the question of whether the selection
algorithm is optimum, i.e. does it always choose all of the Hk such that work is
minimized given and s? In answering this I am indebted to my anonymous reviewer
in providing the following optimal strategy:

188 MARSHAL L. MERRIAM

Let F’(t, s) be the minimum number of computations necessary to compute
Cto+t’ Cto+l’ from cto’ with s storage locations. Here, one computation is the amount
of work necessary to advance one index of the forward sweep. Work done on the right
hand side does not count. Then we can write down the recursive relation:

(5a) F’(t,s)= min [i+F’(t-i,s-1)+F’(i-l,s)].
l_i_t

The first term, is the cost of computing Co/1 C’o/. The second term is the minimum
in the remaining space. The third index is thecost of computing C,o+

minimum cost of recomputing Cto/_l Co/1. Since all possible choices are tried for
and implicitly all choices are tried for saved indices in the second and third terms,

the equality holds. The recursion is saved from being infinite by the relations

(5b) F’(1, s) 1,

(5c) F’(0, s) 0,

(5d) F’(t, 1)= t(t+ 1)/2.

While this scheme is optimal, it is expensive to implement, costing O(st2)
operations. The selection algorithm suggested in the previous section costs O(t)
operations and makes an optimal selection in all cases where s _-< _-< 100. We conjecture
that it always makes an optimal selection.

6. Discussion. The standard Thomas algorithm has the following operation count.

multiplications n(-ma+3m2-1/2m)-2m2(m+ 1),

(6) additions n(-m3 +-m2--m) 2m2(m + 1),

divisions nrn.

Here n is the number of block unknowns and rn is the dimension of each block. In
recomputing, only the factorization of the matrix is done more than once. If n >> 1 the
operation count just for factoring the matrix is:

7 3multiplications n(zm -1/2rn),

(6a) additions n(m3---m2 +-m),
divisions nm.

Using as a measure of relative cpu time the equivalency formula

(7) 1 add 1 multiply 1/4 divide,
the total number of operations becomes

(8) n !-m3 -mZ +-rn

The variable F(t, s) is defined as the total number of operations involved in factorization
divided by the quantity in brackets. In this way the dependence on rn of the results
is largely removed. The variable s, defined above, is a measure of the available storage.
Finally n, also defined above, is a measure of the problem size. Figure 3 plots F vs.
for various values o the parameter s. This figure describes the common situation in
which a computer has a limited total memory. This occurs when secondary memory
is very much slower than primary memory, making its use impractical for solving linear
systems. Oten the secondary memory is a disk or a standard tape drive. In the case

FACTORIZATION OF BLOCK-TRIDIAGONALS 189

START

DEFINE H FOR
l<k<s
(SEE FIG. 2)

FETCH 1,

FOR 2,

FETCH ai_ rilCOMPUTE b;. c;..;
SO.c; ,. C.

+1

NEXT "]
.J

FOR n, 2, -1

TEMP=k

DEFINE H FOR
TEMP < <
(SEE FIG. 2)

k=s

RECOMPUTE

CiHTEMp+I TO C;
SAVE SELECTED
C’s AS IN THE
FORWARD SWEEP

COMPUTE qi-1

NEXT

FIG. 3. The Thomas algorithm modified for recomputing.

of the current generation of micro-computers it may even be a cassette. In such a case
recomputing may allow solution of problems which otherwise could not be solved at
all. Figure 4 gives, at a glance, the cost of solving block tridiagonal systems as function
of problem size given a fixed amount of memory.

Another situation for which recomputing can be helpful is where a program has
been written, the problem size is fixed, and the user wishes to modify the program in

FOUR UNKNOWNS PER BLOCK (m 4)
VARIOUS AMOUNTS OF AVAILABLE STORAGE

10

,/
/

10

10 10 10
PROBLEM SIZE,

FIG. 4. Tradeoffs between CPU time and storage.

190 MARSHAL L. MERRIAM

some way that requires more memory than the computer has. One way to get more
memory is to reduce the amount of space allocated for temporaries used in solving
block tridiagonals. Depending on the problem this may free a significant amount of
storage. In this way the user may avoid a complete rewrite which might otherwise be
necessary to incorporate transfers to secondary memory. Depending on the accounting
algorithm for the computer in question, recomputing may even be cheaper than
transfers to secondary memory. Experience has shown, however, that recomputing
rarely pays on a cost/run basis if any element c’ is computed more than twice.

A situation sometimes arises in which the total computer time is fixed. From this
constraint one may estimate the maximum number of times each element may be
computed. We call this number P. Given P and the storage constraint s there is a limit
to the number of block unknowns we can solve for. We call this number L. The
question arises: What is the relationship between P, s, and L? Such information could
be useful in deciding on a vector length or deciding if this algorithm would pay at all.
It can be shown that the recursion relation for finding L(P, s) is

(9a) L(P, 1) P,

(9b) L(1, s)=s,

(9c) L(P, s) L(P, s- 1) + L(P- 1, s) / 1.

We notice immediately that L(P, s) L(s, P), that is the function L is symmetric about
the line P s. Also, along a line where P (or s) is a constant the values of L may be
exactly fitted by a polynomial of degree P (or s). The first few and the general case
are given here.

(10a) P- 1 L- s,

(10b) P 2 L -32S "- 1/2S 2,

(10c) P 3 L -S "l" S2 +-S3

z+l

(lOd) P=z L= (l(i),.,z+llSJ-1/Z.)--I
j=l

(J)In the general case, ,z/l are Stirling numbers of the first kind.
Thus we see that the highest order term is always s/z!. Equation (10d) is given

without proof. In principle, however, one could substitute (10d) into (9c) to prove
the equality.

The recomputation algorithm is arithmetically the same as the Thomas algorithm;
hence it has exactly the same stability properties and gives exactly the same answer.
Although the storage overhead is usually negligible, it does require s scalar temporaries.
This should be compared with sm2 temporaries used per tridiagonal in the rest of the
computation or with (n-l)m2 temporaries needed per tridiagonal for the Thomas
algorithm. The computational overhead is equally negligible, involving only a small
amount of integer arithmetic. If no recomputation is done, the recomputation algorithm
costs virtually the same to use as a conventional Thomas algorithm.

7. Conclusions. It has proved useful to program the entire block tridiagonal solver
as a subroutine which has, as an argument, the amount of available space. This
substantially reduces the consequences of programming at the limit of primary memory.
This alone helps increase productivity through reducing the number of times programs
are rewritten to free a tiny amount of storage.

FACTORIZATION OF BLOCK-TRIDIAGONALS 191

Using recomputation, problem size can be substantially increased on computers
where memory size is poorly matched to processor speed for this type of problem.
Recomputation can free enough memory to allow effective use of vector processing
capabilities on machines like the Cray-1 and the CDC 205. Furthermore, the extra
computation required is largely made up of dot products, at which these machines are
very efficient. This algorithm was used on Illiac IV codes at Ames Research Center
[2] from 1977 until the Illiac was replaced in 1981. The required vector length of 64
and the small size of primary memory made recomputation a virtual necessity on the
Illiac, allowing the solution of problems which otherwise could not have been solved.

Surprisingly, execution speed can actually be increased through the use of recompu-
tation. This can occur when disk latency and data transfer become a substantial portion
of the code’s running time. It can also occur when recomputation is used to increase
vector lengths. In both cases costs can be reduced by doing more arithmetic, keeping
the job in core using recomputation. Any time a situation arises where it costs more
to bring a problem in and out of core than it does to perform the arithmetic,
recomputation will pay. To quantify this, recomputation pays if

(lla)
number of operations/block number of words/block
number of operations/second number of words/second x 2

or equivalently if

(llb)
number of operations/block
number of words/block

number of operations/second
number of words/second x 2

The factor of two comes from the fact that each word must be written once and read
once. The per block quantities are dependent upon m while the per second quantities
are machine dependent. In Fig. 5 this inequality is depicted graphically. The I/O and
CPU capabilities of several common computers are given for perspective [3], [4], [5].

0/_

1/2 operation/word

10 15 "Q20 Oz. 25

p operations/see
words/see ’O

IF THE DATA POINT FOR THE COMPUTER IS TO THE RIGHT OF
THE DATA POINT FOR THE PROBLEM, RECOMPUTATION PAYS

FIG. 5. Feasibility of recomputing.

The arithmetic is assumed to be done at one fourth the maximum rate for single
precision arithmetic. The I/O is assumed to take place at the maximum rate. A
significant disk access time has the effect of lowering the effective transfer rate. Longer
vector lengths made possible by recomputing will raise the effective CPU speed. Both
of these make recomputing look more attractive. Neither is included in Fig. 5.

Of course, this general approach is not limited to tridiagonal matrices. It can easily
be extended to cover periodic and pentadiagonal matrices. For that matter it can be

192 MARSHAL L. MERRIAM

used to solve dense or wide banded matrices. It is not limited to Gaussian elimination
but is applicable to any method with a forward and backward sweep which saves
intermediate results. There is an interesting variant of this algorithm due to Eisenstat
et al. [6] in which, by computing from both ends at once, it is possible to solve the
system using only 6m2 storage locations and approximately (n + 2)m3 log2.n operations.
By comparison the method advocated here would need about nm3/n operations
for the same amount of storage. In practice the crossover point is at about n 50.
Eisenstat points out that if the matrix is further specialized so that the blocks a, b,
and c are diagonal, tridiagonal and diagonal respectively, then reordering the unknowns
simplies the problem further so that the work is only - that of normal Gaussian
elimination. A combination of the two algorithms may produce an algorithm better
than either of them. This is being studied.

Bigger and faster memories may temporarily reduce the need for recomputation
but cannot remove its advantages. As long as there are substantial differences in speed
between memory hierarchies, computers which do not match memory to processor
speeds, computers with vector speeds significantly quicker than scalar speeds, or
problems which are computationally light relative to their size, there will be a need
for recomputation schemes.

Acknowledgments. The author wishes to thank the reviewers for their helpful
comments. In particular the dynamic programming technique in the section on optimal-
ity and the algorithm of Eisenstat et al. were brought to my attention through them.

REFERENCES

[1] W. F. AMES, Mathematics in Science and Engineering, 18, Academic Press, New York, 1965, pp.
341-342.

[2] J. KIM AND P. MOIN, Large eddy simulation of turbulent channel flowmllliac IV calculation, Proc.
AGARD Symposium on Turbulent Boundary Layers, Experiment, Theory, and Modelling, The
Hague, The Netherlands, Sept. 24-26, 1979; also, NASA Technical Memorandum 78619, Sept.
1979.

[3] Cray-OS Version Reference Manual, SR-0011, Cray Research Inc., Mendota Heights, MN 1980.
[4] Software andHardwareProduct Descriptions, ProductResourceManual, CDC, Control Data Corporation,

St. Paul, MN, 1982.
[5] Peripherals Handbook, Digital Equipment Corporation, Maynard, MA, 1981, p. 79.
[6] S. C. EISENSTAT, M. H. SCHULTZ AND A. H. SHERMAN, Minimal storage band elimination, in High

Speed Computer and Algorithm Organization, Kuck, Lawrie and Sameh, eds., Academic Press,
New York, 1977, pp. 273-286.

SIAM J. Scl. STAT. COMPUT.
Vol. 6, No. 1, January 1985

1985 Society for Industrial and Applied Mathematics
016

THREE NEW RAPIDLY CONVERGENT ALGORITHMS
FOR FINDING A ZERO OF A FUNCTION*

D. LE

Abstract. Three new algorithms using only function evaluations for numerical solution of nonlinear
equations are described. These methods feature the combination of bisection with interpolation. They
guarantee convergence in a small number of function evaluations (1.7 or three times the number required
by bisection), and their rates of convergence are comparable with those of existing methods.

Key words, zero finding, quadratic interpolation, linear interpolation, nonlinear equation

1. Introduction. One of the most basic problems in scientific work is to find a
zero a of a nonlinear function f(x) of a single variable, i.e., solving a nonlinear equation
f(x) 0. Since a cannot in general be expressed in closed form, iterative methods are
usually sought to produce an approximation solution to the problem. Many classical
algorithms are known: Newton-Raphson, bisection, regula falsi, etc. For a good survey,
see Traub (1964) or Ralston and Rabinowitz (1978). These methods are either too
slow or unsafe to use without requiring certain conditions to be satisfied. Recently,
many algorithms have been proposed which guarantee global convergence as well as
having high asymptotic order of convergence. One such pioneer algorithm, published
by Dekker (1969), uses a mixture of linear interpolation and bisection. Another
algorithm is that of Dowell and Jarratt (1971) which is the modification of the regula
falsi method; their method was again modified by the same authors in 1972 to give
better order of convergence. Another higher order version of the regula falsi method
is the one published by Anderson and Bjorck (1973). Although those above algorithms,
namely Dekker’s, Dowell and Jarratt’s and Anderson and Bjorck’s, can guarantee
convergence, they may require a prohibitively large number of function evaluations
for certain classes of functions. In 1971 Brent proposed an algorithm similar to that
of Dekker, but forcing a bisection if successive secant or inverse quadratic interpolation
iterations were converging too slowly. Brent’s algorithm has an upper bound on the
number of function evaluations of (rib + 1)2--2, where nb is the number of function
evaluations needed by bisection. Dekker’s algorithm is also the starting point for two
other algorithms published by Bus and Dekker (1975) which have good asymptotic
behaviour and require only 4rib or 5rib evaluations at most. In 1977, Gonnet proposed
a hybrid method that uses quadratic interpolation during the first 30 iterations or so
and then switches to the bisection method. A distinct disadvantage of Gonnet’s
algorithm is its inability to realise difficulties before exhausting 30 iterations and, after
that point of no return, a very slow convergent method is used regardless of how easy
the situation might become. During early iterations, the interval is often very large
and thus may contain irregularities that make a superlinear convergent method alone
(like quadratic interpolation) very inefficient; the bisection method should be used in
this case to bring the interval to the root’s vicinity so that a superlinear convergent
method can become useful. Function 2 with a simple root, as listed in 5, would cause

* Received by the editors May 11, 1982, and in revised form April 15, 1983.

" Mechanical and Industrial Engineering Department, University of New South Wales, Kensington,
New South Wales, Australia. Present address, Energy Systems Analysis Group, CSIRO Division of Energy
Technology, Lucas Heights Research Laboratories, Private Mail Bag 7, Sutherland, 2237, New South Wales,
Australia.

193

194 D. LE

such a typical failure for Gonnet’s algorithm. While the new algorithm LZ1 (described
in 2) needs only 12 function evaluations to solve this problem, Gonnet’s algorithm
would move extremely slowly during the first 30 iterations, leaving bisection to finalise
the search and, if the search interval is large enough, the total limit of 80 iterations,
as fixed by Gonnet, may be insufficient for convergence. Although Gonnet’s algorithm
has produced some notable performances, as presented in his paper, it will not be
considered any further here.

In 2 and 3, two new algorithms (algorithms LZ1 and LZ2) are presented which
use bisection and quadratic approximation and which have upper bounds on the total
number of function evaluations needed of 1.7rib and 3rib respectively. Section 4
describes the third algorithm (algorithm LZ3) which utilises only linear approximation
and bisection, but which also has an upper bound of 3rib. Section 5 shows some
numerical results of these algorithms.

2. Algorithm LZ1. For a real function f, defined on the interval [a, b] with
f(a) f(b)=<0, the three new algorithms LZ1, LZ2 and LZ3 will locate an approxima-
tion c to a zero a of f to within the required precision by using only function evaluations.
It should be noted that f need not be continuous on [a, b] and thus there may be no
zero in [a, b], but in this case LZ1, LZ2 and LZ3 still produce a small interval of 260
(60 is defined later), within which f takes both negative and positive values. All three
algorithms require as their input the function f, the interval [a, b] and e which is the
minimum required accuracy of the objective function values. Depending on the context
as well as on the working precision, the user must carefully choose the limiting residual

e, especially if If’(x)l is very small at the root so that If(x)l increases slowly as x
moves away from the root. For most practical purposes, it is felt that the function
value is more important than the position of the argument and ,thus the objective
function value accuracy is sought by LZ1, LZ2 and LZ3 rather than the accuracy of
the independent variable. One would usually accept the root estimate returned by a
root solver routine if the value of the objective function at the estimate is near zero
(as specified by the user’s e), although the final argument interval is still quite large.
But the reverse can be unacceptable and, furthermore, the accuracy of the argument
required for an acceptable objective function value is not usually known beforehand.
Consequently, an interval estimate must always be close to machine accuracy to avoid
the problem of stopping prematurely and producing an unreasonably large objective
function value. Furthermore, because of the essential part played by e in association
with cushion interpolation (for example, see step 1.4 of the algorithm LZ1), it is not
advisable to use the argument interval as a stopping criterion in our algorithms,
particularly LZ1. The problem of having to base the stopping rule on the objective
function value also exists for many other well-known methods, notably Newton-
Raphson and regula falsi. Therefore, LZ1, LZ2 and LZ3 only use the bracketing
interval mainly as a mechanism to protect against divergence and not as a stopping
criterion.

LZ1 combines bisection with a technique which is termed cushion interpolation
to reduce the search interval and, whenever f can be reasonably well approximated
by a quadratic function, then direct interpolation is used instead to estimate a. It
should be noted that the use of interpolation estimate as the new point for function
evaluation is termed direct interpolation to distinguish from cushion interpolation,
which will be defined later. In LZ1 and LZ2, quadratic interpolation is preferred over
the use of inverse quadratic interpolation or rational interpolation since the two latter
methods can produce estimates outside bounds and sometimes can even be inapplicable,

NEW ALGORITHMS FOR FINDING A ZERO OF A FUNCTION 195

FIG. 1. Typical configuration of LZ1.

while quadratic interpolation will always produce an estimate within bounds assuming
no round-off errors.

The main features of the algorithm are described below.
At the beginning of a typical iteration of the algorithm LZ1 (Fig. 1), three distinct

points x l, x2 and x3 are available such that

(1) f(xl).f(x2)<-O, x2[xl, x3], f(x2).f(x3)>=O, f(x3)#0.

The first condition ensures that there exists a zero a of f in the closed interval
[x l, x2] while the other conditions state that x2 and x3 lie on the same side of a.

A typical iteration of LZ1 consists of the following steps"

1.1. Let z=xl+(x2-xl)/2 and s be the last value of r (r is defined in 1.2);
also let d=lxl-x2l and e be the last value of d. If If(x2)l<[f(xl)l, let u=x2,
otherwise u x 1 (this condition yields that u is the current best approximation of a).
Let go e(1 /lul) and 6 =max (d/10, g0) where e is a machine-dependent number
and chosen to be 10-14 in the numerical study shown in 5. (In fact, the tolerance
function go should ideally be considered as a combination of a relative tolerance
depending on ul and an absolute tolerance. However, for convenience, a single
combined tolerance is used throughout and it is the user’s responsibility to consider
the proper scaling for the problem). The performance of the last iteration is then
assessed as follows" if d <= e, then the last iteration is considered a success and the
indicator k is set to 0; otherwise k 1 (the term used in the above condition to
decide a failure will be explained later on).
Test for convergence: if If(u)l<=min(e,e) or d=<2/0 or /=3 (l is defined in 1.3),
then convergence is assumed and c u; otherwise go to step 1.2.

1.2. Interpolation step to determine r.
The 3 points xl, x2 and x3 are used to fit a quadratic approximation g(x)=

ax2 + bx + c to f(x). If a is too small, then linear approximation is used instead. It has
been experienced that for a <10-1 the calculation of the roots of the quadratic model
is not reliable. This is machine-dependent and should be changed accordingly for other
systems; its choice should also be problem-dependent, but this kind of dependence is
not particularly crucial for the operability of the algorithm, although the speed of
convergence might be impaired because of the premature switch from quadratic to
linear approximation. The interpolation estimate r is then obtained by solving the

196 O. LE

approximation function g(x)=0 (of the two real roots of g, the one closer to z will
be chosen). If a round-off error causes g(x) to have no real roots or r [xl, x2], then
let r z.

1.3. This step calculates the new point w where the objective function will be
evaluated.

If 2 (l is the number of consecutive times that g can closely approximate f
and will be defined more clearly in step 1.4), g is considered to be a reasonably good
approximation of f and a direct interpolation is used to estimate a, thus

w { u + 6 sign (z- otherwise.iflr-u]<g’
If < 2, w is determined by bisection or cushion interpolation; if Ir-ul >= d/2 or

k 1, then use bisection, i.e. let w z; otherwise a cushion interpolation step is applied
which is defined as

w=r+ r----s .sign(r-u)

but this step must not be too small. That is, if w u] < g, then let w u + g. sign (z u)
and if w- ul >= d!2, then w z. This step is called cushion interpolation since the new
point w is displaced from the actual interpolation estimate by the use of a cushion
I(r- s)/21 sign (r- u) to increase the probability of a being bracketed within the small
interval. It should be emphasised that a step of g is used for cushion interpolation,
but a step of g0 is used for direct interpolation since there is no need to apply a very
fine step like g0 to a crude cushion. Moreover, a larger step like g would give much
more information than a smaller step.

1.4. Compare f(w) and g(w) to decide whether g can adequately represent f in
the neighbourhood of a; i.e. let

0 if If(w)- g(w)l
+ 1 otherwise.

(The use of Ir-s[instead of If(w)-g(w)[as an indicator for switching to direct
interpolation can be dangerous due to rounding errors, particularly when If(xl)] is
very large compared to If(x2)l or vice versa.)

1.5. Reduce the search interval.
If f(w).sign(f(xl))<O, then let x3=x2, x2=w and go back to step 1.1;

otherwise two choices of interval for the next iteration exist, namely [xl, w, x2] and
[w, x2, x3], since both can satisfy condition (1); the choice is made by using the smallest
interval of the two. That is, if d =< Ix3-wl, then let x3 x l, x l x2, x2 w and go
to step 1.1; otherwise let x l w and go to step 1.1.

It is obvious that in each iteration the argument value w as determined in step
1.3 is distinct from any existing point with the mutual distance of at least d/lO. Let
Ii, for iteration 1, 2,. , n, denote the closed interval whose endpoints are x l and
x2i. Then from the relation f(xli), f(x2i)-<0 and the operations of steps 1.3 and 1.5,
it follows immediately that I contains a zero a of f and I1 I2 13 ’’" I. This
proves that LZ1 will converge to a zero

Following from the definitions of the algorithm, in particular from step 1.3, a
bisection is always performed whenever the previous iteration is a failure according
to the concept of success and failure defined in step 1.1. The worst case would be a

NEW ALGORITHMS FOR FINDING A ZERO OF A FUNCTION 197

step of 8 followed by a bisection which corresponds to Ii smaller than (2--)Ii--2. Hence
two steps of LZ1 always reduce the length of the search interval faster than
In (9/20)/(-ln 2)= 1.15 steps of bisection, or, equivalently, about 1.7 steps of LZ1 is
faster than one step of bisection. Thus, the number of function evaluations needed by
algorithm LZ1 is bounded above by 1.7rib. The above discussion neglects the effect of
direct interpolation steps which usually occur only in the final iteration.

Now, in order for two consecutive steps of success to guarantee roughly the same
rate of reduction, it is required that Ii t2I_2<-(9/20)Ii_2 where is the desired
minimum reduction rate. This results in which is used in the definition for failure
in step 1.1.

The small bound on the number of function evaluations needed by LZ1 is made
possible by the fact that only one failure is required to necessitate a bisection step due
to the use of cushion interpolation. However, in LZ2 and LZ3 (described in 3 and
4) since w estimates a directly, at least two failures must be registered before bisection
is sought to prevent bisection from being used too frequently.

The cushion interpolation used in LZ1 and LZ2 is motivated by the assumption
that r is a better estimate of the root a than s and that a is likely to lie between
r+(r- s)/2 and r-(r- s)/2. Thus the use of cushion interpolation would increase the
possibility of a being bracketed within the smaller interval. It is seen that r cannot be
expected to be reliable if [r-s[is large which then requires a large cushion or a
bisection. If r approaches a, (r-s) and hence the cushion approaches 0 and thus
cushion interpolation becomes direct interpolation.

The next algorithm to be described is algorithm LZ2 which has been designed to
relax some degree of complexity of LZ1 but, unfortunately, at the cost of higher bound
on number of function evaluations.

3. Algorithm LZ2. Given the input mentioned in 2, LZ2 produces a sequence
of w converging to a zero a of f by using a mixture of bisection, cushion interpolation
and direct interpolation. Basically, direct interpolation is used to estimate a but
whenever it is considered a failure, then cushion interpolation is sought instead. The
algorithm will switch to bisection if a second consecutive failure occurs.

As in LZ1, the algorithm LZ2 starts a typical iteration with 3 distinct points, x l,
x2, x3, which satisfy the conditions (1) and proceed according to the following four
steps.

2.1. This step is similar to step 1.1 of algorithm LZ1 except that:
(i) 8 is defined as 8 max (d/100, 80);
(ii) k 0 if d =< 0.6e and k k + 1 otherwise, and
(iii) convergence is assumed if If(u)[<= er or d-<_ 280.
The term d/100 is used in the definition of 8 instead of d/lO since, unlike in

LZ1, the advantage of smaller bound on the number of function evaluations resulted
from the use of d! 10 is nullified by the use of steps of 80 in direct interpolation and,
furthermore, numerical study shows that d! 100 sometimes yields slightly better results.

2.2. This step calculates the interpolation estimate r using quadratic or linear
approximation and is the same as step 1.2 of algorithm LZ1.

2.3. The new point w is chosen as follows:
If [r-u[_-> d/2 or k 2, then bisection is used: w= z.
If k 0, direct interpolation is used and

w={ u+8’sign(z-u)r

if Ir- ul < 80,
otherwise.

198 D.I.

If k 1, cushion interpolation is applied:

r- s [u + 6. sign (z- u)
w= r+ .sign(r-u)=z

iflw-ul<,
iflw-uld/2.

2.4. This step is again exactly the same as step 1.5 of algorithm LZ1.

We see that the whole algorithm LZ2 is essentially the same as LZ1 with the
major differences being in step 2.3. Following from the choice of w, as described in
step 2.3, it is obvious that the three argument values x l, w and x2 are distinct and
have a mutual distance which is bounded below by 60. Thus the convergence proof
for algorithm LZ2 can be constructed similar to that for LZ1 and hence will not be
repeated here.

The number of function evaluations needed by algorithm LZ2 is at most 3rib. This
follows immediately from the definition of the algorithm: a bisection step is always
performed whenever the last two steps are considered as failures which implies the
length of Ii is smaller than half the length of Ii-3.

The desired minimum reduction ratio used in the definition of success (S) and
failure (F) should be chosen as large as possible to increase the number of direct
interpolations and to reduce the chance of performing bisection too frequently, but it
must be carefully designed to still guarantee the above bound of 3rib. It can be shown
that the cycle FS (one failure and one success) can be the slowest and thus the choice
of depends on the worst case of this cycle. Thus the total reduction rate of 3 of three
cycles FS must be smaller than that of two cycles FFB (failure-failure-bisection), which
yields =< 0.63. This explains the use of 0.6e in the definition of failure in step 2.1.

4. Algorithm LZ3. The algorithm to be described in this section features the
combination of bisection with linear interpolation and extrapolation instead of quadratic
interpolation, and is much simpler than the previous two.

A typical iteration of algorithm LZ3 with 3 distinct points x l, x2, x3 satisfying
conditions (1) consists of the following steps (Fig. 2):

3.1. This step is similar to step 2.1 of algorithm LZ2 except that both s and 6
are not defined since cushion interpolation is not used in this algorithm.

3.2. Linear interpolation and extrapolation.

xl q, X2 X
U
V

FIG. 2. Typical configuration of LZ3.

NEW ALGORITHMS FOR FINDING A ZERO OF A FUNCTION 199

Let p be the linear interpolation point using x l and x2

p= x2-f(x2) (xl-x2)/(f(xl)-f(x2))

and q be the linear extrapolation point using x2 and x3, which is defined as:

x2-f(x2) (x3-x2)/(f(x3)-f(x2))
q=

xl
if If(x3)/(x3- xl)l > If(x2)/dl,
otherwise.

3.3. The new point w is determined as follows:
If k 2 or j= 1 (is defined in step 3.4), then bisection is used, that is w= z;

otherwise let

w=p+(q-p)/2={z
v + 60 sign (z- v)

where v is defined as either the point x l or x2 whichever is closer to w.
3.4. This step reduces the search interval and checks if there is any inflection

point in the vicinity of the root.
Let the inflection indicator 0.
If f(w).sign(f(xl))<O, then let x3=x2, x2=w and go back to step 3.1;

otherwise let = 1 if (h-p). sign (h-q)> 0 (i.e., there exists an inflection point),
where h=x2-f(x2). (w-x2)/(f(w)-f(x2)). Let x3=xl, xl =x2, x2= w and go
back to step 3.1.

The convergence proof and bound on the number of function evaluations needed
for algorithm LZ3 is exactly the same as for LZ2.

The motivation behind this algorithm is that for a convex (or concave) curve, the
root a of f must lie between p and q and thus bisection could be used for this reduced
interval [p, q] instead of [xl, x2].

Despite the fact that LZ3 uses only one function evaluation per iteration and
utilises only linear approximation, its order of convergence, as proved below, can be
comparable to that of Newton-Raphson’s method and may be slightly better than
quadratic or 3-point rational interpolation.

In the following proof, let us assume for all iterations n greater than certain no
that Ixl-x31 is sufficiently small for certain conditions to hold and that 60 <lw-vl
(see step 3.3). The latter condition ensures that, for n >-no, the tolerance function 60
does not influence the nth iteration step. Another important assumption necessary for
the validity of the following order of convergence of the basic interpolation process
is that the bisection step cannot occur asymptotically.

Let the function f have three continuous derivatives and the root a be a unique
simple root. Because a is simple, then f’(a) 0 and thus f’(x) 0 for all x in a certain
neighbourhood of the root a.

Let xn be the most recent estimate of a and en be the error in the estimate x,,
i.e. en xn- a. Suppose that the method converges, i.e. lim,_. x, a.

Let an+l and bn+l be defined as

(2) a,,+ x,-

(3) b,,+=Xn-

f(x.)

f[x._, x.]

200 D. LE

and

(4) xn+l
a,,+ + bn+l

where f[x,,-1, x,,] is the first divided difference of f at x._ and x.. That is,

f(x.)-f(x._,)
fix._,, x.]

Xn Xn_

It is seen that a./l and b./l and hence x._ and x.-2 are interchangeable in (4),
thus x.-1 or x,,-z can correspond to either notation x l or x3 in the above description
of the algorithm.

Substituting (2) and (3) into (4),

f(x,,) f(x,,)
Xn+l Xn 2f[x,,_, x,,] 2f[x.-2, x.]

or

f[x,,-,x.]=O"(5) f(x,,)+2(x,,+,-x,,lf[x,,_,,x.]+f(x,,) f-._-f,,x,,
Now, using Newton’s interpolation formula with error term for x a

f(,) o f(x.) + (x.)f[x._,, x.] +(x.)(x._)
(6)

+ (a x.)(x.-1)(x._)
6

(f[X.--z, X.-1]-- f[Xn-l, Xn])
Xn_2 Xn

where : int [a, Xn_2, Xn_l, Xn].
Subtract (6) from (5) and use the mean-value theorem

f[x,,_,x,,]=f’(2), :2 int [x._l, x.],

f[x,,-2, x.] f’(:3), 3 int [x.-2, x.],

f[x,,-2, x._l] f’(s4), :4 int [x.-2, x._a];

thus

f’(:).+,f’() + (x.+,- x.)f’()+f(xo)7,_
(7)

EnEn-1 EnEn-1En-2 O.
x.-2 x. 6

Since x.+- x. x.+- x. + a a e.+- e. and similarly x.-2- x. e._z- e., (7)
becomes

or

2e.+,f’(2) Enft(2) "f(x,,)
f’(2)
ti3-- E’nEn-1

(8) En+l =-2f’(:3--" e.-2- e. \2f’(:2)

(f’(4)-f’())
Xn_2 Xn

"[- EnEn- En-2
f(3)(:l)

=0

EnEn_1En--2
f(3)(:l)
12f’(2)"

NEW ALGORITHMS FOR FINDING A ZERO OF A FUNCTION 201

thus

(9)

Expanding f in a Taylor series about xn gives

f(a) 0 f(x,) + (a x,)f’(x,) +1/2(a x,)Zf"(:5),

f(x.) e.f’(x.)-1/2e]f"(s).
Substituting (9) into (8) and as xn approaches

e, e,f’(a)-(1/2)ez,f"()

s% int [x,, a];

f(3)(ce)
e,+l

2 2f’(a) e,e,-le,-212f’(a)
or

(10) 6n+l 4f’(a) e"-12f’(a)
One special case is when/(3)(a)--0, then

2
En

which means quadratic convergence with asymptotic error constant better than that
of If"(a)/2f’(a) of the Newton-Raphson method. Let A=(f"(a)/4f’(a))e2, and
B=(f(3)(a)/lZf’(a))e,e,_le,_2; if A.B>O and IAI>IBI, then

f"() f()
]Sn+ll

4f’(a) e.- 12f’(a)
I,1" I,-1"

or I.+1 < If"(a)/4f’(a)l 2e,, which is again faster than the Newton-Raphson method.
This is also a special case and can only occur occasionally if If"()l is very large. In
general, however, the second term of (10) dominates asymptotically, thus

f)()

By writing I+l KII, I KImballp and I_ll Kl_=l, then (11) becomes

f(3)() 1)/p:K(-2p-1)/Pe

It follows that the effective asymptotic order of convergence is 1.839 which is the
largest root of the equation p3 p2_p 1 0. This is similar to the order of convergence
of quadratic interpolation.

5. Numerical studies. The performance of LZ1, LZ2 and LZ3 has been obtained
for the following test functions, which were supplied with an interval containing the zero.

Function 1. This function is described in Brent (1973)"

f(x) =-2
(2- 5)2

in the interval [nZ+ 10-9, (n+ 1)2--10-9] for n 1(1)19.
Function 2. f(x)= axex in the interval [-9, 31], where
1. a=-40and b=-l,
2. a =-100 and b=-2,
3. a=-200and b=-3.

202 D. LE

This function has a stationary point near its simple zero and takes the x-axis as its
asymptote for large x.

Function 3. f(x) x a, where
1. a 0.2 and n 4, 6, 8, 10, 12 in the interval [0, 5],
2. a 1 and n 4, 6, 8, 10, 12 in the interval [0, 5],
3. a 1 and n 8, 10, 12, 14 in the interval [-0.95, 4.05].
Functions 4 to 10 were taken from Dowell and Jarratt (1971), each with a simple

zero in the interval considered.
Function 4. f(x)=sin (x)-0.5 in the interval [0, 1.5].
Function 5. f(x) 2x e-n- 2 e + 1 in the interval [0, 1] and n 1, 2, 3, 4, 5,

15, 20.
Function 6. f(x) (1 +(1-n)2)x-(1-nx)2 in the interval [0, 1] and n= 1, 2, 5,

10, 15, 20.
Function 7. f(x) x2- (1 x) in the interval [0, 1] and n 1, 2, 5, 10, 15, 20.
Function 8. f(x) (1 +(1-n)n)x-(1-nx)4 in the interval [0, 1] and n= 1, 2, 4,

5, 8, 15, 20.
Function 9. f(x) (x- 1) e-n + x" in the interval [0, 1] and n 1, 5, 10, 15, 20.
Function 10. f(x)=(nx-1)/((n-1)x) in the interval [0.01,1] and n=2, 5,

15, 20.
Function 11. This function is a simple polynomial having a zero of multiplicity n

and was tested by Bus and Dekker (1975):

f(x) x in the interval [-1, 10] and n 3, 5, 7, 9, 19, 25.

Function 12. This is a function given by Brent (1973) with a zero of multiplicity
and defined by:

{01 if x=O,
f(x)

exp (-x-) otherwise.

The interval [-1,4] was considered for this problem.
The test results of LZ1, LZ2 and LZ3 under various stopping criteria are tabulated

in Tables 1 to 6 compared against the performance of the following algorithms"
algorithms A, M and R described in Bus and Dekker (1975), algorithm B published
by Brent (1971) and algorithm C by Anderson and Bjorck (1973). Except for functions
2 and 3 where the results of algorithm B have actually been obtained by the author,
all performance data of those competing algorithms have been quoted from other
authors’ works. Brent’s algorithm has been used for comparison with the three new
algorithms in solving functions 2 and 3 due to the availability of its FORTRAN version
(see Brent (1973)) and since tests by other authors (e.g. Bus and Dekker (1975) and
Swift and Lindfield (1978)) indicate that Brent’s algorithm is one of the most efficient
over a wide range of problems. Since LZ1, LZ2 and LZ3 are designed to work on the
objective function value rather than on the argument interval (see the discussion in
2), their results as presented in the tables were chosen such that the following

condition is satisfied"]k-al--< elite] d- e2, where c is the final estimate of the zero a

and El, e2 are assigned appropriate values so the results can be comparable to those
of competing methods. Tables 1 to 6 show the number of function evaluations needed
by the various algorithms to locate a root of the given function to within the required
precision as dictated in the following list of stopping criteria:

(a) Final argument interval is 26 for algorithm B, where 6 2 16-71x1+ 10-1;
see Brent (1973). The corresponding criterion for LZ1, LZ2, LZ3 is" Ic a _-<

10-8{a{+10-1.

NEW ALGORITHMS FOR FINDING A ZERO OF A FUNCTION 203

TABLE
Number offunction evaluations for function 1.

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Total

B LZ1 LZ2 LZ3

Stopping criterion (a)

14 11 11 14
8 9 10 12

14 9 10 11
12 8 8 10
12 8 8 11
11 10 9 12
11 10 9 11
11 9 9 9
10 8 9 8
10 9 9 8
10 8 9 8
10 10 9 8
10 10 9 8
10 9 9 8
10 7 7 8
10 9 9 8
10 9 9 8
9 8 7 8
9 9 9 8

201 170 169 178

TABLE 2
Number of function evaluations for function 2.

Interval a b

[-9, 31]

Total

-40 -1
-100 -2
-200 -3

/3 LZ1 LZ2 LZ3

Stopping criterion (b)

16 12 16 12
18 13 19 13
19 13 20 13

53 38 55 38

(b) Final interval is 26 for algorithm B, where 6 10-8(21x1+ 1). For LZ1, LZ2,
LZ3: ic cr _<- 10-8(21c1 + 1).

(c) Final interval is 26 for algorithm B, where 6 10-7(21x1+ 1). For LZ1, LZ2,
LZ3: I-cl_-< 10-7(211 + 1).

(d) For algorithms A, M, R, B, C: final argument interval is 26, 6 10-14(Ix14-1);
see Bus and Dekker (1975). For LZ1, LZ2, LZ3: Ic’-al-< 10-14(la14-1).

(e) For algorithms B and C: Final interval is 6, 6 6 10-8(Ixl / 1); see Anderson
and Bjorck (1973). For LZ1, LZ2, LZ3" 1-1_-<3 10-8(11/ 1).

(f) Final interval is 26, 6=0.510-8(Ixl /1), for the modified Davidenko-
Broyden method and the combined search-Brent method; see Swift and
Lindfield (1978). For LZ1, LZ2, LZ3: 1-1<0,5 10-8(11 / 1).

204 D. LE

TABLE 3
Number of function evaluations for function 3.

Interval a n

[0, 5] 0.2 4
6
8

10
12

[0,5] 1.0 4
6
8

10
12

[-0.95, 4.05] 1.0 8
10
12
14

Total

B LZ1 LZ2 LZ3

Stopping criterion (c)

13 9 8 11
15 10 8 10
16 11 11 10
16 11 13 11
16 11 13 11
14 9 9 11
14 10 10 10
13 10 10 10
15 10 11 10
16 11 12 12
14 10 11 10
14 10 11 11
15 10 10 11
16 11 13 11

207 143 150 149

The above list of stopping criteria also indicates the references from which the
performance data of other algorithms originated.

The three new algorithms have also been used to solve test problems supplied
with only one starting point. These sample problems were taken from Swift and
Lindfield (1978) and are listed below:

Function 13. f(x) 2x e -2 e + 1 with starting value 0. and n 5.
Function 14. f(x)= (1 +(1-n)a)x-(1-nx)4 with starting value 0. and n 5.
Function 15. f(x)= x with starting value -1. and n 3, 5, 7.
Function 16. f(x)=(e-"X-x-O.5)/x with starting value 0.1185 and n =5.
Function 17. f(x)=x-1/2-2, logo(nx/2)+0.8 with starting value 0.001 and

n=5103 5107

In order to supply the initial bracketing interval required by LZ1, LZ2 and LZ3,
the interval locating procedure given by Swift and Lindfield referred to in their paper
as findb has been used. It should be noted that this procedure cannot guarantee
convergence as it can lead to a zero, a stationary point or an asymptotic constant and
it may fail to locate an interval with end points having function values of opposite
sign. This will be the case when the function is asymptotic to a constant in the direction
of search and thus x will become unbounded, or when the stepsize becomes large
enough to bracket two or an even number of roots within it (if the function has more
than one root) and the procedure will bounce back and forth with unboundedly
increasing stepsize. Although several simple courses can be taken in such a situation,
for example restart with a new starting point or smaller stepsize, no attempts have
been made to modify the procedure findb.

Table 7 shows the performances of the combined search procedure findb with
LZ1, LZ2 and LZ3 with initial stepsize of 0.001 against those of the modified
Davidenko-Broyden continuation method and of the combined search-Brent method
as reported by Swift and Lindfield.

NEW ALGORITHMS FOR FINDING A ZERO OF A FUNCTION 205

TABLE 4
Number offunction evaluations for functions 4-10.

Function Interval n

4 [0, 1.5]
5 [0,1]

2
3
4
5

15
20

6 [0,1]
2
5

10
15
20

7 {0,1]
2
5

10
15
20

8 [0,1]
2
4
5
8

15
20

9 [0,1]
5

10
15
2O

l0 [0.01, 1] 2
5

15
2O

Total

A M R B C LZ1 LZ2 LZ3

Stopping criterion (d)

10 10 9 8 9 9 7 8
9 9 7 8 7 9 10 9

10 10 8 9 8 10 9 9
11 11 9 10 9 10 9 9
12 12 10 10 10 10 9 10

10 9 8 8 9 6 4 8

10 10 9 9 8 6 4 10
9 9 9 9 8 6 4 9

9 10 8 9 9 5 4 9

10 10 9 9 10 10 9 9
11 11 11 10 11 10 9 13

10 10 8 9 9 10 9 8

9 9 9 8 8 9 9 9

7 7 8 7 8 10 9 8

B C LZ1 LZ2 LZ3

Stopping criterion (e)

8 7 7 6 7
7 6 7 7 7

10 10 8 7 10
11 12 9 9 9
11 12 10 9 11

9 8 6 4 8
8 8 6 4 8

7 7 6 4 7
7 6 6 4 7

3 3 3 3 3
8 8 8 7 8

10 11 9 7 12
12 11 9 10 12

10 9 8 9 8

7 8 6 7 7

9 9 8 9 9 8 9 9
9 9 9 9 9 10 9 13
10 10 10 9 10 10 12 14

165 165 149 150 151 148 135 164

6 7 6 6 6
6 6 6 6 5
8 7 7 7 8
8 8 8 7 11
8 9 9 10 13

11 9 8 13 13
12 10 10 13 15
5 6 8 8 9

12 7 9 10 9
11 6 11 10 9
13 6 11 12 10

228 207 201 199 232

All computations have been carried out on the CDC Cyber 72 with 48 bits accuracy
in floating point at the University of New South Wales. It should be noted that some
exponent underflows have occurred during evaluations of function 11 for n 25 and
function 12. We would like to point out that comparisons based on data compiled
from different works may not be totally satisfactory because of the differences in
computer and compiler systems, precisions used, programmer’s coding ability, etc.

Furthermore, although the results obtained by different algorithms are of similar
accuracy, the number of function evaluations listed for LZ1, LZ2 and LZ3 are in fact
not directly comparable to those of other algorithms. This is because the three new
algorithms stop as soon as one approximation d to the zero a satisfying the stopping

206 I. LE

TABLE 5
Number of function evaluations for function 11.

Interval

Total

3
5
7
9
19
25

M R B C LZ1 LZ2 LZ3

Stopping criterion (d)

117 151 91 147 118 40 92 64
206 149 163 122 207 42 100 64
293 161 206 138 294 53 122 59
380 160 196 137 381 49 96 74
802 179 206 141 759 56 127 72

1320 159 174 123 961 63 115 71

3118 959 1036 808 2720 303 652 404

TABLE 6
Number of function evaluations for function 12.

Interval

[-1,4]

A M R B C LZ1 LZ2 LZ3

Stopping criterion (d)

>5000 27 23 18 969 4 11 11

TABLE 7
Number of function evaluations for problems with starting point.

Function
Starting
value

13 0. 5
14 0. 5
15 -1. 3

-1. 5
-1. 7

16 0.1185 5
17 0.001 5 103

0.001 5 x 107

Total

Modified
Davidenko-Broyden B LZl LZ2 LZ3

Stopping criterion (f)

12 14 14 14 13
8 7 7 7 6

130 126 34 47 40
141 86 33 63 44
146 67 35 73 39
20 13 11 10 11
18 13 12 11 11
13 10 9 8 9

488 336 155 233 173

criterion has been found, while other algorithms have to find two. It could be expected
that on average one or two extra function evaluations would be required to locate the
second approximation that brackets the zero. These extra function evaluations are
certainly not necessary if the first approximation produces a real zero as was the case
with algorithm LZ3 for 7 out of 17 functions in Table 4. Because of this difference,
performance measures of other algorithms cannot be compared directly with those of
LZ1, LZ2 and LZ3, although they do provide a strong basis for judgement.

NEW ALGORITHMS FOR FINDING A ZERO OF A FUNCTION 207

Although limited resources coupled with the difficulty discussed in 2 have
prevented more complete comparisons, the large set of test problems combined with
various stopping criteria certainly demonstrated the merits of the algorithms.

Although Tables 1 and 4 do not indicate conclusively about the relative perform-
ances of the new algorithms, bearing in mind the effects of different stopping criteria,
the remaining tables clearly point to the superiority of the new algorithms compared
to others. The differences in the number of function evaluations range from 4 or 5
for simple zero functions (Tables 2 and 3) up to more than one hundred for multiple
zero functions (Tables 5, 6, 7). It should be mentioned that as Table 4 contains
quadratic test problems (function 6 and function 7 with n 1), it slightly favours LZ1
and LZ2 which use quadratic interpolation as their basic process, just as it also favours
algorithm C with function 10 because of its relation to rational approximation.

6. Conclusion. In this paper we have presented two new approaches for
approximating a zero of an arbitrary function. The first involves the concept of cushion
interpolation which forms the basic process in the algorithm LZ1. This algorithm has
a very small bound on the number of function evaluations required, namely 1.7rib,
while its performance is still very competitive to other existing algorithms. Our second
algorithm LZ2 is a variant of LZ1. While it has a slightly simpler operation than LZ1
and still performs comparably with LZ1, an inevitable drawback with LZ2 is a higher
bound on the number of function evaluations needed, namely 3 nb. However, this bound
is still lower than those of existing algorithms. The third algorithm LZ3, with a
completely different approach, shows extremely good performance and, on many
occasions, it can even outperform LZ1 and LZ2, despite the fact that it is simpler and
uses only linear interpolation. Its maximum number of function evaluations is also
bounded by 3n. Although the number of function evaluations required by the three
new algorithms can be as high as 3n, in practice they only slightly exceed that needed
by the bisection method and the most outstanding performance in this respect belongs
to LZ1. On these above limited tests, our new algorithms have demonstrated their
robustnesses and efficient performances on both well- and ill-behaved functions.

7. Acknowledgments. The author wishes to thank Dr. G. Smith for his construc-
tive suggestions and his careful reading of the manuscript. Valuable comments by the
referees are also greatly appreciated.

REFERENCES

[1] N. ANDERSON AND A. BJORCK, A new high order method of regula falsi type for computing a root

of an equation, BIT, 13 (1973), pp. 253-264.
[2] R. P. BRENT, An algorithm with guaranteed convergence for finding a zero of a function, Computer

J., 14 (1971), pp. 422-425.
[3], Algorithms for Minimisation Without Derivatives, Prentice Hall, Englewood Cliffs, NJ, 1973.
[4] J. C. P. Bus AND T. J. DEKKER, Two efficient algorithms with guaranteed convergence for finding a

zero of a function, ACM Trans. Math. Software, (1975), pp. 330-345.
[5] G. DAHLQUIST AND A. BJORCK, Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1974.
[6] T. J. DEKKER, Finding a zero by means of successive linear interpolation, in Constructive Aspects of

the Fundamental Theorem of Algebra, B. Dejon and P. Henrici, eds., Wiley Interscience, New
York, 1969, pp. 37-48.

[7] M. DOWELL AND P. JARRATT, A modified regula falsi method for computing the root of an equation,
BIT, 11 (1971), pp. 168-174.

[8], The "Pegasus" method for computing the root of an equation, BIT, 12 (1972), pp. 503-508.
[9] G. H. GONNET, On the structure of zero finders, BIT, 17 (1977), pp. 170-183.

208 D. LE

[10] A. RALSTON AND P. RABINOWITZ, First Course in Numerical Analysis, McGraw-Hill, New York,
1978.

[11] A. SWIFT AND G. R. LINDFIELD, Comparison of a continuation method with Brent’s method for the
numerical solution of a single nonlinear equation, Computer J., 21 (1978), pp. 359-362.

12] J. F. TRAUB, Iterative Methodsfor the Solution ofEquations, Prentice-Hall, Englewood Cliffs, NJ, 1964.

SIAM J. SCl. STAT. COMPUT.
Vol. 6, No. 1, January 1985

1985 Society for Industrial and Applied Mathematics
017

THE MATHEMATICAL STRUCTURE OF HUBER’S M-ESTIMATOR*

D. I. CLARK?

Abstract. The structure of the defining function of Huber’s M-estimator is examined. The behaviour

of the function is explored, together with the question of uniqueness and the connection with the L1
estimator. This analysis is necessary for the construction of a finite algorithm for the M-estimator, which

will be published subsequently.

Key words. Huber’s M-estimator, robustness, L estimator, uniqueness

1. Introduction. Classically, given a linear model

(1) b=Ax+r,

where b is an n-vector of dependent observations, A an n m array (n > m) of
independent observations, x an m-vector to be estimated and r an n-vector of errors
or residuals, x*= z has been chosen so that

(2) ri(z) 2 min.
i=1

The estimator z is called the least squares or L2 estimator and was shown by
Gauss in 1821 [4] to be the "most probable value" under the assumptions that the
errors have independent identical normal distributions. However, as was illustrated
by Tukey in 1960 [12], the L2 estimator is very sensitive to quite small deviations
from these assumptions, and, in particular, a few gross errors can have a marked effect.

In an effort to find a more robust estimator, Huber [7] suggested replacing the
squared term in (2) with the less rapidly increasing function

(3) p(ri) 1/2 r for Irl-
[/Iril-1/272 for Iril

where 3/is a parameter to be estimated from the data. The resulting estimator was
shown by Huber [10] to be a maximum likelihood estimator for a perturbed normal
distribution and has become known as Huber’s M-estimator.

The most popular approaches to calculating the M-estimator have been iterative
schemes based on letting , p’ and solving the equivalent system

E (ri) =0.

These are Huber’s method [8]

x/1 =x +[AA]-IA
Huber and Dutter’s application of Newton’s method [11],

X
j+l

X "" [A 7"(, (rj))A]-IA7"(rj),

and the iteratively reweighted least squares (IRLS) method attributed to Beaton and
Tukey [1

xi+1 =x +[A7(w(r))A]-lA(w(r))rJ,

* Received by the editors July 21, 1981, and in final revised form October 18, 1983.
? Department of Statistics, Institute of Advanced Studies, Australian National University, Canberra,

ACT, 2600, Australia.
209

210 D.I. CLARK

where (a) denotes the diagonal matrix with (), ai, and w is a weight function such
as w(t)= (t)/t. Holland and Welsch [6] give a detailed account of the IRLS method
with some comments on the relative rates of convergence of the three methods.

A different approach is based on Huber’s [8] observation that if the correct
partitioning of the minimizing residuals r into
{ilr, <-,} were known, the M-estimator could be calculated in a single step as a
minimizer of

1/2 Y ri + (yri 3/2) + (-3’ri-1/23/2)
o"+

The difficulty, of course, is that the minimizing partition is not known a priori. Indeed,
as Huber has noted, "The search for the M-estimator is the search for the correct
partition."

Our approach [3], to be published subsequently, finds the correct partition by
regarding z as a function of y, starting with the L2 estimator, z(oo). We use the results
of this paper to prove that z is a continuous piecewise linear function of % and to
show how to find a new feasible partition at the end of a range of 3’, when one or
more residuals change status.

This paper is concerned with the function p defined in (3) (as applied to residuals
ri defined in (1)) in an effort to understand its underlying structure, as opposed to
justifying its statistical virtues. We find it convenient to use a partitioning or, Y or/ LJ r_
and to use the signs of r, c Y. The M-estimator then becomes the minimizer z of

(4)

which, as Irl > O, ctY, is differentiable, and so z satisfies

(5) (a,afz- b,ai)+E ,O,a, =0,

where a is the ith column of Aw and 0 sgn (r). The approach taken will be to study
the function (4), assuming a partition
and to examine the requirements of such a partition being feasible, i.e.
and the residuals of are of the assumed sign. This gives us a necessary background
for our algorithm mentioned above. It also seems a natural one, focusing on one of
the aims of finding the M-estimator, that of identifying a set of outlying observations
for closer scrutiny.

Another estimator which has received a great deal of attention in the quest for
robustness is the L estimator, the solution of

E Ir] =min,

described variously as the most robust estimator in som’e sense [5], [10], and as the
only technically robust Lp estimator of location [9]. As the L estimator is characterized
[13, p. 118] by a partitioning, of N into ={ilr,=O}, ={rJr,O}, so that

it would seem that the partitioning approach should throw light onto the relationship
between the L and M-estimators.

We shall therefore use this approach to investigate the uniqueness of the M-
estimator, the behaviour of the function and its function values, and the connection
with the M-estimator.

MATHEMATICAL STRUCTURE OF HUBER’S M-ESTIMATOR 211

2. Definitions and conventions. A partition P is a splitting of the set N
{ 1,. , n} into disjoint complementary subsets tr and #. The function associated with
P is

z will denote the minimizer of F(x), and F(z) will be called the value of the partition.
Residuals of a partition will be measured at z.

A residual is tight if its absolute value equals 3’.
A partition is tight if at least one of its residuals is tight. "Tightness" will, unless

otherwise stated, refer to partitions.
A partition is it-feasible if Ir,(z)l-< , i tr, and -feasible if for i ,]ri(z)[> %

and the residuals are of the assumed sign.
A partition is feasible if it is it-feasible and t-feasible.
Uniqueness will, unless otherwise stated, refer to the number of feasible partitions,

rather than to whether a particular partition has a unique minimum.

ai will denote the ith column of A.
0 will denote the sign of the ith residual, 0 sgn (r).
Adjacent partitions Pa and Pb satisfy tra =trb t_J {k} or r tr/{k}.
The data for the examples will be displayed as a tableau having the form

AT AT

bT, or bT

3. Theorems and examples. We first prove several lemmata, building up to
Lemma 7, the key result. As the proofs of this lemma and its corollary are substantially
longer and more complex than the remainder of the paper, they appear, in the interest
of the readability of the paper as a whole, in the Appendix.

Several examples are given. These were constructed using the optimality criteria
(5). As they are in general designed to demonstrate unusual behaviour, they tend to
be sensitive in that a slight perturbation causes them to no longer illustrate the point
being made. Consequently they were often difficult to construct and may not be easy
to check. Verification, however, may be made easier by using the results of this section.
This is done for the first three examples.

LEMMA 1. The minimum of

F 1/2 r/ + (3’lri[-1/2 3"2)

is characterized by

riai 4- 3"iai 0,

where

LEMMA 2. If P and Pb are adjacent partitions with ra trb t_J { k}, then for any x
satisfying Ir(x)l- ’, Fa(x) Fb(X).

Proof. The proof follows directly from

1/2 r(x) 2 I r(x)l-,

212 D.I. CLARK

LEMMA 3. If Pa and Pb are adjacent partitions with ra =rb U {k} for which a
minimizer z of either partition has Irk(Z)l 7, then z also minimizes the other partition.

Proof. The proof follows directly from Lemma 1. [3

LEMMA 4. If a partition has nonunique minimizers zl and z2, then
(i) for tr, ri(zl) ri(z2);
(ii) for 6,

either sgn ri(zl)= sgn ri(z2),
or at least one of r/(zl)= 0 and ri(z2)= 0 holds.

Proof. Let z3 1/2zl +1/2z2. Then, from the convexity of F, z3 also minimizes F, so that

(6) j-’(Z3) 1/2 -’(Zl) -!’-1/2 F(Z2).

Now ri(z3) 1/2 ri(zl) +1/2 ri(z2), so (6) becomes

(7)
Z {ri(zl) -- ri(z2)}2- ’ Z [ri(zl) -- ri(z2)l

E {ri(z)Z + r (z2)2} +& E {Iri(z)l +lr (z2)l}.

But (p+q)2<-2(p2+q2) and Ip+ql[pl+lql, so that equality in (7) can occur only
when all the corresponding elements are equal.

LEMMA 5. Iftr trb [3 S, then F(x) >_- Fb(X), with equality holding only if [ri(x)l y,
iS.

Proof. The proof follows directly from 1/2 r2i >- y[ri[-1/2 y2, the inequality being strict
unless [ri[y. 71

LEMMA 6. A feasible partition has a unique minimum iff the vectors ai, tr, span
Rm.

Proof. (i) If z and z2 both minimize F, then from Lemma 4, ri(zl)= ri(z2),
and so the vectors ai, o-, do not span [m.

(ii) If the vectors ai, i tr, do not span ’, there exists a vector d orthogonal
to the ai, i tr. Then for itr, ri(z+ad)= ri(z), and for i# and small enough
a, sgn(z+ad)=sgnri(z), so that z+ad also satisfies the optimality criteria of
Lemma 1.

LEMMA 7. If S is any proper subset of r such that [ri(Za)[<: "y, S, and x’ is a
vector satisfying [r(x’)l > y, S, then Fb(Z) ----< Fb(x’), where r S.

Further, if Iri(z)[< 7 for any S, F(z) < F(x’).
Proof. See Appendix.
COROLLARY. F(z,) _<- V(x’).
Proof. See Appendix.
Our first three theorems are concerned with the uniqueness or otherwise of a

feasible partition. As one of the aims of finding the M-estimator is to identify sets of
observations as potential outliers, the existence of alternate sets under the same model
is of interest. We are therefore concerned with recognizing when alternate feasible
partitions may occur, and with their characteristics when they do.

THEOREM 1 (a). Let Pa and Pb be feasible partitions with O" O"b J S. Then

Iri(z,,)[y, Vi S.

Proof. From the feasibility of ’a and Zb, if Iri(Za)l < 7 for any S, then by Lemma
7, Fb(Za)< Fb(Zb), which contradicts the optimality of Zb for Fb.

Remark 1. Note that if P and Pb are feasible partitions with tr, trb t_l S, it is
not necessary for any partition of the form trb t.J S’, S’ c S, to be feasible.

MATHEMATICAL STRUCTURE OF HUBER’S M-ESTIMATOR 213

Example 1.

1 2 2 0
1 3 0 3
2 4 3 5

TThe feasible partitions are 0-a {1, 2, 3}, za=(1,1), and o’b={l}, Z’E
((1, 1), (2/3, 4/3)]. But r(za)7" (0, 1,-1,-2), so from Lemmata 3 and 6(i) (which
does not need the feasibility of the partition), za uniquely minimizes 0-c {1, 2} and
0-a {1, 3}. Thus neither 0-c nor 0-a is feasible.

THEOREM 1 (b). Let Pa and Pb be feasible partitions, and let 0-c 0-a n 0-. Then

Ir(z)l , E 0-a n (=era n Y),

Ir,(z)l e, 0-, N (=Sa N o-b).

Proof Z and z are feasible for Pa and Pb, respectively, and as 0-a 0- U (0-a N Y),
from Lemma 7,

(8) Fc(za)<Fc(Zb).

Again, as 0-b 0-c U (0- N 6"c), from Lemma 7,

(9) F(zo)-<=Fc(za).

Now if, for some 0-a N Y, I i(z)l < (8) becomes Fc(Za) < Fc(Zb)" and if, for
some 0-b 71 Yc, Ir,(z)l < % (9) becomes F(Zb) < Fc(Za). Either condition causes (8)
and (9) to be inconsistent. [3

Remark 2. Note that a partition may be tight, even for a range of y, and still be
the only feasible partition.

Example 2.

1 0 1 2 3 0
0 1 2 2 - 4.

1 1 1 2 8 12

For 3-< y<4.17, o-={1,2,3,4} withz=+y/9,-+7y/18, so that ra=y. But for
the whole of this range of y, Ir, < 3’ and Irzl < % so that by the corollary below there
are no other feasible partitions.

COROLLARY. A necessary condition for a feasible partition not to be unique is that
the nontight vectors of 0- do not span R’.

Proof. Let Pa and Pb be two feasible partitions, and let 0-c 0-a n 0-b. Then from
Theorem l(b) and Lemma 3, Za and Zb both minimize F(x), and so from Lemma 6
the vectors ai, 0-, do not span R’. But from Theorem 1 (b) the nontight vectors of
0-a are included in 0-c.

Remark 3. We now have two necessary conditions for nonuniqueness, namely
tightness and the nontight vectors of 0- not spanning R". These two conditions, however,
are not sufficient to ensure nonuniqueness.

Example 3.

1 9.5 7 1 3
1 7 9 3 0.5
1 -110 90 85.6 58

y= 1.6.

214 D.I. CLARK

For r {1, 2, 4}, z=(-43.3,43.5) 7" and r=(-.8,3.15,-1.6, 1.6,-166.15) r. Now if
there were another feasible partition Pa, from Theorem l(b), then 1 ra and Ir(zo)l ,
i r\{1}. But from Theorem 3, below, rl(z) rl(z), so that z =z+ a(-1, 1) 7". But
as a increases, r2 and r5 decrease while r3 and r4 increase. Now for 0 < a < 1.6, r31 < 3’,

and for 0.62 < a < 1.9, Ir21 < . So the only possibilities for a feasible partition with
a > 0 are

1.9, cr {1, 2}, r2 --3’, r3 > T, r4 > 3’, r5 <-%

and

a > 1.9, r 1 }, r2 < 3’, r3 > 3’, r4 > 3’, r5 < 3’,

and it is easily verified that in neither case are the optimality criteria of Lemma 1
satisfied. Similar reasoning shows that no alternate feasible solutions are possible with
a < 0. (This behaviour is also exhibited at 3’ 1.803, cr {1, 2, 4}.)

THFORFM 2. IfP is a feasible partition, Pb is r-feasible and Pc is -feasible, then:
(i) Fa(za) <= Fb(zb);
(ii) Fa(zo) => Fc(zc).
Proof. (i) Let O’d =ra n rb. then from the corollary of Lemma 7 and Lemma 5,

Fa(za) Fd(Zb) Fb(Zb).

(ii) Let o’a =r n rc. Then from the corollary of Lemma 7 and Lemma 5,

F(z) <- F(z.) <= F.(z.).
COROILAIV. The function values of all feasible partitions are equal
THEORFM 3. LetP and Pb be distinctfeasible partitions, and let rc r n rb. Then:
(i) ri(za)= ri(zb), i ere;
(ii) sgn ri(z) sgn ri(zb), 7c.
Proof. From Theorem 1 (b) and Lemma 3, z and zb both minimize Fc(x). The

result now follows from Lemma 4. l-1

COROIIAR. If P and Pb are distinct feasible partitions, then

E lri(z)l-E lr,(z)l.

Proof. From the corollary of Theorem 2 and noting that r ra N r + era n c

From Theorem l(b), and using 1/2r2=vlr, I--v2 when Ir, v, and observing that

ra f’l + =,
1/2 ri(Za) 2 + E 3’lri(z)l E r(z)2 + Tlri(za)l.
c c c c

The result now follows from Theorem 3. [3

Our next two theorems are concerned mainly with algorithm building. In particular,
for our finite algorithm Theorem 5 is needed to show that z(3’) is piecewise linear,
and Theorem 4 is required to demonstrate the feasibility of the new partition in a new
range of 3’.

MATHEMATICAL STRUCTURE OF HUBER’S M-ESTIMATOR 215

THEOREM 4. Let Pa and Pb be adjacent partitions with unique minima za and Zb,

respectively, and let tra trb [_J { k}. Then:
(i) Irk(za)[> TC=)[rk(Zb)[> ’;
(ii) Ir(z)l lr(z)l .
Proof. Assume Ir(z)l > and [r(zb)l , or Ir(z)l and Ir(z)l > . Define

x aZa + (1 a)Zb, 0 a 1, such that Ir (x)l Then from, in turn, Lemma 5, z
minimizing F, Lemma 2 and convexity,

(10) Fb(Z) F(z)F(x) Fb(X) Fb(Za)+(1- a)Fb(Zb).

If a 1, from Lemma 3, z minimizes Fb, and if a < 1, (10) implies Fb(Z) Fb(Zb),
and again Za minimizes Fb. This contradicts the assumption of the uniqueness of the
minimizer of Fb.

Remark 4. The above theorem limits the behaviour only of rk at the change of
partition. Strange things can happen to other residuals, even when one of the partitions
is feasible.

Example 4.

1 10 1 0.9 10

2.5 10 3.9 5 40

For g={3}, z=3.8 and r= (1.3, 28, -0.1,-1.58,-2) and for g={2, 3}, z 1.147
and r=(-1.35, 1.47, -2.75, -4, -28.53) Note the behaviour of r and r3 at the
change of partition and that g {3} is the only feasible partition.

THEOREM 5. Provided rank A m, there exists a feasible partition for which there
are m linearly independent (LI) vectors in .

Proof. Assume that a feasible partition P1 has fewer than m LI vectors in gl.

Then there will be a vector d orthogonal to ai, g, and as rank A m,] k #1 for
which ad>0 (possibly after replacing d with -d). As in Lemma 6, z+ad also
minimizes F(x), small a. Let a =min {allr(z+ ad)l y, k e}, achieved when k
kl. Then from Lemma 3, z+ ad also minimizes g2 gl U {kl}, and g2 has one more
LI vector than gl. This process can be repeated until there are m LI vectors in gl. D

Finally, we further explore the relationship with the L1 estimator. Clearly, for
y 0, z(y) is the L1 estimator. Here we show that for a range of y the feasible partition
is a subset of go.

THEOREM 6. Let Zo be the L1 estimator and 0 {i[ri(zo)=0}. Then for small
enough but finite y, gr yo.

Proof. From the characterization of the L1 optimum (see, e.g., Watson [13]), at
Zo , Iil 1, such that

(11) X Xiai+X Oiai=O.
0 0

Now let y be small but positive, and consider the partition gy go. Provided
ri(zr) # 0, i, the characterization of the optimum (Lemma 1) gives

) X ri
ai + Oiai O.

0 0

Now as z(y) z(0) as y 0 (the partition being fixed), and ri(zo) # 0, eo, then
for small enough y, ri(zr) # 0 and, further, sgn ri(zr) sgn ri(zo), o.

If there is no degeneracy in g0, i.e. if rank Jail, i go Iol, then (11) and (12)
will have unique solutions for hi and ri/y so that hi ri/y, and hence Iril , o.
And as Ir,(z)l > , 0 and small enough y, go is a feasible partition and gr go.

216 D.I. CLARK

If, however, there is degeneracy in or0, there is no longer a unique solution to
(11) and we can no longer guarantee Iril <= 3,, i fro. Indeed, as is shown in Example
5, below, fro may not be a feasible partition for any 3, > 0. In this case, however, there
will be a subset of tr0 which is a feasible partition. The detailed proof for this is rather
lengthy, and is only sketched below.

The proof depends on an algorithm ([2, Algorithm 5.2, p. 83]) which will be
published in our subsequent paper. This algorithm, in a finite number of steps, moves
from a #-feasible partition to a feasible partition by interchanges to adjacent partitions,
i.e. tr--> tr + { k}. Finiteness of this algorithm is proved using Lemmata 3 and 5.

By choosing 3’ small enough, #-feasibility is ensured for fro. Again by choosing
3, small enough, it can be guaranteed that only elements k tr0 are involved in changes
to partitions in the algorithm above, i.e. at each stage of the algorithm cri or0, and
as the algorithm terminates finitely, there must be a subset of or0 which is a feasible
partition for small enough y. i-1

Example 5.

3 4 0 2 7.5

2 0 3 3 7
0 4 3 5 20

The L1 solution is x (1, 1) T with cr0 {2, 3, 4}, and for 0 =< 3, < 1.34, try cr0 is feasible.
This is the normal situation where rv tr0. However, if the "7.5" is changed to "8",
then for 0 < 3, < 1.23, zv (1 + 33,/16, 1 + 2 3,/9) r, with try {2, 3} being the only feas-
ible partition.

COROLLARY. If the L1 estimator is not unique, there is a range of 3, .for which the
M-estimator is not unique.

Remark 5. The converse of the above corollary is not true, although it generally
holds. In Example 3 above, the feasible partitions for each range of 3, are as follows:

For 3,->- 115,

For 115 > 3, >- 1.869,

For 1.869 > 3, => 1.803,

For 1.803 > 3, > 1.775,

For 3, 1.775,

For 1.775 > 3, > 1.6,

For 1.6 -> 3, => .384,
For .384 > %

r {1, 2, 3, 4, 5},

r {1, 2, 3, 4},

r {1, 2, 4},

r {1, 2} or {1, 4} or {1},

r={1,2, 3} or {1,4} or {1},

or={1, 3} or {1,4} or {1},

r {1, 3, 4},

r ro {3, 4},

so that a unique L1 solution is consistent with a nonunique M-estimator.
Remark 6. A final example is illustrative of the lack of predictability of the

M-estimator. It is clear that for large enough % the M-estimator is simply the L2
estimator and the feasible partition is tr N, # . As we have seen, for small enough
% tr or0, and it is not difficult to show that z(3,) is a continuous piecewise linear
function of y, moving from the L2 to the L1 estimator as 3, is reduced. In general, for
0 < 3,2 < 3’1, cro trv2 -trv. However, this need not be the case, and in the following
example, for a range of % f)ro O.

MATHEMATICAL STRUCTURE OF HUBER’S M-ESTIMATOR 217

Example 6.

1 9.5 7 1 -5 2.466
1 7 9 3 1 1.475.
1 -110 90 85.6 -59 -1

For 1.804 > 3’ > 1.776, tr { 1, 2}, but for 3’ < 0.185, tr tr0 {3, 4}, and in both ranges
there is only the one feasible partition.

4. Summary. We have seen that the defining function of the M-estimator is not
a simple one. Odd things can happen (e.g. Example 4) which make the finding of a
feasible partition difficult. We do know, however, of some limits on the behaviour at
the change of partition, and how function values and the composition of tr change
between feasible and infeasible partitions.

We have been able to establish necessary conditions for recognizing nonuniqueness,
and although they are not quite sufficient, we can recognize those times that they are,
and we know certain properties of nonunique solutions.

Finally, we have explored the relationship with the L1 estimator, its extent and
its limits.

Appendix. Proof of Lemma 7.
LEMMA 7. If S is any proper subset of tra such that Ir(z)[<= ,, S, and x’ is a

vector satisfying Iri(x’)l > % s, then Fb(Za) <- Fb(X’) where O"b O" [") S.
Further, if Iri(Za)l < 3" for any S, Fb(Z,) < Fb(X’).
Proof. Let S { Sl," , Sr}. For convenience, let Yo Za, Yr+l X’, Fo(x) -= Fa (x),

Fr(x) Fb (X).
Now as Ir(yo)l _-< 3’ and Ir(yr+)l> 3’ for e S, we can, after reordering S, define

points Yl,""", Yr to satisfy

(i) Y- PiYr+ + (1 b)yo

(13) (ii) Ir,(yi) 3’;

(iii) 0 < (i /+1 1.

From 13(i) and 13(iii), we have

(14) yi-- ceiYo-t-(1--ozi)Yi+l,

where O 1 0i/0i+1.
If c 1, 0 =0, y =Yo, and from Lemma 2 and 13(ii), Fo(Yo)= F(yo), and from

Lemma 3, Yi minimizes Fi, thus

(15) Fo(Yo) Fi (yo) Fi(Yi) <= Fi(Yi+).
Let O" --O" J {Si+l,’’’ Sr} define Fi(x); i= 1,..., r-1. Then from Lemma 6

(16) Fo(X) -> FI(X) ->"" -> Fr (x).

From 13(ii) and Lemma 2,

(17) F-I(y,) F(yi), i=l,...,r.

Now from, in turn, (16), Y0 minimizing F0, (17), convexity plus (14),

(18) F(yo)<-Fo(yo)<=Fo(Yl)=Fl(yl)<-F(yo)+(1-al)Fl(y),

218 D.X. CLARK

SO that

(19) F, (yo) -< a, Fl(Yo) + (1 a,)Fl(Y2).

Thus from either (15) (al 1), or (16) and (19) (al < 1),

(20) F1 (yo) <- Fl(y2).

Again, from, in turn (16), (20), (17), convexity plus (14),

(21) V2(Yo)<=nl(yo)<=nl(y2)-n2(Y2)<-a2F2(yo)+(1-a2)V2(Y3),

so that

(22) F2(Yo) 2 F2(Yo) + (1 a2)F2(Y3).

Thus from either (15) (a2 1), or (16) and (22) (a2> 1),

(23) F2(yo) -< F2(y3).

This process is repeated until we reach G(Yo)-<Fr(y+I). Moreover, if, at any stage
]r(yo)l < 3’, i.e. a # 1, then from Lemma 6, F+l(yo)< F/(yo), and so

F(yo) < F(y+I). 13

COROLLARY. F,,(z) NFb(x’).
Proof. In the above proof, from (18),

(24) Fo(Yo) =< COl Fl(Yo)+(1 al)Fl(Y2),

and so, from (15), or (16) and (24),

(25) Fo(Yo) =< F1 (Y2),
and the process is repeated as before.

Acknowledgments. This paper is based on part of the author’s doctoral thesis,
supported by an Australian National University scholarship. The author is indebted
to Dr. M. R. Osborne for many helpful discussions and for advice on the presentation
of this paper. The author also wishes to thank the referees for their careful reading
and comments.

REFERENCES

[1] A. E. BEATON AND J. W. TUKEY (1974), The fitting ofpower series, meaning polynomials, illustrated
on band-spectroscopic data, Technometrics, 16, pp. 147-185.

[2] D. I. CLARK (1981), Finite algorithms for linear optimization problems, doctoral thesis, Australian
National University, Canberra.

[3] D. I. CLARK AND M. R. OSBORNE, Finite algorithms for Huber’s M-estimator, to appear.
[4] C. F. GAUSS (1821), G6ttingische Gelhrte Anzeigen, pp. 321-327 (quoted in [7]).
[5] F. R. HAMPEL (1973), Robust estimation: a condensed partial survey, Z. Wahrsch. Verw. Geb., 27,

pp. 87-104.
[6] P. W. HOLLAND AND R. E. WELSCH (1977), Robust regression using iteratively reweighted least

squares, Comm. Statist., A6 (9), pp. 813-827.
[7] P. J. HUBER (1972), Robust statistics: a review, Ann. Math. Statist., 43, pp. 1041-1067.
[8] (1973), Robust regression: asymptotic& conjectures and Monte Carlo, Ann. Statist., 1, pp.

799-821.
[9] (1974), Comment on adaptive robust procedures, J. Amer. Statist. Assoc., 69, pp. 926-927.

[10] (1977), Robust Statistical Procedures, CBMS Regional Conference Series in Applied Mathe-
matics 27, Society for Industrial and Applied Mathematics, Philadelphia.

MATHEMATICAL STRUCTURE OF HUBER’S M-ESTIMATOR 219

[11] P. J. HUBER AND R. DUTTER (1974), Numerical solution of robust regression problems, COMPSTAT
1974, Proc. Symposium on Computational Statistics, pp. 165-172.

12 J. W. TUI<E (1960), A survey ofsamplingfrom contaminated distributions, Contributions to Probability
and Statistics, I. Olkin, ed., Stanford Univ. Press, Stanford, CA.

[13] G. WATSON (1980), Approximation Theory and Numerical Methods, John Wiley, New York.

SIAM J. Scl. STAT. COMPUT.
Vol. 6, No. 1, January 1985

(C) 1985 Society for Industrial and Applied Mathematics

018

BLOCK PRECONDITIONING
FOR THE CONJUGATE GRADIENT METHOD*

P. CONCUS’, G. H. GOLUB AND G. MEURANT

Abstract. Block preconditionings for the conjugate gradient method are investigated for solving
positive definite block tridiagonal systems of linear equations arising from discretization of boundary
value problems for elliptic partial differential equations. The preconditionings rest on the use of
sparse approximate matrix inverses to generate incomplete block Cholesky factorizations. Carrying
out of the factorizations can be guaranteed under suitable conditions. Numerical experiments on test
problems for two dimensions indicate that a particularly attractive preconditioning, which uses special
properties of tridiagonal matrix inverses, can be computationally more efficient for the same computer
storage than other preconditionings, including the popular point incomplete Cholesky factorization.

Key words, conjugate gradient method, elliptic partial differential equations, incomplete factoriza-
tion, iterative methods, preconditioning, sparse matrices

1. Introduction. In this paper we study some preconditioning techniques for
the conjugate gradient method to solve the linear systems of equations that arise
from the discretization of partial differential equations. We consider for example
elliptic equations such as

},,() - +z(0u f
i----1

with

in ft c Rd, (1,2 d) (1)

Ouu () g(O or g(O on Of,
On

where n is the exterior normal, ki() > 0, and a() > 0. The techniques that we
describe are suitable for standard finite-difference discretizations of equations such
as the above that yield certain symmetric positive definite block tridiagonal linear
systems of the form

where

Ax b, (2)

D1 A2
A2 D2

An-1 Dn-1 ATn
An Dn

*Received by the editors May 2, 1983, and in revised form January 16, 1984. This paper is an abridged
version of [2], which was presented at the SIAM 30th Anniversary Meeting, Stanford University, Stanford,
California, 1982. It was typeset at the Lawrence Berkeley Laboratory using a troffprogram running under
UNIX. The final copy was produced on July 6, 1984. This work was supported in part by the Applied Mathe-
matical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy under con-
tracts DE-AC03-76SF00098 and DE-AC03-76SF00515 and by the National Science Foundation under grant
MCS-78-11985.

Lawrence Berkeley Laboratory and Department of Mathematics, University of California, Berke-
ley, California 94720.

Computer Science Department, Stanford University, Stanford, California 94305.

Commissariat l’Energie Atomique, Limeil 94190 Villeneuve-Saint-Georges, France, and Com-
puter Science Department, Stanford University, Stanford, California 94305.

220

BLOCK PRECONDITIONING 221

Such equations can arise also from finite element discretizations (for example, see
[11]).

The prototype model problem in two dimensions is the Dirichlet problem,
r 0, ,i 1, g 0, ft the unit square,

--Au f,

u 0 on the boundary,

with standard five-point differencing on a uniform mesh of width h. We focus
attention on the matrix structure obtained for natural ordering, which yields for
the model problem (after multiplication by h a)

4 -1
-1 4 --1

Ai -I, Di ". ". ".

-1 4 -1
-1 4

In three dimensions, standard 7-point differencing with this ordering would yield
Di that have two additional nonzero diagonals. Different orderings or higher
order approximations would give rise to different structures, to which our tech-
niques could be applied also.

To solve (2) we use the generalized or preconditioned conjugate gradient
method, which may be written as follows [3]. Let x be given, define p- arbi-
trarily, and let r b -Ax. For k 0, 1,... perform the steps

Mzk l.k

(gk’ Mgk) k 1, 30 0,3k
(Zk_ l, Mzk- 1)’

pk zk .+_ flkpk-1,

(Z k MZk

(pk ,Apk

Xk+l Xk -Jrakpk,

rk+l rk_ckApk.

The matrix M is the preconditioning matrix, which should be in some sense
an approximation of A. It is known that the preconditioned conjugate gradient
method converges rapidly if the condition number r(M-1A), which is the ratio of
the largest to the smallest eigenvalue of M-A, is small or if the eigenvalues are
clustered (e.g., [3] and the references therein).

The goal of this study is to devise good preconditioning matrices M. For this
purpose we exploit the structure of A in constructing some block precondition-
ings, one special case of which is the one introduced by R. R. Underwood I20].

In 2 to motivate the use of our block techniques we recall some results on
block Cholesky factorization. Section 3 deals with the main problem finding
good approximate inverses for tridiagonal matrices that are diagonally dominant.

222 1,. CONCUS, G. H. GOLUB AND G. MEURANT

New block techniques for two-dimensional problems (d 2 in (1)) are introduced
in 4. Three-dimensional problems will be discussed in detail in a subsequent
study.

In 5 we present the results of numerical experiments for several test prob-
lems, including comparisons with point preconditioning techniques. We compare
techniques on the basis of number of iterations and number of floating point
operations required for convergence. Also, we illustrate graphically the spectral
properties of the matrices corresponding to the various preconditionings.

2. Block Cholesky factorization.
block tridiagonal matrix of (2).
block Di and N 7=1mi the order ofA. We denote

D1 0

DE A2
D= ". L=

Dn-1
Dn

Let mi be the order of the th
Let A be the symmetric positive definite

square diagonal

0

An-I
An 0

A D +L +LT

and we denote by aij the elements (pointwise) ofA.
Since A is positive definite, there holds a, > 0, ,N.

that the following holds also.
HYPOTHESIS (H 1).
(a) The off-diagonal elements aij, j ofA are nonpositive.
(b) A is (weakly) diagonally dominant; i.e., there holds

We assume

aii > a0 i=l ,N,
j4=i

and there exists at least one k, k < N, such that

akk > a ag.
j =/: k

(c) Each column ofAi, 2 n, has at least one nonzero element.
Hypothesis (H 1)(a) implies that the positive definite symmetric matrix A is a

Stieltjes matrix, i.e., a positive definite M-matrix [21], [22].
If the inequality of Hypothesis (H 1)(b) holds strictly for all rows,

aii >]a/j, i=1 ,N,
j =/=

then A is termed strictly diagonally dominant.
Let ; be the symmetric block diagonal matrix with mi)< mi blocks i satisfy-

ing

E D 1,
(3)

,i Di Ai ,[-SiAiT, 2 < < n.

Then the block Cholesky factorization ofA can be written as

A (Z + L);-l(@ L r).

BLOCK PRECONDITIONING 223

The factor ; / L is block lower bidiagonal. Since A is positive definite sym-
metric, the factorization can be carried out.

The following results concerning the properties of the i are well known, but
as we did not find them in the literature in a form suitable for our application, we
give them here for completeness. These properties provide guidance in our selec-
tion of preconditioning matrices for the conjugate gradient method.

Let

B -C B2
with B and B2 square, be a symmetric positive definite M-matrix, which implies
that the diagonal elements are positive and the off-diagonal elements are nonposi-
rive.

LEMMA 1. B B2- CB(-1CT is a symmetric positive definite M-matrix.
B is called the Schur complement of B in B. For properties of the Schur

complement see [4].
Proof We can write

0 B2-CBi--CT CBi-I I B 0 I

Since the leading principal minors of B are unchanged by the transformation on
the right side of the equality, the matrix on the left side is positive definite, and
hence so is B. In particular the diagonal elements of B are positive and, as
B 1-1 0 and C > 0 hold, it follows that the off diagonal elements are nonposi-
tive.

It can be shown easily that if BE is strictly diagonally dominant, then B is
also.

Now we apply these results to A with B D , -Cr (A 2
r 0 0), and

D2 .A 3

A3 D3 T

An-1 Dn-I ATn
An Dn

We have

TD2-A2D i-A A 3
TA3 D3 A4

An-1 Dn-I ATn
An Dn

There follows
THEOREM 1. Under Hypothesis (H1) all the Y,i are symmetric strictly diago-

nally dominant M-matrices.
It is of interest to note, that in the particular case of the model problem, the

block Cholesky factorization can be shown to reduce to a Fast Poisson Solver [18].

224 I,. CONCUS, 13. H. GOLUB AND G. MEURANT

3. Incomplete block Cholesky factorization. Because of the work and storage
that may be required in large problems for computing the 2;i, carrying out the
complete block Cholesky factorization is not of interest to us here as a general
means for solving (2). For example, for the two-dimensional model problem,
although 2; D1 is tridiagonal, 2;1- and hence 2;i, > 2, are dense.

In this paper our interest focuses on approximate block Cholesky factoriza-
tions obtained by using in (3) instead of 2;/-_1 a sparse approximation Ai-1. One
thereby obtains instead of 2; the block diagonal matrix A with m m blocks A
satisfying

A D , (4a)

Ai Di AiAi- 1A]’, 2 < < n, (4b)

where for each in (4b), Ai-1 is the sparse approximation to A/--ll. The incom-
plete block Cholesky preconditioning matrix for use with the conjugate gradient
algorithm is then

One has

M (A+L)A-l(A+LT).

M A +A--D +LA-1Lr A +R,

where R is a block diagonal matrix

R
R2

(5)

with

Rn
Rn

RI AI--D1 O,

Ri Ai Di + Ai A/---IlA/T, 2 < < n.

The factor A+L in (5) is lower block bidiagonal.
Li of Ai,

Ai LiL,

Using the Cholesky factors

one can express M in terms of (point) lower and upper triangular factors

LI LIT ’V"

0

where

0

Wn-I Ln-1
Ln

(6)

Wi =AiLi--r, i=2 ,n.

This form is generally more efficient computationally than is (5). For specific Ai
of interest, we show in subsequent sections that all the Ai are positive definite,

BLOCK PRECONDITIONING 225

which implies that the above factorization can be carried out.
Note that in the conjugate gradient algorithm M is not required explicitly,

only the linear system Mk --rk need be solved for zk. Since this can be done
with block backward and forward substitution, the block off-diagonal elements Wi
need not be computed explicitly. The requisite products with vectors can be
obtained by solving linear systems with triangular coefficient matrices Li and L/r.
Generally, for preconditionings of interest, the Ai, and correspondingly the Li, will
be sparse. These features were first used in this context by R. R. Underwood in
[20], where block incomplete Cholesky preconditioning for the conjugate gradient
algorithm was introduced.

For the standard five-point discretization of (1) in two dimensions, Di is tridi-
agonal, and Ai is diagonal. This is the case on which this paper focuses. Of cen-
tral interest is the choice that the _A_i- be tridiagonal, so that all the/x in (4b) are
tridiagonal. Correspondingly, in the remainder of this section we discuss tech-
niques for approximating the inverse of a tridiagonal, diagonally-dominant matrix.

al -bl
-bl a2

Let

--bE

-bm-I
am

(7)

Since the inverse of T is

(T-)ij ui vj for < j.

b/1 vl U lV2 1,1 lVm

UlV2 U2V2 U2Vm

U Vm U21m Um lm

be a nonsingular tridiagonal matrix. We assume that the following holds.
HYPOTHESIS (H2). The elements ai and bi of T satisfy

a > O, <i <m,
b > O, <i <m-1,

and T is strictly diagonally dominant.

3.1. Diagonal approximation. The simplest approximation of T- we
consider is the diagonal matrix whose elements are

(T1)ii (T)ii" (8)

3.2. Banded approximation flora the exact inverse. One can do much better
than the diagonal approximation T by using the following powerful result, which
characterizes the inverses of symmetric tridiagonal matrices, (cf. [1], [10]).

THEOREM 2. There exist two vectors u and v e Rm Sl,lch that

226 1,. CONCUS, G. H. GOLUB AND G. MEURANT

one can compute recursively the components of u and v. Under Hypothesis (H2)
T is positive definite, so that T- is also, which implies that ui #= O, vi O, for all
i. We remark that all of Hypothesis (H2), which will be used later, is not required
for Theorem 2. It is necessary only that T in (7) be nonsingular and irreducible
(all of the bi nonzero).

LEMMA 2. The components ofu and v can be computed as follows:
al

U 1, U2 bl
ai-lUi-1 bi-2ui-2

3i m,ui b_

Vm bm Um + am Um (9)

+ bilgiVi+l
v 2i m-1,

ai ui bi Ui-

4- buv2
111 a 1/,/1

Proof By substitution.
Alternative recurrences for generating u and v can be obtained by several

means, such as by computing the first and last columns of T- from the Cholesky
factors of T. For numerical computation scaling may be required in (9) to
prevent underflow or overflow, or it may be desirable to work with the ratios
ui + /ui and vi + /vi considered below. If only a few of the main diagonals of T-are required and not u and v explicitly, the diagonals can be computed con-
veniently from the Cholesky factors of T.

Several papers have characterized the elements of inverses of diagonally dom-
inant matrices. In [15] results are proved for tridiagonal matrices and in [5] they
are extended to matrices of larger bandwidth. It is known that the elements of
(T-)ij are bounded in an exponentially decaying manner along each row or
column. Specifically, there exist p < and a constant Co such that

(T-) < Co -.
This result does not imply that the elements actually decay along each row; it
merely provides a bound. With Hypothesis (H2), however, one can prove the fol-
lowing:

LEMMA 3. Under Hypothesis (H2) the sequence {ui}/m= is strictly increasing
and the sequence {vi }/m= is strictly decreasing.

Proof It is clear that u2 a /b > u . The proof continues by induc-
tion, using formulas of Lemma 2. Since ui- > ui-2, one has from (9) that

li-- bi-2] . bli- 1,Ui Ui- bi-

because ai-1- bi-- bi-2 > O. To prove that the vi are decreasing we need to
modify the formulas of Lemma 2 slightly, using the ones for u to simplify those
for v. Note that

ai ui bi ui bi ui + 0

BLOCK PRECONDITIONING 227

and

Thus

and

(ai+lUi+l biui)vi+l + bi+lUi+lVi+2

ai+lUi+lVi+l bi+lUi+lVi+2 ai + bi +
biUi+l bi Vi+l bi

Vi+2, for < rn -2,

am
Vm bm

Clearly Vm --1 > Vm, and by induction vi > vi + ((ai + bi +)/bi) > vi + .
Note that we can prove the same result if we suppose only that T is diago-

nally dominant with a > b and am > bm- .
One can characterize the decay of the element along a row away from the

diagonal. Let i and #i be such that ui a--i-ui-, vi vi-/#i-, > 2. We
have

ai bi- a
oti bi bi Oti

a
b

am
Oi

ai + bi + [3m -1 bmbi bi +1
In the general case we do not know the solution of the recurrences (which are

simply the recurrences for computing the elements of T-), but the previous dis-
cussion gives us the bounds

ai bi-a.> > 1,
bi

ai+ bi+ > 1.>
bi

In particular, we have, for > j,

(T-1)ii
(T_l)ij (T_)ii <

tX"-i_ j
i--

(ak --bkbk-)

If 1/O min ((a/ b/_)/bk) we find, for > j,
k>2

(T-)ij < (T-l)iiPi-j, p < 1.

This latter bound is not very sharp. For example, for the matrix T with
ai 4, m and bi 1, m- 1, which will be of interest later,
we get p 1/3. But for this case

=4, a. =4 -,_ i>2.
cti-i

The i form a decreasing sequence that converges very quickly towards
2 + X/ 3.732, which corresponds to a reduction factor of 1/(2 + V) 0.2679,
which is considerably less than 1/3. Of course if the ai’s and bi’s are constant, we
could construct the inverse in another way from the eigenvalues and eigenvectors
of T, which are known in this case.

228 a. CONCUS, G. H. GOLUB AND G. MEURANT

It is of importance to observe that if T is strictly diagonally dominant the ele-
ments of the inverse decrease strictly away from the diagonal the stronger the
diagonal dominance the faster the decay. This suggests the following means for
approximating the inverse of T with a matrix of small bandwidth.

IfA is any matrix, denote by B(A, p) the band matrix consisting of the 2p +
main diagonals of A. For a banded approximation TE(P) to the inverse of T we
consider

2(P)-- B(T-I,P) (10)

with p small, say or 2.

3.3. Approximation from Cholesky factors.
T-1 is to use the Cholesky factorization of T,

with

T= UrU,

"Y2

Another way of approximating

a lower bidiagonal matrix. We have

-l
2 a , "Yll b 1,

/2_ + .t/2 a, -/ b, > 2.

The/i’s are positive, and the diagonal dominance of T implies

<y, i m--1.

The matx U-r is lower tangular and dense. We denote

uT

l’/m 2 ’m--I

It is easy to see that the elements of U-r
since

’i , l<i<m-1,
"Yi’Yi +

can be computed diagonal by diagonal,

BLOCK PRECONDITIONING 229

and so on. We note also that U-r can be generated diagonal by diagonal by tak-
ing successive terms of its Neumann series in Ur.

We have the following result similar to the one for the inverse of T.
LEMMA 4. For each row, the elements of U-r decrease away from the diago-

nal
Proof Since ti/’Yi < we have ni-I < ’i < 1/,i+l; the proof is the same

for the other elements.
As an approximation for U-r we can, therefore, take B(U-r,p) with p

small. As an approximation for T- we can use correspondingly

3(P) B(U- I, p)B(U- T, P). (I 1)

Note that T3(P) is positive definite. For p 1, one has the tridiagonal matrix

T3(1) I__ +"Y

Unless the Cholesky decomposition is needed explicitly, it is necessary to compute
only the square of the "ri’s to obtain T3(1), because

Thus one obtains 3(1) directly from a, bi, and v/2.
Note that T3(1)T is the five diagonal matrix

-b2UlV3 b2u11:2
-b2u 11:3 -b3u2v4 b3u2v3

T3(1)T bEUlV2. -b3uEv4. -b4u3v3 b4u3v4

Since the uiv are expected to be small, T3(1) can be expected to be a good
approximation to T- .

3.4. Polynomial approximation. A classical way to obtain an approximation
of T-l is to use a polynomial expansion in powers of T. Let Dr be the diagonal
of T and denote

Then

T T-DT.

T-1 (I + D-IT)-ID-1.

Since T is strictly diagonally dominant, the corresponding Jacobi iteration is con-
vergent, which implies that the eigenvalues of the Jacobi iteration matrix -D-T
(which are real) are contained in (-1,+1) (see for example [12], [21]). Thus one can
write

(I + DT-1)-1 (__ 1)k(DT-I)k,
k--O

230 a. CONCUS, G. H. GOLUB AND G. MEURANT

the series being convergent_
The powers of D-T contain more and more nonzero diagonals as k

increases. As an approximate inverse we can take simply the first few terms,
which ar.e.e the sparsest ones (Taking only the first term gives the diagonal approxi-
mation T of {}3.1.). It is well known, however, that if the eigenvalues of D-T
are not close enough to zero, the truncated series could be a poor approximation.
Better polynomialapproximations can be found (cf. [14]).

Let S --Dr- T, and suppose we want to find a polynomial P of degree less
than or equal to that minimizes II(I+S)-- P(S)ll2. Since S is similar to a
symmetric matrix there exists a unitary matrix Q such that

S QOQr,
where 0 is a diagonal matrix whose elements are the eigenvalues of S.

We have

so that

P(S) QP(O)Q r,

I1(I +S)- P(S)II2 I1(I +0)- P(O)II2 < Clmaxll P(Oi)ll,
l+Oi

where C is constant and Oi, m, are the eigenvalues of S. To minimize
the fight-hand side (the minimum, of course, need not minimize also the left-hand
side) we must find the polynomial approximation of 1/(1 +x) on the set of eigen-
values 0i of S. Instead we could solve the simpler problem of finding

min max P(0)II,
0[0,,0.] + 0

where 01 (respectively, Ore) is the smallest (respectively, largest) eigenvalue of S.
The solution to this problem is given by Chebyshev polynomials.

In general, however, even the extremal eigenvalues 0 and Om are not known;
all one knows is that -1 < 0 < Om < holds. Since 1/(1 +x) is discontinuous at
x -1, we could simply compute P to yield

min max P(0)II.
e 0[0,] 1+0

This should give a good result for the eigenvalues between 0 and 1, but a poor one
for the smaller eigenvalues. For a first degree polynomial we obtain

P() 0.9412- 0.4706 .
As will be seen later, it is possible to obtain a better approximation when

additional information about the eigenvalues is avai..lable. In general, we shall be
considering tridiagonal polynomial approximations T to T- of the form

4(a,/3) aDf +/3D- fDr--, (12)
where the coefficients a and/3 are real.

3.5. Comparison of approximations for the model problem. We now compare
the above approximations for the model problem, for which in (7) ai-4,
i=l ,m, andbi=l,i=l ,m-1. The casem =10isconsidered. The
upper triangular part of the inverse T- as computed in double precision

BLOCK PRECONDITIONING 231

FORTRAN on an IBM 3081 by MATLAB [19] to four places is

0.2679 0.0718 0.0192 0.0052 0.0014 0.0004
0.2872 0.0770 0.0206 0.0055 0.0015

0.2886 0.0773 0.0207 0.0056
0.2887 0.0773 0.0207

0.2887 0.0773
0.2887

illustrating the rapid decay away from Lhe diagonal.
For the different approximations Ti to T- we get the following results (using

MATLAB), as summarized in Table and Figure 1. The last entry

TABLE

Values of i T- for the model problem, m 10.

Approximation to T-

Diagonal ({}3.1)
Banded from exact inverse ({}3.2)
Banded from exact inverse ({}3.2)
From Cholesky factors ({}3.3)
From Cholesky factors ({}3.3)
Polynomial ({}3.4)
Polynomial ({}3.4)
Polynomial ({}3.4)

T2(1)
T2(2)

T3(2)
T4(1,- 1)
T4(.9412,-.4706
T4(1.1429,- 1.1429)

I1i T-1112

0.2305
0.0456
0.0104
0.0569
0.0134
0.1106
0.1888
0.0577

T2(

T2(2)

T3(

T3(2)

(t,-t)

T,,

(.9412,-.4706)

T,,

(1.1429,- 1.1429)

2,8

1,6

.6 .7

9

7,7

4

3,9

8,8

2,2,9,9

8,8

1,5,9

6,7,8,9

3,3

7,7,7,9

6,6,9,9

1,7

4,4

1.0

1,7,8

0,0,1,3,3,4

0,0,1,3,3,3

2,4,6,6

2,2,9,9

3,4

3,3

4,4

FIG.I. Tabular display ofeigenvalue distributions of T.

1.2 1.3 1.4

2,8

232 a. CONCUS, G. H. GOLUB AND G. MEURANT

T4(1.1429,-1.1429) corresponds to the min max polynomial over 06[-0.5,0.5],
which interval is approximately the one bounded by the extremal eigenvalues
0 -0.4797, Om 0.4797 of S for this problem. Thus one should expect this
polynomial to give a better approximation than the other two. Values of
Ti2-- T- 112 to four places are given in Table 1. Figure depicts the eigenvalues

of Ti T in a format that permits a rough comparison of their distributions: The
eigenvalues are rounded to two decimal places, and the least significant digit is
entered in the column corresponding to the first digit(s).

It is evident that for this model problem the banded approximations from the
exact inverse and the approximations from Cholesky factors can give better
approximations to T- than thee polynomial expansion_s, in the sense of clustering
about of the eigenvalues of Ti T and smallness of Ti T- 112 It would be of
interest to know if the same results would hold for matrices T of larger
bandwidth.

4. Block preconditionings for the two-dimensional case. Based on the approx-
imate inverses of 3, we define the corresponding block preconditionings for the
two-dimensional problem. For this case the D are tridiagonal, and our goal is to
keep the Ai, > 2, in (4b) tridiagonal, or possibly of slightly greater bandwidth.
For the preconditionings discussed below, only the Cholesky factors Li of the A
are actually stored for computational purposes, corresponding to (6).

4.1. The block preconditionings.

4.1.1. BDIA. The diagonal approximation T in (8) is used; Ai- is diagonal
with

(i-- l)jj (Ai_ l)jj
The A’s are tridiagonal matrices at each stage differing from D only in their diag-
onal elements.

4.1.2. INV(1). The banded approximation T2(1) in (10) from the exact
inverse is used,

Ai- B(A[--ll, 1).

Each of the A’s is tridiagonal. At each stage we compute two vectors u and v
and use them to obtain the three main diagonals of A_ll. We then compute and
store the Cholesky factors of Ai. 2N words of storage are needed for M, as in
BDIA. We do not consider here keeping more diagonals in the approximation to
A/’--11 for this case, as the particularly simple expression in Theorem 2 becomes
more complex if the Ai’s have more than 3 diagonals.

4.1.3. CHOL(p). We use T3(p) from (11),

i- B(Ui-_.ll, lo)B(Ui-_,
where Ai_ UT- Ui- 1, with Ui an upper triangular matrix. At each stage we
compute Ui-1, which is (except for 2) a matrix with p + nonzero main diag-
onals. The first p + diagonals of Ui-_ll can be computed diagonalwise starting
from the main diagonal. Since Ai_ is a symmetric matrix of bandwidth 2p + 1,
approximately 2m -t" (i0 + 1) ffi2 mi words of storage are needed for Ai.

BLOCK PRECONDITIONING 233

CHOL(p) is a special case of the following method proposed by Underwood [20]
in a slightly different setting.

4.1.4. UND(p,q). For this case

Ai-1 B(B(Ui q-1)B(Ui--T q 1),2p- 1),

with q p. One computes the q main diagonals of UiZr, but then stores only
the 2p- main diagonals of the product to form A_. More information about
Ui-_r is used in UND(p,q) than in CHOL(p). The storage needed is
2m + p ’=2 m. Note that UND(p,p) CHOL(p 1).

4.1.5. POL(a,/). We use the polynomial approximation T4(a,) defined in
3.4,

Ai-1 DT,i-I-k Ti-1,

+
Each A is tridiagonal. Different values of a and/3 are used. The storage require-
ments are the same as for BDIA and INV(1).

4.2. Properties of the Ai. Now we study the properties of the A in order to
prove that all of the methods described above can be carried out (i.e., we prove
that the Ai satisfy hypothesis (H2) placed on T).

THEOREM 3. Under Hypothesis (H1) each Ai computed by BDIA, INV(1),
CHOL(p), UND(p,q), and POL(a,) with [< O, 0 < a < 1, [+ a 0 is strictly
diagonally dominant with positive diagonal elements and nonpositive off diagonal
elements.

Proof This can be proved by induction using the same technique as in
Lemma 1. As the proof is essentially the same for all cases, we carry it out only
for CHOL(p).

Let

B -C B2

be a positive definite M-matrix satisfying (H1) with B and BE square, and let
B L,L be the Cholesky decomposition ofB . Denote

LB’ /B -l- RB,,

where L- contains the p + diagonals ofL that are kept for the approxima-
tion, and R, contains the remaining diagonals. Under hypothesis (HI) both LB
and R, are nonnegative. From the remark following Lemma we know that
B- CLNrLNICr is strictly diagonally dominant. We have

T-lB2 CLr., 1Cr B2 CLrL Cr + C(,rR,, + R,L,, + RR,,)Cr

The last matrix on the right is nonnegative, which implies that
BE-CL-,r,Cr is at least as strongly diagonally dominant as is
BE- CLrLI,1Cr. The desired result for CHOL(p) then follows by induction,
taking B D, the first diagonal block ofA.

234 a. CONCUS, G. H. GOLUB AND G. MEURANT

4.3. Modified block preconditionings. It is known that point incomplete
Cholesky decomposition can be modified to yield a better approximation to A in
some cases. The modified decomposition is obtained from R by altering the diag-
onal elements of the Cholesky factors so that the row sums ofM are equal to the
corresponding row sums of,4 (i.e., the row sums of R are zero). This gives an
improvement of the condition number of M-A for natural ordering of the un-
k nowns and for A diagonally dominant [7], [13].

As noted in {}3, the remainder R for the block incomplete Cholesky precondi-
tioning is a block diagonal matrix whose elements are

R1 --0,

Ri Ai Di -+- Ai A/--llA/T Ai(A/--ll Ai-)A/, 2 <i < n.

Thus the row sum of A/--ll must be available if Ri is to have row sum zero.

4.3.1. MINV(I). For the case of INV(1), A/-_ itself is readily available, thus
it is easy to define MINV(1), the modified form of INV(1): Compute A/-_ at each
stage from the two vectors u and v. Form the product
Ri Ai[A--- B(A/--,I)A/r, which is a matrix with positive elements except for
the 3 main diagonals, which are zero. Then subtract from Di --AiB(A/--,I)A/r the
diagonal matrix made up of the row sums of Ri, to yield the modified Ai
corresponding to a remainder with a zero row sum.

We note that it follows from Hypothesis (H1) that the remainder matrix is
nonpositive definite, hence the eigenvalues ofM-1A are greater than or equal to
for MINV(1).

THEOREM 4. Under Hypothesis (H1) each Ai given by MINV(1) is a strictly
diagonally dominant matrix with positive diagonal elements and negative off diag-
onal elements.

Proof Consider

-C B2

Let S2 C[Bi- -B(B-,I)]Cr and let R2 be the diagonal matrix of row sums
of $2. Since B 1-1 0, the elements of $2 and hence ofR 2 are positive. Note that
B2 CB(B{-1,1)CT R2 has the same row sums as
BE- C[B(B-I,1)]Cr $2 BE- CB-ICr. This, together with the positivity
of the elements, shows that B CB(B 1-1,1)CT R is diagonally dominant.

4.3.2. MUND(p,q). For the other block preconditionings the row sums of
Ri can be calculated easily, but not quite so directly. However, in UND(p,q) with
q > p a part of the remainder is immediately available and can be subtracted
from the diagonal. Recall that

Ai- Li- Lir-
Ri Ai[A- B(B(Li=T ,q 1)B(Li=I ,q 1),2p 1)].

Denote by/i--] B(L.-_],q-1) the q diagonals of the inverse of L._ that are
computed, and by Qi-1 the diagonals that are not computed

LiCll ,,-- + Qi-I.

BLOCK PRECONDITIONING 235

Then

Ri Ai[i--7i--.ll -’t- i-_.lai_ -.t- Q"_ li-_ll -.t.- QiT_ ai_ B(i-_Tl__,i-_ ,2p 1)}A/.
We can obtain Li-Li-~-T"- B(i-_Ti-_ ,2p- 1), since it is made up of the diago-
nals of the product that are not kept in the algorithm. Thus, instead of discarding
these diagonals we could subtract their row sums from the main diagonal. This
constitutes the algorithm MUND(p,q): Compute q diagonals of LiZ. Form the
product /.,/.,- . Use the 2p main diagonals to form

Di- AiB(i--i-- ,2p- 1)A/r. Let Si- be the matrix made up of the q-p outer

diagonals of rLi- 1Li-I. Compute the row sums of Ai Si- 1AiT and subtract them
from the diagonal of Di -AiB(i--i-- ,2p- 1)A/r to obtain Ai.

THEOREM 5. Under Hypothesis (H1) each Ai given by MUND(p,q) is a
strictly diagonally dominant matrix with positive diagonal elements and negative
off-diagonal elements.

Proof. Along the same lines as for Theorem 4.

4.4. Higher dimensions. One can develop block incomplete Cholesky factori-
zations for three dimensional problems similarly, using, for example, incomplete
instead of complete factorizations Li for the Ai. It is planned to investigate these
preconditionings in a subsequent study.

5. Numerical experiments. In this section we present the results of numerical
experiments on two-dimensional test problems comparing the preconditionings
introduced in the previous sections and some other, commonly used, point and
block preconditionings. The other preconditionings include: the point incomplete
Cholesky decomposition IC(p,q) introduced by Meijerink and van der Vorst I16],
[17], in which p bands adjacent to the main diagonal and q outer bands are kept
in the factorization; its modified version MIC(p,q), of which the simplest
MIC(1,1), first introduced by Dupont, Kendall, and Rachford for five diagonal
matrices [7], is denoted here by DKR (and is used without parameters); symmetric
successive overrelaxation (SSOR) and its block version BSSOR (which in our case
is line SSOR); and for a few cases l-line Jacobi preconditioning (LJAC). In addi-
tion, results will be given for some problems for the point Jacobi preconditioning
DIAG, for which M is a diagonal matrix whose diagonal elements are those ofA,
and for conjugate gradients without preconditioning (M I, the identity matrix).

For a five diagonal matrix the work per iteration and storage for each of the
methods is given in Table 2. (For simplicity, the technique of [8] for reducing the
work requirements of the conjugate gradient method is not incorporated.) The
work is represented by number of floating point multiplies; about the same
number of additions are required also.

Table 2 does not include the overhead operations required to construct M. If
one carries out many iterations or solves several systems with different right-hand
sides, then this overhead can usually be neglected. Specific cases are discussed in
5.1. Also not included in Table 2 is the work that might be required for evaluat-
ing iteration termination criteria.

It should be noted that the work requirements for the preconditionings
depend on the manner in which the computer programs are written. Generally we
have organized our programs with a preference toward multiplication over divi-
sion; for example, in INV(1) we use Varga’s implementation of Gauss elimination

236 1,. CONCUS, G. H. GOLUB AND G. MEURANT

TABLE 2

Work per iteration and storagefor the preconditionings.

Preconditioning M

DIAG

IC(1,1), DKR

SSOR

IC(1,2), MIC(1,2)

IC(I,3), MIC(I,3)

IC(2,4)

BSSOR

BDIA, INV(1),
MINV(1), POE(a,3)

CHOL(p), UND(p + l,q),
MUND(p + 1,q)

Mults.

10N

llN

16N

17N

18N

20N

24N

18N

18N

(4p + 14)N

Storage

o
0

N

0

3N

4N

6N

2N

2N

(p + I)N

for tridiagonal matrices, which stores the reciprocals of the diagonals [21]. If a
division is carried out, as in DIAG when it is desired neither to scale the matrix
in advance nor to store the reciprocals of the diagonal, then, as is customary, a
division is counted as equivalent to a multiply. In CHOL(p: p > 1), UND(p,q),
and MUND(p,q) routines from LINPACK [6] are used, but the operation counts
entered in Table 2 are made to correspond to the manner in which we implement
the other preconditionings. Thus the entries in Table 2, though basically con-
sistent, should be considered as approximate. They are used in subsequent tables
to convert observed number of iterations to computational work.

Our implementation of the conjugate gradient algorithm requires 4 N-vectors
of storage, plus 3 N-vectors for the matrix A and N-vector for the right-hand
side. If it is not necessary to save the right-hand side, then N-vector of storage
could be eliminated. The additional storage required by each of the precondition-
ings is given in the last column of Table 2.

5.1. First test lroblem. The first test problem is the model problem

Au f in fl the unit square (0,1) (0,1)

with
U "-0.

We use the standard five point stencil on a square mesh with h --(n + l)-1,
N n 2, and natural ordering to obtain the corresponding linear algebraic system
(2). The experimental results are given for different values of h and different
stopping criteria. An estimate of the condition number ofM-A is given for each
of the preconditionings, as obtained from the conjugate gradient algorithm (cf. [3]),
and for small dimension (n 10) the complete spectrum ofM-A is visualized.

The computations were carried out in double precision FORTRAN on an
IBM 3081. Unless otherwise noted the solution of the linear system is smooth

BLOCK PRECONDITIONING 237

(the right-hand side b in (2) corresponds to the solution i(i- 1)nj(nj-1)exp(inj)
at a point (i,nj)), and the starting vector has random elements in [-1,1]. As the
number of additions is roughly the same as the number of multiplications, we
indicate only the work required for the multiplications. The divisions that may
appear to be needed by some methods are not indicated, since they can be
removed with alternative coding. In Table 3 are given the number of iterations

TABLE 3

Number ofiterations and total work
per pointfor rk oo/II r Iloo < 10-6.

Test problem 1, N 2500.

M

DIAG
IC(1,1)
IC(1,2)
IC(1,3)
IC(2,4)
DKR

MIC(1,2)
MIC(I,3)

SSOR o

SSOR o 1.7

LJAC
BSSOR o

BSSOR o 1.7
BDIA

POL(1,-1)
POE(0.9412,-0.4706)
POL(1.143,-1.143)

INV(1)
MINV(1)
CHOL(1)
CHOL(2)
CHOL(3)
CHOL(4)
CHOL(5)
UND(2,3)
UND(2,4)
UND(3,4)
UND(3,5)
UND(4,5)
UND(4,6)
UND(5,6)
MUND(2,3)
MUND(2,4)
MUND(2,5)
MUND(3,4)
MUND(3,5)
MUND(3,6)
MUND(4,5)
MUND(4,6)
MUND(5,6)

iterations

109
109
33
21
17
12
23
17
14
40
21

8O
28
16
22
18
21
17
15
11
16
12
9
8
7

15
15
11
11
9
9
7

12
10
9
10
8
8
8
7
7

work/N

1090
1199
528
378
340
288
368
306
280
680
357

1040
504
288
396
324
378
306
270
198
288
264
234
240
238
270
270
242
242
234
234
210
216
180
162
220
176
176
208
182
210

238 1,. CONCUS, G. H. GOLUB AND G. MEURANT

and the corresponding total work per point required to achieve the stopping cri-
teflon rk lifo/II r Iloo < 10-6, for the case N 2500. The value 1.7 for SSOR
and BSSOR is the observed optimal for each case to the nearest 0.1 for minimiz-
ing the number of iterations required for convergence.

From Table 3, the following observations can be made.

(i) For the patterns chosen, the larger the number of diagonals in the incom-
plete Cholesky decomposition, the fewer the number of iterations required
for convergence, as observed in I17] for the point preconditionings.

(ii) The modified versions of the preconditionings give better results (for this
problem and ordering of the mesh points).

(iii) In general, there is a trade off between storage and execution speed, but if a
low storage point-preconditioning is desired, DKR seems a good choice.
SSOR can give good results, but suitable parameter values are needed.

(iv) For methods of comparable storage the block methods give better results
than point methods, both in terms of number of iterations and work require-
ments.

(v) For CHOL(p) it is not effective to go to values of p larger than p 3, and,
as observed also in [2], for UND(p,q) to values of q beyond q =p + 1. It is
better to use the additional information given by UND(p,q) for larger q to
obtain a modified version of the factorization for q p + 1.

(vi) The best polynomial, as expected, is POL(1.1429,- 1.1429).
(vii) For this problem the best all-around preconditioning appears to be

MINV(1), because it has very low storage requirements and gives almost the
best work count approximately half of IC(1,2) and two thirds of MIC(1,2),
which require more storage.

Table 4 gives a comparison of some of the methods for solving the test prob-
lem to only moderate accuracy IIrk Iloo/IIrOIIoo < 10-4, comparable to discretiza-
tion error. The conclusions drawn for the smaller residuals in Table 3 are in gen-
eral unchanged.

TABLE 4

Number ofiterations and total work
per point for rk oo/II r0 IIoo < 10-4.

Test problem 1, N 2500.

M

IC(1,1)
IC(2,4)
DKR

SSOR o 1.7

BSSOR 0 1.7
INV(1)
MINV(I)
CHOL(1)
CHOL(5)

iterations

63
20
7
16
13

10
9
7
9
4

work/N

630
320
168
256
221

180
162
126
162
136

BLOCK PRECONDITIONING 239

In Table 5 are given the values of the smallest and largest eigenvalues of
M-1A, as estimated by the conjugate gradient algorithm, as well as the
corresponding condition numbers. It is seen that a considerable reduction in the
condition number can be achieved with some of the modified preconditionings,
with only a low cost in storage.

TABLE 5

Extremal eigenvalues and condition number ofM-IA.
Test problem 1, N 2500.

M

IC(1,1)
IC(1,2)
IC(1,3)
IC(2,4)
DKR

MIC(I,2)
MIC(1,3)

SSOR = 1.
SSOR o-- 1.7

LJAC
BSSOR o 1.
BSSOR o-- 1.7

BDIA
POL(1,-1)

POL(0.9412,-0.4706)
POL(1.143,-1.143)

INV(1)
MINV(1)
CHOL(1)
CHOL(2)
CHOL(3)
CHOL(4)
CHOL(5)
UND(2,3)
UND(2,4)
UND(2,5)
UND(3.4)
UND(3,5)
UND(4,5)
UND(4,6)
UND(5,6)
MUND(2,3)
MUND(2,4)
MUND(2,5)
MUND(3,4)
MUND(3,5)
MUND(3,6)
MUND(4,5)
MUND(4,6)
MUND(5,6)

Xmin(M- IA

0.0076
0.0128
0.033
0.049
0.091
1.003
1.003
1.006
0.0075
0.040

0.0038
0.0150
0.074
0.024
0.035
0.027
0.043
0.059
1.006
0.050
0.090
0.142
0.204
0.272
0.058
0.059
0.059
0.104
0.106
0.162
0.166
0.228
0.102
0.202
0.380
0.164
0.291
0.483
0.234
0.375
0.309

Xmax(M- IA

7.992
1.206
1.179
1.131
1.138

15.36
8.83
6.19
1.
1.

1.99
1.
1.
1.023
1.
1.002
1.023
1.073
4.261
1.050
1.065
1.076
1.078
1.078
1.07
1.073
1.073
1.086
1.089
1.091
1.096
1.088
1.242
1.564
2.024
1.242
1.518
1.887
1.221
1.449
1.197

r(M-IA

1053
94.0
35.6
23.2
12.5
15.3
8.3
6.15

132.5
25.1

527.
66.8
13.5
42.6
28.7
37.2
23.8
18.2
4.24

20.8
11.8
7.56
5.29
3.97

18.5
18.2
18.2
10.5
10.2
6.75
6.59
4.78
12.2
7.74
5.33
7.58
5.22
3.91
5.21
3.87
3.88

240 a. CONCUS, G. H. GOLUB AND G. MEURANT

In Table 6 are given the estimated condition numbers (M-1A for different
values of n --(1/h)- 1. The quantity a is the estimated value, from the n 25
and n 50 data, of the exponent corresponding to the assumed asymptotic rela-
tionship r(M-1A)" Ch-’, where C is a constant. It is known theoretically that
for M=I and M=IC(1,1) there holds r(M-1A)--O(h -2) and that for
M DKR, r(M-A)= O(h-). The values of a obtained from the numerical

TABLE 6

Estimated condition numberfor different mesh sizes
and exponent a ofasymptotic dependence on h 1/(n + 1).

Test problem 1.

M

IC(1,1)
IC(1,2)
IC(1,3)
IC(2,4)
DKR

MIC(1,2)
MIC(1,3)

SSOR ,, 1.

LJAC
BSSOR w 1.

BDIA
POE(I,-1)

POL(0.9412,-0.4706)

r(M-1A
n=lO n=20 n=25 n=50

48.37 178.1 273.3 1053
5.10 16.59 25. 94
2.38 6.67 9.8 35.6
1.80 4.56 6.6 23.2
1.32 2.75 3.8 12.5
3.04 5.93 7.4 15.3
1.84 3.36 4.2 8.3
1.49 2.56 3.15 6.1
6.88 23.12 35. 132

24.68 89.5 137. 527
3.93 12.04 18. 66.7
2.76 7.9 11.7 42.5
2.09 5.52 8. 28.6
2.5 7. 10.3 37.1

POL(1.143,-1.143)
INV(1)
MINV(1)
CHOL(1)
CHOL(2)
CHOL(3)
CHOL(4)
CHOL(5)
UND(2,3)
UND(2,4)
UND(3,4)
UND(3,5)
UND(4,5)
UND(4,6)
UND(5,6)
MUND(2,3)
MUND(2,4)
MUND(2,5)
MUND(3,4)
MUND(3,5)
MUND(3,6)
MUND(4,5)
MUND(4,6)
MUND(5,6)

1.86 4.7 6.7 23.8
1.61 3.74 5.3 18.2
1.3 1.94 2.31 4.23
1.73 4.18 6. 20.8
1.32 2.65 3.65 11.85
1.14 1.93 2.53 7.54
1.06 1.55 1.95 5.28
1.026 1.34 1.61 3.98
1.63 3.8 5.4 18.52
1.62 3.75 5.33 18.24
1.26 2.42 3.3 10.47
1.25 2.39 3.24 10.24
1.12 1.8 2.33 6.73
1.11 1.77 2.28 6.54
1.05 1.47 1.82 4.8
1.39 2.76 3.79 12.95
1.29 2.1 2.72 7.74
1.28 1.89 2.26 5.33
1.18 1.97 2.58 7.55
1.15 1.67 2.04 5.22
1.14 1.6 1.85 3.9
1.09 1.57 1.96 5.22
1.07 1.43 1.68 3.8
1.04 1.35 1.62 3.9

2.00
1.97
1.91
1.87
1.77
1.08
1.01
0.98
1.97

2.00
1.94
1.91
1.89
1.90
1.88
1.83
0.90
1.85
1.75
1.62
1.48
1.34
1.83
1.83
1.71
1.71
1.57
1.56
1.44
1.82
1.55
1.27
1.59
1.39
1.11
1.45
1.21
1.30

BLOCK PRECONDITIONING 241

experiments are in accord with these relationships. We see that all the point
incomplete decompositions IC(p,q) seem to be O(h-2), although the more diago-
nals that are taken the slower is the convergence to this asymptotic behavior. The
MIC methods are O(h-).

For the block methods INV and CHOL the limiting value of a seems to be
two, and for MINV one. The observed values of a for the range of h considered
are smaller for the block methods than for the point methods with the same
storage. It is difficult to assess from the results the order of the MUND methods;
we believe that they are somewhere between and 2, closer to if more diagonals
are used to form M. Finally, Table 6 shows that even for smaller values of n
block methods give better reduction of the condition number than point methods.

It is well known that the rate of convergence of the conjugate gradient method
depends not only on the condition number but on the distribution of the interior
eigenvalues as well. It is therefore of interest to compare the eigenvalue spectra
for the different methods. These are compared for n--l0 in Figs. 2-4. Each
eigenvalue is designated by a vertical bar drawn at the appropriate abscissa value.
This representation depicts in an easily observable manner the separation and
clustering of the eigenvalues.

The spectra for all of the methods shown in Fig. 2 are on the same scale for
easy comparison. From the figure it is seen that for the block methods the eigen-
values are more clustered than for the point ones having the same storage require-
ments. (The relatively greater clustering for block SSOR over point SSOR is a
well-known property, cf. [9].) The values 1.7 and 1.5 are to the nearest 0.1
those for which the condition numbers for SSOR and BSSOR, respectively, are
smallest. The point modified methods, for which the eigenvalue range is different
than for the other methods, are shown separately in Fig. 3. Fig. 4 shows on the
same scale four methods with comparable storage: IC(1,1) and DKR, with one
vector of storage, and INV(1) and MINV(1) with two. Spectra for block SSOR
preconditioning for the values 1.0(0.1)1.9 can be found in I2], and enlarge-
ments showing the fine structure of the spectra of Figs. 2-4 are in an Appendix to
[2], available separately from the authors.

Table 7 gives the number of iterations required to solve the test problem for
different convergence criteria. For these cases the initial approximation was
x- 0, and the solution was the same smooth vector as for Tables 4 and 5 with
N 2500.

From these results, it appears that, at least for the test problem with a smooth
solution, the relative norm of the residual gives a good stopping criterion.

In Table 8 we give results for N 2500 for the same smooth solution as for
previous tables, with two different choices of the starting vector, x-- 0 and x
consisting of random numbers in [-1,1]. The stopping criterion is
IIr Iloo/llrlloo 10-6. The initial approximation x random appears to give
better results. This feature will be developed in a subsequent study.

From the tables one can conclude that for this test problem block methods
give better results than point ones. The most promising block method is
MINV(1). Since the setup time for constructing M was not included in the tables,
it is of interest to consider it, as it can be of importance if only one problem is to
be solved or only a few iterations taken. Table 9 gives the effect of including the
setup time for three of the preconditionings for the N 2500 test problem. Times
are in CPU seconds for an IBM 3081 computer. Even if the setup times are

242 . CONCUS, G. H. GOLUB AND G. MEURANT

included, MINV(1) still gives considerable improvement for this problem.
The effects of Neumann boundary conditions were examined as well in [2],

where it was found that the relative merits of the different preconditionings are
about the same as for this test problem.

TABLE 7

Number ofiterations for different convergence criteria.
Test problem l, x =- O.

M

IC(1,1)
IC(1,2)
IC(1,3)
IC(2,4)
DKR

MIC(1,2)
MIC(I,3)

SSOR -- 1.
SSOR -- 1.7

BSSOR o-- 1.
BSSOR -- 1.7

BDIA
POL(I,-I)
INV(1)
MINV(1)
CHOL(I)
CHOL(2)
CHOL(3)
CHOL(4)
CHOL(5)
UND(2,3)
UND(3,4)
UND(4,5)
UND(5,6)
MUND(2,3)
MUND(2,4)
MUND(2,5)
MUND(3,4)
MUND(3,5)
MUND(4,5)
MUND(4,6)
MUND(5,6)

Number of iterations

117
38
26
21
16
25
18
18

IIx--xk Iloo 10-6

99
31
22
19
14
18
14
16

IIx-xk 10-6

114
36
26
22
16
22
17
18

44
22

36
18
27
23
19
13
20
15
12
10
9
19
14
12
9
15
13
12
12
11
10
9
9

37
17

28
15
24
20
16
9
18
13
11
9
8
16
13
10
8
14
11
9
11
9
9
8
8

43
20

34
18
28
24
19
11
21
16
13
10
9
19
15
12
10
16
13
11
13
11
10
9
9

IIx-xk I1, 10-6

110
35
24
20
15
21
16
17
41
19

32
16
26
22
18
11
19
14
12
10
8
18
14
11
9
15
12
10
12
10
10
9
8

BLOCK PRECONDITIONING 243

TABLE 8

Number ofiterations
for rk oo/II r I1o 10-6

for different starting vectors.
Test problem 1.

M

IC(I,I)
IC(1,2)
IC(1,3)
IC(2,4)
DKR

MIC(1,2)
MIC(1,3)

SSOR o-- 1.
SSOR o 1.7

BSSOR o 1.
BSSOR -- 1.7

BDIA
POL(I,-I)
INV(1)
MINV

CHOL(1)
CHOL(2)
CHOL(3)
CHOL(4)
CHOL(5)
UND(2,3)
UND(3,4)
UND(4,5)
UND(5,6)
MUND(2,3)
MUND(2,4)
MUND(2,5)
MUND(3,4)
MUND(3,5)
MUND(4,5)
MUND(4,6)
MUND(5,6)

of iterations
x=0 xrandom
117
38
26
21
16
25
18
18
44
22

36
18
27
23
19
13
20
15
12
10
9
19
14
12
9
15
13
12
12
11
10
9
9

109
33
21
17
12
23
17
14
40
21

28
16
22
18
15
11
16
12
9
8
7
15
11
9
7
12
10
9
10
8
8
7
7

TABLE 9

Total time including
setup in CPU secondsfor
litk Iloo/llrlloo 10-6.

Test problem 1.

M

IC(1,1)
INV(1)
MINV(1)

total time

1.37
0.963
0.723

244 P. CONCUS, G. H. GOLUB AND G. MEURANT

3 0::2
0 0

0 3

BLOCK PRECONDITIONING 245

c5

246 P. CONCUS, G. H. GOLUB AND G. MEURANT

L.

Z
:)

BLOCK PRECONDITIONING :247

1.5 .5

DKR

MIC(I,2)

MIC (I,3)

2.5

Pe. 3. Spectra ofM-IA for modified preconditionings.
Test problem 1. N-- 100.

Ill DKR

INV (I)

MINV(I)

Re. 4. Spectra ofM- IA forfour preconditionings
with comparable, minimal storage. Test problem 1. N 100.

248 a. CONCUS, G. H. GOLUB AND G. MEURANT

5.2. Second test problem. We solve the linear system obtained by the stan-
dard five point discretization of the problem

01 -1 02 -2 f in fl (0,1) (0,1),

u=0 on Off,

for the discontinuous , depicted in Fig. 5. The solution is the same smooth one
as for the first test problem, the starting vector is random, and the stopping cri-
teflon is rk I1/II r I1o < 10-6.

Table 10 gives the results for the number of iterations, the work required, and
an estimate of the condition number as obtained from the conjugate gradient
parameters. The values w= 1.6 for SSOR and o= 1.5 for BSSOR are the
observed optimal ones to the nearest 0.1.

The very large condition numbers for most of the entries result from the
small first eigenvalue, which is isolated from the others. Thus the number of
iterations does not change much, for example from IC(1,1), which has a small iso-
lated eigenvalue, to DKR, which has all eigenvalues greater than one. It is the
distribution of the other eigenvalues that is important. In terms of work per
point, block methods give better results than point ones. Again MINV(1) seems a
good compromise between efficiency and storage. This example shows that block
methods can be effective for problems with coefficients having large jump discon-
tinuities.

5.3. Third test problem. This example, which is frequently used in the litera-
ture, was presented in [21]. The problem is to solve

0
Xl X + ru 0 in f (0,2.1)(0,2.1),

OU

The domain is shown in Fig. 6 and depicts the values of the coefficients, which
are discontinuous. The solution is u 0.

We take h 1/42, x a vector with random elements in [-1,1], and stopping
criterion IIxk I1 < 10-6. The results are given in Table 11. The values w 1.7
for SSOR and w 1.5 for BSSOR are the observed optimal ones to the nearest 0.1.

Table 11 indicates that for this problem the larger the number of diagonals
retained, the lower the work required for convergence. This holds both for point
and block methods. Generally, the block methods are slightly better.

In order to compare our methods with those presented by Meijerink and Van
der Vorst [17] for this problem, we give the results in Table 12 for convergence cri-
teflon rk 2 10-6. For the IC methods, we obtain about the same results as in
[17], within a few iterations. (The distribution from which the starting vectors
were drawn is differentour random numbers are between -1 and 1, while theirs
are between 0 and 1.)

To compare point and block methods with the same storage, one can take, for
example, IC(1,2) or MIC(1,2) and CHOL(2). It is clear that the block method is
better. The situation is the same if more diagonals are taken. To get down to 16

BLOCK PRECONDITIONING 249

(0,0)

(1/4,1/4)

,I)

1000, (,rt) e fll
h 1, (,r/) e 22’

FIG. 5. Test problem 2.

TABLE 10

Number ofiterations, total work per point,
and estimated condition number ofM-IA.

Test problem 2, N 2500, rk oo/II r0 I1o < 10-6.

M

DIAG
IC(1,1)
IC(1,2)
IC(1,3)
IC(2,4)
DKR

MIC(1,2)
MIC(1,3)

SSOR w 1.
SSOR o 1.6

BSSOR w 1.
BSSOR w 1.5

BDIA
POL(1,-
INV(1)
MINV(1)
CHOL(1)
CHOL(2)
CHOL(3)
CHOL(4)
CHOL(5)
UND(2,3)
UND(3,4)
UND(4,5)
UND(5,6)
MUND(2,3)
MUND(2,4)
MUND(2,5)
MUND(3,4)
MUND(3,5)
MUND(3,6)
MUND(4,5)
MUND(4,6)
MUND(5,6)

LJAC

iterations

137
47
30
25
18
32
23
20
55
36

41
23
34

work/N

1507
752
540
5OO
432
512
414
400
935
612

738
414
612

(M-IA

46770
17062
11102
5668
40
26
24

66162
16620

33929
14777
21489

28
22
17
24
18
14
12
10
22
17
14
12
19
17
16
15
14
14
12
12
11
111

504
396
306
432
396
364
360
340
396
374
364
360
342
306
288
330
308
308
312
312
330
1443

14182
8790
20

10288
5531
3307
2154
1490
8946
4762
2876
1899
5825
3472
2135
3355
2135
1379
2136
1416
1451

250 p. CONCUS, G. H. GOLUB AND G. MEURANT

2.1
2-

0
0 22.1

XI

21 1.

92 2.
9 3.

X2

0.02
0.03
0.05

FZG. 6. Test problem 3,

TABLE 11

Number ofiterations and total work
per point for IIxk IIoo < 10-6.
Test problem 3, N 1849.

M

IC(I,1)
IC(1,2)
IC(1,3)
IC(2,4)
DKR

MIC(1,2)
MIC(I,3)

SSOR o= 1.
SSOR o 1.7

BSSOR o 1.
BSSOR o 1.5

BDIA
POE(I,-1)
INV(1)
MINV(1)
CHOL(1)
CHOL(2)
CHOL(3)
CHOL(4)
CHOL(5)
UND(2,3)
UND(3,4)
UND(4,5)
UND(5,6)
MUND(2,3)
MUND(2,4)
MUND(2,5)
MUND(3,4)
MUND(3,5)
MUND(4,5)
MUND(4,6)
MUND(5,6)

iterations

74
47
38
29
53
36
29
88
52

65
46
52
43
34
25
36
28
22
19
16
34
26
21
18
28
25
23
23
21
19
18
17

work/N

1184
846
760
696
848
648
580
1496
884

1170
828
936
774
612
450
648
616
572
570
544
612
572
546
540
504
450
414
506
462
494
468
510

BLOCK PRECONDITIONING 251

TABLE 12

Number ofiterations and total work
per point for rk 2 < 10-6.
Test problem 3, N 1849.

M

IC(I,I)
IC(I,2)
IC(I,3)
IC(2,4)
DKR

MIC(I,2)
MIC(I,3)

SSOR o 1.
SSOR Oopt

BSSOR o 1.
BSSOR Oopt

BDIA
POL(I,-I)
INV(1)
MINV(1)
CHOL(1)
CHOL(2)
CHOL(3)
CHOL(4)
CHOL(5)
UND(2,3)
UND(3,4)
UND(4,5)
UND(5,6)
MUND(2,3)
MUND(2,4)
MUND(2,5)
MUND(3,4)
MUND(3,5)
MUND(4,5)
MUND(4,6)
MUND(5,6)

iterations

79
49
39
30
66
43
35
94
56

68
48
55
45
36
29
38
29
23
20
17
36
28
22
19
30
26
24
24
22
20
19
17

work/N

1264
882
780
720
1056
774
700
1598
952

1224
864
990
810
648
522
684
638
598
600
578
648
616
572
570
540
468
432
528
484
520
494
510

iterations with point preconditioning IC(5,7) is used in [17], but approximately the
same goal can be achieved with only six instead of 12 vectors of storage using the
block preconditioning CHOL(5).

6. Concluding remarks. The above examples show that, for linear problems
coming from finite-difference approximations of elliptic partial differential equa-
tions, the block preconditionings we have introduced can give better results for
two-dimensional problems than the corresponding point ones currently in use.
The results are better also than for block SSOR preconditioning. Generally, for
natural ordering of the unknowns, the modified methods give better results for our
test problems than unmodified ones. Particularly attractive is the preconditioning
INV(1)and its modified form MINV(1)because of the low storage require-

252 p. CONCUS, G. H. GOLUB AND G. MEURANT

ments and rapid convergence. The results for three dimensional problems await
further study. It would be of interest to explore the behavior of our block precon-
ditioning methods on more general problems such as the ones arising from finite
element approximation with node orderings leading to a block tridiagonal matrix.

7. Acknowledgment. We are pleased to acknowledge that much of this work
has been stimulated by the paper of R. R. Underwood [20] and our personal asso-
ciation with him.

REFERENCES

[1] E. ASPLUND, Inverse of matrices (aij which satisfy aij O for j > +p, Math. Scand., 7 (1959), pp.
57-60.

[2] P. CONCUS, G. H. GOLUB, AND G. MEURANT, Block preconditioning for the conjugate gradient
method, Report LBL-14865, Lawrence Berkeley Lab., Univ. of California, 1982.

[3] P. CONCUS, G. H. GOLUa, AND D. P. O’LEARY, ,4 generalized conjugate gradient method for the
numerical solution of elliptic partial differential equations, in Sparse Matrix Computations, J.
R. Bunch and D. J. Rose, eds., Academic Press, New York, 1976, lap. 309-332.

[4] R. W. COTTLE, Manifestations of the Schur complement, Linear Algebra Appl., 8 (1974), pp. 120-
211.

[5] S. DEMKO, Inverses of band matrices and local convergence of spline projections, SIAM J. Numer.
Anal., 14 (1977), pp. 616-619.

[6] J. J. DONGARRA, C. B. MOLER, J. R. BUNCH, AND G. W. STEWART, LINPACK Users’ Guide, Society
for Industrial and Applied Mathematics, Philadelphia, 1979.

[7] T. DUPONT, R. P. KENDALL, AND n. RACHFORD, zln approximate factorization procedurefor solving
selfadjoint elliptic difference equations, SIAM J. Numer. Anal., 5 (1968), pp. 559-573.

[8] S. EISENSTAT, Efficient implementation of a class of preconditioned conjugate gradient methods,
SIAM J. Sci. Statist. Comput., 2 (1981), pp. 1-4.

[9] L. W. EHRLICH, The block symmetric successive overrelaxation method, SIAM J. Appl. Math., 12
(1964), pp. 807-826.

[10] D. K. FAI)I)EEV, Properties ofthe inverse ofa Hessenberg matrix, in Numerical Methods and Com-
putational Issues, 5 (1981), V. P. Ilin and V. N. Kublanovskaya, eds. (in Russian).

[1 l] A. GEORGE AND J. W. H. LIu, Algorithms for matrix partitioning and the numerical solution offin-
ite element systems, SIAM J. Numer. Anal., 15 (1978), pp. 297-327.

[12] G. H. GOLUa AND G. MEURANT, R(solution num(rique des grands sysMmes linaires, Collection de
la Direction des Etudes et Recherches de l’Electricit6 de France, vol. 49, Eyrolles, Paris, 1983.

[13] I. GUSTAFSSON, A class offirst orderfactorization methods, BIT, 18 (1978), pp. 142-156.

[14] O. G. JOHNSON, C. A. MICCHELLI, AND G. PAUL, Polynomial preconditioners for conjugate gradient
calculations, SIAM J. Numer. Anal., 20 (1983), pp. 362-376.

[15] D. KERSI-IAW, Inequalities on the elements of the inverse of a certain tridiagonal matrix, Math.

Comp., 24 (1970), pp. 155-158.
[16] J. A. MEIJERINK AND H. VAN DER VORST, An iterative solution methodfor linear systems of which

the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148-162.
[17] J. A. MEIJERINK AND H. VAN DER VORST, Guidelines for the usage of incomplete decompositions in

solving sets of linear equations as they occur in practical problems, J. Comput. Phys., 44
(1981), pp. 134-155.

[18] G. MEORANT, The Fourier/tridiagonal method for the Poisson equation from the point of view of
block Cholesky factorization, Report LBID-764, Lawrence Berkeley Lab., Univ. of California,
1983.

[19] C. MOLER, MATLAB Users’ Guide, Dept. of Computer Science, Univ. of New Mexico, Albu-
querque, NM, 1981.

[20] R. R. UNDERWOOD, An approximatefactorization procedure based on the block Cholesky decompo-
sition and its use with the conjugate gradient method, Report NEDO-11386, General Electric
Co., Nuclear Energy Div., San Jose, CA, 1976.

[21] R. S. VARGA, Matrix Iterative Analysis, Prentice Hall, Englewood Cliffs, NJ, 1962.
[22] D. M. YoUNg, Iterative Solution ofLarge Linear Systems, Academic Press, New York, 1971.

SIAM J. SCI. STAT. COMPUT.
Vol. 6, No. 2, April 1985

1985 Society for Industrial and Applied Mathematics
001

A CONIC ALGORITHM FOR OPTIMIZATION*

HERVI GOURGEON’t" AND JORGE NOCEDALt

Abstract. This paper describes a method that will minimize a conic function f in n steps, where n is
the dimension of the domain of f. The algorithm can be considered a generalization of the conjugate gradient
method, and has similar orthogonality properties. Some error bounds are given and the numerical stability
of the algorithm is discussed.

Key words, optimization, conic function, conjugate gradient

1. Introduction. Most of the algorithms that are presently being used for solving
unconstrained optimization problems are based on the idea of iteratively forming an
approximating function, and minimizing it. The approximating function is usually a
quadratic as in the class of quasi-Newton methods. Recently, Davidon noticed that
the information provided by the problem could perhaps be used more productively if,
instead of using a quadratic approximating function, one used a certain rational function
called a conic (see Davidon (1980)). He made a thorough investigation of the interpo-
lating properties of conic functions and of their geometry. His paper provides the
essential mathematical background for the development of new algorithms.

In this paper we describe a method based on a conic approximating function. Like
the conjugate gradient method, it does not require matrix storage. We will show how
to derive this algorithm from the quadratic case. Our procedure can be used for deriving
other optimization methods based on conics, which would be the analogues of quasi-
Newton methods, variable storage methods, etc.

The distinctive feature of the algorithms based on conics is that they can use both
function and gradient values to construct the approximating function, while the methods
based on quadratics use only gradient values. One hopes that the new algorithms will
be faster and more reliable than the current ones; this will not be known, however,
until the conic methods are fully developed. This paper has the following limited
objective: to develop a numerically stable method that will minimize a conic function
in at most n steps, where n is the dimension of the domain of the function. This
algorithm can be adapted for minimizing general nonlinear functions. However, the
correct way of adapting the algorithm involves many difficult questions and we will
leave their study for a future work.

The algorithm described here is related to one developed independently by
Davidon (1982), and to several algorithms that are presently being studied by Davidon
and Sorensen (1982). The method of Davidon (1982), which he calls the O(n) method,
is also a generalization of the conjugate gradient method; however, its statement and
derivation are quite different from those presented in this paper. Davidon (1982)
describes another method, which is a generalization of the BFGS method and uses
O(n2) storage. Using the orthogonality results of 5, one can show that Davidon’s
two algorithms and the one described here generate the same points when applied,
with exact arithmetic, to normal conic functions. This is analogous to the case of
quadratics, where a wide class of quasi-Newton and conjugate gradient methods are
shown to be equivalent in the absence of round-off errors (see Huang (1970)).

* Received by the editors March 19, 1982, and in final revised form November 3, 1983.
LycOe Descartes-, Tours, France.
Courant Institute of Mathematical Sciences, New York University, New York, New York, 10012.

253

254 HERVI GOURGEON AND JORGE NOCEDAL

Even though the paper of Davidon (1982) and this one describe similar algorithms,
the papers have little in common. Davidon concentrates on extending the notion of
conjugacy to conics, while we study the properties of the method and its practical
implementation.

Conic models have been studied in other types of methods. Schnabel (1982)
considered a Newton-like algorithm, and Sorensen (1980) studied the convergence of
a method that resembles the BFGS quasi-Newton method.

This paper is essentially self-contained. We assume only that the reader is familiar
with the conjugate gradient method. All the tools needed for working with conics are
developed. Most of these appear in a more general setting in Davidon’s extensive
study (Davidon (1980)). To see how quasi-Newton methods construct a quadratic
model consult Dennis and Mor6 (1977).

2. Basic properties of conic functions. Let x0 be a point in n that will be called
the reference point. For any x n we will denote x-x0 by s"

S XuXo

DEFINITION 2.1. Let a be a vector in " and let X {x e N"" 1 a 7"s 0}. A conic

function f" X - is given by

(2.1) f(x) =fo+
gs 1 sTAs

I_aTs +- (1_ a’s)2,

where f0 E, go E" and A is a symmetric matrix of order n. If a 0, f is quadratic.
Let us assume that aS0 and define H={xEn" 1-aTs=0}, which is an affine
hyperplane. We will call H the singular hyperplane and we will write y(x)= 1- a T"s.
We call y(x) the gauge of f at x x0+ s; the vector a will be referred to as the horizon
vector. The conic function f can be transformed into a quadratic by introducing the
variable

(2.2) w
1 aTs"

More precisely, let W=N"\{w arw=-l} and define the map S" WX by

(2.3) S(w) Xo-
W

I+aTw"
Then fo S(w)" W is quadratic:

(2.4) h(w) fo S(w) fo +gw +1/2wrAw.
Note that (2.2) implies that

(2.5) s
W

1+aTw"
For future reference we summarize (2.2) and (2.5)"

s s 1
(2.6) W=I--aTs y(x)

y(X) 1 aTs l+aTw

The map S will be used to translate the properties of the quadratic function h in the
W-space into the properties of the conic f in the X-space. Note that S-l(x)

CONIC ALGORITHM FOR OPTIMIZATION 255

s (1 a TS) and that the Jacobian matrix of S-1 is

1 (sar(2.7) J(x) 3‘(X) I+
3‘(x)]"

The matrix J(x) is invertible for all x e X Rn\H, and

1 (wa
(2.8) j-l(w)

1 + a TW I
1 + aw T(X)(I--saT).

In what follows, f represents a conic function in X Rn\H, g its gradient and x0 the
reference point in (2.1). Then

(2.9) h’(w)=(foS)’(w)=J-r(w)g(S(w))

and

(2.10) g(x)=(hoS-)’(x)=Jr(x)h’(S-l(x)).

From (2.4) we have that

(2.11) h’(w)=go+Aw;

therefore (2.10) can be written as

Let us now characterize the critical points of a conic. Since Jr(x) is nonsingular,
the gradient vanishes at x0 + s, itt

(2.13) 7,go + As, 0

or

(2.14) go + (A- goa r)s, 0,

where 3’,- 1- aT"s,. The set of critical points of the quadratic function h given by
(2.4) is an affine subspace which can be: (i) empty iff g0 Im A, (ii) a unique point iff
A is invertible, and (iii) an affine subspace in the direction Ker A, otherwise. The map
S preserves the maxima and minima because S is continuous and J is invertible.
Therefore, the critical points of the conic f can be studied by considering their
translation into W. We deduce from the quadratic function h the following, where the
notation A > 0 (A >-0) means that A is positive definite (positive semi-definite):

1) The critical points of f in X are minimizers iff A => 0.
2) A minimizer of f in X is unique itt A > 0.
3) There are no critical points of f in X if go Im A, or if, for any z e such

that Az go, a rz 1.
From (2.13) we see that if A > 0, then s. =-3’.A-go, and

(2.15) y,(1-arA-lgo)= l.

Therefore a condition that ensures that f has a unique minimizer in X is:
4) If A > 0 and a T"A-lgo 1, there is a unique minimizer x, of f in X given by

x, Xo + s,, with

-A-lgo
(2.16) S,=l_arA_lgo.

256 HERVI GOURGEON AND JORGE NOCEDAL

Finally, from (2.14) we have
5) The set of minimizers of f is the restriction to X of an affine subspace of

direction Ker (A-goa T) if there is a z R such that Az go and a TZ 1.
We are mainly interested in conic functions with unique minimizers.

DEFINITION 2.2. The conic function (2.1) is called normal if it has a unique
minimizer, i.e., if A > 0 and a TA-lg0 1.

3. Computation of the gauge. The map S that made the composition f S quad-
ratic requires knowledge of the horizon vector a. Davidon (1982) has shown how to
determine this vector using function and gradient values at three collinear points. He
also showed (Davidon (1980)) how the gauge y can be computed from function and
gradient values, without knowledge of the horizon vector. These two observations are
basic in the development of the algorithm, and we will now discuss them.

As will be done repeatedly in this paper, we first transform the function f into a
quadratic. In that space we find a useful result and translate it into the original space.
For all functions such as f, y, g, etc., we will write fk for f(Xk), etc. Consider two points
x,xX and the line joining them, x()=x+(x-x)r. Then, by linearity of
y, y(x(r))= y+(y-y)r, where yk 1--ar(Xk--Xo). Multiplying (2.1) by y2 shows
that the function

(3.1) q(r) [7 +(Y- Yi)r]2f(x(r))

is quadratic. Now, a quadratic q(r) satisfies

q(1)- q(0) [q’(0)+ q’(1)].

From (3.1) this condition is equivalent to

(3.2) -f, Yg+Yg (x-x).

If the conic function f is normal, then A > 0 and the quadratic h =foS is strictly
convex; it satisfies

(3.3) [h’(w) h’(w)]r(w- w) > 0

for any w wi In the X-space this inequality becomes, using (2.6) and (2.11),

(3.4) pi A s,_s >0.

The quantity p is important in the study of conics; there are other expressions for it,
which we will now derive. From (2.8), and (2.9)

h’(w)-h’(O)= 7(x)(I-asr)g(x)-go,

while from (2.6) and (2.11)

S
h’(w)-h’(O)=A

Let x Xo + s, k i, j; note that x-x s-s. Equating the right-hand sides of the
last two equations, and substituting into (3.4), we obtain

l{y Yi(3.5)

CONIC ALGORITHM FOR OPTIMIZATION 257

Using (3.2) and (3.5) we have both

(3.6)

Squaring (3.2) and (3.5), and comparing them, we obtain

(3.7) p/ (_.f/)2_ g.T, (xj xi)g" (Xy-- Xi).

Equations (3.6) and (3.7) establish the following theorem.
THEOREM 3.1 (Davidon (1980). Let f be a normal conic function and let xi and

xj be two points in X. Then

3"i g Xi Xj(3.8) lfi +

where

(3.9) pij’--[(fy--fi)2--g’T, (x]--xi)gT(x]--Xi)]1/2.

Note that y(Xo)= 1 so that Theorem 3.1, with i= k and j=0, gives the value of
the gauge at any point Xk e X in terms of the function and gradient values at xo and
xk. As 3’ is affine, knowledge of 3’o and 3"k allows us to find the value of 3’ along the
line joining xo and xk.

We will now see that by evaluating the function and gradient at three collinear
points we can determine the horizon vector a and hence the gauge 3’ in all the space.

LEMMA 3.2 (Davidon (1982)). Let Xl xo+ AlS, x2 xo+ Azs be two points in X.
Then the horizon vector is given by

(3.10) a
3’1/A)(3’lg- go) -(3"2/A2)(3"2g2- go)

3"gl 3"gz) Ws

Proof. From (2.7) and (2.12)

1
(3.11) gl=3"31(3"lI+A1asT)(3"1go+Al.As).

Therefore

3"lgo-b A1As 3"(I-- AlaST)gl

Similarly

Hence

3’2g0-t- AzA$ 3’z2(I- A2asT)g2,

As= [/21(I- ,asr)g1- yago]=-2[/(I- 2asr)g2- /2go].

a[3"21sTg 3" sTge] L(3"12g1_ 3’1go)--
1

=A1 - 22 3" ge 3" g

and from this (3.10) follows.
Observe that in Lemma 3.2, x0 coincides with the reference point in the definition

of a conic function (2.1). We now generalize this result to accept any point.

258 HERVI GOURGEON AND JORGE NOCEDAL

LEMMA 3.3. Let Xl, x2, x3 be collinear points in X. Then the horizon vector is given
by

(/2-- A3)’y21gl q- A 3’)"22g2 h2’Y:g3
(3.12) a

where s x- Xo, 1, 2, 3, x Xl + hd, 2, 3.

Proof. From (2.]2)

1
(3.13) g=--Jf(%go+As), i=1,2,3.

Ti

Combining (3.13) for i= 1 and i= 2, we have

(3.14) h2Ad As2- ASl T2JT
g2- TIJT

gl T2- T)go.

Similarly for i=] and i= 3,

(3.]5) A3Ad As3-ASl T3JTg3 TIJTgl-(T3 T1)go.

Using (2.8), we obtain both

1[7(I- as[)g 7(I as)g,]- T 7,)goAd

(3.16)
1Z[7(I- as2)g3- y(I- as)g,]-(73- Yllgo.

h3
Note that for i= 2 or 3

1 1 T(Wd.

Therefore (3.16) implies

1

and hence
2 T

4. Oe-es!ifim The algorithm to be presented in 5 requires
a one-dimensional minimization of a conic at every step. We now study how to perform
it and discuss some potential diNculties.

Consider the restriction of to the line x(r) Xo + s(r), where s(
Note that this is a line through x Xo + s and x Xo + s, and does not include the
point xo. Let us call (1 r). As is ane, (x(r)) + r. We have, therefore,

+ rsAs/,
where stands for (x(r)). From (3.4)

(0 2
A s s

CONIC ALGORITHM FOR OPTIMIZATION 259

therefore

1 (Y2 AsI+TIsAs2)(4.2) 773/1T2P12 ?r --S -r(sas2).
3/1 3/2

As ?r3/2/3/1 ?(3//3/1) and r3/a/3/2 r(3//3/2- r), one can show, using (4.2), that

(4.3) f(XoWS(’r))--[(a--r)3/1fl q-3/2rf2]/3/--[(1--r)r3/13/2P12]/3/2.

Differentiating, we obtain, using (3.5) and (3.6),

(4.4)
d(x0+ s())

dr
g(xo+ s())(s s)=

[(1 r)g -Jr" rb’13292]T

(l-r+ ,12r)
($2- $1)’

where

(4.5)

From (4.4) we see that drdr vanishes at

(4.6) r*=
-g(sz-sl)

u132g2- gl) w(S2- Sl)’

provided that the denominator is nonzero.
For some directions, the one-dimensional minimizer may not lie on the same side

of the singular hyperplane as the solution of the problem. Problem 1 of 8 illustrates
this situation. This causes no difficulties and we will allow the algorithm to produce
iterates on both sides of the singular hyperplane.

Another interesting fact (Sorensen (1982)) is that along some directions a one-
dimensional minimizer does not exist. This is true even for normal conic functions.
We will call these directions special directions and we can construct them as follows.
Find a point where the contour lines of the quadratic function h- f S intersect the
affine hyperplane T { w Rn: aTw =--1}. Then choose a line that is tangent to the
contour line of h at this point. Transforming this line into the X-space, using S, will
produce a special direction. We will discuss these directions further in the next section.

5. A conjugate-direction conic method. The method is based on the following
idea. In order to minimize the normal conic f, consider the quadratic h f S and
apply the conjugate gradient method to it. Then transform the iterates back to obtain
a minimization method for f.

While minimizing the quadratic function h: WR, we will denote the search
directions by Vo, Vl,’", Vk, and the displacements by/Z0Vo,’’’, kVk. As s-l(xo)=0
the initial point in the new coordinates is Wo=0. Thus the kth iterate (or total
displacement) is

k-1 k-1

(5.1) w w0 + Z mv Z
=0 =0

The point wk in W is mapped by S into the point Xo + Wk/(1 + a TWk), in X. Let us
denote the search directions in X by do," , dk; the displacements by Aodo, , Akdk;
the total displacement by

k-1

(5.2) Sk ,idi.
i=0

260 HERVI GOURGEON AND JORGE NOCEDAL

The correspondence between sk and wk is given by (2.6)"

Wk
Sk or

1 + aTW
Sk

1-a TSk"
We will now find a relation between d and v.

(5.3)

(5.4)

Sk+ Sk
]d’k1")k Wk+l Wk 1-a TSk+ 1-a TSk

Sk+l--Sk (1 1)")/k+l k k+l

(saT)_1__ I+ Akd

or

(5.5) Ad Tk+l(I-- skaT)tx,)k.

We now express 7,+a using information at x. Using (2.6), we have

1 + 3/kaTtzkt)k 1 + TkaTwk+l--TkaTwk
1 + "Yk(1 + aWWk+l) Tk(1 + aWwk) Tk/’k+l.

Hence 7,+ 7,/(1 + "),,al,v,) and (5.5) can be written as

(5.6) Ad

Let us split this expression as

1 + "Yka Ttxkt)k

1 + 3,ga TtZVg
so that/x 1 corresponds to Ak 1.

We will now derive the algorithm. Assume for the moment that no special
directions are generated, i.e., that along all the directions considered, the normal conic
function has a minimizer. Later we will discuss how to cope with special directions.
We apply the conjugate gradient method of Hestenes and Stiefel (1952) with exact
line searches to minimize h f S.

Choose an initial point xo, which will be taken as the reference point in the
definition (2.1) of the conic f. Evaluate fo and go. Recall that S-l(Xo)= Wo=0 so that
the map S is initially the identity map. Hence we have from (2.3) and (2.9) that
h(wo)=f(xo) and h’(wo)= g(Xo). Take as initial search direction the one of steepest
descent, do--go. Choose a step length Am and evaluate the function and gradient at

xm Xo+ A,do. Find the minimizer Xp along the direction do by means of (4.6), and
evaluate the function and gradient at xp. With this information we determine the
horizon vector a using (3.10). The first iterate is xl Xp. From (2.6), (5.1) and (5.2)
it follows that vo is parallel to do. Therefore in W the first step is also a steepest
descent step, and the first iterate w is the minimizer of h along the gradient direction.
Hence h Vo 0.

1 + Tka TVk 1 + /a Tvk,

p(1 + 7aTV

3’, (I s,a T) V, j-

CONIC ALGORITHM FOR OPTIMIZATION 261

(5.8)

with

At the kth step the search direction is

(5.9) /3k
h’) rAvk_l

The translation of (5.8) and (5.9) into the X space is, using (2.9) and (2.11),

(5.10) h, J-Tgk yk(I-- as)gk

(5.11) /k-lAVk-1 h- h-i J-Tgk--J-T-lgk-1.

From (5.4) and (2.7),

’)/k-1 Jk i dk-1.(5.12) /Zk-1 Dk-1 k-1
Yk

Some simplifications are possible. As we made an exact line search during the first
step, gldo gSl =0. This implies that h and gl are parallel; in fact h 3/lgl.

Consider the second step. The property of increasing subspace minimization of
the conjugate gradient method for h implies that h.rvo- hTol 0. Therefore

1
h(5.13) hT(oOo+ lVl) hrw2 s2=0

Y2
or

gf(I- sza r)s2 yzgfs2 O,

so that g2Ts2=0. Similarly, as hrv0=0 and Vo//S1, we have geTs1=0. Therefore
gfdl gf(s2- Sl) 0 and h y2g2. Proceeding by induction, wecan show that gsj 0
for j<=k; gdj=O for]<k, and that the gradients of h and f are are parallel.

The previous discussion establishes the following theorem.
THEOREM 5.1. Letf be a normal conic function and assume that none of the search

directions generated by the algorithm is a special direction. Then
1) g[d 0 for] < k (increasing subspace minimization);
2) h, Ykgk, k O, 1,...
3) gTk&=O for]<k.
Note that (3) follows from (2) and from the orthogonality of the gradients h.
We can now simplify (5.10) and (5.11):

(5.14) h)’kgk

and

Id’k-lAl’)k-1 Ykgk "Yk-lgk-1.

Substituting (5.9), (5.14) and (5.15) into (5.8), we have

7kgYk
(5.16) Vk 7kgk + Vk-1,v_y
where Yk "Ykgk--Tk-lgk-1. Using (5.12), we obtain

(5.17) Vk "Ykgk - y TJk-l dk-1 Jk-1 dk-1.

262 HERVI GOURGEON AND JORGE NOCEDAL

There are other simplifications"
(1) From (2.7), (2.8) and using Sk--Sk-1 Ak-ldk-1, one finds

’ dk-1.(5.18) J-lJk_,dk_l T2k_

(2)

(5.19) a TJk_, dk-, a Td_,/’]t2k_l
(3) By the orthogonality of gk and s for y-< k

(5.20) J-,gk gk/ Yk-,, JT-lgk-1 gk-1/"Yk-1-

We now substitute (5.17)-(5.20) into (5.7); thus

(5.21) dk [_yg + ysaTg +
y3(g2y) d_]/rt]/k- y Tdk-1

where

(5.22) r/= 1 ya rgk - y2g yka Tdk-1
Ydk-Yk-1

The denominator r/was kept to scale the vector
Let us now consider what we could do if a special direction is generated. A

minimizer along that direction does not exist in the X-space. However, let us transform
this direction into the W-space using the map S-. The quadratic h has a minimizer
along the transformed direction. Therefore, when a special direction is encountered,
we proceed as follows. Map the direction into the W-space and perform the one-
dimensional minimization there. Then generate a new search direction by applying the
conjugate gradient method to h. Finally we transform this new direction back into the
X-space and proceed as usual. Note that a special direction can be identified by the
fact that the denominator in (4.6) is zero.

With this change, the algorithm will find the minimizer of a normal conic function
in at most n steps. This follows from the quadratic termination property of the conjugate
gradient method (or from Theorem 5.1).

In what follows we will assume that special directions never occur. There are two
reasons for doing so. First, it is extremely unlikely that a special direction is generated.
Second, our interest does not lie in minimizing conic functions per se, but in deriving
an algorithm that can be extended for use with general nonlinear functions. If, while
constructing a conic model for nonlinear optimization, we discover that it has no
minimizer along the current search direction, we will discard the model. Therefore a
strategy to cope with special directions will never be needed in practice.

6. Description of the algorithm. We will now give a detailed description of the
method for minimizing normal conic functions. Let EPS denote the "machine epsilon,"
or the gre_atest number such that fl(1 + EPS)= 1. Let EPS1 > EPS be a small number
(e.g. 10x/-). Choose a starting point x0 X.

Step O.
Step k.

Evaluate f and g at x := Xo. Set d :=-g, 3’ := 1.
Set fk := f, gk :-" g, Xk := X. Choose a trial steplength A, (see the next section
for some possible choices) and compute x, := Xk + Amd. Evaluate f and g
at Xm.

(6.1) (see 3.9) p:= (fk-f.,)2-(gd)(gWmd)A2.n

CONIC ALGORITHM FOR OPTIMIZATION 263

(6.2)

(6.3)

(6.4)

(6.5)

(see 3.8)

(see 4.6)

1/2p:=p

m := -A.,(gd)/(fk- f., + p)

Ap := -A,(gd)/[U3mgT..d gd]

Vp := 1 + (u,- 1),p/A.,

X := Xk +Apd.

Evaluate f and g at x.
Test convergence:
If g < EPS1
exit. Otherwise compute
crp := gTd.

(Only during the first step) compute a"

2(see 3.10) w:= O-puZp-(gd) um
V := Upg-- gk)/ApW
I)2 := u,g, gk)/AmW

(6.6) a := UpV- Uml)2

(6.7) 3,: yUp

(6.8)

(see 5.11-5.22)

d := T2(-g +[X--Xo]aTg)+ a’)’d/’I’k

d:= d/ (1-- "I,2a Tg + aa Td/ y,)

End of Step k.

We now comment on this algorithm. The ratio of gauges is denoted by 9, so that
um= Y,,/Yk and Up Yp/Yk in (6.3), (6.5). Formula (6.5) follows from the fact that
the gauge is an affine function. The gauge vector is computed only once, at the beginning
of the iteration. If it has to be recomputed later, we must use (3.12) instead of (6.6).
Note that once the starting point x0 is chosen, we think of it as the reference point in
the definition of the conic function. Therefore y0 1, and in (6.7) we are computing
the value of the gauge at the current point. This is also why in (6.6) we used (3.10).
For a normal conic function (6.1) produces a positive number so that the square root
operation is well defined. The denominator in (6.4) is zero only if d is a special direction.

7. Numerical stability and error bounds. Finding the minimizer of f is equivalent
to solving the linear system (2.14). This system indicates whether or not the problem
of locating the minimizer of f is well conditioned. Even if it is well conditioned, the
algorithm may be unstable at some intermediate point of the computations. This is
due to the nature of conic functions. Recall that the function values tend to infinity
as we approach the (n-1)-dimensional hyperplane H. It is therefore important to
implement the algorithm in a numerically stable form, so as not to aggravate the
intrinsic difficulties of the problem.

264 HERVI GOURGEON AND JORGE NOCEDAL

A critical stage of the process is the choice of the trial steplength ,,,. Suppose
that A, is so small that gd and gTdm are almost equal. Then the two quantities in
(6.1) will be of almost the same magnitude and cancellation will occur. When
gd. grmd>O the computation of p, (6.1), can be improved somewhat by writing
p (a + b)(a b), where a (fo-f) and b)t(gdgd) 1/2. However, the only real
cure is to increase . Therefore after (6.1) we include a test to ensure that the
computation of p is accurate. If a substantial loss of significant figures has occurred,
we double Am. With this precaution the algorithm has performed quite well even with
rather ill conditioned problems.

We will now mention some possible choices for . By the way we scaled the
search direction, a step of length 1 in the W-space corresponds to a step of length 1
in X (see (5.7)). However m I may not be a good choice. Shanno and Phua (1980)
use the trial step

(7.1) =d/gd,
where ffw is the directional derivative at the beginning of the previous iteration, and
was the steplength to the minimizer. Using (7.1) in (5.7), we obtain one possible

trial steplength. We could also take m as the right-hand side of (7.1), thereby reasoning
directly in the X-space. This last choice was used in the tests described in the following
section.

When the iterates approach the solution x,, (fo--fm) is of order O(]lXo- X,]12).
On the other hand, f0 and fm can be assumed to be of order O(1). Therefore, when
IIx0-x, EPS1/2, the computation of (fo--fm)in (6.1) will have no correct significant
figures. The tolerance EPS1 should therefore be greater than EPS/2. Note that the
conjugate gradient method only computes quantities of order O(I]Xo-X,[), and can
get closer to the solution than the conic method.

We now turn to the question of finding error bounds for the conic algorithm. We
will use the results for the conjugate gradient method, since our method consists of
applying it to the transformed function h. Let x, x0 + s,; then from (2.1) and (2.13)

A s. s 1

2k7, (w,- w)rA(w, w) E(w).

From the quadratic case (see, for example, Luenberger (1973)), we have

n-k 0(7.2) E Eo,
n-k

where o "" - are the eigenvalues of A. It also follows that the number
o[iterations needed by the conic algorithm is less than or equal to the number of
distinct eigenvalues of A. Note, however, that the matrix A depends on the choice o[
the initial point Xo. If we take any other point x X, the conic (2.1) can be written as

gs sA,s
(7.) (x)=,++1-as (1-a)’
where a and Aa will differ [rom a and A and s x-x. To investigate the relationship
between the eigenvalues of A and A, it is convenient to consider the Hessian matrix
at the solution. From (2.10) we have

(7.4) V2f(x,) JAJ,,
where J, =(1/y,)(I+(s,aW)/y,) and y,= 1--ars,. Let be the displacement to the

CONIC ALGORITHM FOR OPTIMIZATION 265

solution from X1, i.e., X "-/ X0 -- S,-- X,. Then

(7.5) vZf x,) .TA ,
where Y=(1/’)(I+(al)/4/) and /= 1-a. Equating (7.4) and (7.5), we obtain

A J-TyTA JJ
which can be written as A=(I+R)TAI(I+R), where R is a matrix of rank <_-2. In
general, all the eigenvalues of A and A will be different, and therefore different initial
points will lead to different numbers of iterations for convergence.

8. Numerical examples. We now present three examples to show the behavior
of the conic method. We used a VAX 11/780 at the Courant Mathematics and
Computing Laboratory, with approximately 16 decimal digits of accuracy in double
precision. All the test functions are normal conic functions.

Problem 1. N 2, xo-O,

1
a=

0
g=

-3
x,=

12

y,=4. This is the example mentioned in 4. After the first iteration Ilgll =.509 and
Ya =-5. One more iteration gives IIg211- .439E-16 and y2 =4. The singular hyper-
plane was crossed twice.

Problem 2. Here N 11, Xo 0,

5 2 1 1
2 6 3 1 1
1 3 6 3 1 1
1 1 3 6 3 1

1 1 3 6
1 1 3

1 1
1

1

3 1 1
6 3 1
3 6 2
1 2 5

a(i)=-1/2i, i=1,...,5, a(i)--.01, i=6,...,11.

go(i)=i2/lO00, i=1,...,5, go(i)-1, i-6,...,11, y,--" 1.55.

The matrix A has only 10 different eigenvalues; see Gregory and Karney (1969).
After 10 iterations of the conic method, I[gll =.288E-11; the solution was found to
full accuracy. Then we tried the initial point Xo .3; the algorithm now required 11
iterations to obtain the solution.

As could also be expected, the conjugate gradient method was unsuccessful when
applied to (nonquadratic) conic functions.

Problem 3. Here we compare the numerical stability of the conic algorithm and
the conjugate gradient method by applying them to increasingly ill conditioned quad-
ratic functions. A is the Hilbert matrix of order n, with Aij 1 / (i + j- 1), x0 0, a 0
and g=(1, 1,..., 1). In the following table we give information about the last
iteration of each run. With exact arithmetic the conic and quadratic methods are
identical. In the tests both methods produced the same iterates except in the last few
iterations.

266 HERVI GOURGEON AND JORGE NOCEDAL

TABLE

N cond (A)

3 .53E+03
4 .15E+05
5 .47E+06
6 .16E+08

Conic method

last
iteration Ilgll

3 .121E-12
4 .443E-09
6 .164E-07
9 .858E-06

Conjugate gradient method

last
iteration Ilgll

3 .112E- 14
4 .254E-10
6 .389E-07
8 .123E-06

As discussed in 7, it was expected that the conjugate gradient method would be more
accurate for quadratics. Note that the conic method is only slightly more sensitive to
ill conditioning. We note that using A,, 1 and not including the precautions described
in 7 is very detrimental to the conic method. Severe cancellation occurs in the
computation of p and the algorithm is unable to approach the solution. However, with
the refinements described earlier the conic method copes adequately with ill con-
ditioning.

9. Final remarks. A conic algorithm for minimizing a general nonlinear function
of one variable is uniquely specified. It was analyzed by Bj0rstad and Nocedal (1979),
who showed that its rate of convergence is quadratic. Note that the restriction of
variable metric methods to one dimension yields the secant inethod, whose rate of
convergence is 1.618.... The conic method is therefore faster in one dimension, and
this suggests that it might be faster in N dimensions as well. This, however, has not
yet been established.

To adapt the conic method described in this paper for use with general nonlinear
functions of N variables, several important issues need to be resolved:

1. How often should we recompute the horizon vector?
2. The method may fail to produce a descent direction, if the horizon vector is

changed. Should we restart the iteration?
3. How do we decide if three collinear points are suitable for building a conic

model?

Acknowledgments. We are happy to express our gratitude to W. Davidon for his
encouragement, insights and suggestions. We would also like to thank D. Sorensen
and the referees for their excellent comments, and S. Bedard for help in the preparation
of this paper.

REFERENCES

P. BJORSTAD AND J. NOCEDAL (1979), Analysis of a new algorithm for one-dimensional minimization,
Computing, 22, pp. 93-100.

W. C. DAVIDON (1980), Conic approximations and collinear scalings for optimizers, SIAM J. Numer. Anal.,
17, pp. 268-281.

(1982), Conjugate directions for conic functions, in Nonlinear Optimization 1981, M. J. D. Powell,
ed., Academic Press, New York.

W. C. DAVIDON AND O. SORENSEN (1982), Unpublished manuscript.
J. DENNIS AND J. MORI (1977), Quasi-Newton methods, motivation and theory, SIAM Rev., 19, pp. 46-89.
M. HESTENES AND E. STIEFEL (1952), Methods of conjugate gradients for solving linear systems, J. Res.

Nat. Bur. Standards, 49, pp. 409-436.
H. HUANG (1970), Unified approach to quadratically convergent algorithms for function minimization, J.

Optim. Theory Appl., 5, pp. 405-423.

CONIC ALGORITHM FOR OPTIMIZATION 267

D. LUENBERGER (1973), Introduction to Linear and Nonlinear Programming, Addison-Wesley, Reading,
MA.

R. GREGORY AND D. KARNEY (1969), A Collection of Matrices for Testing Computational Algorithms,
Wiley Interscience, New York.

R. SCHNABEL (1982), Conic methods for unconstrained minimization and tensor methods for nonlinear
equations, Dept. Computer Science, Report CU-227-82, Univ. Colorado, Boulder.

D. SHANNO AND K. PHUA (1980), Remark on Algorithm 500, ACM Trans. Math. Software, 6, pp. 618-622.
D. SORENSEN (1980), The O-superlinear convergence of a collinear scaling algorithm for unconstrained

optimization, SIAM J. Numer. Anal., 17, pp. 88-114.
(1982), Personal communication.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 2, April 1985

1985 Society for Industrial and Applied Mathematics
002

EVALUATION OF A BRANCH AND BOUND ALGORITHM
FOR CLUSTERING*

GEORGE DIEHR?

Abstract. A branch and bound algorithm for optimal clustering is developed and applied to a variety
of test problems. The objective function is minimization of within-group sum-of-squares although the
algorithm can be applied to loss functions which meet certain conditions. The algorithm is based on earlier
work of Koontz et. al. (1975).

The efficiency of the method for determining optimal solutions is studied as a function of problem size,
number of clusters, and underlying degree of separability of the observations. The value of the approach
in determining lower bounds is also investigated.

We conclude that the method is practical for problems of up to 100 or so observations if the number
of clusters is about 6 or less and the clusters are reasonably well separated. If separation is poor and/or a

larger number of clusters are sought, the computing time increases significantly. The approach provides
very tight lower bounds early in the enumeration for problems with moderate separation and six or fewer
clusters.

Key words, cluster analysis, mathematical programming, branch and bound

1. Introduction. Cluster analysis is a general statistical methodology for partition-
ing entities. The goal is often to develop a classification of the entities. Thus, cluster
analysis is frequently used in numerical taxonomy. It has also been applied in a diverse
variety of other problems including partitioning computer files to minimize access time
(Hoffer 1975), clustering data on headaches to identify distinct types of headaches
(Diehr 1982) and to problems of aggregation in economics (Fisher 1969). Discussions
of clustering applications and alternative clustering criteria can be found in Anderberg
(1973), Sokal and Sneath (1973), and MacQueen (1979).

The clustering objective function considered here is minimization of within-group
sum-of-squares, WGSS. The entities are observations in a p-dimensional metric space
and the distance between observations is defined as the squared Euclidean distance.
The WGSS is equivalently either 1) the sum of distances of observations to their cluster
means or 2) the sum over clusters of the average pairwise distance between observations
in each cluster. Specifically, let Q(i), i- 1,..., n, be a set of n vectors (the observa-
tions) in p dimensions. They are to be partitioned into m clusters, G(j), j- 1,..., m,
where G(j) is a subset containing c(j) observations, so as to minimize:

(1.1) WGSS-
j=l iG(j)

where Q(j) is the vector mean of the c(j) observations in the jth cluster.
As noted above, an equivalent expression for WGSS uses distances between

observations and therefore does not require computation of cluster means. Define
d(i, k) as the distance between observations and k. Then:

,,-1 d(i,k)
(1.2) WGSS= Z E

j=l i=1 k=i+l c(j)

Using (1.2) allows metrics other than squared Euclidean distance to be used
for d(i, k). (Note, however, that (1.1) and (1.2) are in general not equivalent for
other metrics.) The algorithm developed and tested herein requires that the metric

* Received by the editors April 21, 1982, and in revised form September 15, 1983.
t Graduate School of Business Administration, University of Washington, Seattle, Washington 98195.

268

BRANCH AND BOUND ALGORITHM FOR CLUSTERING 269

meet the following condition: if a new observation is added to a set of n observations,
the minimum WGSS value for the n + 1 observations must be greater than or equal
to the minimum WGSS value for original n observations. To demonstrate that this
condition holds for the WGSS criterion consider an optimal partition of n + 1 observa-
tions. Remove any observation from the set and recompute the loss without reassigning
observations to new clusters (i.e. the clustering of the remaining n observations may
be suboptimal). The loss is reduced by more than the squared distance of the removed
observation from its cluster mean. Thus, the change in loss if an observation is added
must be nonnegative. It may be zero if the added observation is exactly at a cluster
mean.

This characteristic of the WGSS criterion was proven by Koontz, Narendra and
Fukunaga, "KNF" (1975). They generalized the characteristic to show that if a set of
n observations is first divided into (say) two subsets with nl and n2 (nl+n2 n)
observations each, then the sum of the minimal WGSS for the two subsets is not
greater than the minimal WGSS for the n observations. They use this characteristic
as the basis for bounds in a branch and bound algorithm. The algorithm developed
and tested here is a refinement of the KNF algorithm.

The KNF algorithm can be applied to several other objective functions. For
example, the "complete linkage" criterion which sums distance between all pairs of
observations in each cluster clearly meets the condition that an added observation
cannot decrease the minimum objective function value. Another criterion which meets
the condition is "minimize maximum within cluster distance." Note, however, that an
algorithm developed by Hansen and Delattre (1978) appears to be quite efficient for
this criterion. Some clustering criteria, such as the "single linkage" criterion, do not
meet the condition; addition of another observation may increase or decrease the
optimum solution value.

2. Review of optimal algorithms for clustering. Many suboptimal algorithms have
been developed for the WGSS and related clustering criteria. Most are either hierar-
chical (they begin with n clusters, combine two observations to form n-1 clusters,
combine two more observations or the first observation pair with another observation
to form n-2 clusters,...), or employ a local hill-climbing approach which reassigns
one observation at a time from its cluster to another cluster if the reassignment will
reduce the WGSS. A number of these algorithms appear in Hartigan (1975). FORT-
RAN code for a refinement of the K-means algorithm of MacOueen (1967) appears
in Hartigan (1975).

Optimal algorithms have been reported using dynamic programming (Jensen
1969), integer linear programming (Rao (1971)), Vinod (1969)), and branch and
bound (KNF (1975)). The dynamic programming approach is very efficient in the case
of one-dimensional observations. In one dimension the clusters must be a linear
partition of the real line so that the dynamic programming approach requires evaluation
of Order (rnn2) partitions; problems of 1000 observations and 10 clusters can be
solved in several minutes. In higher dimensions the dynamic programming approach
does not make use of the fact that clusters must be convex partitions of the space.
Computation time becomes excessive. For example, with n 25 and m 6, approxi-
mately 1012 partitions must be evaluated. Storage requirements exceed 33 million
words.

An integer linear programming (ILP) formulation was developed by Vinod (1969)
but it was based on a theorem which was subsequently shown to be false by Rao
(1971). Rao then provided alternative ILP formulations which require cluster sizes to

270 GEORGE DIEHR

be fixed in advance. Even with fixed cluster sizes, the formulation requires mn(n + 1)/2
variables and 2m+n+mn(n-1)/2 constraints. A small problem of n=25, m=6
would require 1950 variables and 1837 constraints. This is a very large ILP problem.

An alternative ILP formulation was developed by Diehr (1980) which requires
the same number of variables but only mn + m + n constraints--181 for this example.
This alternative formulation appears to provide better lower bounds from the linear
relaxation of the ILP problem which suggests that it would also be faster; however,
Rao presents no computational experience for comparison. Our experimentation with
the alternative ILP approach using a general purpose LP code (with upper bounding
of variables) indicated the approach was unlikely to be practicalua problem of only
9 observations and 2 clusters required 1.7 seconds computation time on an IBM 360/91
to find a bound within 10% of the known optimal (fixed cluster) size solution.
Exhaustive enumeration requires evaluation of only 255 partitions (for all possible
cluster sizes), which would require much less than one second. (Using the algorithm
described herein, problems of 20 observations are easily solved in less than one
second.)

Another approach has been explored (Diehr (1980)) which attempts only to
determine tight lower bounds to solutions. The problem is formulated as an integer
quadratic programming problem, then the integer constraint relaxed. A heuristic search
is used to increase the lower bounds. Computational experience with the approach is
mixedufor small values of rn (e.g. m 2), the bounds determined are reasonably tight
(e.g. within 5%). But as m increases the bound decreases. Nevertheless, the approach
merits further investigation of both the mathematics of the quadratic formulation and
of the lower bounding algorithm.

The KNF algorithm uses bounds based on the characteristics of the objective
function (as opposed to using, for example, linear programming bounds). These bounds,
which are used in our algorithm, are described in 3. KNF report computational
experience for one problem of 120 observations in two dimensions partitioned into
two clusters. The observations were generated by sampling 60 observations from each
of two normal distributions which were reasonably well separated (i.e. one cluster
contains observations strictly from the first generating distribution; the second contains
observations from the second generating distribution plus two from the first.) The
computing time for the clustering is 28 seconds on a CDC 6500.

KNF conclude that this algorithm "... provide(s) the kind of efficiency needed
in practice" KNF (1975, p. 914). We would agree with this evaluation if this level of
performance (or even an order of magnitude worse performance) held up in general
for problems this large. Unfortunately, tests on several problems reported by Diehr
(1980) showed that efficiency of the method is very sensitive to the number of clusters
and the degree of separation of the generating distributions. Problems of 20 and 30
observations were generated and partitioned into two and four clusters. Time increased
by a factor of 20 for four clusters versus two clusters. Furthermore, computation time
also significantly increases if the number of clusters is greater than the number of
distributions used to generate the observationsi.e., if the observations are not well
separated into m clusters, time to find the optimal partition will be excessive.

The objective of the research reported here was to investigate modifications to
the KNF algorithm and to study its computational efficiency as a function of number
of observations, number of clusters, and degree of separation of the generating
distributions. In practice, n will be known. The value of m may be specified or it may
be necessary to explore different values of m to determine the "most natural" clustering.
In most cases, the degree of separation of the clusters is not known a priori.

BRANCH AND BOUND ALGORITHM FOR CLUSTERING 271

3. Branch and bound clustering. In this section we describe two bounds developed
by KNF for their clustering algorithm. In 4 our branch and bound algorithm is
described. It uses these same bounds but alters the order of enumeration and employs
several heuristics in an attempt to reduce the computational time.

Branch and bound methods operate by computing bounds to completions of
"partial solutions." In the context of a clustering problem, a partial solution is the
assignment of a subset of the observations to clusters. The bound is a lower bound on
WGSS values for all possible assignments of the remaining observations to clusters
(the "completion") given the partial solution.

To describe the first bound, assume that at some stage in the enumeration a proper
subset S1 of the n observations has been assigned to the m clusters. For simplicity,
and without loss of generality, define $1 as the subset of observations numbered
1, 2,..., nl. (We will use the term "subproblem" to mean a subset of observations
such as S1. This will help to distinguish between subsets of this type, subsets of the
cluster type and the generic use of the term subset.) The assignment of observations
to clusters is given by the vector A(S) and the loss by W[A(S1)]. Define S2 as the
complement of S. The assignment of the observations in S constitutes a partial
solution. A lower bound on the WGSS for any completion of this partial solution is:

LB1 W[A(S1)]+m!n C[i, jIA(S1)] for any $2,

where C[i, jlA(S)] is the increase in the WGSS which results from adding observation
to cluster j given the assignment A(SI).

This bound is based on the condition noted in the introduction that adding an
observation to a cluster cannot decrease the WGSS of the cluster. The value of
C[i, j[A(S)] will be zero iff cluster j is empty or observation coincides with the mean
of cluster j.

This bound provides the basis for an enumeration algorithm using the following
approach:

1. Assume a feasible clustering with objective function value UB (UB is an upper
bound on the optimal solution value); UB is set to infinity if no feasible solution is
known.

2. Given a partial solution A(S) determine LBI for any observation not in $1.
3. If LB1 is greater than or equal to UB then the current partial solution cannot

lead to an improved solution (one better than UB). Thus, all partitions with the
particular partial assignment A(SI) have been implicitly enumerated.

As an illustration of this bound, consider Fig. 1 with seven observations in a
two-dimensional space which are to be partitioned into two clusters. Suppose a solution
has been found which assigns observations A, B, C, D to cluster 1; cluster 2 contains
observations E, F, G. The WGSS for this solution is (1+1+2+2+1+1)!4+
(1 +2+ 1)/3= 3.33. This is the value of UB (which happens to be optimal).

Now consider the subproblem, Sa {A, D, E, G} and the partial solution A, D,
E in cluster 1, G in cluster 2. The WGSS for this assignment is 2.67. Consider the
addition of observation B to Sa: The best assignment of B is to cluster 1 which gives
LB1 3.5. Since this exceeds the best known solution value, UB 3.33, we know that
no completion of the given partial solution can be optimal.

Note that to be efficient the algorithm should avoid multiple enumeration of
equivalent solutions. For example, permutation of cluster numbers across clusters does
not change the solution. Thus, the assignment of G to cluster 1, and A, D, E to cluster
2 has also been implicitly enumerated.

272 GEORGE DIEHR

2"

II)C

A

0

OD

B

1

OF

Matrix of squared distances

A B C D E

A 0 2

B 0 2

C 0

D 0

E
F
G

5 8 13

4 5 10

2 5 8

2 5

0 2

0

0

FIG. 1. Example clustering problem.

The second bound, LB2, is based on the following characteristic of the WGSS
criterion" Given the optimal clustering of the subproblem $2, indicated by A*(S2), a
lower bound to the completion of a partial solution A(S1) is given by:

LB2= W[A(S)]+ W[A*(S2)].

Thus, computing LB2 requires first determining an optimal clustering for S2. If S2 is
small (e.g. 10 observations or so) its optimal solution can be computed quickly using
LB1.

A variation on LB2 is given by noting that if optimal clusterings are known for
$1 and $2, then:

W[A*(S, L_J $2)]_>- W[A*(S)]+ W[A*(S2)];
i.e. the optimal solution value for the union of disjoint subproblems of observations
is greater than or equal to the sum of their independent optimal solutions. This fact
and LB2 are easily established by noting that the optimal solution for the union of $1
and $2 has m cluster means. Now, consider the observations in $1 and $2 separately:
without reassignment of cluster memberships compute the m means for the observa-
tions in $1 and the new loss, W(SI). This must be less than or equal to the WGSS for
observations in Sx using the rn means for the union. The same holds for $2. Thus,
without reassignment of observations to clusters the value W[A($1) + W[A($2) must

BRANCH AND BOUND ALGORITHM FOR CLUSTERING 273

be less than or equal to W[A*(S1 (_J $2)]. Clearly, with reassignment of observations
in $1 and $2 to obtain optimal partitions, W[A*(S1)] and W[A*(S2)], will each be
less than or equal to W[A(SI)] and W[A(S2)] respectively.

This result is easily generalized to g subproblems, $1, $2," ", Sg, which partition
the n observations, i.e.,

W A* I.J S >- _, W[A*(S],)].
f= 1,2,...,g f=

Therefore, one approach to a lower bound is to partition the observations into g
subproblems and find the optimal clustering for each. The sum of these subproblem
solutions gives a lower bound on the optimal WGSS for the complete problem. If each
subproblem is small determining its optimal partition is fast--however, small subprob-
lems give poor bounds (e.g. if a subproblem has rn or fewer observations it has minimum
WGSS of zero).

As an illustration of this bound, consider the same seven observations with
subproblems $1 ={B, C, F} and $2 {A, E, D, G}. The optimal partition of S into
two clusters places B and C in one cluster and F in the other giving W[A*(S)] 1.
The optimal clustering for $2 has clusters A, D and E, G giving W[A*(S2)] 2. The
lower bound for the union is 3.

To illustrate the use of LB2 for partial solutions, assume that there are g subprob-
lems each containing observations as follows"

Sa=l,2,. ., na,

$2= n.+l, n1+2, , n2+nl,

S=n+n2+’’’+n-+l,"’,n.
The first bound, LB1, is now used in an enumeration to find W[A*(S)], f +/- 1, 2,. , g.
If the enumeration for Sa maintains a fixed order of the observations, then optima are
found for "suborders" of the subproblem S" W[A*{1}], W[A*{1,2}], ..’,

W[A*{1, 2,..., n-1}], W[A*(SI)]. Similar optima are found for suborders of the
other subproblems. To define the computation of the bound using these optima we
first introduce a more compact notation: Let W*[u, v], u <= v, be the solution value
from the optimal clustering of observations u, u + 1, ..., v. The lower bound for a

partial solution A(r, r + 1, , n) is given by:

LB2 W[A(r, r+ 1,. , n)]+ W*[1, 2,. , r- 1] if r- 1 =< r/1

=W*[S]+W*[n+I,...,r-1] ifn<r-lNn2+

W$[S1]- W*[S2]-t- + W*[tll + t2 +" + rig-1 + 1,. , r- 1]

if (n + n2 +" + ng_a) < r <= n.

Thus, if a partial solution is a subset of the observations numbered from r to n,
the information contained in finding solutions for the subproblems $1, $2," , S can
be used to compute the bound.

To illustrate computation of a bound for a partial solution based on optimal
solutions for subproblems, assume subproblems S {B, F, C} and $2 {A, E, D, G}
with the observations ordered as indicated. Optimal solution for $1, $2, and their

274 GEORGE DIEHR

suborders are:

W*[B] 0,

W*[B,F]=O,

W*[B, F, C] ,
W*[A] 0,

W*[A, E] O,

W*[A, E, D] 0.5,

W*[A, E, D, G] 2.

Now consider the partial solution which assigns observations D and G to the same
cluster. The bound is"

W[D, G] + W*[A, E] + W*[B, F, C] 2.5 + 0 + 1 3.5.

Since this exceeds the current upperbound, 3.33, no optimal solution can have observa-
tions D and G in the same cluster.

4. Branch and bound algorithm. In this section we first describe how the lower

bo.unds are used by the enumeration algorithm. Then the "solution system" is outlined
including discussion of heuristic methods used to obtain an initial feasible solution and
the heuristic used for generation of subproblems.

4.1. The basic algorithm. The algorithm uses a fixed ordering of observations in
each of a user specified number, g, of subproblems. Optimal solutions are found for
each subproblem and its suborders.

The algorithm is a modification of the algorithm of KNF and is detailed in Fig.
2. Several definitions are needed for that figure: LB(u, v) is one of the lower bounds,
LB1 or LB2, for the partial solution of observations u, u+ 1,..., v. As described
below, when the initial subproblems are optimized, LB1 is used. LB2 is used on the
next phase of the algorithms which finds optimal clusters for unions of subproblems.
PHI is a two-dimensional array with a row for each observation and a column for each
cluster used for bookkeeping in the enumeration. If PHI(i, j)=0 then observation
has not yet been assigned to cluster j for the current partial solution for observations
1, 2,..., i-1. If PHI(i, j)= 1 then it has been assigned to j. ASAVE is a vector of
assignments for the best known solution. The value of N is the number of observations
in the particular subproblem which is being clustered. Thus, the algorithm in Fig. 2 is
for one subproblem at a time. Observations are numbered from 1 to N for the
subproblem for simplicity.

Two significant changes have been made to the KNF algorithm:
1. In a forward branch (Step 2A) with several as yet empty clusters the observation

is assigned to the empty cluster of lowest number and the array PHI updated to indicate
that assignments of this observation to all other empty clusters has been implicitly
enumerated. This avoids multiple enumeration of solutions which are equivalent except
for permutation of cluster numbers. Similarly, at Step 1, observation 1 is permanently
assigned to the cluster determined by the heuristic solution.

2. The algorithm begins with a heuristic solution, Step 0, provided as part of the
overall clustering solution system (described below).

After optimal solutions are found for the g subproblems, they are paired creating
new subproblems with the order of observations reversed in the enumeration. To

BRANCH AND BOUND ALGORITHM FOR CLUSTERING 275

Step 0: Apply some heuristic solution method to obtain a starting solution. The initial solution has
value B and assignments A(I), I 1, N.
Set C(J) equal to the number of observations in cluster J.

Step 1: Initialize PHI to record heuristic solution.
Save heuristic assignment in ASAVE.

FOR I 1, N
ASAVE(I) A(I)
FOR J= 1, M

PHI(/, J) 0
NEXT J

NEXT I
FOR I 1, N
PHI(I,A(I))=I

NEXT I
(One observation can be fixed in one cluster. Permanently assign observation to cluster A(1)
to avoid multiple enumeration)
FOR J 1, M

PHI(l, J)
NEXT J
K N (Will start enumeration with observation N, trying it in alternative clusters)

Step 2A: See if there is an empty cluster in which observation K has not been tried. If so assign it
there and update PHI so that it will not be tried in any other empty clusters.

FOR J 1, M
IF C(J) 0 AND PHI(K, J) 0
THEN A(K) J

C(J)-C(J)/l
FOR J1 =J,M

IF C(J1)=OTHENPHI(K, J1)=
NEXT J

GOTO STEP 3
NEXT J

(Failed to find an empty cluster in which K had not already been tried. Continue with step 2B)

Step 2B: Assign K to first cluster it has not been tried in. If none exist then backtrack at step 5.

FOR J 1, M
IF PHI(K, J) 0 THEN
A(K)=J
C(J)=C(J)/l
PHI(K, J)
GOTO STEP 3

NEXT J
GOTO STEP 5

Step 3: See if lower bound to partial solution is less than upper bound; if not, back obs. K out of
cluster J and return to Step 2,4, to try another cluster.

IF LB(1, K) < B THEN GOTO STEP 4
ELSE C(J)= C(J)-
A(K) =0
GOTO STEP 2

Step 4: Lower bound is less than upper bound. If K N then lower bound is exact value of current
assignment and represents an improved solution.

IF K N THEN B LB(1, N)
ASAVE A
(will continue at Step 5)

ELSEK =K+I
GOTO STEP 2

FIG. 2. Branch and bound algorithm.

276 GEORGE DIEHR

Step 5: Back-track. Clear PHI for obs. K. Reduce C(J) by 1.
Clear A(K). Reduce K by 1.

C(J)=C(J)-I
FOR J 1, M
PHI(K, J) =0

NEXT J
A(K) -0
K =K-1
(Continue with Step 6)

Step 6: If K 0 then all done. Otherwise, if a possible assignment exists for K make it. Else, back-track
one more observation.

IF K 0 THEN GOTO STEP 7 (All done)
FOR J 1, M

IF PHI(K, J) =0 THEN GOTO STEP 2
NEXT J
(No assignments remain for K--back-track)
GOTO STEP 5

Step 7: All done.
Optimal solution value is B. Optimal assignment is ASAVE.

FIG. 2--continued

illustrate the pairing and reversal of enumeration order refer to Fig. 3. Twenty
observations are to be clustered and five initial subproblems are created. After optimal
solutions are found for subproblems $1 through $5, $1 and $2 are combined creating
$12 and solved. $3 and $4 are next combined and solved. In each pairing the order of
enumeration is reversed to take advantage of the optimal solution values known for
all suborders. Next, $12 and $34 are paired and solved. Finally, S1234 is paired with $5
(creating the full problem) and solved.

11 10 9 15 14 13 12 4 3 2 8 7 6 5 20 19 18 17 16

5 6 7 8 2 3 4 12 13 14 15 9 10 11

4 3 2 8 7 6 5 11 10 9 15 14 13 12

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

FIG. 3. Example partitions of observations into five subproblems and pairing of subproblems. Observation
numbers are shown in order of enumeration.

4.2. The solution system. The time to find and verify the optimal solution is
critically dependent on the quality of the initial subproblems. The "quality" is the
nearness of the sum of minimal WGSS over subproblems to the minimal WGSS for
the full problem. We have found that total solution time is significantly reduced if
approximate solution methods are used to obtain locally optimal solutions to both the
full problem and to the subproblems. A heuristic is also employed to generate subprob-
lems which are in a sense "representative" of the full problem as opposed to using a
random partition into subproblems. The solution system has the following steps:

BRANCH AND BOUND ALGORITHM FOR CLUSTERING 277

1. Find an upper bound using the following approximate method on the full
problem: Begin with a random assignment of observations to clusters. Each observation
is then moved from its cluster to that cluster which results in the greatest reduction
in WGSS. (The means of both the current cluster and the trial cluster are updated to
determine the total change in WGSS of the reassignment.) This is done for each
observation until no reduction in WGSS is possible (using this local search). The
algorithm is performed five times then repeated until the two best solutions are within
one percent of each other.

2. The observations in each cluster are next partitioned into g "cluster subprob-
lems." The partitioning algorithm is identical to the clustering algorithm described in
Step 1 except that the objective is to maximize WGSS.

3. Subproblems are constructed by selecting one cluster-subproblem from each
cluster. Each cluster-subproblem is assigned to one subproblem. Figure 4 is a Venn
diagram which illustrates clusters, subproblems and cluster subproblems.

3 Clusters

Cluster-Subproblem

5 Subproblems

FIG. 4. Venn diagram describing terms used for various subsets of observations.

4. Each subproblem is clustered using the approximate algorithm described in
Step 1 (i.e., random assignment and reassignment). This is done prior to optimization
to increase the likelihood that the branch and bound algorithm starts with an optimal
solution for the subproblem.

5. Each subproblem is solved optimally using the B-B algorithm and the lower
bound LB1. Optimal solutions for suborders of the subproblems are saved for use in
computing bounds for paired subproblems.

6. Subproblems are paired to create new subproblems.
7. A local optimum is found for each new subproblem using Step 1.
8. Each new subproblem is solved using the B-B algorithm. Lower bounds, LB2,

are used during the enumeration.
9. If the problem solved at Step 8 was the full problem we are done. Otherwise,

the process continues at Step 6.

5. Computational experience.
5.1. Problem generation. Problems of various sizes and generating distributions

were created and solved for various numbers of clusters to investigate the performance
of the algorithm as a function of these factors. We also studied the impact of variation
in number of subproblems, g, the order of enumeration, and quality of the initial
subproblems.

278 GEORGE DIEHR

The problems were created by randomly selecting observations from one of the
following five generating distributions:

Type D1. A single spherical normal distribution in two dimensions.
Type D2. A pair of spherical normal distributions in two dimensions with means

(100, 100) and (130, 130). Standard deviations were 10 for both distributions in both
dimensions. An equal number of observations were sampled from each.

Type D4. Four spherical normal distributions in two dimensions with means
(100,100), (100,150), (150,100), and (150,150); all standard deviations were 10.
The number of observations sampled from each distribution was the same or within
one (e.g. for a 30 observation problem either seven or eight observations were sampled
from each).

Type D2K. The distribution used by KNF: Two normal distributions with means
(100, 100) and (150, 110); standard deviations of (7.1, 22.4), and (17.2, 7.1). Covari-
ances were zero but distributions were not spherical. An equal number of observations
was generated from each.

Type D8. Eight spherical normal distributions in three dimensions. The eight
possible distributions using means 100 and 160 with standard deviations 10 were
generated. Eight observations were sampled from each distribution.

5.2. Solution times. Table 1 gives solution times as a function of number of
observations, number of clusters, and degree of separation of the generating distribu-
tions. The timings in this table are the best results from tests using various numbers
of subsets. Times are CPU seconds on an IBM 3033 using the WATFIV compiler and
include problem generation, heuristic solutions, and optimization.

Figure 5 presents this same information as two superimposed graphs of solution
time versus number of observations. One graph has lower and left axes for observations
and time, the other uses top and right axes. The following notation is used: circles are

TABLE
Timing summary.

Time
Observations Clusters Type CPU sec Notes

20 2 D2 0.15
20 4 D4 0.4
20 2 D1 0.34
24 2 D1 1.1
24 4 D1 3.7
30 2 D2 0.6
30 4 D4 1.2
30 2 D1 3.5
30 4 D1 19.5
40 2 D2 0.8
40 4 D4 1.9
40 4 D1 >60
50 2 D2 1.4
50 4 D4 3.4
60 2 D2 1.9
60 2 D2K 2.6
60 4 D4 3.1
64 8 D8 >60
120 2 D2K 9.95
120 4 D4 21.0

(bound 95.4%)

(bound 78%)

BRANCH AND BOUND ALGORITHM FOR CLUSTERING 279

40 60 80 100 120
l

20"

o

n 10

5"

4-

3"

2"
I-

SYMBOL

CLUSTERS

TWO

FOUR

@ 0

%, ?
10 20 30 40 50 60 70

CODE

SEPARATION
LOW MODERATE

e o

-60

-50

"30

"20

-lO

OBSERVATIONS

FIG. 5. Solution time versus problem size.

used for problems of two clusters, squares for four clusters; solid symbols represent
problems generated with low separation, open symbols represent problems with moder-
ate separation; the appropriate axes are the lower and left except for the several
symbols pointing to the right and up. The notation "95%" by one symbol indicates
that this is the best known lower bound to the best known approximate solution. (The
problem was not solved in a time limit of 60 CPU seconds.)

Figure 5 makes it clear that problems of moderate separation (Types D2, D2K,
D4) are reasonably easy to solve. Time increase (for fixed number of clusters) is only
slightly greater than linear in number of observations. It seems safe to conclude that

280 GEORGE DIEHR

such problems are indeed "easy" and the algorithm provides a practical approach to
their solution.

Problems with low separation are another matter. Problems of up to 30 observa-
tions and two or four groups were all solved in less than 20 seconds but the time
required is in the range of an order of magnitude greater than time required for
comparable, moderately separated, problems. For example, problem Type D1 with
30 observations and four clusters required 19.5 seconds; problem D4 with 30 observa-
tions and four clusters required less than two seconds. One problem of 40 observations
and four clusters was not solved in 60 CPU seconds, although its lower bound was
within 5% of the best known heuristic solution.

One experiment with larger number of clusters and higher dimensions of the
underlying distributions suggests that the algorithm performance significantly deterior-
ates on such problems. Problem Type D8, 64 observations, eight clusters, eight
underlying distributions in three dimensions was not solved in 60 seconds. Furthermore,
bounds obtained on subproblems were only within 22% of the optimum.

5.3. Quality of lower bounds. In many clustering problems the lower bounds
obtained from clustering subproblems may be close enough to the heuristic solution
to consider the full problem solved. Table 2 shows lower bounds for our problems at
various levels of combination of subproblems. In the column "Subproblems," 1, 2, 3,
4 indicate the four separate subproblems $1, $2, $3 and $4. An entry (1,2), (3, 4)
indicates two subproblems formed from the union of $1 and $2 and the union of $3
and $4. The column "Lower bound" is the sum of subproblem optimal solutions as a
percentage of the heuristic solution.

The results suggest that if separation is at least moderate and the number of
clusters is four or less the bounds are reasonably good to excellent. As examples:
problem D4 with N 60 and M =4 has a lower bound for g 4 (the four initial
subproblems) of 95.4%; after combination into two subproblems the bound is 99.94%.
Problem Type D4 with 120 observations into four clusters has bounds of 93.6%,
96.9% and 99.4% for eight, four, and two subproblems respectively. For problems of
low separation and for greater number of clusters the bounds are poor to fair. For
example, a problem from D1 with N= 30, M=4 had bounds of 57.4% and 89.9%
at four and two subproblems respectively. The moderately separated problem D8
provided a bound of 78% for four subproblems. Excessive computer time discouraged
further experimentation with this problem.

5.4. Selection of number of subproblems. The timings in Table 1 and Fig. 5 are
the minimum CPU times for various numbers of initial subproblems. Table 3 shows
the sensitivity of time to number of subproblems. In almost all instances, it pays to
start with a "large" number of subproblemsa number such that as few as two or
three observations will be in each cluster formed for the initial subproblems. For
example, the problem of 60 observations and four clusters was divided into 6 initial
subproblems. With an average of 10 observations per subproblem and four clusters,
each cluster has an average of only 2.5 observations. Note, however, that the lower
bound is a surprising 96.2% of the optimum. The solution time is only 3.1 seconds
versus four seconds using four subproblems.

The most extensive experimentation with number of subproblems was with the
50 observation problem, Type D4, partitioned into four clusters. Times for 2, 4, 5,
and 6 subproblems were over 10, 6.4, 6.5, and 3.4 seconds respectively. We did not
always do better with large numbers of subproblems. The difficult problem, D1 with
40 observations and four clusters was tried with both five and six subproblems. With

BRANCH AND BOUND ALGORITHM FOR CLUSTERING 281

TABLE 2
Lower bounds.

Problems with moderate separation: D2, D2K, D4, D8.

Observations Clusters Subproblems Bounds

30 4 1,2 96%

40 2 1, 2, 3, 4 98.6
(1,2)(3,4) 99.4

40 4 1, 2, 3, 4 90.3
(1,2)(3,4) 98

50 2 1, 2, 3, 4 99.2
(1,2)(3,4) 99.96

50 4 1,2,...,6 85
(1,2)(3,4)(5,6) 95.5
(1-4)(5, 6) 97.4

60 2 1,2,...,6 96.1
(1,2)(3,4)(5,6) 99.1
(1-4)(5, 6) 99.6

120 2 1, 2,. ., 8 98.8
(1,2)... (7, 8) 99.9
1-4)(5-8) 99.98

120 4 1,2,... ,8 93.6
(1,2)...(7,8) 96.9
1-4)(5-8) 99.4

Problems with low separation: D1

24 2 1,2,3,4 90
(1,2)(3,4) 96.8

24 4 1,2,3,4 42
(1,2)(3,4) 84

30 2 1,2,3,4 83
(1,2)(3,4) 98.1

30 4 1,2,3,4 57.4
(1,2)(3,4) 89.9

40 4 1,2,3,4,5 61
(1, 2)(3, 4), 5 88
(1-4), 5 95.4

five subproblems a bound of 95.4% was achieved in 60 seconds; with six subproblems
the bound was only 69% in 60 seconds.

In most cases the cost of using too many subproblems will be a small amount of
wasted time solving small subproblems.

5.5. Importance of "quality" subproblems. Our solution system relies heavily on
heuristic methods--both to find good clusters and to generate representative subprob-
lems. Several problems were run using random generation of subproblems to determine
the impact on solution time and lower bounds. Results are also compared to KNF
who use random subproblem generation. Table 4 summarizes these results showing
both solution times and bounds for various subproblems. As an example of the value

282 GEORGE DIEHR

TABLE 3

Effect of number o" subproblems.

Problems with moderate separation: D2, D2K, D4

No. of
Observations Clusters subproblems Time

30 4 3.2
2 1.2

40 4 2 6.0
3 3.1
4 1.9

50 4 2 >10
4 6.4
5 6.5
6 3.4

60 4 4 4.0
6 3.1

Problems with low separation: D1

20 2 2.1
2 0.34

24 2 >10
2 1.1
4 1.1

30 2 2 > 10
4 3.5

TABLE 4
Comparison of guided vs. random subproblem generator.

Observations Clusters Type Subproblems

Generation method
Random Guided

bound time bound time

30 2

30 4

40 4

50 4

D1 1,2,3,4
(1,2)(3,4)

D1 1, 2, 3, 4
(1,2)(3,4)

D4 1, 2, 3
(1,2), 3

D4 1,2,3,4
(1,2)(3,4)

120 2 D2K

70% 83%
85 98.1

54 3.5
37 57
77 90

>60 19.5
65 91
96.8 98.8

5.0 3.1
74 88
86 98.8

6.5 6.4
1,2,’" ,8 83.4 98.9
(1,2)" ..(7,8) 96.2 99.8
(1-4)(5-8) 99.4 99.96

* 10

* Bound results are from Koontz, Narendra, Fukunaga (1975). They report 28 seconds on a CDC 6500.
Due to differences in machine power (IBM 3033 faster than the CDC 6500), efficiency of code (the WATFIV
compiler used on the IBM is not highly optimized), it is difficult to make any comparisons.

BRANCH AND BOUND ALGORITHM FOR CLUSTERING 283

of quality subproblem generation, the bounds reported by Koontz are 83.4%, 96.2%
and 99.4% for eight, four and two subproblems respectively. These may be compared
to our bounds of 98.9%, 99.8% and 99.96% for similar number of subproblems. Thus,
generation of quality subproblems might allow "verification" of a heuristic solution
with the initial subproblems; random subproblems will probably require combination
before bounds are sufficiently tight.

Solution time using nonrandom subproblem selection was always lower in our
experiments than with random generation. Note that the time for either type of selection
includes the subproblem generation time. In several cases the time was dramatically
lower--in both cases these were problems of low separation. Times for 30 observations
from D1 into two and four clusters was 54 seconds and over 60 seconds respectively
using random generation; using heuristic subproblem generation the comparable times
were 3.5 and 19.5 seconds.

These results suggest that in practice one should limit CPU time to a moderate
amount and review the subproblem solution before proceeding to optimizations of
combinations. Long solution times and poor bounds when the number of clusters is
six or less suggest that the observations are not "naturally" clustered or possibly not
well separated into the selected number of clusters. Prior use of heuristic algorithms
should help to narrow the determination of the correct number of clusters in a data
analysis problem. Experiments with one algorithm reported by Hartigan and Wong
(1979) also indicates that solution times were faster for problems with well separated
data.

6. Conclusion. The branch and bound algorithm presented here is a practical
approach to optimal clustering if the following conditions hold"

1. The clusters are reasonably well separated. An indication of their separation
is given by the difference in value of heuristic subproblem solution and heuristic full
problem solution.

2. The number of clusters sought is limited to six or so. The limit interacts with
degree of separation and problem size. In some situations problems of as few as two
clusters may be very time consuming.

3. Problem size is not much over 120 observations.
These results make it clear that the algorithm has limitations. In situations where

the algorithm performs well, heuristic methods are almost certain to find the optimal.
In problems where heuristic methods are apt to miss the optimal, the B-B algorithm
is slow. The increased time with number of clusters is a significant difficiency.

The problem size limitation is not, in itself, too severe a handicap. With good
separation and few clusters the bounds are tight enough from solution of subproblems
that in practice one would probably never need to find the global optimum in a problem
of (say) 1000 observations. By careful subproblem generation the sum of optimal
solutions from 10 subproblems of 100 observations each would be expected to yield
a bound easily within one percent of the optimal.

7. Suggestions for urther research. It is highly likely that solution time can be
improved by utilizing better bounding techniques, particularly by improving on the
LB1 bound used for the initial subproblems. Candidates for lower bounds include
solutions based on M-medians of a graph, spanning trees, nearest neighbors, and the
quadratic programming formulation.

Acknowledgments. I wish to thank Hugo Moortgat for many hours of helpful
suggestions. My appreciation also to a referee for many helpful suggestions.

284 GEORGE DIEHR

REFERENCES

M. R. ANDERBERG (1973), Cluster Analysis for Applications, Academic Press, New York.
GEORGE DIEHR AND HUGO MOORTGAT (1980), Mathematical programming in cluster analysis, Proc.

12th Annual Meeting American Institute for Decision Sciences, pp. 226-228.
PAULA DIEHR, GEORGE DIEHR, THOMAS KOEPSELL, ROBERT WOOD, KIRK BEACH, BARRY WOL-

COTT AND RICHARD K. TOMPKINS (1982), Cluster analysis to determine headache types, J.
Chronic Disease, 35, pp. 623-633.

W. D. FISHER (1969), Clustering and Aggregation in Economics, Johns Hopkins Press, Baltimore.
, (1958), On grouping for maximum homogeneity, J. Amer. Statist. Assoc., 53, pp. 789-798.
PIERRE nANSEN AND MICHEL DELATTRE (1978), Complete-link cluster analysis by graph coloring, J.

Amer. Statist. Assoc., 73, pp. 397-403.
J. A. HARTIGAN AND M. m. WONG (1979), A K-means clustering algorithm, Applied Statistics, 28,

pp. 100-108.
J. m. HARTIGAN (1975), Clustering Algorithms, John Wiley, New York.
ROBERT E. JENSEN (1969), A dynamic programming algorithm for cluster analysis, Oper. Res., 17,

pp. 1034-1057.
WARREN L. G. KOONTZ, PATRENAHALLI M. NARENDRA AND KEINOSUKE FUKUNAGA (1975), A

branch and bound clustering algorithm, IEEE Trans. Comput., C-24, pp. 908-915.
E. L. LAWLER AND D. E. WOOD (1966), Branch-and-bound methods: A survey, Oper. Res., 14, pp. 699-

719.
JAMES B. MACQUEEN (1967), Some methods of classification and analysis of multivariate observations,

Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability, Univ. California Press,
Berkeley, pp. 280-298.

(1979), Notes on practical and mathematical experience with clustering, Western Management Science
Institute, Working Paper 295, Univ. California, Los Angeles.

M. R. RAO (1971), Cluster analysis and mathematical programming, J. Amer. Statist. Assoc., 66, pp. 622-
626.

PETER H. A. SNEATH AND ROBERT R. SOKAL (1973), Numerical Taxonomy, W. H. Freeman, San
Francisco.

H. D. VINOD (1969), Integer programming and the theory of grouping, J. Amer. Statist. Assoc., 64,
pp. 506-519.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 2, April 1985

1985 Society for Industrial and Applied Mathematics
003

RADIATION OF SOUND FROM UNFLANGED CYLINDRICAL DUCTS*

S. I. HARIHARAN" AND ALVIN BAYLISS’

Abstract. In this paper we present calculations of sound radiated from unflanged cylindrical ducts. The
numerical simulation models the problem of an aero-engine inlet. The time-dependent linearized Euler
equations are solved from a state of rest until a time harmonic solution is attained. A fourth-order accurate
finite difference scheme is used. Solutions are obtained from a fully vectorized Cyber-203 computer program.
Cases of both plane waves and spin modes are treated. Spin modes model the sound generated by a turbofan
engine. Boundary conditions for both plane waves and spin modes are treated. Solutions obtained are
compared with experiments conducted at NASA Langley Research Center.

Key words, duct acoustics, sound radiation, finite difference, numerical boundary conditions

1. Introduction. In this paper we present a computational method to study sound
radiated from an unflanged cylindrical duct. An incident field which is either a plane
wave or a spinning mode (i.e., dependence on the azimuthal angle) propagates down
the duct. At the open end of the duct, sound is radiated out into the farfield and a
reflected wave traveling upstream in the duct is generated. This problem is ofimportance
in the study of noise radiated from aero-engine inlets and in the development of
effective duct liners.

A significant amount of work has been done on the computation of sound
propagation in an infinitely long duct. A survey of such work may be found in [1].
The open end of the duct and the ensuing outward radiation of energy significantly
complicates the problem. A further complication is the presence of the inlet flow about
which little is known experimentally. In the procedure tdapted here the solution is
obtained by solving the Euler equations linearized about an arbitrary mean flow. Thus
the method is general enough to permit computation of the linearized fluctuating field
about an experimentally determined mean flow. In this paper, however, only numerical
results for the case of no mean flow will be presented.

We will briefly discuss some work which has been done in the past and is relevant
to our work. The earliest work in calculating the sound wave (pressure) radiated from
cylindrical ducts is due to Levine and Schwinger [8]. They provided a method to predict
sound from a semi-infinite thin pipe, when a plane wave is incident upstream in the
pipe, using the Weiner-Hopf technique. This work motivated several other researchers
in this field, in particular Savkar [10] provided a method to predict sound using
Weiner-Hopf techniques for the case of an incident spinning mode. Ting and Keller
[13] developed an asymptotic expansion valid for plane wave incidence and low
frequencies. For higher frequencies asymptotic methods have not been successfully
applied to this problem because there are different length scales inside the pipe and
in the farfield. Though these methods provide some means to compute the sound
radiated from engine inlets, they do not correspond to the entire physical situation

* Received by the editors August 8, 1983, and in revised from November 14, 1983. This research was
supported by the National Aeronautics and Space Administration under contract NASI-17070 while the
authors were in residence at ICASE, NASA Langley Research Center, Hampton, Virginia 23665.

" Institute for Computer Applications in Science and Engineering, NASA Langley Research Center,
Hampton, Virginia 23665. Currently with University of Tennessee Space Institute, Tullahoma, Tennessee
37388.

Exxon Corporate Research, Annandale, New Jersey 08801. The work of this author was also supported
by the U.S. Department of Energy, under contract TE/AC02/76ER03077 and by the U.S. Air Force under
contract AFOSR/81/0020.

285

286 S. I. HARIHARAN AND ALVIN BAYLISS

due to the thickness of the inlets. With a given thickness of the duct and for smooth
geometries, calculations are effectively handled by integral equation methods. One
such work is due to Horowitz et al. [5] and includes the effect of a mean flow. This
work is based on combining an exterior integral equation with a finite element discretiz-
ation in the vicinity of the flow. A comparison of numerical and experimental results
is given in [5].

2. Formulation of the problem. The equations for the fluctuating acoustic field
will be obtained by linearizing the Euler equations for inviscid fluid motion.

p (Or, Ov, + O__p_p =o"+div (p_v) 0, p\-+ v(2.1)
Ot oxj/ oxi

For simplicity the equations are derived in Cartesian coordinates although the relevant
geometry requires cylindrical coordinates. Here p is the density, _v the velocity, and p
is the pressure. The flow variables are divided into a mean (denoted by a bar) and
fluctuating field (denoted by a prime)

(2.2) p + p’, _v=_U+_u’, p O + p’,

and only first-order terms in the fluctuating field are retained. The fluctuating density
p’ is replaced by the fluctuating pressure p’ by assuming that the flow is homentropic
and has no mean temperature gradient so that

(2.3) p Ap,
or

,= P--(2.4) p c+O(p’2),
where Co is the ambient speed of sound. The resulting linearized system from (2.1)
becomes

p, ,)10p’+__ div (/) 4- div (/5_u -divC oOt
(2.5)

\ o o + " o /
+

o o ox ox

The acoustic field thus satisfies a linear first-order hyperbolic system.
The numerical results presented here are for the case of no mean flow (U =0).

However it is apparent from (2.5) that this does not cause major difficulties. In this
case (2.5) reduces to

10p’ Ou’_
4. po div _u’= 0, po ’-+ Vp’= 0,(2.6) C2o Ot

where po is the density of the ambient fluid. We nondimensionalize these equations.
Length is nondimensionalized by the diameter of the pipe (d), time by Co/d, pressure
by OoC and the velocity by Co to obtain

(2.7) -+Vp=0.
Ot Ot

Note that in (2.7) the primes on the fluctuating quantities are dropped for convenience.

SOUND RADIATION FROM UNFLANGED CYLINDRICAL DUCTS

Remark 2.1. If p and u are time harmonic, that is

287

p(x, t)= fi(x) e-ik’, u(x, t)= a(x) e-ikt,

where k is the wave number, then the system (2.7) reduces to

(2.8) A/3 + k2/3 0.

The problem discussed here is to solve the system (2.7) for p and u subject to
appropriate boundary conditions which will be discussed later.

The technique here is to drive the system (2.7) with a time harmonic source which
will yield the time harmonic solutions, namely the solution of (2.8). This technique is
essentially the numerical implementation of an appropriate limiting amplitude prin-
ciple. For exterior problems this method has been demonstrated by Kriegsmann and
Morawetz [6] and Taflove and Umashankar [12] and for wave guide problems by
Baumeister [1] and Kriegsmann [7]. For the case of no mean flow it will be seen that
this is a computationally efficient method to obtain accurate results. The case of a
nonzero mean flow can be handled analogously although the authors are not aware
of theoretical results relating the mean flow to the decay rate of the transient.

3. Solution procedures. We take the origin at the open end of the duct so that its
generators are parallel to the z axis (Fig. 1). We look for solutions of (2.7) of the form

(3.1)
p(r, O,z, t) P(r,z, t) _imO

e

y(r, O, z, t)= _U(r, z, t) e ’".

In general solution will have the form

P E Pro(r, z, t) e
m=o

but we confine our solutions as in (3.1) for a single mode m. For m->_ the solution
is referred to as the spin mode solution. In physical situations they correspond to the
modes provided by a turbofan engine. For m =0 (3.1) describes a plane wave. The

FIG.

288 S. I. HARIHARAN AND ALVIN BAYLISS

more important case is when m > 0 (a spinning mode). Then the system (2.7) becomes

OP v + imw
+ Uz + Vr+ O,
Ot r

Ou OP
Ot Oz

(3.2)
Ov OP
Ot Or

Ow irn
+P=0,
Ot r

and the problem reduces to solving the system (3.2) with appropriate boundary
conditions.

The method we use to solve (3.2) is an explicit method which is fourth-order
accurate in space and second-order accurate in time and is due to Gottlieb and Turkel
[4]. This is a higher-order accurate version of the MacCormack scheme. The use of
an explicit method has been recently advocated by Baumeister [1]. The major advan-
tages are drastically reduced storage requirements and programming simplicity.
Baumeister demonstrated the effectiveness of this approach for internal sound propaga-
tion with spinning modes [2]. The work in this paper extends this idea to the full
radiation problem with a more accurate computational scheme.

A typical computational domain is depicted in Fig. 2. Referring to this figure, the
computations are carried out in the rectangular region which is bounded by an inflow
boundary and the farfield boundary. Thickness of the duct is allowed by a mesh size
thickness in the r direction. The solution for large times is extremely sensitive to the
inflow condition and also the farfield condition [9]. The solution is assumed to start
from a state of rest, i.e., P u v w 0 at time 0. The system (3.2) can be written
in the form

(3.3) W_ Af- Fz -Jl" _Gr _I-I,

Inflow boundary

Far field boundary

Semi-infinite duct

Directivity
measurement

D

FIG. 2

SOUND RADIATION FROM UNFLANGED CYLINDRICAL DUCTS 289

where

(3.4) w= F= i G= H=

v+ imw-
r

0

0

imP

r

We use the method of time splitting to advance the solution from time to + 2At. If
Lz(At) and Lr(A t) denote symbolic solution operators to the one-dimensional equations

2(3.5) wt + Fz H, wt-t- Gr-- H2,

then the solution to (3.3) is advanced by the formula

(3.6) w(t+2At)= Lz(At)Lr(At)Lr(At)Lz(At)w(t).

This procedure is second-order accurate in time. The fourth-order accuracy in space
depends on formulating the difference scheme. For the one-dimensional system, (3.5),
we have

At
,(t + At) w,(t) +--, (7F 8F+ + F+) + AtH,

(3.7)
w,(t+At)= w,(t)+ #,(t+At)+z(-7+8_l-F_)+AtH

where F denote F evaluated at #, etc. This formula contains a forward predictor and
a backward corrector. This is second-order accurate in space. One can formulate
another variant which contains a backward predictor and a forward corrector which
is also second-order accurate in space. In order to achieve fourth-order accuracy we
alternate (3.7) and its variant at each time step. If there are N intervals with nodes at
z (i 0, 1,. ., N), then the predictor in (3.7) cannot be used at N- and at N
and the corrector cannot be used at 0 and 1. Similar situations occur for the other
variant too. At these points we extrapolate the fluxes using third-order extrapolations.
For the right boundary we use the extrapolation formulae

(3.8)
Frv+ 4Ft -6Frv_ + 4Frq-2- Fv-3,

Frq+ 4Frq+ 6Frq + 4Frq- Frv-2,

and for the left boundary

(3.9)
Fo 4F 6F2+ 4F3 F4,

F 4Fo-6F +4F2- F3.

Since we are interested in time harmonic solutions, the numerical solution is
monitored until the transient has passed out of the computational domain and the
solution achieves a steady time harmonic dependence.

4. Boundary conditions. A very important feature of our work is in obtaining
appropriate boundary conditions. We derive our boundary conditions which are
appropriate to an experiment carried out at NASA Langley Research Center [14]. The
boundary conditions consist of two major parts. The first part is derivation of an inflow

290 S. I. HARIHARAN AND ALVIN BAYLISS

condition which will correctly model the sound source. The second, is an accurate
farfield boundary condition which will simulate outgoing radiation.

Inflow Conditions. To derive inflow boundary conditions we consider the time
harmonic case and, in particular, equation (2.8). We look for spinning mode solutions
of the form

/5(r, z) ei’.

Inserting this into (2.8) yields

rOr

If we separate variables by setting

we obtain

az2

P(r, z)=f(r)g(z),

f(r)=J(flr) and g(z)=e

d---(Jm(flr)) =0
dr

on r=a,

fla h.,,, (n =0, 1, 2,. .),

where hm,’S are the zeros of the functions J’,,(z). From (4.2), using the appropriate
subscript corresponding to h,,,, we have

(4.3) (lm,a)=(ka)-XZm,,.

DEFINITION. If ka > Am,, we say the mode (m, n) is propagating. Otherwise it is
said to be cut-off.

We now consider only propagating modes. Then the solution of (4. l) has the form

(4.4) mn., r
n=0

It is necessary to consider the case of a single propagating mode. In this situation
n 0. Dropping the corresponding zero subscripts in (4.3) we consider the values of
given by

lma /ika)2 A Era.
Then the general solution inside the pipe can be written as a combination of an

or

This gives

where

(4.2) fl 2 k2 12,
and is to be determined.

If a is the radius of the duct (here a= 1/2 due to the nondimensionalization), then
the usual boundary condition on the pipe is the hard wall condition

0/-0- on r a.
On

SOUND RADIATION FROM UNFLANGED CYLINDRICAL DUCTS 291

incoming wave and a reflected wave. That is

(4.5) r) eim/(r, 0, z)= (e’mz + R(k) e-’tmz)Jm Am-
where R is the reflection coefficient and is also a function of the wave number k.
Recalling that p(r, O, z, t) =/(r, O, z) e -ikt and p(r, O, z, t) P(r, z, t) eim, we have

(4.6) P(r, z, t) (e’’z + R(k) e-itmZ)J Am e-

The reflection coefficient R is unknown. Thus we must eliminate R in (4.6). This is
accomplished by taking the time derivative of (4.6) and subtracting the k/lm times the
z derivative to get

but

Pt --i- Pz -2ik e Am e ikt

to give

together with

OP_ Am J’m(Amr/ a) p
Or a Jm(Amr/a)

(4.8)
av ’m J’m(Amr/a)--+-- P =0.
Ot a Jm(Amr/a)

Note that the coefficient of P here contains a singular term at r 0. However P contains
a term (from (4.6)) of the form Jm(Amr/a). Thus when r=0 (4.8) is simply replaced
by v=0.

Conditions on the wall On the duct wall we consider the boundary condition v 0
(i.e. a rigid boundary). Using (3.2) this implies

0P
(4.9) --=0.

0r

We note that a general impedance condition simulating an acoustic liner can be handled
without difficulty.

Conditions on the axis. When m 0 the system (3.2) has only three equations for
p, u, and v. The first equation of (3.2) contains a v/r term. Thus the boundary condition
on the axis in this case is

(4.10) v=0 on r=0 (m=0).

Pz =-u, from (3.2).

Thus the above equation becomes

(4.7) P+T-u =-2ike Am e

We impose this boundary condition on the incoming boundary z =-L. We obtain a
boundary condition on v at the inflow by using (3.2),

Ov OP
--q-m-O,
Ot Or

292 S. I. HARIHARAN AND ALVIN BAYLISS

When rn- l, the last equation of (3.2) gives

Ow im
+ P =0.
Ot r

Here P contains a term like J(hr/a) for z close to -L. Thus Ow/Ot is nonzero. But
from the first equation of (3.2) we have

(4.11) v+iw=O on r=0 (m-l).

For m _>-2 the first and the last equations of (3.2) give

(4.12) v=0, w=0 on r=0 (m>_-2).

Far field conditions. Radiation conditions are applied at the far field boundaries.
The development follows that given in [3]. Let R be the distance (R x/r+ z2) from
the origin to a point in the far field (see Fig. 2). The condition we impose here is the
first member of a family of nonreflecting boundary conditions which are accurate as
R . This condition is

where

oP OP P
-F--+-- 0,
at 0R R

OP OP OP
cos a +--sin a,

OR Oz Or

where a is the angle from the z axis to the far field point. Using the second and third
equations of (3.2) we have

Thus the radiation condition becomes

POP
(ucosa+vsina),+ O.(4.13)

at

The conditions (4.7) through (4.13) were used to obtain the results discussed in the
next section.

5. Numerical results. We computed the solutions with the details given in 3
and 4 on a CDC Corp. Cyber-203 machine. The algorithm described above is almost
totally vectorizable. For a very low frequency plane wave case the typical number of
grid points in the (r, z)-plane were 80 100. The incoming boundary was kept at
z =-10d (10 diameters) and the radiation boundary was chosen so as to enclose a
circle of radius 10d. For high frequencies the typical grid sizes were 115 135 and the
inflow boundary as varied from z =-10d to z =-Od.

To verify the effectiveness of the code we compared our results with asymptotic
expansion obtained by Ting and Keller [13] for a low frequency plane wave. To make
comparisons we computed the solutions in the duct and on the axis at various stations
for a nondimensional frequency ka 0.2. Here k 27r/to is the wave number. Results
are presented in Table 1.

For high frequencies we compared our results with the Weiner-Hopf results of
Savkar and Edelfelt [11] and the experiment done at NASA Langley Research Center
14]. In this experiment the directivity patterns were measured on a circle at 10 diameters

SOUND RADIATION FROM UNFLANGED CYLINDRICAL DUCTS 293

TABLE
Comparison with Ting and Keller solution,

ka 0.2.

Ting and Keller Numerical

-10 1.5026 1.5054
-9 1.0984 1.1113
-8 .3873 .3544
-7 .4355 .3933
-6 1.1133 1.0874
-5 1.7603 1.7196
-4 1.9280 1.9583
-3 1.8933 1.9097
-2 1.5495 1.5477
-1 1.0279 1.0076

from the open end of the pipe. The test facility has a spin mode synthesizer which can
produce both plane and spinning mode wave. Since only the forward radiation pattern
is of interest and experimental results are only available from 0 to 90 the comparison
is restricted to this region. These results are not sensitive to the placement of the outer
boundary validating the boundary conditions (4.13). The code produces a directivity
pattern which is essentially flat up to 180 although the accuracy of (4.13) would be
expected to degrade as 0 180.

The first comparison was made for the plane wave case (m =0) and a non-
dimensional frequency of ka 3.76. Since the experimental results were obtained only
in the farfield the sound pressure level was plotted as a function of angle measured
from z axis. The results are presented in Fig. 3 and show good agreement with the
experiment.

0

-10

-30

-40

-50
-O0

Savkar theory (ref I) . \\
\Experiment-

Numerical result

-80 -60 -40 -20 0 20 40 60 80 I00

Angle, deg

FIG. 3

294 S.I. HARIHARAN AND ALVIN BAYLISS

Figures 4 and 5 show typical comparisons of the spinning mode case with m 2
and for frequency values ka 3.37 and 4.40. As in these figures, except the plane wave
case, the computed results agree within 5 dB levels. Clearly our results show better
comparison than Weiner-Hopf results [11] due to allowance of thickness. In these

-25 O Experimental data

[] Savkar theory (ref ii)
-30 (> Numerical

ka 370-35
Mode

-40

0 I0 20 30 40 50 60 70 80

Angle, dee

FIG. 4

0 I0 20 30

O Experimental data

[] Savkar theory (ref 11)

Numerical

ka 4.4

Mode

40 50 60 70

Angle, deg

FG. 5

SOUND RADIATION FROM UNFLANGED CYLINDRICAL DUCTS 295

cases the results near the axis do not compare very well. This is due to the fact that
in the experiment it is difficult to Completely control other modes and plane waves.
This is particularly true for this frequency ka 4.40 which is close to the next cut-on
mode. In the plane wave case the results were unexpectedly good.

6. Variable geometry ducts. We consider ducts with a local variable geometry
cross section. The duct is assumed to be straight as z --> -c (see Fig. 6). Thus the inflow
boundary conditions previously formulated are still valid. The variable duct is incorpor-
ated in the numerical scheme by mapping it into a straight duct. This slightly changes
the coefficients in the final system (3.3) but does not degrade the convergence to the
time harmonic solution.

n(z) 1/2

FIG. 6

Suppose the duct configuration is as in Fig. 6. It has a curved boundary near z 0
and has straight extension everywhere else. This allows us to have the same inflow
boundary conditions and the conditions on axis and also the radiation condition. But
the boundary conditions on the wall will be changed.

The Euler equations have the form

(6.1) w,+fz+gr+h=O.

We introduce the following change of variables:

r
(6.2) Zl z, r- an(z)"
We then use the chain rule to compute fz, g,. in terms of fz, and gr,, etc. where r n(z)
is the geometry of the duct. This yields

(6.3) w,+fz,+(rn’(z) .. +fn’(z)+h=O.
an(z)

g-
an n(z)

This has the same form as (6.1). Thus very minor changes in the difference scheme
and in the radiation boundary conditions are required. The boundary condition v 0
on r a is replaced by the vanishing of the normal velocity on the wall. On the surface
of the pipe a normal vector is (1, an’(z)) in (r, z) coordinates. Thus the above condition
reduces to

(6.4) v-an’(z)u =0.

We simulated a duct where n(z) has the form

.5, z < 1,
n(z)

.5 e(2z -1)(z +)Z, <= z <= O
(see Fig. 6). The grids of the computational domain follow the same geometry. For
e .15 the results we obtained are shown in Fig. 7 compared with the straight duct

296 S. I. HARIHARAN AND ALVIN BAYLISS

Straight duct

Variable geometry duct

Numerical

Numerical

ka 4.4

Mode

ng(z)

EPSI 0.15

EPSI 0

0.5 -I

0.5 -g(2z 1) (z + 1) -1 0

0.5 + z>O

15 25 35 45 55 65 75 85 95

Angle, deg

FIG. 7

situation. The dB level reduces at 90 by about 10 dB. This indicates the importance
of the nozzle geometry in determining the far field radiation pattern.

REFERENCES

[1] K. J. BAUMEISTER, Numerical techniques in linear duct acoustics, NASA TM-82730, 1981.
[2], Influence of exit impedance on finite difference solutions of transient acoustic mode propagation

in ducts, ASME Paper No. 81-WA/NCA-13, 1981.
[3] A. BAYLISS AND E. TURKEL, Radiation boundary conditionsfor wave-like equations, Comm. Pure Appl.

Math., 33, 6 (1980), pp. 707-725.
[4] D. GOTTLIEB AND E. TURKEL, Dissipative two-four methodsfor time dependent problems, Math. Comp.,

30 (1976), pp. 703-723.
[5] S. J. HOROWITZ, R. K. SIGMANN AND B. T. ZINN, An iterative finite element-integral technique for

predicting sound radiation from turbofan inlets in steady flight, AIAA Paper 82-0124, 1982.
[6] G. A. KRIEGSMANN AND C. S. MORAWETZ, Solving the Helmholtz equation for exterior problems with

a variable index of refraction, this Journal, (1980), pp. 371-385.
[7] G. A. KRIEGSMANN, Radiation conditionsfor wave guide problems, this Journal, 3 (1982), pp. 318-326.
[8] H. LEVINE AND J. SCHWINGER, On the radiation ofsoundfrom an unflanged circular pipe, Phys. Rev.,

73 (1948), pp. 383-406.
[9] L. MAESTRELLO, A. BAYLISS AND E. TURKEL, On the interaction between a sound pulse with shear

layer of an axisymmetricjet, J. Sound Vib., 74 (1981), pp. 281-301.
10] S. O. SAVKAR, Radiation ofcylindrical duct acoustics modes withflow mismatch, J. Sound Vib., 42 (1975),

pp. 363-386.
Ill] S. D. SAVKAR AND I. H. EDELFELT, Radiation of cylindrical duct acoustic modes with flow mismatch,

NASA CR-132613, 1975.
12] A. TAFLOVE AND K. R. UMASHANKAR, Solution ofComplex Electromagnetic Penetration and Scattering

Problems in Unbounded Regions, in Computational Methods for Infinite Domain Media-Structure
Interaction, A. J. Dalinowski, ed., 1981, pp. 83-114.

[13] L. TING AND J. B. KELLER, Radiation from the open end of a cylindrical or conical pipe and scattering

from the end of a rod or slab, J. Acoust. Soc. Amen, 61 (1977), pp. 1439-1444.
14] J. M. VILLE AND R. J. SILCOX, Experimental investigation of the radiation ofsoundfrom an unflanged

duct and a bellmouth including the flow effect, NASA TP-1697, 1980.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 2, April 1985

(C) 1985 Society for Industrial and Applied Mathematics
004

EXPERIMENTS WITH QUASI-NEWTON METHODS IN
SOLVING STIFF ODE SYSTEMS*

PETER N. BROWN, ALAN C. HINDMARSHt AND HOMER F. WALKER"

Abstract. A nonlinear algebraic system must be solved at each step of the integration of a stiff system
of ordinary differential equations by methods based on backward differentiation formulas. Quasi-Newton

methods are of potential benefit in solving these algebraic problems. Three types of quasi-Newton methods
are studied for this purpose--Doolittle LU updates, and Broyden’s first and second methods performed
implicitly. Detailed algorithms are given. Tests on some large stiff systems show that significant benefits can
be obtained for some problems.

Key words, ordinary differential equations, stiff systems, quasi-Newton methods

1. Introduction. The numerical solution of stiff systems of ordinary differential
equations (ODE’s) relies heavily on methods for solving systems of algebraic equations.
if the ODE system is nonlinear, then so are the algebraic systems that one must solve.
Quasi-Newton methods, by which we mean primarily those which are in some sense
generalizations of the one-dimensional secant method, have been found to be very
successful methods for solving nonlinear algebraic systems. Over the last decade, a
great deal of progress has been made in determining very effective quasi-Newton
methods, especially for classes of problems which have in common some special
structure which can be exploited.

Recent developments in quasi-Newton methods have a potential for application
in the context of solving stiff ODE’s. The most challenging ODE problems, for which
the need for efficient algebraic system-solving methods is usually greatest, are generally
those for which the algebraic systems to be solved are very large, have a Jacobian
matrix which is sparse (e.g., banded), and have significant expense associated with
function and Jacobian evaluations. A major source of such ODE problems is the
solution of time-dependent partial differential equations by the method of lines (dis-
cretizing in space only) [15], [16]. Most quasi-Newton methods require relatively few
Jacobian evaluations (or function evaluations if Jacobians are being approximated by
difference quotients) and can often be implemented to offer savings on arithmetic as
well. Furthermore, algebraic systems with sparse Jacobians have special structure which
can be exploited in quasi-Newton methods. Preliminary studies of the use of quasi-
Newton methods in a stiff ODE method were done by Hindmarsh and Byrne [17] and
Alfeld [1].

In the following, we consider the application of three particular quasi-Newton
methods to the solution of stiff ODE’s. These methods are intended primarily for use
on large algebraic systems with sparse Jacobians. The focus here is on ODE’s for which
the associated algebraic systems have sparse Jacobians and are so large that not only
function and Jacobian evaluations but also storage and the cost of arithmetic are major
concerns. The remainder of this introduction provides a very brief background on stiff
ODE’s, certain procedures for solving them numerically, and quasi-Newton methods.

* Received by the editors December 29, 1982, and in revised form October 12, 1983. This work was
performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National
Laboratory under contract No. W-7405-Eng-48, and supported by the DOE Office of Basic Energy Sciences,
Mathematical Sciences Branch.

" Department of Mathematics, University of Houston, Houston, Texas 77004.
t Mathematics and Statistics Division, L-316, Lawrence Livermore National Laboratory, University of

California, Livermore, California 94550.

297

298 PETER N. BROWN, ALAN C. HINDMARSH AND HOMER F. WALKER

In the sequel, we describe the specific quasi-Newton methods of interest, their
implementation in a particular algorithm for solving stiff ODE’s, and the outcome of
applying the resulting procedures to several test problems. We conclude with a summary
of overall results and an outline of future areas of investigation.

1.1. Still ODE’s. We consider an initial value problem for an ODE system,

(1.1) f(t, y), y(to) Yo

where the dot denotes d/dt and y is a vector of size N. The ODE in (1.1) is stiff if,
roughly speaking, it contains a rapid decay process--i.e, rapid by comparison to the
time scale of interest for the whole problem. Precise definitions of stiffness vary [22],
but usually make reference to the Jacobian matrix,

(1.2) of/oy (t, y).

Stiffness means that at least one eigenvalue of J(t, y) has a very large negative real
part, when evaluated on the solution curve.

A large and very popular class of numerical methods for ODE initial value
problems is that of linear multistep methods. These have the form

K K

(1.3)
j=l j=0

where Yk denotes the numerical approximation to y(tk), h tk--tk-1 is considered
fixed, and)k denotes f(tk, Yk)- (Variable-step analogues of (1.3) also exist but will not
be considered here.) The popular BDF (backward differentiation formula) method
corresponds to the case K2 0, K1 q method order, and this method has been used
extensively for stiff systems [11], [13], [16], [24]. We shall restrict our attention here
to the context of a general purpose initial value ODE solver called LSODE [14], [16],
which uses the BDF method in the stiff case. Thus at each time step, LSODE must
solve an algebraic system

(1.4)
0 Fn(y,) yn- hflof(tn, y)-

q

an =- oyn-
]=1

in which/3o> 0.
In its unmodified form, LSODE solves (1.4) by modified Newton iteration, in

which a prediction yn(0) is formed using an explicit formula of the type (1.3) and
corrected by iterations

(1.5) Pn(y,(m + 1)- yn(m)) =-F(yn(m)).

Here the iteration matrix Pn is an approximation to OF,,lOYn, i.e.,

OF.(1.6) P, I- hfloJ(t,, Yn),

that is held fixed for the iterations, and is usually also held fixed over several time
steps. The LSODE user has the option of specifying J as either a full or a banded
matrix, and as either supplied by a user subroutine or computed internally by difference
quotient approximations. In all cases, the linear system (1.5) is solved by doing an LU
decomposition of Pn (at the time it is formed) and using that for all iterations (on all
steps) until a decision is made to reevaluate P,. A convergence test is made on the
basis of iterate differences. The time step itself must also pass a test on estimated local

QUASI-NEWTON METHODS FOR STIFF ODE SYSTEMS 299

truncation error, and the step size h and order q are adjusted dynamically on the basis
of such tests. A change of step size from h to h’ is accomplished, in effect, by
interpolating in the existing solution history (the Yn-j, spaced at h) to get history at
the new spacing h’.

1.2. Quasi-Newton methods. By a quasi-Newton method for solving an algebraic
system F(y) O, F" Rt Rt, we mean here any method which generates a sequence
of approximate solutions {Y(k)}k_-l,2,... from an initial approximation y(0) by means
of an iteration of the form

(1.7) y(k + 1) y(k) B-lF(y(k)).

Such methods are regarded as variants of Newton’s method, in which Bk is the Jacobian
matrix cgF/ay(y(k)), and so B is considered to be an approximation to aF/y(y(lc)).

Our particular interest is in quasi-Newton methods which are generalizations of
the one-dimensional secant method. There one obtains B/I from B for some /c by
updating B so that for s(k)=y(k+l)-y(k) and z(k)=F(y(k+l))-F(y(k)), the
secant equation

(1.8) Bk+lS(k)=z(k)

is satisfied as nearly as possible (in some sense) among all matrices satisfying any
auxiliary conditions which might be imposed on B/I. Auxiliary conditions on Bk+l
usually take the form of a requirement that B+I reflect some special structure of
OF/Oy such as symmetry or a particular pattern of sparsity. The qualifier "as nearly
as possible" is necessary because there may not always exist a matrix satisfying both
(1.8) and the auxiliary conditions. For a full discussion of these methods, see Dennis
and Mor6 [6] or Dennis and Schnabel [7].

As indicated at the outset, the focus here is on ODE’s (1.1) which are stiff and
for which N is large and the Jacobian J given by (1.2) is sparse. Our interest is in
considering secant-update quasi-Newton methods as alternatives to the modified
Newton algorithm (1.5) for solving the algebraic systems (1.4) which arise in applying
BDF methods to such ODE’s. In the remainder of this introduction, we touch on
several quasi-Newton methods which can potentially use the sparsity of J to advantage.
More specific descriptions of the methods of particular interest follow in the next
section.

The sparse Broyden update given by Schubert [21] and Broyden [4] determines
a quasi-Newton method which takes sparsity into account. This update has the property
that if B in (1.7) has a desired pattern of sparsity, then so does the updated matrix
Bk/l. A similar update which preserves not only sparsity but also symmetry in determin-
ing Bk+ from Bk has been given by Marwil [18] and Toint [23]. Methods employing
these updates have desirable local convergence properties but, unfortunately, require
new Jacobian factorizations after each update if direct linear algebra methods are used
to obtain each step -B-F(y(k)). Here, we assume that direct methods are used for
solving linear systems and, in particular, that matrix factorizations are LU factorizations
as in LSODE. It is further understood that the problems of interest here are of such
size that LU factorizations involve considerable expense, and so we regard the sparse
Broyden and sparse symmetric updates as unsuitable in the present context, although
they may well prove useful in situations which warrant the use of iterative methods
for solving linear systems.

The sparse Broyden update, however, is fundamental to the first quasi-Newton
method considered in the sequel, that which employs the Doolittle LU updating

300 PETER N. BROWN, ALAN C. HINDMARSH AND HOMER F. WALKER

procedure of Dennis and Marwil [5]. To describe this method briefly, let us suppose
that in an iteration (1.7) one has obtained, for some value of k, a Doolittle decompo-
sition

(1.9) Bk PkLkUk,

using a partial pivoting strategy. In (1.9), Pk is a permutation matrix, Lk is a unit
lower triangular matrix, and Uk is an upper triangular matrix. Then further approximate
Jacobians are obtained by taking

(1.10) Bk+] PkLkUk+]
for as many values of j as possible, where the sequence of upper triangular matrices
{ Uk+j} is generated through (essentially) sparse Broyden updates. These updates are
done for some but not necessarily all values of]; when done, they are determined by
the secant equations

(1.11) U+js(k +]- 1) L-’P-1z(k 4- j- 1).

If the successive matrices B/ are required to have a particular pattern of sparsity
which is associated with certain corresponding patterns of sparsity of L and U+ (as
is the case when the matrices B+ have a particular band structure), then the advantage
of the Doolittle updating method in exploiting sparsity is clear: One maintains (sparse)
factors of updated matrices having the desired pattern of sparsity without having to
pay for additional factorizations or storage.

The other two quasi-Newton methods considered here take another approach to
exploiting sparsity. In this approach, one obtains a factorization of B for some k and
maintains subsequent approximate Jacobians implicitly, i.e., without explicitly updating
B, its successors, or their factors, by creating (with B) and storing certain auxiliary
vectors which incorporate update information. (The number of auxiliary vectors needed
for each implicit update is equal to twice the rank of the update.)

Since quasi-Newton methods employing implicit updating incur certain storage
and arithmetic costs associated with the auxiliary vectors, such methods are most likely
to be effective for problems in which the price of some additional storage and arithmetic
might be outweighed by the use of low-rank updates which have proved to be highly
successful in solving general algebraic systems with full Jacobians. Matthies and Strang
[19], Engelman [9], Engelman, Strang, and Bathe [10], and Geradin, Idelsohn, and
Hogge [12] report effective implementations of implicit updating methods which
employ several generally successful rank one and rank two updates. Here, we consider
the implicit implementation of two updates due to Broyden [3]. The first Broyden
update is widely regarded as the most successful update for general systems of nonlinear
equations. The second Broyden update is considered to be less effective on general
systems than Broyden’s first update; however, it has been conjectured (see Alfeld [1])
that Broyden’s second update performs particularly well in the context of solving stiff
ODE’s.

2. The quasi-Newton methods. In this section, we describe more specifically the
quasi-Newton methods of interest. It is intended here that these methods be applied
to a sequence of problems (1.4) for many values of n and that useful information
about these problems be carried over from one value of n to the next. For convenience,
however, we describe these methods in the context of solving a single system F(y) 0,
F’RN R, with an iteration (1.7), beginning with an initial approximate solution
y(0) and an initial approximate Jacobian Bo-OF/Oy(y(O)). The reader is safe in

QUASI-NEWTON METHODS FOR STIFF ODE SYSTEMS 301

assuming that F Fn, that y(0) is an initial approximation of yn, and that all discussion
below refers to the same time step, step n.

In describing the quasi-Newton methods below, our principal interest is in the
updating algorithms used in them. However, efficient implementations of the updating
algorithms must be well coordinated with the algorithms for determining iteration
steps, and so the algorithms given here are somewhat broader in scope than updating
algorithms per se. All of our quasi-Newton methods assume that B0 is given in a form
convenient for solving linear equations. They also depend on singling out particular
values of k in (1.7) at which to update subsequent approximate Jacobians Bk. The
rules for determining when to perform updates and when the iterates are sufficiently
near the solution are outlined in the next section, in the discussion of our implementation
of these methods in LSODE.

The updating algorithms described in the following are based on the well-known
first and second updates of Broyden and the sparse Broyden update (see, for example,
[6] or [7]). Here, we use variations of these updates which take into account an implicit
rescaling of the independent and dependent variables by a nonsingular diagonal scaling
matrix. Suppose that D is a given nonsingular diagonal scaling matrix such that 37 Dy
and the problem #(37)= DF(D-I;)=0 can be considered well-scaled. Such a scaling
matrix is determined automatically by LSODE from user-supplied tolerance informa-
tion. It is fixed throughout each time step, although it may vary from step to step. The
manner of incorporating such a rescaling in an update is illustrated in [7, p. 1 87] for
the first Broyden update.

We remark at this point that since our methods all take the full quasi-Newton
step s(k) -B-IF(y(k)) at each iteration of (1.7), one can save arithmetic by substitut-
ing F(y(k + 1)) for [z(k)-Bks(k)] wherever the latter expression appears in an update
formula. Since it is desirable to keep computational cost of updating as low as possible,
we incorporate this labor-saving substitution throughout our descriptions and
implementations of the methods of interest here, even though it is not always regarded
as advisable in other settings.

2.1. The Doolittle LU updating method. Suppose that at the initial iteration of
(1.7) one is given a Doolittle decomposition Bo=PoLoUo, and suppose that B0 and
its successors are required to have a particular pattern of sparsity which in turn imposes
a certain pattern of sparsity on their lower- and upper-triangular Doolittle factors.
Denote by the subspace of RNN consisting of all matrices having the pattern of
sparsity required of these upper-triangular factors. For i= 1,..., N, let Si indicate
the "sparsity" projection operator on RN which imposes the sparsity pattern of the
ith row of matrices in on vectors in R, i.e., which for j 1, N replaces the
jth component of a vector in R by zero if the ijth entry of all matrices in q/must

be zero and otherwise leaves it unchanged. Further denote the ith component of v R
by v(i), the ith row of U 0-//by U(, and the Euclidean norm on RN by [. [.

We are given a nonsingular diagonal scaling matrix D and a parameter e, 0 < e =< 1.
(The purpose of e is explained below.) The following is our algorithm for Doolittle
LU updating.

AIGORITHM 2.1.
At step 0 of (1.7). Suppose that one has y(0) and Bo=PoLoUo. Then compute

F(y(O)), s(O) =-BF(y(O)), and y(1)= y(0)+ s(0), and go on to step 1 if necessary.
At step k of (1.7), k=>l. Suppose that one has y(k), s(k-1), and Bk_

PoLoUk-1. Then do the following:
(1) Compute F(y(k)) and s(k) -LIeF(y(k)).

302 PETER N. BROWN, ALAN C. HINDMARSH AND HOMER F. WALKER

(2) If no update is to be made, take Uk Uk-1; otherwise do the following for
i=1,... ,N"

(a) If elDs(k 1)1 < IDSis(k 1)1, set

s(k)U(k= U(k’--[S,s(k l)]rD[S,s(k 1)]
[S’s(k- 1)]TD2;

(b) otherwise, take Uk Uk-(3) Compute s(k) U-ls(k), y(k+l)=y(k)+s(k), and go on to step k+l if
necessary.

It is clear that Uk if Uk_ O and that (1.11) is satisfied provided each test
e[Ds(k- 1)1 <lDSs(k- 1)1 in (2.a) above is passed for i= 1,... ,N (in which case Uk
is just the usual scaled sparse Broyden update of Uk-1 in). The purpose of these
tests on e is to insure that no correction is made in a row of Uk-1 when the projected
step Sis(k- 1) along that row is too small relative to the full step. These tests play an
important role in the convergence analysis given in [5]. It can be argued heuristically
that these tests are more than a theoretical convenience as follows: If Bk-1 PoLo Uk-1
is a good approximation to OF/Oy(y(k-1)), then w=L-dlp-lz(k-1) is almost but
not quite the result of operating on s(k-1) with an upper-triangular matrix. In light
of the qualifier "not quite," one sees that the ratios w()/ISis(k- 1)1 can be well-defined
but arbitrarily large; thus updating without these tests can do arbitrarily great violence
to the approximate Jacobians. Note that large values of e correspond to updating that
is more conservative in that fewer row updates are likely to be done. In the experiments
with Doolittle LU updating in LSODE reported in the sequel, we used a value of e

roughly equal to the unit roundott. Such a small choice of e implies that very few of
the tests on e will not be passed; a similarly small choice of e is reported to be effective
in the experiments in [5]. We also remark that there is a certain restart procedure for
periodically obtaining a new Jacobian or approximate Jacobian which is included in
the method of Dennis and Marwil and which is necessary for their convergence analysis.
Such a restart procedure is not necessary in the updating algorithm above because it
is provided for elsewhere in our implementation of the algorithm in LSODE.

2.2. The implicit Broyden updating methods. To describe our implicit
implementation of Broyden’s first update, we begin by recalling that if D is a nonsingular
diagonal scaling matrix and Bk+l is obtained by a scaled first Broyden update of Bk, then

[z(k)- Bks(k)]s(k) rD2"(2.1) Bk/l Bk + s(k)rD2s(k)
(See Dennis and Schnabel [7, p. 187, formula (8.3.1)].) It follows from the Sherman-
Morrison-Woodbury formula (see Ortega and Rheinboldt [20]) that

{ [s(k) B-z(k)]s(k)TD} B_"B+I I+ s(k)rD2S_,z(k)

By extension, if updated matrices B1,"’, Bt are generated from Bo by (2.1) in
conjunction with an iteration (1.7), then one has

(2.2) B-fl=[I+v(l)w(1)T] [I+v(1)w(1)T]B-1,

where the auxiliary vectors v(i) and w(i) are given by

(2.3) v(i)
s(i- 1)-Bi-_llz(i 1)

s(i-1) TD2By,_11z(i-1

QUASI-NEWTON METHODS FOR STIFF ODE SYSTEMS 303

and

(2.4) w(i) D2s(i 1),

for i= 1,. ., I.
Now suppose that at the initial iteration of (1.7) one is given Bo in factored form

or in some other form convenient for the solution of linear equations. In the applications
of interest here, for example, B0 is likely to be specified by its matrix factors together
with a set of auxiliary vectors such as those appearing in (2.2). Suppose also that a
nonsingular diagonal scaling matrix D is given. The following is our algorithm for
implicitly implementing Broyden’s first update.

ALGORITHM 2.2.
At step 0 of (1.7). Suppose that one has y(0) and B0 in a form convenient for

the solution of linear equations. Then compute F(y(0)), s(0)=-BIF(y(0)), and
y(1) y(0)+ s(0), and go on to step 1 if necessary.

At step k of (1.7), k_-> 1. Suppose that one has y(k), s(k-1), B0, and also
v(1),. , v(l) and w(1),. , w(1), if k > 1 and updates have been made for some
l, 1 _-< -<_ k- 1. Then do the following:
(1) Compute F(y(k)), s(k) -BlF(y(k)), and if updates (/>0) have been made,
compute

s(k) [I + v(1) w(l) 7"]... [I + v(1) w(1) 7"]s(k).
(2) If no update is to be made, then go to (3); otherwise, compute

w(l+l)=D2s(k-1),

v(/+l)=
s(k)

w(l + 1)7"[s(k- 1)- s(k)]’

s(k) [I+ v(l + 1)w(/+ 1)r]s(k).

(3) Compute y(k + 1) y(k)+ s(k) and go on to step k + 1 if necessary.

We note that at the end of part (1) of the algorithm at step k, k >= 1, one has
computed s(k)=-B-5IF(y(k)), where B51 is implicitly taken to be either B if no
updating has been done since the initial step or [I + v(l) w(l) T]... [I + v(1) w(1)’]B
if updates have been made since the initial step. If no update is made at the current

step, i.e., if B1= B_I implicitly, then one accepts this s(k) as the iteration step. If
an update is made, then one first computes v(/+l) and w(l+ 1) according to (2.3)
and (2.4), respectively, so that B-1=[I+v(l+l)w(l+l)7"] [I + v(1) w(1) 7"]B-d
implicitly, and then updates s(k) to obtain s(k)=-BaF(y(k)).

It is evident that each update that is made requires the formation and storage of
two vectors. If N is large, then storage and, hence, the number of updates that one
can make, may be sharply limited. In any case, there is certainly a maximum number
of updates that can be accommodated in practice. When this number is reached, one
has a variety of options such as obtaining a new (approximate) Jacobian from scratch,
discarding all update vectors and restarting the updating of Bo from scratch, replacing
the early update vectors with current ones, or simply doing no additional updating.
We chose the last option in our implementation with a maximum allowable number
of updates equal to 5, since our intention was to update only very infrequently and,
therefore, we felt it likely that the code would call for a new Jacobian more often than
this maximum allowable number of updates would be reached.

It should also be mentioned that some arithmetic is incurred not only in forming
the update vectors but also in using them to determine subsequent iteration steps.

304 PETER N. BROWN, ALAN C. HINDMARSH AND HOMER F. WALKER

However, most of the work of forming the update vectors is also applied to forming
iteration steps concurrently. Furthermore, one sees from the algorithm that using the
update vectors to form an iteration step or an additional update vector is unlikely to
be regarded as costly, especially on a computer which performs vector operations
efficiently.

To describe our implicit implementation of Broyden’s second update, we first note
that this update is most conveniently written in the form of an inverse analogue of
(2.1), which is

[s(k)- B-’z(k)]z(k) TD2BI+I B + z(k)WDz(k)

B-,{l_[Z(k)-Bs(k)]z(k)w }z(k)WDz(k) D

If updated matrices B,,..., Bl are generated by this formula in conjunction with an
iteration (1.7), then the counterpart of (2.2) is

B-[’= B’[I--t(1)U(1)w] [I--t(1)U(1)r],
where

t(i)
[z(i-1)-Bi_,s(i-1)]
z(i--1)TDEz(i--1)

and

u(i)=D2z(i-1)
for i- 1,. ., I.

Suppose that B0 is given in factored form or in some other form convenient for
the solution of linear equations. Let D be a nonsingular diagonal scaling matrix.
Algorithm 2.3 below is our algorithm for implicitly implementing Broyden’s second
update. We note that remarks similar to those following Algorithm 2.2 above are also
appropriate for Algorithm 2.3.

ALGORITHM 2.3.
At step 0 of (1.7). Suppose that one has y(0) and B0 in a form convenient for

the solution of linear equations. Then compute F(y(0)), s(O)=-B-d’F(y(O)), and
y(1) y(0)+ s(0), and go on to step 1 if necessary.

At step k of (1.7), k_>-1. Suppose that one has y(k), F(y(k-1)), Bo and also
t(1),..., t(l) and u(1),..., u(l), if k> 1 and updates have been made for some
l, 1 _-< _-< k-1. Then do the following:
(1) Compute F(y(k)).
(2) If no update is to be made, compute

--BI[I--t(1)u(1)T] [I-t(l)u(1)T]F(y(k))
s(k) if > 0 updates have been made,

(-BlF(y(k)) otherwise

and go to (3). If an update is to be made, compute

z(k- 1)- F(y(k))-F(y(k- 1)),

u(l+l)=D2z(k-1), t(l+l)=F(y(k))/u(l+l)Tz(k-1),

s(k) -B-dl[I t(1)u(1) T]... [I-- t(+ 1)u(/ 1) T]F(y(k)).

(3) Compute y(k + 1) y(k)+ s(k) and go on to step k + 1 if necessary.

QUASI-NEWTON METHODS FOR STIFF ODE SYSTEMS 305

3. Algorithmic implementation. In implementing each of the three update
algorithms described above, the LSODE package was modified so as to perform
occasional quasi-Newton updates. In order to describe precisely the algorithm for this,
we must first outline the structure and overall algorithm of LSODE, to the extent that
this is relevant here.

3.1. The unmodified algorithm. Aside from several auxiliary routines of secon-
dary importance, the structure of LSODE (unmodified) is shown in Fig. 1, with the
dashed line connections ignored. Subroutine LSODE is a driver, and subroutine
STODE performs a single step and associated error control. STODE calls PREPJ to
evaluate and do an LU factorization of the matrix P, of (1.6), and subsequently calls
SOLSY to solve the linear system (1.5). (Recall that P, approximates I- hfloJ(t,, y,).)
Both of these routines call LINPACK routines [8] to do the matrix operations.

FIG. 1. Simplified overall structure of LSODE package.

Within STODE, the basic algorithm for step n, in its unmodified form, is as follows"

(1) Set flag showing whether to reevaluate J.
(2) Predict y(0).
(3) Compute f(t, y(0)); set m=0.
(4) Call PREPJ if flag is on.
(5) Form F(y,(m)).
(6) Call SOLSY and correct to get y(m + 1).
(7) Update estimate of convergence rate constant C if m _>-1.

(8) Test for convergence.
(9) If convergence test failed:

(a) Set m<--rn+l.
(b) If m < 3, compute f(t, y(m)) and go to 5.
(c) If m 3 and J is current, set h <-- hi4 and go to 1 (redo step).
(d) If m 3 and J is not current, set flag to reevaluate J and go to step

(3) (redo step).
(10) If the convergence test passed, update history, do error test, etc.

In algorithm step (1) above, the decision is made to reevaluate J (and redo the
LU factorization of P-I-hfloJ) if either

(a) 20 steps have been taken since the last evaluation of J, or
(b) the value of hflo has changed by more than 30% since J was last evaluated.
In algorithm step (7), the iterate difference s, (m) y,(m + 1) y, (m) is used,

together with s,(m- 1) if m => 1, to form the ratio DEER= II .(m)ll/lls.(m- 1)11, and

306 PETER N. BROWN, ALAN C. HINDMARSH AND HOMER F. WALKER

C is updated to be the larger of .2C and DEER. C is reset to .7 whenever J is
evaluated. The norm is a weighted root-mean-square norm, with weights determined
by user-supplied relative and absolute tolerance parameters RTOL and ATOL. (These
weights correspond to the diagonal scaling matrix D referred to in 2.) The convergence
test in step (8) requires the product IIs(m)ll min (1, 1.5C) to be less than a constant
which depends only on q. This is based on linear convergence, with the idea that
C s, (m)ll is a better estimate of the error in Yn (rn + 1) than s. (m)ll is. Algorithm
step (10) includes step and order selection for the next step (if the error test passed)
or for redoing the current step (if it failed), but the details of that are not relevant here.

3.2. The modified algorithm for updating. There are three main additions to this
structure, each of which is a call from STODE to one of the updating routines, shown
by the dashed lines in Fig. 1. Subroutines DOLIT, BROY1, and BROY2 erform
(respectively) Doolittle updates, Broyden’s first update, and Broyden’s second update.

Any implementation of an updating strategy in LSODE will necessarily have to

include rules which decide when to reevaluate J and when to perform an update of
P. Within LSODE, at any given step the only feasible measures of the quality of the
current P are the following:

(i) The ratio of the current value of h/30 to the value as of the last J evaulation.
(ii) The number of steps taken since the last J evaluation.
(iii) RCC I(hflo),,/(hflo)n-1 II, where (hfl0)k denotes the value of hflo at step k.
(iv) DEER= IIs,(rn)ll/lls(m- 1)]1 =the ratio of iterate differences (when m _-> 1).
The exact rules chosen for reevaluating J and updating P are based on these four

quantities, as follows. In the course of the algorithm, a set of six flags is set according
to the following rules:

(i) Flag 1 is turned on if either
(a) 60 steps have been taken since the last evaluation of J,
(b) the value of hflo has changed by more than 30% since J was last evaluated,
or
(c) the value of hflo has changed by more than 30% from the value on the
previous step (i.e., RCC> .3).

(ii) Flag 2 is turned on if .2 < RCC-< .3.
(iii) Flag 3 is turned on if .1 < RCC-< .2.
(iv) Flag 4 is turned on if m-> 2 and DEER -< .1.
(v) Flag 5 is turned on if m >- 2 and. 1 < DEER =< 1.0.
(vi) Flag 6 is turned on if m-> 2 and DEER> 1.0.
Then time step n of the integration is given by substituting the following modified

steps in the STODE algorithm given in 3.1 (i.e., replacing step (1) by (1’), etc.):

(1’) (a) Set flag 1 showing whether to reevaluate J.
(b) Set flag 2 and flag 3 showing whether to update Pn.
(c) Set IUP 1 if flag 2 or flag 3 is on; otherwise set IUP 0.

(6’) Update the matrix Pn if IUP 1 and m > 0; call SOLSY as appropriate; correct
to get y(rn + 1).

(8’) (a) If flag 2 is on and m =0, set m m + 1, compute f(t,, y,,(m)) and go to (5)
(forcing at least two corrections).

(b) Test for convergence.
(9’) If convergence test failed:

(a) Set mm+l.
(b) If m <2, compute f(t,, y,(m)) and go to (5).

QUASI-NE’vVTON METHODS FOR STIFF ODE SYSTEMS 307

(C) If m => 2, compute DELR= Ils(m)ll/lJs(m-1)ll. Set flag 4, flag 5, and flag
6 according to value of DELR.

(d) If flag 6 is on, go to (h).
(e) If m < 5 and flag 4 is on, set IUP=0, compute f(tn, yn(m)), and go to (5).
(f) If m < 5 and flag 5 is on, set IUP= 1, compute f(tn, y,(m)), and go to (5).
(g) If m =5, go to (h).
(h) If J is current, set h hi4 and go to (1’) (redo step). Otherwise, set flag to

reevaluate J and go to (3) (redo step with the same h).

We note that updating is done when either .1 < RCC=<.3 or .1 < DELR -< 1.0
(with m >-2), and that at least two corrections are performed when .2 < RCC =< .3. If
DELR =<. 1 and m ->_ 2, then no updating is done regardless of what the other strategies
imply. Also, the maximum number of iterations allowed per step in the modification
is 5 (compared to 3 in unmodified LSODE) to allow for steps in which the current P
is initially somewhat out of date but after several updates are performed should be
sufficiently good to complete that step and possibly several more. The structure of
step (6’) in the above algorithm depends significantly upon the particular updating
scheme being employed, following the algorithm given in 2. Further details are given
in [2].

4. Numerical tests. The algorithms described above, and implemented in modified
versions of the LSODE package, were tested on various ODE test problems. In this
section we give, for each of four problems, a brief description of the problem, numerical
results obtained, and some discussion. Three of the four test problems are obtained
from time-dependent partial differential equation (PDE) systems solved by the method
of lines. Further details on the problem specifications are available in [2]. All of the
tests were done on a Cray-1 computer with the CFT compiler.

The algorithms tested included the unaltered LSODE package (as discussed in
3.1) and versions modified to perform Doolittle and implicit Broyden updates of

first and second kinds (as described in 3.2). In addition, an algorithm was tested
which uses the modified Newton strategy from the updating algorithms (of 3.2) but
which never performs matrix updates. This tests the value of the new corrector loop
strategy as distinct from the updates themselves.

In what follows, we will use the following abbreviations for the various algorithms:
LSODE: unaltered LSODE package;
DOLIT: LSODE with Doolittle LU updating;
IMPBI: Implicit updating by Broyden’s first method;
IMPB2: Implicit updating by Broyden’s second method;
LSODE*: LSODE with new strategy but no updates.
Unless otherwise stated, the algorithms are as described in detail in 3. However,

the various heuristic parameters in the updating strategy were varied somewhat in
many of the test runs. Where meaningful, results for altered parameter values are also
given.

For each problem and each algorithm, a test run was made and yielded various
statistics. Those of interest are defined as follows:

R.T. run time (CPU sec);
NST number of time steps;
NFE number of f evaluations;
NJE number of J evaluations (=number of LU decompositions);
NUP number of matrix updates.

In all cases, the J evaluations were done by a user-supplied subroutine.

308 PETER N. BROWN, ALAN C. HINDMARSH AND HOMER F. WALKER

4.1. Test problem 1. This problem is based on a pair of PDE’s in two dimensions,
representing a simple model of ozone production in the stratosphere with diurnal
kinetics. (See also [16] for comparison tests on this problem.) There are two dependent
variables c representing concentrations of O1 and 03 (ozone) in moles/cm3, which
vary with altitude z and horizontal position x, both in km, with 0 -< x =< 20, 30 <= z -< 50,
and with time in sec, 0=< t_-<86,400 (one day). These obey a pair of coupled
reaction-diffusion equations"

c3C
Kh_X2 q..

C O [OCiqKo(z) Oz.l+R’(c’,c,t) (i 1, 2),

Kh "-4 "10-6, K,(z) 10-8 ez/5,

RI(c1, c2, t) =-klcl- k2clc2d k3(t 7.4. 1016-t k4(t)c2,

R2(c c2, t) k c kec c2- k4(t)c2,
k 6.031, k 4.66" 10-16,

)exp[-22.62/sin (rt/43,200)] for t<43,200,
k3(t) [o otherwise,

exp [-7.601/sin (rt/43,200)] for < 43,200,
k4(t)

0 otherwise.

Homogeneous Neumann boundary conditions are posed. The initial condition functions
are polynomials chosen to be slightly peaked in the center and consistent with the
boundary conditions:

cl(x, Z, 0)= 1060(X)(Z), C2(X, Z, 0)= 1012Cg(X)(Z),

a(z) =-- 1-(.lx-1)2+(.lx-1)4/2, (z)= 1-(.lz-4)2+(.lz-4)4/2.
The PDE’s are treated by central differencing, on a rectangular grid with uniform
spacings, Ax 20/(J-1), Az 20/(K- 1). The differencing for the vertical diffusion
term is

(1/AZ)[K(Zk+l/2) C.i,k+ C.ik) K,, Zk-1/2) C.ik Cj,k- 1)].

(all k) and similarly onThe boundary conditions are simulated by taking Co,k C2,k
the other boundary segments. The size of the ODE system is N 2JK. The variables
are indexed first by species, then by x position, and finally by z position. Thus in
y=f(t, y), we have Cik=ym, m=i+2(j-1)+2J(k-1).

For these tests, we chose J 20 and K 20 (N 800). The problem is stiff because
of the kinetics, and the Jacobian has half-bandwidths ML-MU=2J=40. (The
diffusion terms are a potential cause of stiffness also, but are not in fact, for these
choices of Ax, Az, Kh, Kv.) A mixed relative/absolute error tolerance was chosen, with
RTOL 10-5 and ATOL 10-3.

The results of testing the five algorithms on this problem are shown in Table 1.
In this case, all three updating algorithms produced shorter run times than LSODE
or LSODE*, with IMPB2 being the fastest. By comparison with LSODE, IMPB2
trades 22 updates for a reduction in Jacobian evaluations by 21--a tradeoff that saves
over 6 sec. (22%) of CPU time.

4.2. Test problem 2. This problem is based on a reaction-diffusion system arising
from a Lotka-Volterra competition model, with diffusion effects in two space
dimensions included. There are two species densities c, varying over the spatial habitat

QUASI-NEWTON METHODS FOR STIFF ODE SYSTEMS 309

TABLE
Test results for problem 1.

Algorithm R.T. NST NFE NJE NUP

LSODE 27.76 459 661 85 0
DOLIT 23.20 408 587 67 31
IMPB1 26.73 456 655 80 32
IMPB2 21.64 388 544 64 22
LSODE* 28.06 471 714 83 0

f {(x, z): 0 -< x -< 1, 0 =< z =< 1.8}, and time in sec, 0 -<_ -< 10. These obey

--OC [02C 02ci
di-x+-’z2) +fi(cl c2) (i 1, 2),

Ot

dl .05, d2 1.0,

fl(cl, c2) c1(bl-allcl-a12c2),
f2(c c2) c2(b2- a2 c azzc2),

all= 106, a12 1, a21 106-1, a22-- 106, bl b2 106-1 + 10-6.

Homogeneous Neumann boundary conditions are imposed. Initial conditions are
chosen consistent with the boundary conditions:

c(x, z, 0)= 500 + 250 cos (Trx) cos (107rz/1.8),

c2(x, z, 0)= 200+ 150 cos (10rx) cos (rrz/1.8).

Given the above parameter values and initial conditions, the solution of this reaction-
diffusion system converges as t to the equilibrium solution cl=c1= 1-10-6,
c2-- c2= 10-6. The two partial differential equations are again treated by central
differencing, on a rectangular J by K grid with uniform spacings, with boundary
conditions treated as before. The size of the ODE system is N 2JK, and the variables
are indexed by species, then by x position, and finally by z position.

For this test, we chose J 20 and K 20 (N 800). The problem is stiff mainly
because of the interaction terms, and the Jacobian has half-bandwidths ML MU
2J 40. A mixed relative/absolute error tolerance was chosen, with RTOL 10-6

and ATOL 10-9.
The test results on this problem are given in Table 2. Here, in all three updating

algorithms, the updates seem to have had no beneficial effect, and simply increased
the cost. The reason may be that for this problem the step size grows steadily throughout
the problem, at a rate which forces reevaluations of both the Jacobian matrix and P
every 8-10 steps, regardless of updating method.

TA3LE 2
Test results for problem 2.

Algorithm R.T. NST NFE NJE NUP

LSODE 23.92 582 665 66 0
DOLIT 25.20 583 696 69 30
IMPB1 25.20 583 696 69 30
IMPB2 25.33 588 708 70 31
LSODE* 25.63 583 700 72 0

310 PETER N. BROWN, ALAN C. HINDMARSH AND HOMER F. WALKER

4.3. Test problem 3. This problem is an ODE system in population biology which
models the interaction of N species competing for the same limited resource. It is also
of Lotka-Volterra type and has the form, with time in seconds,

d--- ui bi- ajuj i= l, ,N).
j=l

The matrix A (a) is taken to be symmetric and banded. For test purposes, we
chose N 100, half-bandwidths ML MU 20, and coefficients

all a25,25 1, a26,26 a5o,50 106,

a51,51 a75,75 101, a75,75 alOO,lOO 1011,

a =.0002a, for j, li-j[<= 20.
We define b=(bi) by setting u*=(1,...,1) and b=Au*. Then u(t) =u* is an
equilibrium solution of the ODE system, to which the solution of the ODE system
converges as t--> oo. We chose initial conditions u(0) 1.5 i, and took 0 <- <= 10. The
problem is stiff for the parameters chosen. A mixed relative/absolute error tolerance
was chosen with RTOL ATOL 10-6.

The test results on this problem are given in Table 3. Here only IMPB1 and
IMPB2 were competitive with LSODE, while DOLIT was not. The explanation may
be as offered for Problem 2--steadily and rapidly growing step sizes.

TABLE 3
Test results for problem 3.

Algorithm R.T. NST NFE NJE NUP

LSODE 5.32 652 770 80 0
DOLIT 6.22 694 871 100 36
IMPB1 5.39 646 773 83 24
IMPB2 5.31 642 765 81 29
LSODE* 5.66 670 820 85 0

4.4. Test problem 4. Like Problem 2, this problem is based on a reaction-diffusion
system arising from a Lotka-Volterra predator-prey model with diffusion effects in
two space dimensions. Here the prey and predator species densities vary over fl
{(x, z): 0-<_x<= 1, 0<= z-< 1} and 0_<- t=<3. The equations are the same as in Problem 2
except with

fl(cl, c2)=1(b1-a122), f2(cl, c2)=c2(-b2+a21cl),

bl 1, a12 .1, a21 100, b2 1000,

and initial conditions

c l(x, Z, 0) 10- 5 cos (arx) cos (10,rz),

c2(x, z, 0)= 17+5 cos (107rx) cos (Trz).

Here the solution becomes spatially homogeneous as c, and tends to a time-
periodic solution of the Lotka-Volterra ODE system modeling the predator-prey
interaction without spatial effects, namely dc/dt=f (i 1, 2). This last system is
alternately stiff and nonstiff depending on the position of the solution in phase space.

QUASI-NEWTON METHODS FOR STIFF ODE SYSTEMS 31

The two PDE’s are differenced just as in Problem 2, except that the mesh
dimensions are J =K 10 (N= 200), and hence the Jacobian has half-bandwidths
ML MU 2J 20. The tolerance parameters used were RTOL 10-6 and ATOL
10-4.

The test results on this problem are given in Table 4. Here IMPB2 gave an 8%
reduction in run time, trading 50 updates for 16 fewer Jacobian evaluations. But
DOLIT and IMPB1 gave little or no overall cost reduction for this particular algorithm.
However, runs were also made with slightly different parameter values in the updating
strategy (50% in place of 30% in criterion (b) for flag 1, and .4 in place of .3 in the
setting of flag 1 (criterion (c)) and of flag 2; see the detailed algorithm in 3.2). In
these runs, all three updating algorithms ran faster than LSODE, from 15% faster
(IMPB2) to 9.5% faster (DOLIT). However, LSODE* ran 12% faster than LSODE
also.

TABLE 4
Test results for problem 4.

Algorithm R.T. NST NFE NJE NUP

LSODE 8.84 1,248 1,635 129 0
DOLIT 8.80 1,125 1,630 125 53
IMPB1 8.86 1,270 1,677 129 58
IMPB2 8.14 1,180 1,560 113 50
LSODE* 8.79 1,242 1,632 127 0

5. Discussion. We have presented three quasi-Newton methods and discussed
their application to solving the nonlinear algebraic equations arising in the solution of
stiff ODE systems by BDF methods. Our focus has been on the case in which the
ODE system is very large and the Jacobian of the system is sparse, and the quasi-Newton
methods considered here were chosen because of their potential for exploiting sparsity.
This investigation has not been exhaustive. For one thing, the testing of the methods
chosen here has been somewhat limited; for another, there are other quasi-Newton
methods, as well as variations of those considered here, which might also be appropriate
for this setting.

It must be recognized, however, that the area under investigation is broad and
largely unexplored. From the point of view of solving algebraic equations, the ODE
setting is markedly different from that of a fixed algebraic problem. In particular, it
is clear that for best results a great deal of interaction should take place between the
ODE integration algorithm (the step and order selection and its various heuristic
decision rules) and the algorithm implementing any given quasi-Newton method (and
its heuristics). We do not claim to have achieved an optimal merge of the two, but we
believe that we have made the most serious attempt to date at doing so.

Our test results show that, for some problems, the combined ODE and quasi-
Newton algorithms considered here can offer significant improvements over the
unmodified algorithm. We found further that, in our tests, the implicit updates by
Broyden’s second method came the closest to being consistently beneficial (when
updates of any kind were beneficial). The Doolittle method and updates based on
Broyden’s first method usually (but not always) did a poorer job.

The test results also suggest that, for some problems, the quasi-Newton methods
studied here may not be capable of reducing the total costs. Specifically, the potential
helpfulness of the updates used here seems to be precluded for problems in which the

312 PETER N. BROWN, ALAN C. HINDMARSH AND HOMER F. WALKER

order and step size values vary rather rapidly during the integration. (However, other
quasi-Newton updates, which are applicable only in the small-system case, offer hope
of dealing effectively with such rapid variations.) The most favorable results with
updates seem to occur when the updated values of (0Fn/0yn)-1 (actual or virtual) are
as accurate (or produce the same speed of convergence) as those that would be gotten
by reevaluating OFn/Oy, from scratch, but are obtained at much lower cost. With the
updates considered here, this fortunate situation seems most likely to occur when
sizeable numbers of consecutive integration steps are taken over which the step sizes
and Jacobian values change only relatively little. In a general purpose solver like
LSODE, a natural approach to the design of the algorithm is to try to detect when
such conditions hold and when they do not, and attempt to restrict the use of updates
in a dynamic way accordingly. This idea has been a guiding principle in our work, but
there is certainly more to be done towards that end.

REFERENCES

[1] P. ALFELD, Two devices for improving the efficiency of stiff ODE solvers, in Proc. 1979 SIGNUM
Meeting on Numerical Ordinary Differential Equations, Univ. Illinois, Dept. Computer Science,
Report 79-1710, Urbana, pp. 24-1 to 24-3.

[2] P. N. BROWN, A. C. HINDMARSH AND H. F. WALKER, Experiments with quasi-Newton methods in
solving stiff ODE systems, Lawrence Livermore National Laboratory Report UCRL-88470,
December 1982.

[3] C. G. BROYDEN, A class of methods for solving nonlinear simultaneous equations, Math. Comp., 19
(1965), pp. 577-593.

[4], The convergence of an algorithm for solving sparse nonlinear systems, Math. Comp., 25 (1971),
pp. 285-294.

[5] J. E. DENNIS, JR. AND E. S. MARWIL, Direct secant updates of matrix factorizations, Math. Comp.,
38 (1982), pp. 459-474.

[6] J. E. DENNIS, JR. AND J. J. MORI, Quasi-Newton methods, motivation and theory, SIAM Rev., 19
(1977), pp. 46-89.

[7] J. E. DENNIS, JR. AND R. B. SCHNABEL, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.

[8] J. J. DONGARRA, J. R. BUNCH, C. B. MOLER AND G. W. STEWART, LINPACK Users’ Guide,
Society for Industrial and Applied Mathematics, Philadelphia, 1979.

[9] M. S. ENGELMAN, Quasi-Newton methods in fluid dynamics, in Proc. 4th Conference on Mathematics
of Finite Elements and Applications, Brunel University, Uxbridge, England, April 27-May 1, 1981.

[10] M. S. ENGELMAN, G. STRANG AND K. J. BATHE, The application of quasi-Newton methods in fluid
dynamics, Int. J. Numer. Meth. Eng., 17 (1981), pp. 707-718.

[11] C. W. GEAR, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall,
Englewood Cliffs, NJ, 1971, pp. 158-166.

[12] M. GERADIN, S. IDELSOHN AND M. HOGGE, Computational strategies for the solution of large
nonlinear problems via quasi-Newton methods, Computers and Structures, 13 (1981), pp. 73-81.

[13] A. C. HINDMARSH, Linear multistep methods for ordinary differential equations: method formulations,
stability, and the methods ofNordsieck and Gear, Lawrence Livermore National Laboratory Report
UCRL-51186, Rev. 1, March 1972.

[14], LSODE and LSODI, two new initial value ordinary differential equation solvers, in ACM
SIGNUM Newsletter, vol. 15, no. 4 (December 1980), pp. 10-11.

[15], ODE solvers for use with the method of lines, in Advances in Computer Methods for Partial
Differential EquationsIV, R. Vichnevetsky and R. S. Stepleman eds., IMACS, New Brunswick,
NJ, 1981, pp. 312-316.

[16],ODEPACK, a systematized collection of ODE solvers, in Scientific Computing, R. S. Stepleman
et al. eds., North-Holland, Amsterdam, 1983, pp. 53-64.

[17] A. C. HINDMARSH AND G. D. BYRNE, On the use of rank-one updates in the solution of stiff systems
of ordinary differential equations, ACM SIGNUM Newsletter, vol. 11, no. 3 (October 1976),
pp. 23-27.

QUASI-NEWTON METHODS FOR STIFF ODE SYSTEMS 313

[18] E. S. MARWIL, Exploiting sparsity in Newton-like methods, Ph.D. thesis, Cornell University, Ithaca,
NY, 1978.

[19] H. MATTHIES AND G. STRANG, The solution of nonlinear finite-element equations, Int. J. Numer.
Meth. Eng., 14 (1979), pp. 1613-1626.

[20] J. M. ORTEGA AND W. C. RHEINBOLDT, Iterative Solution ofNonlinearEquations in Several Variables,
Academic Press, New York, 1970.

[21] L. K. SCHUBERT, Modification ofa quasi-Newton methodfor nonlinear equations with a sparse Jacobian,
Math. Comp., 24 (1970), pp. 27-30.

[22] L. F. SHAMPINE AND C. W. GEAR, A user’s view of solving stiff ordinary differential equations, SIAM
Rev., 21 (1979), pp. 1-17.

[23] PH. L. TOINT, On sparse and symmetric matrix updating subject to a linear equation, Math. Comp., 31
(1977), pp. 954-961.

[24] R. A. WILLOUGHBY ed., Stiff Differential Systems, Plenum Press, New York, 1974.

SIAM J. ScI. STAT. COMPUT.
Voi. 6, No. 2, April 1985

(C) 1985 Society for Industrial and Applied Mathematics

005

TWO STRATEGIES FOR ROOT FINDING ON
MULTIPROCESSOR SYSTEMS*

I. NORMAN KATZ" AND MARK A. FRANKLIN

Abstract. The problem of finding the roots of a single nonlinear equation on an MIMD computer
system is considered. Two globally convergent strategies for exploiting the parallelism in the computer
system are investigated and compared. In one strategy a serial root finding algorithm is used, with the
parallel computation capabilities of the system being used to speed up the necessary function evaluations.
For a given function this increase in speed is determined by a known speed-up function Sp which relates
the number of processors available to function evaluation time. Linear and logarithmic speed-up functions
are investigated. In the seCond strategy a parallel root finding algorithm is used. Function evaluations are
performed serially, one function evaluation being performed on each processor. Two new parallel root
finding algorithms based on contraction mapping and Halley’s method are presented and their convergence
properties examined. Expressions for comparing the two strategies are derived and decision curves presented.

Key words, parallel numerical methods, parallel processing, root finding, multiprocessor systems

1. Introduction. Recent advances in computer technology have made it practical
to construct systems in which many computers can perform different computations
simultaneously, and then communicate the results to all (or some) of the other
computers. The increased computational power provided by such systems operating
in parallel may make it possible to solve large scale engineering and scientific problems
which, because of their complexity, were considered intractable until now. In order
to fully utilize these computer systems it is necessary, or course, to properly exploit
the parallelism of computation.

This paper investigates the problem of finding the roots of a single nonlinear
equation on a computer system of the MIMD (multiple instruction stream-multiple
data stream) type. Two strategies for applying parallel computations are studied. In
one strategy a serial root finding algorithm is used, with the parallel computation
capabilities of the system being used to speed up the necessary function evaluations.
For a given function this increase in speed is determined by a known speed-up function
Sp (Sp is the ratio of the function evaluation speed in the single computer case to the
evaluation speed in the multiple computer case). We refer to this strategy as SAPE
(Serial Algorithm Parallel function Evaluation). In the second strategy, each function
is evaluated on a separate computer, but the root finding algorithm is parallel in nature,
i.e., the algorithm is such that different function evaluations can be performed simul-
taneously on the separate computers. We call this strategy PASE (Parallel Algorithm
Serial Function Evaluation). In order to have an unbiased comparison, the same
root-finding algorithm is used in both strategies; in the first strategy it is applied serially,
and in the second in a parallel manner. Both strategies result in globally convergent
algorithms.

Parallel algorithms for root finding have been considered by several authors e.g.
1]-[11 in the sense of the PASE strategy. No comparisons have been made, however,
between PASE and SAPE strategies. The parallel algorithms used in our PASE strategy
are conceptually similar to some algorithms presented in [10], [11]. However, we use

* Received by the editors July 15, 1981, and in final revised form December 8, 1983. This work was
supported in part by the National Science Foundation under grant MCS78-20731.

t Department of Systems Science and Mathematics, Washington University, St. Louis, Missouri 63130.
$ Department of Electrical Engineering, Washington University, St. Louis, Missouri 63130.

314

ROOT FINDING ON MULTIPROCESSOR SYSTEMS 315

the iteration functions for a contraction mapping and for Halley’s method instead of
the various iterations used in [10]. The analytic forms of the iteration functions used
here lead to an error analysis which makes it possible to compare the relative efficiencies
of the two strategies.

Both the SAPE and PASE strategies combine a direct search procedure and an
iteration scheme (contraction mapping or Halley’s method). The search procedure has
the advantage that it converges even when the initial guesses are far from the root
(provided that they bracket the root), and the iteration scheme has the advantage that
in the neighborhood of the root, convergence becomes very rapid. By combining the
two procedures it is possible to gain the advantages of both approaches.

The two general strategies presented here have been considered in [12] for the
problem of one-dimensional optimization of a unimodal function on a multiprocessor
system. However there two search strategies are compared: a serial Fibonacci search
with parallelism used in function evaluation, and a n-ary parallel search with parallelism
implicit in the search algorithm but no parallelism in function evaluation.

We begin by defining the PASE and SAPE strategies and by describing a property
for higher order iteration functions which assures continued bracketing of a root once
it has been bracketed initially. Then we analyze the behavior of the two strategies.
Using this analysis we show how to determine the relative efficiencies of the two
strategies. Sample decision curves are then given. If the values of certain parameters
are known, these curves can be used to decide which strategy is more efficient.

2. The strategies. Suppose we wish to solve

f(x) =0

where f: R-* R , by an iterative method. We combine a search procedure together
with an iterative procedure of the form

(1) x(r"+)=g(x(’)), m=0, 1,2,...

where g(x) is a suitably formulated iteration function such that a g(a) if and only
if f(a)= 0. In this paper we assume that the root a is simple, that is f’(a) 0.

Assume that N computers are available in an MIMD system in which there is
negligible overhead associated with transferring information between computers.
Associated with parallel function evaluation procedures there is a speed-up function,
Sp(N). If tp(N) is the time it takes to evaluate the function with N computers, then
the speed-up function is defined as" Sp(N)--tp(1)/tp(N). Later we consider two
particular forms for Sp(N): linear speed-up and logarithmic speed-up.

Assume that a [a, b] and let a 1- g(a), b 1- g(b). In order to assure that the root
a continues to be bracketed after iteration (i.e. a [a , b]) we require the following
property for x, y in a sufficiently small neighborhood of c"

(P) (g(x)-)(g(y)-a)<O if(x-a)(y-a)<O.

For an iteration function g(x) of integral order n >0 it is well-known (see [13])
that for x sufficiently close to a

(2) g(x)-aAn(x-a)
where An is independent of x. In order for the property (P) to be satisfied n must be
odd. In particular, Newton’s method for which n 2 (see [13]) does not have property
(P). We consider the cases n 1, 3. The case n is that of a contraction mapping.
For the case n 3 there are many schemes that are known (see [14]). Here we choose
Halley’s method (see [14]) to illustrate our strategy computationally, but we also give
formulas for the methods of Chebyshev and Cauchy (see [14]).

316 I. NORMAN KATZ AND MARK A. FRANKLIN

Our method consists of combining a search procedure with the iterative procedure
given in (1). Parallelism is used in one of two ways. In the first way the combined
search-iteration is implemented in a serial algorithm, but the functional evaluations
required by the algorithm at each step are performed in parallel. We call this approach
SAPE (Serial Algorithm-Parallel function Evaluation). In the second way the combined
search-iteration is implemented in a parallel algorithm, but the functional evaluations
are performed serially. We call this approach PASE (Parallel Algorithm-Serial func-
tional Evaluation). Assume that a < b, a (a, b).

2.1. The SAPE strategy.
(n 1) Define r(x)= x-g(x),suppose that g(a), r(a), g(b), r(b) have been com-

puted and that r(a) r(b) < 0.
Step 1. Compute x=1/2(a+b),g(x), r(x)

then if r(a) r(x) < 0 let ao a, bo x
otherwise let ao x, bo b.

Step 2. Compute g(g(ao), g(g(bo)), r(g(ao)), r(g(bo))
then if r(g(ao))r(g(bo)) > 0 set a ao, b bo

if r(g(ao)) r(g(bo)) < 0 let a min (g(ao), g(bo))
b :max (g(ao), g(bo))

if/91-al < bo-ao set a al, b bl
otherwise set a ao, b bo.

Step requires one evaluation of the function g(x), and step 2 requires two
functional evaluations of g(x) (one at g(ao) and the other at g(bo)).

(n 3) In Halley’s method the iteration function (see [14])

(2a) g(x) x-
1-(f/f’)(f"/2f’)

requires evaluation of f, f’, and f". Suppose that f(a), f(b) have been computed and
that f(a)f(b) < 0.

Step 1. Compute x 1/2(a + b), f(x)
then if f(a)f(x)<O let ao=a, bo=x

otherwise let ao x, bo b.
Step 2. Compute f’(ao), f"(ao), g(ao), f(g(ao)), f’(bo), f"(bo), g(bo), f(g(bo))

then if f(g(ao))f(g(bo))>O set a ao, b= bo
iff(g(ao),f(g(bo)) < 0 let al-- min (g(ao), g(bo))

bl =max (g(ao), g(bo))
ifb-a<bo-aoseta=a, b=b

otherwise set a ao, b bo.
Step requires evaluation of the function f(x), and step 2 requires 6 functional
evaluations (f’,f" at ao and bo, f at g(ao) and g(bo)). The procedures described for
the SAPE strategy are globally convergent, because r(a)r(b) < 0when n 1,f(a)f(b) <
0 when n 3 at every iteration. In the SAPE strategy the functional evaluations are
performed sequentially, but each functional evaluation is implemented in parallel on
N computers.

2.2. The PASE strategy.
(n= 1) Define r(x)=x-g(x), suppose that g(a), r(a), g(b), r(b) have been

computed, and that r(a)r(b)<O. Assume that N>-3. Let h=(b-a)/(N-1), x)=
(o)a, xj =a+(j-1)h forj=2,...,N-l,x)=b.

ROOT FINDING ON MULTIPROCESSOR SYSTEMS 317

Step 1. Simultaneously compute g(x)), r(xJ)) for j 2,. ., N- and g(g(a)),
r(g(a)), g(g(b)), r(g(b)) on the N parallel processors. There is at least
one pair such that r(xJ)) -j/l) < 0 for some j 1, , N- 1. Choose the

(.(o)pair such that either Ir(x)) or [rj+,) is smallest over all [r(x))[, i=
N-1 Let ao x), bo (o)

._..a,j+ 1"

Step 2. if r(g(a))r(g(b))> 0 set a ao, b bo
if r(g(a))r(g(b))< 0 let a min (g(a), g(b))

b,=max(g(a),g(b))
then if b a bo ao set a al, b bl

otherwise set a ao, b bo.
In step 1, the N functional evaluations g(xJ)) for j=2,..., N-l,g(g(a)), and
g(g(b)), are performed in parallel. It is assumed that the time needed for computing
r(x) is negligible compared to the time needed to compute g(x).

(n 3) We again use Halley’s iteration function g(x) given in (3). Assume that
4. Suppose that f(a), f(b) have been computed and that f(a)f(b) < 0. Let h

(o) =b.(b-a)/(2N-5), x) a, xj =a+(j-1)h for j=2,... 2N-5, .n,2N-4

Step 1.1. Simultaneously compute f(xJ)) for j= 2,..., N-3, and f’(a), f"(a),
f’(b), f"(b) needed for g(a), g(b).

Step 1.2. Then simultaneously compute f(xJ) for j= N-2,..., 2N-5 and
(o) (o)f(g(a)), f(g(b)). There is at least one pair such that f(xj)f(xj+)<0

for some j 1,..., 2N-5. Choose the pair such that either If(x))l or
If(x+))l is smallest over all If(xl))l, i= 1,... ,2N-5. Let ao=x),

(o).b0 Xj+.
Step 2. if f(g(a))f(g(b))>O set a=ao, b=bo

iff(g(a))f(g(b)) < 0 let al min (g(a), g(b))
b=max(g(a),g(b))

then if bt- a < bo- ao set a a, b b
otherwise set a ao, b bo.

It is necessary to divide step into two stages because f(g(x)) cannot be calculated
at the same time as f(x), f’(x), f"(x). We therefore make use of both stages for the
search procedure. In step 1.1 the N functional evaluations f(x)) for j 2, , N 3,
f’(a), f"(a), f’(b), f"(b) are performed in parallel. In step 1.2 the N functional
evaluations f(x))) for j=N-2,...,2N-5, f(g(a)), f(g(b)) are performed in
parallel. Arithmetic operations in the calculation of g(x) are assumed to be negligible
in comparison with a functional evaluation. The procedures described for the PASE
strategy are globally convergent because r(a) r(b) < 0 when n 1, f(a) f(b) < 0 when
n 3 at every iteration.

To summarize, both SAPE and PASE strategies combine an iteration procedure
performed at the end points a and b with a search procedure performed at interior
points. Both strategies are globally convergent. The search procedure guarantees global
convergence for both strategies whereas the iteration procedure leads to rapid conver-
gence locally when the bracketing interval (a, b) becomes sufficiently small.

Next, we consider the rates of convergence of SAPE and PASE. This leads to a
comparison of the relative efficiencies of the two strategies.

3. Convergence analysis. Suppose a (a, b) and f(a) f(b) < 0. We wish to deter-
mine a final interval (ay, by) such that (ay, by), f(af) f(bf)< 0 and bf-af <= 10-d,
where d is a prescribed precision. Given an interval (a, b) the next interval is determined
either by the search procedure or by the iteration function g(x). The next interval is

318 I. NORMAN KATZ AND MARK A. FRANKLIN

determined to be (al, hi) by the iteration function g(x) if bl--al < bo-ao and if
f(g(a)) f(g(b)) < 0. This must occur if property (P) holds, if (a, b) is sufficiently small
so that the local convergence properties of g(x) are valid, and if the reduction of the
interval (a, b) determined by these local properties is smaller than the reduction
determined by the search procedure. In our analysis we assume that these are the only
circumstances in which g(x) determines the next interval; otherwise the next interval
is determined by the search procedure. This means that for purposes of our analysis
the iteration scheme is assumed to determine the next interval only when the bracketing
interval is small enough. Also once the iteration scheme does determine the next
interval, it continues to do so until the desired accuracy is achieved. There are, of
course, cases where our assumptions will not hold, but these are assumed not to
commonly occur.

3.1. Analysis. Initially (a, b) may be so large that the local convergence properties
of the iteration function g(x) do not apply. Since the search procedure reduces the
size of (a, b), eventually these properties must apply. Observe that because of property
(P) both the search procedure and the iteration function g(x) result in the next interval
bracketing a.

First we analyze the behavior of the PASE strategy. Let
ml number of iterations in which the next interval is determined by the search

procedure.
m2 number of iterations in which the next interval is determined by the iteration

function g(x).
If (2) is expanded to include another term, it becomes

g(x)-a A.(x a)" +].,n(X--Ol) n+l "]-’’"

=A,,(x-a)" l+(x-a)+’’"
A(x- a) +-

We define the range of effectiveness of g(x) (i.e. the interval in which local convergence
properties hold) from

or more specifically by

(3) -< 10-a’,

where dl is a prescribed precision, d < d.
For any interval (a, b) the search procedure determines the next interval when

the following conditions are met:

b-a > 10-d (required accuracy is not met)

and at least one of the following hold"

b-a>lX./iz, llO-d, (g(x) is not in its range of effectiveness)

].,,](b-a)">(b-a)/M, (g(x) is less effective than the search)

ROOT FINDING ON MULTIPROCESSOR SYSTEMS 319

where

M,,={II2 if n= 1,
5 ifn =3.

Now let (a, b) be the initial interval. The search procedure continues until m is
such that

(4) (-,)"’(b-a)<= 10-a

or both of the following hold:

and

(b-a) < (b-a)

From (2) it follows that when Ix()- al <IA=/.I10-, then for >-
x’)- a g(x’-1)) cr A,(x’-1) a)" A,(A,,(xm-2)

t l+n+n2+’"+n-l(x(O)-- Ol)n

if n=3,

ifn=l.

Therefore if (4) does not hold and (5) and (6) do, then g(x) becomes effective in
determining the next interval. Then, since

m2 is such that

(7)

(8)

Ix)- a < (1/Mn)m,(b a),

IA,l"2(1/(N-1))ml(b-a)<=lO-d if n= 1,

IA3[3"2-’)/2(1/(2N-5)m’(b-a))3"2<=lO-d ifn =3.

Let rn m + m2, the total number of iterations required to satisfy the prescribed
accuracy, and assume that Ib-a[> 10-a; otherwise, stop.

It now follows from (6) that for the contraction mapping (n 1) if I,1--> 1/(N- 1)
then g(x) is never effective (independent of (5)) so m2 =0, and from (4) we have

(d+log(b-a)).rn m-log (N- 1)

If IXI< 1/(N-1), then ml is determined from (5), and m2 is determined from (7).
This leads to the following estimates for m.

(n 1), contraction mapping, PASE strategy:

if IA,I_-> 1/(N- 1), then

m,(PASE) (d +log (b-a)),
log(N-l)

m(PASE) m,(PASE);

320 I. NORMAN KATZ AND MARK A. FRANKLIN

if IA,I < /(N-), then

ml (PASE) max {d,-og Ix,/,l + og (b a), 0),
log(N-l)

(9) m2(PASE) max {d / log (b- a)- ml(PASE) log (S-1), O},
(log

m(PASE) ml(PASE)+ m2(PASE).

Similarly for the third order iteration (n- 3) ml is determined from (5) and (6),
and m2 is then determined from (8). This leads to the following estimates for m.

(n 3), third order iteration, PASE strategy:

mI(PASE) max {dl-log [A3//z3] / log (b-a), O,
log (2N-5)

1/2 log IA3(2N- 5)1 + log (b a)},
(10)

m2(PASE)=log 3
max log

log I1 l/=- mI(PASE) log i-/-5)+log (b-a)
0

m(PASE) ml(PASE)+ m2(PASE).

All logs are to the base 10.
In the SAPE strategy the search strategy consists of dividing the interval b-a by

2. The discussion above remains valid if N-1 is replaced by 2 for n 1, and 2N-5
is replaced by 2 for n 3. This gives the following estimates for m.

(n 1), contraction mapping, SAPE strategy:

(11)

(12)

if IA,I >=1/2, then

mI(SAPE) (d +log (b-a)),
log2

m(SAPE) ml(SAPE);
if IA II < 1/2, then

mI(SAPE) max {dl-log IA,/,I / log (b-a), 0},
log2

m2(SAPE) max {d + log (b- a)- mI(SAPE) log 2, 0},
log (1/IA ll)

m(SAPE) m(SAPE)+ m2(SAPE).

(n 3), third order iteration, SAPE strategy:

mI(SAPE) max{dl-log]A3/lx3]+log(b-a),O,
log2

1/2 log I2A3I + log (b a)},

{ [loglA3ll/2--d] }m2(SAPE) =log 3
max log

log I1 ’/2- mI---P--E]-+log (b-a)
0

m(SAPE) mI(SAPE)+ m2(SAPE).

All logs are to the base 10.

ROOT FINDING ON MULTIPROCESSOR SYSTEMS 321

Two points regarding the use of the expressions in (9)-(12) require further
discussion. First, the number dl in (5) is used to determine whether the iteration
function g(x) is in its range of effectiveness i.e. whether the second term in (3) is small
compared to the first term. We have determined empirically through testing that dl .3
is a satisfactory value for the contraction mapping. In the case of Halley’s method the
range of effectiveness is smaller and we use either dl or dl= 2. Second, the factors
A, and/z, in (3) must be given. When n 1, a Taylor series expansion easily shows that

Al g’(t), /x g"(a)/2.

When n 3, ,X3 is a standard quantity given, for example, in [14] for various third order
iteration functions.]-/’3 is not given however. In the Appendix we derive/z3 for three
third order methods, those of Halley, Chebyshev, and Cauchy (see [14]). In our
examples we have used only Halley’s method, for which

A3 [(f"/2f’)2- (f’"/6f’)],,

/x3 [_(f,o/8f’) + (f"f’"/2f’2) (3f"/8f’3)1,.
3.2. Numerical examples. In order to test the accuracy estimates and convergence

properties for the PASE algorithms presented in the previous sections, several nonlinear
equations were solved and analyzed. The equations are"

fl(x)=x-2+eX=O (taken from 15]),

f2(x)=5x-eX-3=O

f3(x) .5 + .5 e-/2 sin x D 0

(taken from 15]),

(taken from 16]).

f(x) has a unique root a=.4428544010, f2(x) has two roots Ol= 1.46882, a2
1.74375189. For D=.75 f3(x) has a root c =.5804383646. When applying Halley’s
method the functions f(x) themselves are used in the definition of gi(x). However
when applying the contraction mapping it is necessary to reformulate each equation
in such a way that [hl [g’(a)l satisfies 0 < Ihl < 1. For each equation the definition
of g(x), and the numbers h,/x, A3,/z3 are:

g,(x)=log(2-x), .642,/z .206,

g2(x) 1/2(e’ + 3),

g2(x)=log(5x-3),

g3(x) arc sin (e/2=(2D 1)),

h ---.008,/.-3--.025,
, .869,/z .434
h 12.07,/./,3-- 131.7

/1 --.874, -/.1- .382

A3 14.5,/x3 =-158.2

for the smaller root,

for the larger root,

.104,/z .012 for D .75,

/ .400,]J’3 .961.

For each of the two strategies, PASE and SAPE, and for each iteration function,
n and n =3, we compared predicted values for m (the number of iterations
determined by the search procedure) and m2 (the number of iterations determined by
the iteration function g(x)) with actual values. The predicted values are given by
(9)-(12). For Halley’s method, the range of effectiveness was smaller than for the
contraction mapping, dl was taken to be .3 as determined through extensive testing
for the contraction mapping; d or d 2 gives acceptable predictions for most
cases when Halley’s method is used.

322 I. NORMAN KATZ AND MARK A. FRANKLIN

ooo

ooo

ROOT FINDING ON MULTIPROCESSOR SYSTEMS 323

Table compares PASE and SAPE for the contraction mapping and Table 2 does
the same for Halley’s method. In Table the predicted values are very close to the
actual values. In Table 2 predicted and actual values are close for the PASE strategy,
and in most cases for the SAPE strategy. In one case, when the larger root for fE(x)
is solved for by SAPE, our assumption that the higher order iteration remains effective
in determining the next iterate once it starts becoming effective, is violated.

4. Comparison of strategies.
4.1. Computation times. Denote by Ts the total time needed to compute the root

c using the SAPE strategy, in which the root finding algorithm is serial while the
evaluation of g(x) is done in parallel with speed-up Sp(N). Denote by Tp the total
time needed using the PASE strategy, in which the root finding algorithm is parallel
while the evaluation of g(x) is done serially on each of N processors.

Then we have

Ts m(SAPE)(tp(N)mr(SAPE) + t),

Tp m(PASE)(tp(1)mF(PASE) +

is the time that it takes to perform a function evaluation in parallel
on N processors.

t is the time that it takes to perform tests for convergence and for
communication using the SAPE strategy.

t, is the time that it takes to compare residuals, perform tests for conver-
gence and for communication using the PASE strategy.

mF(SAPE) is the number of functional evaluations per iteration using the SAPE
strategy.

mF(PASE) is the number of steps which must be performed sequentially using
the PASE strategy.

We assume that all functional evaluations are of comparable complexity and that they
have similar speed-up characteristics. We also assume that tp(N)>> t and tp(1)>> t,.
Then since by definition Sp(N)-tp(1)/(tp(N)), we have

(15) Ts- m(SAPE)m(SAPE)tp(N)= m(SAPE)mF(SAPE)tp(1)/Sp(N)

(16) Tp= m(PASE)mI(PASE)tp(1).

4.2. Speed-up functions and decision regions. Generally, for each iteration function
(contraction mapping or Halley’s method), there will be certain regions where the
SAPE strategy will be advantageous, and certain regions where the PASE strategy will
be best. In general this will depend on the error tolerance allowed, the number of
computers available, the speed-up function, the characteristics ofthe nonlinear function
itself (i.e., AI,/1 and A3, ,u,3) and the length of the initial interval (b-a).

Consider next the speed-up function Sp(N). This function will depend on the
form of g(x) and on the parallel methods used to evaluate this function. For demonstra-
tion purposes we examine two sample Sp(N) functions, the first linear, and the second
logarithmic. Both forms have been encountered in empirical studies involving parallel
solution to various systems of equations ([17], [18], [19]). For linear speed-up:

(17) Sp(N)= Sp,(N)= +A(S-1).
For logarithmic speed-up:

(18) Sp(N) Splo(N) + B loglo N.

(13)

(14)

where
tp(N)

324 I. NORMAN KATZ AND MARK A. FRANKLIN

7

N M

ROOT FINDING ON MULTIPROCESSOR SYSTEMS 325

For each iteration function, contraction mapping or Halley’s method, the SAPE
strategy will be more efficient than the PASE strategy when Ts < T Using (15) and
(16), this condition will hold when

(19) Sp(N) > m(SAPE)mF(SAPE)/(m(PASE)mF(PASE)).

For each iteration function (contraction mapping or Halley’s method) the linear
and logarithmic speed-up functions in (17) and (18) can be substituted in (19).
Depending upon Sp(N), An, N and the other parameters involved (A,//x,, (b a), d)
the condition (19) can be tested and a decision can be made as to whether the SAPE
or PASE strategy is preferable. We call the curves

(20) Sp(N) m(SAPE)mF(SAPE)/ m(PASE)mF(PASE))

decision curves.
Some conclusions can be drawn (particularly for large N) without actually plotting

the decision curves. Consider first the contraction mapping (n 1). For the contraction
mapping mF(SAPE)= 3, mF(PASE) 1. IflAl>1/2 then IAll > 1/(N-) for all N since
it is assumed N >= 3. Therefore (19) becomes:

Sp(N)=l+A(N-1)>31og(N-1)/log2 (linear speed-up),
(2)

Sp(N) + B log N > 3 log (N 1)/log 2 (logarithmic speed up)

independent of the values of all other parameters. For linear speed-up, then, SAPE is
preferable if

A> (3 log (N-1)_ 1) (linear speed-up),
N- log 2

which is always true for sufficiently large N. For logarithmic speed-up, SAPE is
preferable if

(3 log(N-l) 1)B >
log N log 2

(logarithmic speed-up).

The right-hand side approaches 3/log 2 =9.996 as N
Suppose now that IAI <1/2, and N is so large that 1/(N-1)< IAI. We consider

two cases. First, assume that d-log [A//zl+log (b-a)<0. Then (19) becomes

Sp(N)>
3 log (N-l)
log (1/IAll)

For linear speed-up this leads to

(3 log(N-l) l)A > N- \ igg i 7i’1)
which always holds for sufficiently large N; therefore SAPE is more efficient for large
N. For logarithmic speed-up, we obtain

(3 log (N- 1)
B > log N\ lg ii,[i

For large N, then, SAPE is more efficient if B > 3/log (1/[Al[), and the line]A] 10-(3/B)

gives the asymptote of the boundary curve.

326 I. NORMAN KATZ AND MARK A. FRANKLIN

Now suppose that [h,I <1/2, N is so large that 1/(N-1)<[hll but dl-log
log (b a) > 0. Then for linear speed-up (19) becomes

Sp(N)= +A(N-1)>
3log(N-l) r
d + log (-)Liog 2

(d,-loglA,/la,,l+log(b-a))

log (1/IAll)
(d d + log Ix/,l)]

(linear speed-up),

which is always true for sufficiently large N. For logarithmic speed-up (19) is the same
as above with the left-hand side replaced by Sp(N)= + B log N. Therefore for large

3 [2(d,_loglA,/tz,l+log(b_aB>d+log(b_a) log

]+log(1/iAl)(d-dl+lOglAl/Xll) (logarithmic speed-up).

Now consider Halley’s method (n =3). From (10) it follows that m(PASE)-1/2,
m2(PASE) 0 as N- eo. Therefore m(PASE) 1/2 as N- oo. For Halley’s method
mv(SAPE) 7, mv(PASE)= 2 and (19) becomes

(22) Sp(N) > 7m(SAPE).

Since for both linear and logarithmic speed-up Sp(N), whereas m(SAPE) is
independent of N, it follows that for large enough N, SAPE is preferable.

Not considered here is a speed-up function of the form Sp(N)=
C[1-exp (-D(N-1))]. This represents speed-up saturation; that is, as the number
of processors increases, the speed-up function asymptotically approaches a constant
value C. From (20), it is clear that for large N the PASE strategy is preferable to the
SAPE strategy with this Sp(N) when the contraction mapping is used. From (22) it is
clear that SAPE is preferable for large N when Halley’s method is used if

C > 7m(SAPE).

4.3. Sample decision curves. In Figs. and 2 we give sample plots of some decision
curves (IAl[versus N for fixed values of dl, d, [A//xI, (b-a)) for the contraction
mapping. These are the curves

Sp(N) 3 m(SAPE)/m(PASE)

where we have substituted mF(SAPE) 3, mF(PASE) for the contraction mapping.
Sp(N) is given either by (17) for linear speed-up or by (18) for logarithmic speed-up.
For a specific parameter value A, or B, points on one side of the curve indicate that
PASE is the better strategy, while points on the other side indicate that SAPE is better.

For example considerfl(x) described in 3.2. For this function AI .642. Say that
Sp(N) is linear with A-.5. The ratio A//xt has been chosen to correspond to g(x).
Figure indicates that for N<_-29, use the PASE strategy, and for N_->30 use the
SAPE strategy. What this indicates is that with a linear speed-up function Sp(N), a
point will always be reached where the speed gains associated with parallel function
evaluation (SAPE) outweigh gains associated with using a parallel root finding
algorithm (PASE).

N, SAPE is preferable if

ROOT FINDING ON MULTIPROCESSOR SYSTEMS 327

CONTRACTION MAPPING: LINEAR SPEEDUP
A=I.0 A=0.5 A=0.2

1.00

0. 80

?ASE

O. 80 SAPE

O. 40

O. O0
O. 00 0. 00 0. 00 30. 00 40. 00 50. 00 60. 00 70. 00 80. 00 90. 00 100. 00

Processors N

FIG.

CONTRACTION MAPPING: LOGARITHMIC SPEEDUP

O. 50

0. 40

O. 30

0. 20

0. I0

O. O0
O. O0

B=8.0

B=5.0

B=4.0

SAPE

d=15 dl=0.3

li/u1
I=3.117, b-a=l.O

10. O0 20. O0 30. O0 40. O0 50. O0 I0. O0 70. O0 80. O0 OO. O0 100. O0

Processors N

FIG. 2

328 I. NORMAN KATZ AND MARK A. FRANKLIN

20. O0

15. O0

fO
O

I0.00
O

5. O0

HALLEY’ S
A=0.5

PASE

A=0.2

o.oo L____ ,L,
O. O0 O. O0

t.t._.a--a___l__I_l..

20. O0 30. O0 40. O0

METHOD= LINEAR SPEEDUP
A=0.1

SAPE

d=lS, dl=l.0

1%3/131=.3577 b-a=1.0

50. O0 60. O0 70. O0 BO. O0 3. O0 100. O0

ProcQaor .N

FIG. 3

In Fig. 2 the asymptotes of the decision curves are Ih[10-(3/B). For B =4, 5, 8,
the asymptotes are [h[=.178, .251, .422 respectively.

In Figs. 3 and 4 we give sample plots of some decision curves for Halley’s method.
These are the curves

Sp(N) 7m(SAPE)/(2m(PASE))

where we have substituted mF(SAPE)= 7, mF(PASE)= 2 for Halley’s method. Sp(N)
is again given either by (17) or by (18).

5. Summary and conclusions. This paper has considered the problem of finding
the roots of a single nonlinear equation on a multiprocessor system of the MIMD
variety. Two strategies referred to as SAPE (Sequential Algorithm Parallel function
Evaluation) and PASE (Parallel Algorithm Sequential function Evaluation) were
investigated. Both strategies are globally convergent to a simple root which has initially
been bracketed.

In the first strategy, two sequential root finding algorithms were used, the first a
contraction mapping algorithm, and the second Halley’s method. Speed-up for this
approach results from a parallel evaluation of the function involved. Linear and
logarithmic speed-up functions were investigated and expressions were derived for the
number of iterations required to find the root for a given accuracy. Sample decision
curves were given which allow determination of which strategy would be best when
the number of computers available and certain parameters were known.

The results indicate that using either a contraction mapping method or Halley’s
method for a linear speed-up function, and a large number of processors, the SAPE
strategy is best. With a logarithmic speed-up function the best strategy for a large

ROOT FINDING ON MULTIPROCESSOR SYSTEMS 329

HALLEY’S METHOD: LOGARITHMIC SPEEDUP
B--6.0

0. O0

15. O0

I0. O0

B=5.0 B=4.0

PASE

5. O0
d=15, dl=l.O

I),3/1.131=.3577 b-a=l

0.00 ,I

O. O0 tO. O0 :)0. O0 30. O0 40. O0 50. O0 60. O0 70. O0 I]0. O0 go. O0 100. O0

Proceseore N

FIG. 4

number of processors will be dependent on the speed-up function parameter. If the
speed-up function is of saturating type (i.e. reaches some limiting value as N becomes
large) then for the contraction mapping and large N the PASE strategy is best whereas
for Halley’s method the best strategy depends upon the saturation parameter.

Appendix. Suppose that g(x) is an iteration function of third order, and suppose
g(a). In a sufficiently small neighborhood of a, we have

g(x)- O 3(X-- l) "-i-/.,/.,3(X 0)4-I

where 3 and /.2, are independent of x but depend upon f(x) and its derivatives (up
to order 4) evaluated at a. A3 is a standard quantity given, for example, in [14]. We
now derive expressions for]d, for the iteration functions of Halley, Chebyshev, and
Cauchy.

A.I. Halley’s method, g(x) is given by (2a). Assume for simplicity that a 0. It
is shown in [14, p. 941 that g(x)= is determined by solving for in

(A1)

where

Writing

f(x) + x)[f’(x) -1/2f"(x)u(x)] 0

u(x) =f(x)/f’(x).

f(x) =f’x -’l-Ex2 "F-x -i-LX4-I-"24
where all derivatives are evaluated at 0, and retaining terms needed for a fourth order

330 I. NORMAN KATZ AND MARK A. FRANKLIN

A.2. Chebyshev’s method. We use the notation in [14]: u(x)=f(x)/f’(x), Yl 1,
Y2 A2, Y3 2A22-A3, Y4 5A32-SA2A3 + A4, Aj(x) f(J)(x)/(j!f’(x)) (see [14, pages
80, 84, 232 formula 2a]). Chebyshev’s iteration function is given by

) zx)(lx-g(X) X-- Yl(X)t/(X)-- r2(x)u2: X
f’(x))kf(x)]

Also the fixed point g() satisfies (see [14], page 80)

:x-E Yu.
Therefore, it follows that

g(x)
)3"-- Y3(x)

(x- x-

As x --> oo, u(x) f(x)/f’(x) -> O, and

u (f(x)-f(a))/(x-a)
x-a f’(x)

so we obtain

(A2)

Also we have

g(x)- a Y3(c)
(x- a)4 (x-a)

(A3)

+ Y4(x)
u

--t U+’" ".

g(x)-a
lim

(x O)3-
Y3(a)"

(g(x)-a)- Y3(a)(x- a)
(x- 0)4

Y3(x)[u(x)]34r" Y4(x)[u(x)]4" Y3(o)(x 0)
(X 0)4

Y3(o)([u(x)]3 (x oz)3) + Y4(x)[u(x)]4+ y3(x) Y3(ce))[u(x)]
(X)4

(()3(x-a)\\y-a x-a/

Y(x)-
x-oY3(c)(;(-x)) 3"

ROOT FINDING ON MULTIPROCESSOR SYSTEMS 331

Now since

u(x)
X Ol

(f(x)-f(a))/(x-a) f’(a)+(1/2)f"(a)(x-a)+...
f’(x) f’(a +f"(a)(x oz +...

if(a)+ f"(a)(x-a)+... 1-f(a)(x-a)+’’-
$’()

=1 --(x-a)+...
2 f’(a)

it follows that

(u(x))3 =1
3f"(a)

\x-a/ 2 f’(a)

Substituting into (A3), we obtain, as x a

g(x)- () 3 f’(,)
(X 0)4 (X-- 0) 2 if(a)

Therefore

(x-)+..-.

Y()+ Y(,)- Y(,).

g(x)--Ot Y3(o)(x- o)3q- (-3 Y2() Y3() + Y4()- Y(o))(x- a)4+’’"

/.3(X O) + I/,3(X O)4"

where

Y(a 4A2(a)A(a A3(a 2A2(a
(f"()f’(, f’(,

[f’(a)]2
A3(a).

A.3. Cauchy’s method. Cauchy’s iteration function is given by (see [14, pp. 93,
232, formula 7a])

g(x)=x-
2u(x)

+(1-4u(x)A:,(x)) ’/z

where u(x)=f(x)/f’(x) and Az(x)=f"(x)/(2f’(x)). g(x) is obtained by solving the
following quadratic equation for as a function of x (see [14, p. 93])"

Po,2(t) f(x) +f’(x)(x) +if(x)2"(t-x)2 =0.
We also have

0=f(a) f(x)+f’(x)(a x)+
if(x) +f’"(x) f’(x))4

2"
(a-x)2

6
"(a-x)3+

24
(a-x +’’’

(A4)

Po,2(ce +f’(x) ot x)3 +fiV(X) ot x)4
6 24

and

Pg2(t)
P’2(a)=P2(t)+P2(t)(t-a)+

2
(t-or)2+’’"

P2(t)(a- t)+ O[(X-- 0)6]

332 I. NORMAN KATZ AND MARK A. FRANKLIN

since g(x) is of third order. Substituting into (A4), we obtain

P2(t)(t-) (f’(x) +f"(x)(t x))(t a)

f"(x)
(X O)3+

fiv’x’(
(x a)4(AS)

6 24

-f"(a-----) (x a)3 _fi,(a__._)(x a)4 .
6 8

Now for the first expression on the right we obtain

(f’(x) +f"(x)(t- x))(a) (f’(a) +f"(a)(x a) +if(a)(t- x)

+f’"(a)(x a)(t- a))(t- a)

(f’(a)+f"(ce)(t- or) +f"(ot)(x- a)(t- a))(t- o)

:f’(a)(t- ct) + O[(x o)6].
Therefore substituting into (A5) this gives

f’"(a))3 f’v(a))4t-a=g(x)-a=- (x-a -----------(x-a
6f’() 8f’()

/3(X O) --/Z3(X- O)4.

Acknowledgment. We appreciatively acknowledge the assistance of Sanjay Dhar
of the Department of Electrical Engineering, Washington University, for writing and
executing the programs which lead to the results in the tables and the figures.

REFERENCES

D. CHAZAN AND W. L. MIRANKER, A nongradient and parallel algorithm for unconstrained minimiz-

ation, SIAM J. Control, 8 (1970), pp. 207-217.
[2] O. HEELER, A survey ofparallel algorithms in numerical linear algebra, SIAM Rev., 20 (1978), pp. 740-777.
[3] W. L. MIRANKER, A survey ofparallelism in numerical analysis, SIAM Rev., 13 (1971), pp. 523-547.
[4] ., Parallel methods for solving equations, in Parallel ComputersmParallel Mathematics, M. Feil-

meir, ed., 1977, pp. 9-15; also Mathematics and Computers in Simulation, 20 (1978), pp. 93-101.
[5] H. MUKAI, Parallel algorithmsfor unconstrained optimization, Proc. of the IEEE Conference on Decision

and Control, Fort Lauderdale, FL, 1979.
[6] ., Parallel algorithms for solving nonlinear equations, Report, Dept. Systems Science and Mathe-

matics, Washington University, St. Louis, 1979.
[7] W. G. POOLE, JR. AND R. G. VOIGT, Numerical algorithms for parallel and vector computers: an

Annotated Bibliography, Computing Reviews, October 1974.
[8] A. H. SAMEH, Numerical parallel algorithmsmA survey, in High Speed Computer and Algorithm

Organization, D. J. Kuck, D. H. Lawrie and A. H. Sameh, eds., Academic Press, New York, 1977,
pp. 207-228.

[9] n. S. STONE, Problems of parallel computation, in Complexity of Sequential and Parallel Numerical
Algorithms, Proceedings of a Symposium of Sequential and Parallel Numerical Algorithms, May
1973, J. F. Traub, ed., Academic Press, New York, 1973, pp. 1-16.

[10] G. S. SHEDLER, Parallel Numerical Methods for the Solution of Equations, Communications ACM, l0
(1967), pp. 286-291.

I11] G. S. SHEDLER AND M. M. LEHRMAN, Evaluation ofredundancy in a parallel algorithm, IBM Systems.
J., 6 (1967), pp. 142-149.

12] M. A. FRANKLIN AND N. SOONG, One dimensional optimization ofmultiprocessor systems, IEEE Trans.
Comput., C-30 1981), pp. 61-66.

[13] E. ISAACSON AND H. B. KELLER, Analysis of Numerical Methods, John Wiley, New York, 1966.
[14] J. F. TRAUB, lterative Methodsfor the Solution ofEquations, Prentice-Hall, Englewood Cliffs, NJ, 1964.

ROOT FINDING ON MULTIPROCESSOR SYSTEMS 333

[15] W. H. KAHAN, Personal calculator adds key to solve any equationf(x) 0, Hewlett-Packard J. (December
1979), pp. 20-26.

[16] B. CARNAHAN, H. A. LUTHER AND J. O. WILKES, Applied Numerical Methods, John Wiley, New
York, 1969, p. 190.

17] M. A. FRANKLIN, Parallel solution ofordinary differential equations, IEEE Trans. Comput., C-27 (1978),
pp. 413-420.

18] L. RASKIN, Performance evaluation ofmultiple processor systems, Ph.D. thesis, Dept. Computer Science,
Carnegie-Mellon Univ., Pittsburgh, August 1978.

[19] G. M. BAUDET, The design and analysis of algorithms for asynchronous multiprocessors, Ph.D. thesis,
Dept. Computer Science, Carnegie-Mellon Univ., Pittsburgh, April 1978.

SIAM J. ScI. STAT. COMPUT.
Voi. 6, No. 2, April 1985

1985 Society for Industrial and Applied Mathematics
006

THE NUMERICAL SOLUTION OF HIGHER INDEX LINEAR TIME VARYING
SINGULAR SYSTEMS OF DIFFERENTIAL EQUATIONS*

STEPHEN L. CAMPBELLf

Abstract. A family of Taylor-type methods is given for solving numerically a large class of singular
systems of differential equations of the form A(t)x’(t)+ B(t)x(t) f(t). The advantages, disadvantages,
and implementation of these methods are discussed and several analytical and numerical examples are given.

Key words. Taylor series methods, singular systems, linear differential equations

1. Introduction. Singular linear systems of differential equations of the form

(1.1) A(t)x’(t) + B(t)x(t) =f(t)

where A, B are n n matrices and A(t) is singular for all t, arise in a wide variety of
circuit, control and economic models [2], [3], [12], [13]. They occur both as the natural
way in which (circuit) equations are formalized, as reduced order models, in cheap
control problems, and in constrained path control problems. See [2], [3] for a more
careful development of applications. The numerical and analytic solution of (1.1), if
A, B are constant, is reasonably well-understood [2], [3], [14], [18], [19]. The situation
when A, B depend on is quite different. Recent work by Petzold, Gear, [10], [14],
[16] and ourselves has shed some light on the structure of (1.1); however, only index
one (to be defined in the next section) and some index two systems can be reliably
solved numerically [16] without restrictive assumptions on A, B. The same (implicit)
methods do not always work on higher index systems and there is no known easy way
to determine when they should work [16]. In fact, no general numerical method has
yet been given for (1.1). The outline for the rest of this paper is as follows.

2. Develops necessary notation and terminology concerning (1.1).
3. Motivates and introduces our family of methods.
4. Shows that the restrictive assumptions made in 3 are actually not very

restrictive.
5. Discusses the implementation of our methods and gives the results of some

numerical tests.
6. Additional comments.
7. Conclusions.

The purpose of this paper is to present the methods and discuss their general
properties. The proofs, accordingly, use "soft" rather than "hard" analysis. Much work
developing more precise error bounds and examining the stability of the different
variations possible remains to be done.

2. Notation and terminology. We shall assume that A, B, f are sufficiently differ-
entiable functions of defined on an interval [a b]. Following [8], [14], (1.1) is called
solvable if for every sufficiently smooth f, in particular for every infinitely differentiable
f, there is a smooth solution to (1.1) defined on all of [a b] and the solutions are
uniquely determined by their value at any point in [a b]. This definition of solvability
is not the same as that given in [2], [3].

* Received bythe editors June 7, 1983, and in revised form October 28, 1983. This research was sponsored
by the Air Force Office of Scientific Research, Air Force System Command, under grant AFOSR-81-0052B.

f Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27650.

334

NUMERICAL SOLUTION OF HIGHER INDEX SYSTEMS 335

Given a pair of n n matrices E, F such that they form a regular pencil, that is
AE / F is nonsingular for some scalar A, there exists nonsingular P, Q so that

0 g’ PFQ-
0 I’

C is invertible, CG-GC, and N is nilpotent of index k. That is Nk --0, Nk-l O.
(If N- 0, we consider k 1.) Then k is called the index of the pencil (E, F), denoted
k- Index (E, F). The index of a matrix E is given by Index (E)- Index (E, I) and is
just the index of nilpotency of the largest Jordan block corresponding to a zero
eigenvalue in the Jordan canonical form of E. If E is invertible, then by definition
Index (E) Index (E, I) =0. The form (2.1) is a weak version of the Kronecker canoni-
cal form of a pencil. See [7, p. 173] for a proof of (2.1).

The index of (1.1) at time is the index of the pencil (A(t), B(t)). In the
nomenclature of [16], this is the local index. We assume throughout the paper that
A(t) is singular for all so that the index of (1.1), k(t), is greater than or equal to
one at time t. If k(t)=-1 on [a b], then (1.1) will be called an index one system. If
(1.1) is not an index one system, it will be called a higher index system.

3. The methods, the usual way [1], [9], [ll], [18] of numerically solving (1.1) in
either the constant coefficient or index one case is by implicit backward differences.
(Note, however, [12], [17], [19].) For example, an implicit backward Euler method
would be

(3.1) A(tm) xm Xm-I / n(tm)X =fro"h

If A(tm)+ hB(t,) is nonsingular, then (3.1) may be solved for x,, given x,_. This
method works for index one systems [3], [16], and higher index constant coefficient
systems [18] provided the step size is held fixed [16]. In general, it does not work on
(1.1) if (1.1) is higher index. (For exceptions see [6], [16].)

There are several problems with using implicit methods such as (3.1) on higher
index problems.

(P1) Even in the constant coefficient case the usual step size strategies must be
altered 10].

(P2) The method may not converge in practice because of numerical instability.
(P3) The method may not even converge theoretically under the assumption of

exact arithmetic.
(P4) The coefficient of x,,, A(t,,) + hflB(t,,) (fl depends on the method used)

becomes progressively more ill-conditioned as h decreases.
(PS) Even if f is known exactly and the derivatives off are known exactly, they

are computed numerically which limits the accuracy attainable since round-off intro-
duces an error term of the form O(e/hk-l).
Our method, at some added overhead, will circumvent all of these difficulties to some
extent for many higher index problems.

Examples in [3], [4] and the positive results on (3.1) in [5], [6], [8] show that
whatever the method developed to solve (1.1), it must not only involve solving a new
system of algebraic equations at each step, but also take into account the way in which
A(t), B(t) change and compute derivatives of f. With these observations in mind, we
now develop our methods.

We shall assume that (1.1) is solvable and we are trying to find the solution x(t).
Assume at time /’ we know x(/’). The usual Euler method consists of estimating (or

336 STEPHEN L. CAMPBELL

finding) x’(f) and then estimating x(f+ h) by (t + h) x(f) + hx’(f). We begin by
trying to solve for x’(f). Let

x(t) E Xiti,
i=0

f= El6’
i=0

A(t) E Aft’, B(t) E B,6’,
i=o i=o

where 8 t- t", so that ci (c(i)(f))/i! for c x, A, B, f. The series will be considered
infinite in what follows but it will be clear from the development to follow that we
only need the first few terms and hence A, B, f, x need only be sufficiently differentiable.

Substituting the expansions (3.1) into (1.1) and equating like terms gives the
system of equations

Ao 0 0 0 0

A + Bo 2Ao 0 0 0

A2+ B 2A1 + Bo 3Ao 0 0

A + B2 2A2+ B 3A + Bo 4Ao 0

A44- B 2A3 + B2 3A2+ B1 4A1 + Bo 5Ao

-Xl] fo- Box
fl Bxo
f2- Bxo(3.3)

or

(3.4) x =f.

Any solution of (3.3) must satisfy the nj-dimensional subsystem

(3.5)

or

Al+. Bo 0

LA_ J B_ jA f
_

B_ Xo.J

(3.6) jxj fj, j=>0.

Notice that this equation is to hold exactly. Of course j is a square singular matrix
so that (3.6) does not uniquely determine xj. However, it is possible that (3.6) determines
x uniquely, or even x,., xs, s <j uniquely.

It follows from elementary linear algebra (the row echelon normal form) that the
first z components ofthe consistent system of equations Eu b are uniquely determined
if and only if there is a nonsingular matrix R such that

(3.7) RE=[Izxz 0]0 H

Equivalently, the first z columns of E are linearly independent, and the first z columns
are linearly independent from the remaining columns.

We shall say j is s-full if (3.7) holds with z sn where the A, B are n n. Thus
(3.6) uniquely determines Xl, , xs if and only if it is r-full with r >= s. The question
of how often is s-full with s-> will be left to the next section. In particular, the
relationship between the fullness of ’ and the traditional analytic methods of solving
(1.1) by differentiations and coordinate changes will be discussed at the end of 4
just prior to Theorem 4.5.

NUMERICAL SOLUTION OF HIGHER INDEX SYSTEMS 337

There are many ways to solve (3.6) since solutions are nonunique. We shall solve
it in the least squares sense so that the solution may be denoted by M]fj where Mf is
the Moore-Penrose inverse [7]. This solution was chosen since its numerical behavior
is well understood and numerous packages for its computation exist.

We are now ready to define our methods.
The ith order, j-block method ((i,j)-method) with step size h proceeds as follows:

Given Xo=X(’), form the equations djx=f and solve for =,df denoted
[1, f]. Then let the value of x(f+ h) be estimated by

(3.8) (f+ h) Xo+ h2 + h22+ + h’"Xi
Provided j is /-full, then (3.8) will be O(h ’+1) accurate if x(’) was O(h) accurate.
The local error is O(h/). When A =/, this method reduces to a higher order Taylor
method. Statements about the accuracy of the i, j) -method are based on the analytic
calculation of , f. Using numerical estimates of , f. will be discussed in 6.

Several possible advantages over implicit methods such as (3.1) immediately
suggest themselves.

First, provided j stays/-full and has constant rank as varies, the method should
result in a globally O(h) approximation.

Secondly, the conditioning of (3.6) is independent of the step size h, whereas
A(t,) + hB(t,) in (3.1) becomes more and more ill conditioned as h --> 0+.

Thirdly, the step size can be easily varied which is known to sometimes lead to
problems for (3.1) even for higher index constant coefficient problems.

4. The fullness assumption. The applicability of the i, j) -methods depends in
large part on the generality of the fullness assumption on and the smoothness of
its implementation.

THEOREM 4.1. Suppose that4 is s-fullfor a <- <- b and that there exists a continuous
invertible R(t) so that

(4.1) R(t)(t)=[Insns 0]0 H(t)

Then the (s,j)-method with step size h is O(h) accurate on [a b].
Proof. Let

[R,(t) R2(t)]R(t)=
R3(t R4(t)

where R(t) is ns ns. Then applying R(t) to (3.5) yields

(4.2)

[R(t) R2(t)]fj(t)

=[R(t) R_(t)] -[Rl(t) RE(t)]
-l

Since RI, RE are continuous and hence uniformly bounded on [a b], we are done.
This procedure allows us to solve for the first s derivatives of x if RI and RE are
known, fq

Note that (4.2) implies that R, R2, are actually smoother than continuous. The
expression (4.2) is the key to understanding why the i, j) -methods work so well. If

338 STEPHEN L. CAMPBELL

(4.1) holds with R(t) which is invertible and/-times differentiable, we shall say Mj is
l-times smoothly s-full.

THEOREM 4.2. If is 1-full for a <--_ <-b and there exists a continuous invertible
R(t) so that

R(t)Mj(t)=
H(t)

let

R(t) [RI, Rljl
R21 REjJ

Then every solution of (1.1) is a solution of
(4.3)

where

where each Rr is n n.

x’-Q(t)x+f(t)

j--l j--l

(4.4) Q(t)=- R,,+l(t)B,(t), f(t)- R.,+(t)f(t).
i=o i=o

The proof of Theorem 4.2 is trivial. Note that what the (1,j) method is really
doing is solving (4.3) by an explicit Euler method. This has both advantages and
disadvantages.

In the constant coefficient case, if an inconsistent initial condition is used, then
the implicit backward differences numerically approximate a distribution [3]. This can
cause problems if you do not want the distributional behavior. In the (i, j)-methods,
under the assumption M is continuously /-full a smooth solution of (4.3) results for
every initial condition. However, if the initial condition is inconsistent for (1.1), the
resulting solution of (4.3) is now a solution of (1.1).

There is a trade-oil here. If we have a reasonable starting value for the initial
value, the distributional solutions cause no difficulty. However, if distributional solu-
tions are present and we have an initial condition that is not even close to consistent,
we get no indication of that from an (i,j)-method.

In the i, j) -method what is crucial is the continuity of the first ni rows of R.
PROPOSITION 4.1. Suppose that sg is s-fullfor a <-_ <- b and that rank (M) is constant

on [a b]. Then thefirst ns rows ofM(t), denoted [/(t),/2(t)] may be usedfor [Rl, R2]
in (4.2) and R(t), R2(t) are as smooth as A(t), B(t) are.

Proof. That R, RE are as smooth as A, B follows from the assumption that M
has constant rank. As mentioned earlier, if Mj is s-full, then the first ns-components
of any solution to (3.5) are uniquely determined when the equation is consistent and

f is a solution of Mx f when it is consistent because fj is then in the range
of.

It is important to note that Proposition 4.1 does not assume A(t) has constant
rank but rather that rank (g(t)) is constant.

Before proceeding further, it should also be pointed out that for a general system
in the form (1.1), that M being smooth and s-full does not imply it is smoothly s-full.

Example 4.1. Consider

(4.5)
0 at y’

+
0 g

so that

NUMERICAL SOLUTION OF HIGHER INDEX SYSTEMS 339

3(a,t):

-0 0 0 0 0-
0 at 0 0 0 0

0 0 2 0 0

0 +a 0 2at 0 0

0 0 0 0 3

0 0 0 2a + 0 3at

Then M3(a, t) is 1-full for all values of a, t. Also rank (M3(a, t))=4 if a =0 or t=0
while rank (3(a, t)) 5 if a 0 and 0. It is a simple exercise to show that if

R(a,t)da(a,t)[I2x2 0] a0,
0 H

then the first two rows of R(a, t) are discontinuous at =0. Note also that (4.5) is not
a solvable system on [0 1] if a 0.

All of the preceeding discussion has yet to address the extent to which the
(i,j)-methods are applicable. We shall now show that they work in almost all cases
for which it is currently known that (1.1) is a solvable system.

We begin with the constant coefficient systems.
THEOREM 4.3. Suppose that (1.1) is a solvable system with constant coefficient n n

matrices A, B and the pencil (A, B) has index k. Then k+l is 1-full so that the
(1, k +)-method gives an O(h) approximation on [a b].

Proof. For constant coefficient systems, solvability is equivalent to regularity of
the pencil [2], so that there exists a constant invertible P, Q such that

and N= 0. Thus s+ is 1-full if and only if

(4.7)

I
0

G
0

0 0 0 0 0 0 0

N 0 0 0 0 0 0

0 21 0 0 0

I 0 2N 0 0

G 0

0 I

G 0 (k+l)I 0

0 0 I 0 (k+l)N_

is 1-full. Use the (1, 1) entry to eliminate the (3, 1) entry by a row operation. Similarly
use the (3, 3) entry to eliminate the (5, 3) entry. Continuing in this manner, we get
finally that it suffices to show

(4.8)

N 0 0 0

2N 0 0

I 3N

I (k+I)N

340 STEPHEN L. CAMPBELL

is 1-full.
Starting at the bottom use each matrix I to eliminate the matrix sN above it. The

result is

which is 1-full.

-0 0 0 0

I 0 0 0

0 I

0 -k(k+ 1)N2

_0 I (k+ 1)N

COROLLARY 4.1. For the linear constant coefficient version of (1.1) where k
Index (A, B), assume f is k / times continuously differentiable. Then dk+i is i-full and
the (i, k / i)-method gives O(h i) accuracy on [a b] ifthe starting value is O(h i) accurate.

As noted earlier, there already exist methods for the constant coefficient case [3],
[17], [18], [19]. The main point of Theorem 4.1 is to assert the i, j) -methods also work
on these problems and to help in analyzing the general case.

We now turn to the only known procedures for the explicit solution of higher
index systems [5], [12], [17]. The key points to determine are whether has constant
rank and is smoothly s-full.

We begin with the case studied in [5]. Consider then

(4.9) A(t)x’(t) + x(t) =f(t).

THEOREM 4.4. Suppose that Index A(t) -< 2 on [a hi, rank (A(t)2) is constant, and
A(t) is differentiable. Define P, Q, N, C by P AA, Q I P, C AAA, N
(I-AA)A where A denotes the Drazin inverse ofA [2]. If I-N’(t) is invertible on
[ab], then it was shown in [5] that (4.9) is solvable and how to find the solutions. If, in
addition, I +2N’ is invertible and rank (Q(I-N’)Q)=rank (Q(-2N’)Q)=rank Q,
then S has constant rank and is smoothly 1-full

Before proving this theorem, notice that it does not require A(t) to have constant
rank. Later in this section Theorem 4.4 will be extended to cover (1.1) when B(t) is
invertible and the local index is less than or equal to two.

Proof of Theorem 4.4. Since the proof gets somewhat messy, we shall first prove
a special case. Consider then

where N2= 0. Then at

Nx’+ x=f

IN o

(4.10)
da(t)= I+N’ 2N

N"/2 I+2N’ 3

Since N2--0, we have NN’=-N’N and hence N(I+aN’)-I=(IaN’)-N when
the inverses exist. Now multiply row three of ,3 by -2N(I +2N’)- to get the new
second row of

(4.11) [I/N’-N(I+2N’)-IN" 00]

since -2N(I+2N’)-N=2(I-2N’)-N2=O. Multiply (4.11) by (I-2N’) to yield

(4.12) [(I-2N’)(I+N’)- NN" 0 0].

NUMERICAL SOLUTION OF HIGHER INDEX SYSTEMS 341

However,
NN" N"N 2(N’)2

so that (4.12) is

(4.13) [(I-2N’)(I+ N’)+ N"N+2(N’) 0 0].

The N"N may be eliminated by adding -N" times row one to (4.13) and row (4.13)
is now

[I-N’ 0 0].

Since I-N’ is invertible, we have that M3(t) is 1-full and has been row reduced to

II-N’ 0

N"/2 I+2N’ 3

two additional row operations gives

N
0

which has constant rank 2n.

0

0

I+2N’ 3

The proof of the general case is similar but more complicated.
We have

M3(t)=II+C’+N’ 2C+2N 0

[_(C"+N")/2 I+2C’+2N’ 3C+3

where CN= NC =0, S2=0, and rank C2=rank C. Note that CN’=-N’C and
NN’=-N’N. Add -2N(I + 2N’)- times row three to row two. Since

2C +2N-2N(I + 2N’)-’ (I + 2C’+ 2N’) 2C -2N(I + 2N’)-t2C
(I-2N’)-[(I-2N’)C-2NC’]

(I 2N’)-[C 2(NC)’] (I 2N’)- C,

this gives a new second row of

[I+C’+N’-N(I+2N’)-I(c"+N") (I-2NP)-Ic 0].

Multiply this row by I-2N’ to yield

[(I-2N’)(I+C’+N’)-N(C"+N") C 0].

Since N(C + N)= 0, it follows that

N(C"+ N") -2N’(C’+ N’) N"(C + N)
so that row two is

[(I-2N’)(I+C’+N’)+2N’(C’+N’)+N"(C+N) C 0].

The N"(C + N) term is eliminated using row one so that we have the new second row,

[I+C’-N’ C 0].

Suppose for convenience that -0 is the time of interest and take a constant similarity

342 STEPHEN L. CAMPBELL

transformation so that we may assume

C(0)=
0 0 N4(0

and C(0) is invertible. Thus

[Cl tC2] [tN tN2]C=
tC3 tC.l’

N-
tNa NI"

Now by assumption C is invertible for small and rank C rank C so that

C__ [Cl tC2]tC3 2C3c-(C2
while CN 0 implies (new N)

[t2S, tN2].N=
tN3 N4.1’

the first two rows at 0 are now

I C,0) 0 0 0 0 0

N4(0) 0 0 0 0

/ I+C(0) C2(0)-N2(0) C,(0) 0 0

Lc3(o)- N3(0) I- N(0) 0 0 0

Use the first row to zero out the I + C(0), Ca(0)- N3(0) and leave

co) o o ooo
N4(0) 0 0 0 0

C(0)-N(0) C,(0) 0 0

I- N(0) 0 0 0

which will imply M3(0) is 1-full since by assumption Q(O)(I- N’(0))Q(0) I- N(0)
is invertible. At this point we have row reduced M3(0) to

-c,(o) o o o o o
o N4(0) 0 0 0 0
0 C(0)- N(0) C,(0) 0 0 0
0 I-N’(O) 0 0 0 0

I + 2C(0) 2(C2(0 N2(0)) C(0) 0
N"(0) +,C"(0)

2 2 2(C2(0) N2(0)) I 2N(0) 0 N(0)_

Using the rows and columns with only one nonzero entry we see M3(0) has the same
rank, 2n + rank C, as

c,(o) o o o o o
o c,(o) o o o

I-N(O) 0 0 0 0

o o o c(o) o
0 0 I-2N(0) 0 N4(0)

Thus under the assumptions of Theorem 4.4, M3 has constant rank. l-1

NUMERICAL SOLUTION OF HIGHER INDEX SYSTEMS 343

The key point of this result is not so much the specific assumptions but rather
that M3 not being 1-full or having constant rank is the exceptional or special case.

In proving Theorem 4.4 we assumed in (4.9) that B(t)=/. The next propositions
substantially relax that assumption"

PROPOSITION 4.2. Suppose that P(t) isj-times continuously differentiable and invert-
ible on [a b]. Let Mj be the matrix for (1.1) and Mjp be the matrix for
(4.14) PAx’+ PBx P.
Then there is a smooth invertible matrix R t) such that R)jp . In particular jp
and j have the same rank for all and the same fullness properties.

Proof. Let P(t)= P,’ as in (3.2). Then

PoAo 0 0 0

(PoA + P1Ao) + PoBo 2PoAo 0 0

PiA2_i +(PoB + PBo) 2(PoA + PAo)+ PoBo 3PoA 0
i=0

PiA3_i+ PiB2_, 2 P,A2_+PoB+P1B 3(PoA+PAo)+PoBo 4PoA
i=0 i=0 i=0

Starting at the top, multiply each row by pffl, define /5, pp, and add _/5 times
each row to the one below to get

Ao 0 0 0

A + Bo 2Ao 0 0

A2 +/52Ao + BI 2A + Bo 3Ao 0

A3 +/52A d-/52Bo + B2 2A2 + 2/52Ao + B 3A + Bo 4Ao

Now starting at the top add -P2 times each row to the second row below:

Ao 0 0 0
A -b Bo 2Ao 0 0
A -F B 2A + Bo 3Ao 0

A3-F B2 2A2+ B 3A+ Bo 4Ao

Continuing this process j- 2 times row reduces Mp to .
The question ofwhether a given M is s-full is unchanged by the adding of multiples

of a column of to any column to the left of that column. Performing column
operations starting at the right-most column of Mj, we may prove the following
Proposition in a manner analogous to the way Proposition 4.2 was proven.

PROPOSITION 4.3. Suppose that Q(t) isj-times differentiable and invertible on [a b].
Letting x Qy changes 1.1 to

(4.15) AQy’+(AQ’+BQ)y=f.

Let j be the matrixfor (1.1) ando the matrixfor (4.15). Then is s-full ifand only
ifJo is s-full and rank Jo rank for all in [ab].

One of the earliest methods for solving (1.1), frequently used for finding higher
order singular arcs in optimal control theory, consists of repeatedly differentiating and
performing coordinate changes [8], [12], [17]. This technique and its variations require

344 STEPHEN L. CAMPBELL

constant rank assumptions and can be quite difficult to apply since, in general, the
coordinate changes are time varying.

We shall now show that when these techniques work with j-differentiations, then
Mj+ is 1-full. Since the (1,j)-methods work directly with derivatives of the original
coefficients A(t), B(t) instead of differentiating time varying coordinate changes
applied to differentiated blocks, our method is probably easier to apply in most higher
index problems if only one solution is sought.

Suppose then that we going to solve (1.1) by using differentiations and coordinate
changes. Let Mj be the associated matrix (3.5). As shown in Propositio.ns 4.2, 4.3,
performing the corresponding coordinate changes on A, B to get a new M does not
alter the rank or fullness. Thus to show that j is, say, 1-full and of constant rank we
need only show the transformed j has those properties. For notational convenience
we shall work with 4.

The first assumption needed is that A(t) has constant rank. Then there exists
smooth P, Q such

P(t)a(t)Q(t)= [Io 00]-
Let x Qy and multiply by P to transform Ax’+ Bx =f to

XtI BIIXI + BI2X2-- fl,
(4.16)

B21XI + B22X2--f2.
The corresponding ,S4 is

I0

00

BllBl2
B21B22(4.17) B,B
B_B.2

00 00 00

00 00 00

210 00 00

00 00 00

BIlBI2 31 0 0 0

B21B22 0 0 0 0

BB]2 BilBo2 4I 0

B_B2 B21B22 0 0

If B22 is invertible for all t, then (4.16) is index and M4 is 3-full. Suppose then B22
has constant rank and is always singular. Differentiate the second equation (4.16) to give

(4.18)

The corresponding ,S4 for (4.18) is

(4.19)

I0 00 00

B2B22 0 0 0 0

BIIB12 21 0 0 0

2B212B22 2B212B22 0 0

BIB2 BIB2 3I 0

[B2B2] 3B3B2 3B23B22
1/2[B’IB’2] B,B2
2FlirtL-"21B2] 2B212B22

O0
O0

O0
O0

O0

O0

BIIBI2 41 0

4B14B_2 4B214B22_

NUMERICAL SOLUTION OF HIGHER INDEX SYSTEMS 345

Notice that the nonzero rows of (4.17) appe,ar as the first 7 rows of (4.19). Thus to
show (4.17) is 1-full it suffices to show that A for (4.19) is 1-full.

There are two ways to proceed at this point. One is to transform B22 in (4.16),
2] in (4.18) From our point of view it does not matterthe other is to transform [:,

which is done so we shall do the second. Assume [n, :] has constant rank. Then
there exists PI, Q1 such that

I 0
Q1P1 B21 B22 0

where I is larger than I. Let indicate new variables. Under this coordinate change
(4.18) again has the form (4.16), but now the new has arger dimension than the

olx. We repeat the procedure. If B is invenible, then 3 (an hence) is 2-full.
If B2 i still singular, th procedure is repeated and we consider . If B22 is invenible,
then 2 (and hence 3 and hence) is 1-full. We have the following.

THEOREM 4.5. Suppdse that (1.1) may be solved by coordinate changes and j-
differentiations as just described. en+ is 1-full.

The number of differentiations needed to solve (1.1) is sometimes known on
physical grounds since it is related to the number of times the input (or control) f is
differentiated. In these cases Theorem 4.5 tells us that in using an (1, r)-method, r
should be at least one more than the number of differentiations.

5. Examples. In this section we shall present the results from some simple, but
interesting, test problems. More complicated examples have been run. All examples
were run in double precision in APL (10-16). 6] was computed using a full rank
factorization utilizing partial pivoting and then applying the APL domino operator.
The first example is due to Petzold and Gear [10].

Example 5.1. Consider

r/t y’ 0 + r/ y 2

on [-.5,.5]. The unique solution to (5.1) is x=et-rtt(t2-et), y= t-e ’.
This example has several interesting features. An implicit Euler method used on

(5.1) is unstable if r/<-1, stable and converges to the true solution if r/>-1, and
does not even make sense if r/=-1. For r/=-1 + e, (A+ hB)- involves not only l/r/2
but / er/2. For r/# 1, the index of (5.1) is identically two while for r/= 1, the system
is solvable but has no index since

is then a singular pencil.
Starting with the exact initial condition an implicit Euler method was run on

(5.1.). The error at t=.5 (lle[I sup,=1,2 le,[)is as follows.

TABLE 5.1
Euler method error for (5.).

h--.1
.05
.01

-3 -1 3

30 x .2 .5
1000 x .08 .2

1016 .02 .04

346 STEPHEN L. CAMPBELL

The (1, 3) and (2, 4) methods, however, worked well for all tested values of r/, even r/=< 1.

(1, 3)-method error for (5.1).
TABLE 5.2

(2, 4) -method error for (5.1).

h .1
.05
.01

-3 -1 3 /=

.2 .05 .1 .3 h .1

.1 .02 .06 .14 .05

.02 .004 .01 .03 .01

-3 -1 3

.01 .006 .002 .01

.004 .002 .0005 .003

.0001 .00006 .00002 .0002

Since (5.1) has local index two, we would expect to use an (i, i+2)-method for ith
order accuracy. However given a (1, 3)-method is being used, a (2, 3)-method can be
used at little added cost. Mathematically, the new approximation need be no more
accurate but it should not be any worse. However, since the (2, 3)-method does utilize
partial information on the second derivative of the solution, it is of interest to see
whether in practice it tends to be any better than a (1, 3)-method.

TABLE 5.3
(2, 3) -method error for (5.1).

h--.1
.05
.01

-3 -1 3

.09 .02 .04 .1

.04 .04 .02 .05

.008 .007 .003 .004

Notice that for this example, the error tends to be less with a (2, 3)- method but
occasionally (r/= 1, h .01) is more.

Example 5.2. Now consider

2"on [-1 .8] wheref=t+tet+e, g=e + For t0, k(t)=l while k(0)=2. This
system is not solvable as defined earlier on [- .8]; however, it has a solution x t, y e
which is smooth.

If an implicit Euler method is applied to (5.2), it exhibits a jump at t--0. For
example, with h .01, the error goes from -.02 to 50 near zero.

TABLE 5.4
Errorfor (5.2).

h--

1, 3)-method
(2, 4)-method

.1 .05 .01

.06 .03 .006

.003 .001 .00003

A second order backward difference scheme does work on (5.3) as noted in [4]. A
second order method, h =.1, gives a maximum error of .008 while a (2, 4)-method
gives .003.

NUMERICAL SOLUTION OF HIGHER INDEX SYSTEMS 347

EXAMPLE 5.3. NOW consider Nx’+ x =f on [0 1] where

(5.3) N= _t_ -t f= 2

This is an index two problem as discussed in 3 and thus the answer involves derivatives

off [5]. With a backward difference scheme this derivative is taken numerically whereas
the (i, j)-methods utilize the derivative off if known. Equation (5.3) was solved using
both a (2, 4) and a second order backward difference scheme. The error for the implicit
difference scheme using h .1, .05, .01 was .08, .02, .0009 respectively for both Xl and
x2. The (2, 4)-method gave an error in x2 that was 1/2 as large and an error in Xl that
was o as large. From [5], the solution of (5.3) is

(5.4) x=f-[I- N’]-lNf’=f -t2 -t

Notice that on [0 1] that f’ makes a somewhat larger contribution to Xl than to x2.

Thus one would expect greater accuracy in determining f’ to possibly have a greater
effect on the accuracy of x.

6. Additional comments. In many applications the explicit analytic computation
of the Ai, Bi, f may be difficult time consuming, or,, impossible. Suppose j is s-ful,,l.
If + O(e) and rank rank , then + O(e) also. Thus if A]
is to be used instead of in an (s,j)-method, in order to maintain locally O(h s)
accuracy we need e h s. For example, in a (1,j)-method the A, B, f should be
estimated to at least O(h) accuracy. This, of course, assumes that rank rank j.
The simplest way to insure this rank condition holds numerically is for the estimates
of A, B, to be at the level chosen as zero in the numerical calculation of the Ri. This
is in turn dependent on the conditioning of the least squares problem xj fj. Ways
to relax these rather stringent requirements on the accuracy with which must be
computed are under investigation, but the problem is unresolved.

Notice that we needed to assume the smoothness of the solutions on [a b] in
order to derive (3.5). Some such assumption is necessary but it is possible to limit the
amount of smoothness assumed as the next result shows.

THEOREM 6.1. Suppose that (1.1) is a solvable system on [a b] and is 1-full on
[a b]. Suppose also that A(t), f(t) are 2j + times continuously differentiable and B(t)
is 2j+ 1-1 times continuously differentiable on [a b] where 1>-0. If x(t) is a j-times
continuously differentiable solution of 1.1), then it is +j-times continuously differentiable
on [a b].

Proof. Assume l> 0, otherwise the result is trivial. Under the assumptions of
Theorem 6.1, (3.5) holds for all [a b]. Thus x(t)= x’(t) may be written in terms
of A()(t), B()(t),f()(t), for 0 -< _-<j, 0 _-< r <_-j 1, and Xo(t) x(t) using sums, products
and the inverses of invertible combinations of the A(), B(). Thus Xl(t)= x’(t) is also
j-times continuously ditterentiable. Hence x(t) is j+ 1-times continuously differenti-
able. The argument may be repeated until x(t) is +j times differentiable since A()

is only +j times differentiable. [-1

7. Conclusions. This paper has presented a family of methods for solving implicit
differential equations of the form Ax’+ Bx =f. Like all methods for these equations,
it faces the problem of needing an initial value X(to). The method works for many
problems for which implicit difference schemes do not work. It also easily handles
many higher index solvable systems with nonconstant ranks. In contrast to implicit

348 STEPHEN L. CAMPBELL

procedures matrix conditioning does not degrade the results when the step size is
decreased, and variable step procedures can be more easily used.

REFERENCES

[1] R. K. BRAYTON, F. G. GUSTAVSON AND G. D. HACHTEL, A new efficient algorithm for solving
differential-algebraic systems using implicit backward differentiation formulas, Proc. IEEE, 60 (1972),
pp. 98-108.

[2] S. L. CAMPBELL, Singular Systems of Differential Equations, Pitman, Marshfield, MA, 1980.
[3], Singular Systems of Differential Equations II, Pitman, Marshfield, MA, 1982.
[4], Consistent initial conditionsfor singular nonlinear systems, Circuits, Systems, and Signal Process-

ing, 2 (1983), pp. 45-55.
[5], Index two linear time-varying singular systems ofdifferential equations, SIAM J. Alg. Disc. Meth.,

4 (1983), pp. 237-243.
[6], One canonicalform for higher index linear time varying singular systems ofdifferential equations,

Circuits, Systems, and Signal Processing, 2 (1983), pp. 311-326.
[7] S. L. CAMPBELL AND C. D. MEYER, JR., Generalized Inverses of Linear Transformations, Pitman,

Marshfield, MA, 1979.
[8] S. L. CAMPBELLAND L. PETZOLD, Canonicalforms and solvable singular systems ofdifferential equations,

SIAM J. Alg. Discr. Meth. 4 (1983), pp. 517-521.
[9] C. W. GEAR, Simultaneous numerical solution of differential-algebraic equations, IEEE Trans. Circuit

Theory, CT-18 (1971), pp. 89-95.
[10] C. W. GEAR AND L. R. PETZOLD, Differential/algebraic systems and matrix pencils, in Lecture Notes

in Mathematics 973, Springer-Verlag, New York, 1983, pp. 75-89.
11 W. LINIGER, Multistep and one-leg methodsfor implicit mixed differential algebraic systems, IEEE Trans.

Circuits and Systems, CAS-26 (1979). pp. 755-762.
[12] D. G. LUENBERGER, Dynamic equations in descriptor form, IEEE Trans. Automat. Control, AC-22

(1977), pp. 312-321.
[13] R. W. NEWCOMB, The semistate description of nonlinear time-variable circuits, IEEE Trans. Circuits

and Systems, CAS-28 (1981), pp. 62-71.
14] L. R. PETZOLD, Differential equations are not ODE’s, this Journal, 3 (1983), pp. 367-384.
15],A description of DASSL: A differential/algebraic system solver, Proc. IMACS World Congress,

Montreal, Canada, Aug. 1982.
[16] C. W. GEAR AND L. R. PETZOLD, ODE methodsfor the solution ofdifferential algebraic systems, SIAM

J. Numer. Anal., 21 (1984), pp. 716-728.
[17] L. M. SILVERMAN, Inversion of multivariable linear systems, IEEE Trans. Automat. Control, AC-14

(1969), pp. 270-276.
[18] R. F. SINCOVEC, A. M. ERISMAN, E. L. YIP AND M. A. EPTON, Analysis of descriptor systems using

numerical algorithms, IEEE Trans. Automat. Control, AC-26 (1981), pp. 139-147.
[19] J. H. WILKINSON, Note on the practical significance of the Drazin inverse, in Recent Applications of

Generalized Inverses, S. L. Campbell, ed., Pitman, Marshfield, MA, 1982.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 2, April 1985

(1985 Society for Industrial and Applied Mathematics
007

STABILITY OF METHODS FOR SOLVING
TOEPLITZ SYSTEMS OF EQUATIONS*

JAMES R. BUNCHY"

Abstract. The stability properties of the classical and the new fast algorithms for solving Toeplitz
systems are investigated.

Key words. Toeplitz matrices, linear equations

1. Introduction. A matrix T is Toeplitz if T/j tj_i, i.e., the elements on each
diagonal are all equal.

to t2 tn- l-]

T= t_2

t--l/

is an n x n Toeplitz matrix. In this paper we shall consider algorithms for solving
Toeplitz systems of linear equations, Tx b. We want to take advantage of the Toeplitz
structure in order to solve Tx b in O(n2) or fewer operations instead of O(n3)
operations and with less than O(n2) storage. On the other hand, we need our algorithms
to be stable so that the solutions may be meaningful.

Another class of matrices related to Toeplitz matrices are Hankel matrices: H0
hi/j, i.e., the elements on each cross-diagonal are equal.

I- ho h h2 h._
Ih, h2 J h,,

h 2 -2

is an n x n Hankel matrix. Then T JH and T HJ are Toeplitz matrices, where

0 0

0

In order to solve Hx b, we may solve Tx Jb, or Ty b and x Jy.
Block-Toeplitz and block-Hankel systems also occur, i.e., the ti and hi are matrices

[54], [67]. Furthermore, two-level (and three-level) systems can occur, i.e., the matrix
is block-Toeplitz with Toeplitz or Hankel blocks (and block-Toeplitz or block-Hankel
matrices whose blocks are block-Toeplitz or block-Hankel themselves). In this paper
we shall only consider n n Toeplitz systems, i.e., point-Toeplitz matrices.

* Received by the editors April 5, 1983, and in revised form November 3, 1983. This research was
supported in part by the National Science Foundation under grants MCS 79-20491 and DMS 83-18412.

" Department of Mathematics, University of California at San Diego, La Jolla, California 92093.

349

350 JAMES R. BUNCH

In 2 we shall discuss some of the sources of Toeplitz systems and explore the
Pad6 approximation source in detail for later use in 6. In 3 we shall discuss the
stability of algorithms, the condition of matrices, and the condition of the submatrices
under partitioning; we shall show that if a matrix is nonsingular then its leading
principal submatrices may be singular and that if a matrix is well-conditioned then its
leading principal submatrices may be ill-conditioned, but that if the matrix is positive
definite and well-conditioned then its leading principal submatrices must be well-
conditioned.

In 4 we shall discuss the "classical" O(n2) algorithms based on Trench’s
algorithm [59], [66], [67]. We shall see that these algorithms are unstable, in general,
but are stable for positive definite Toeplitz matrices.

In 5 and 6 we shall consider the new "fast" O(n log2 n) algorithms of Bitmead
and Anderson [5] and of Brent, Gustavson and Yun [7]. We shall see that the
Bitmead-Anderson algorithm is based on partitioning and the fast Fourier transform
and is unstable, in general, but probably stable for positive definite Toeplitz matrices.
The Brent-Gustavson-Yun algorithm is based on the fast Fourier transform, the fast
extended Euclidean algorithm, and on the Gokhberg-Sementsul formulas [22], [23]
and is unstable (at least for nonpositive-definite Toeplitz matrices). In 7 we shall
summarize our conclusions and present some conjectures.

2. Origin of Toeplitz systems. Toeplitz systems of linear equations arise from many
sources [31], [54], [57]:

(1)

()
(3)

(4)

(5)

(6)
(7)

(8)

time series analysis"
(a) linear filtering [31], [39], [46], [61],
(b) maximum entropy spectral analysis [59],
(c) antennas and arrays [55],
(d) estimates of shaping and matching filters [62],
(e) recursive estimation [32];
image processing [1];
control theory:
(a) minimal realization problem [14], [25],
(b) minimal design problem [37], [38],
(c) adaptive estimation of control system parameters [3];
statistics"
(a) statistical communication and detection [50],
(b) stationary auto-regressive time series [28];
integral equations [16], [48]:
(a) convolution-type V01terra equations,
(b) convolution-type Fredholm equations;
orthogonal polynomials [27], [30], [34];
partial differential equations [42]"
(a) elliptic,
(b) parabolic;
Pad6 approximation [6], [7], [8], [9], [24], [26].

Let us examine Pad6 approximation more closely, as we shall need the results
later in 6. Let

a(x) ao + ax + a2X" +.

STABILITY OF METHODS FOR TOEPLITZ SYSTEMS 351

be a power series, ao 0. Let p(x), q(x) be polynomials of degree <=m, n, respectively:

p(x)= Z Pkxk, q(x)= qxj.
k=0 =0

X X
m+nWe say that p(x)/ q(x) isan (m,n) Pad6 approximation to a(x) ifthe x, ,.

have cancelled out in a(x)q(x)-p(x). Thus,

a(x)q(x)-p(x) O(x"+n+t),
where 1=> 1, i.e., perhaps more terms (xm+n+l, ..., xm+n+i-1) have cancelled out, but
we require that the x, x l, x"/" terms have disappeared For example, if

a(x)= "- X"- X4"4y X5"Jv X6"at-

then (2+2x)/2 is a (1, 0) Pad6 approximation to a(x); it is also a (2, 0) and (3, 0)
Pad6 approximation to a(x).

The requirement that the x, x, x"+" terms must cancel out can be written
as a linear system of m + n + equations in m + n + 2 unknowns
(Po, , P,, qo, ", q,)--thus, there is one arbitrary parameter (we expected this since
p(x)/q(x) has one arbitrary constant):

(t)

ao 0
Fqoq

Iqnl

=0,

where ai 0 if i< 0. Taking qo as the arbitrary parameter, we can rearrange (t) as:

am am+l am+n-I

tm--

". am+l

am-n+l am- am
am-2 am-i

ao al
0 ao
0 0

% -a+
0

am+q
=-qo

a

.._.
_Po.] ao

where we have written the equations in reverse order. We shall denote the partitioned
parts as

(**) [O][-]=-qo[aa@]I_ !
where T is an n x n Toeplitz matrix and S is upper triangular. We can solve (**) by
solving

Tt -qod

352 JAMES R. BUNCH

for q, and then/ is given by

/ St + qo.
Hence, Pad6 approximation of a power series reduces to solving a Toeplitz system

of linear equations. Frobenius [19] has shown that solutions to (f), (*), (**) always
exist and the ratio p(x)/q(x) is unique.

3. Stability, condition numbers, and partitioning. An algorithm for solving systems
of linear equations Mx b is said to be stable if the solution xc computed by the
algorithm is the exact solution to a nearby system, i.e., (M + E)xc b +f where E is
small compared to M and f is small compared to b. This does not say that xc is close
to x.

The condition number of a nonsingular matrix M is K(M)= IIMll IlM-’ll (relative
to the matrix norm II, e.g., [[MI[,- maxj i [mij[- max absolute column sum,
largest singular value of M, liM[[=max Y,]mill=max absolute row sum [63]). A
matrix is well-conditioned (ill-conditioned)if K(M)is "small" ("large"); since u(M) >
1, by "small" and "large", we mean relative to 1. Since all norms on a finite-dimensional
space are equivalent [56], if K(M) is "very large" for some norm it will also be for
any norm. How large a condition number may be acceptable will be dependent on the
particular problem. If M is singular, then we say r(M)=. If (M) is very large,
then M is near a singular matrix [56]; thus, ifM is ill-conditioned, M is nearly singular.

If Mx b and/17/ =/, and if JIM-’l] IIM- < [63],

[Ixl[1-<(M)(IIM-rlI/[IMII) IIMll Ilbll
If Mx b is the problem in nature that we wish to solve, but M: b is the problem
that we have, then the above inequality roughly says that the relative error in : is
approximately bounded by the condition number of the matrix times the relative error
in the matrix and the right-hand side. How large a condition number will be acceptable
depends on how much accuracy we require in the solution.

Thus, if we use a stable algorithm on a system of equations with a well-conditioned
matrix, then our computed solution will be close to the solution of the original problem.

In many algorithms (such as those in 4 and 5) the matrix is partitioned and
smaller systems are solved using submatrices. For example, in block Gaussian elimina-
tion, we partition the system Mx b, where M is nonsingular, into smaller systems
(for simplicity let us use two):

A
Mx=

C

whereMisnn, xandbarenl, Aiskk, Bisk(n-k),Cis(n-k)k, Dis
(n- k)(n- k), 5 and/ are k 1, and ; and/ are (n- k) 1.

Using block Gaussian elimination and assuming A is nonsingular, we have

[cA DB]=[I 0][AI]CA- 0

where A D-CA-1B, and

CA-’I 0][]=1[/ CA-J

STABILITY OF METHODS FOR TOEPLITZ SYSTEMS 353

So we solve Mx b by:
(a) solving AX C for X, where X is (n- k)x k,
(b) forming A D- XB,
(c) forming 3 =/;- X/,
(d) solving A 3 for ,
(e) forming =/;- B, and
(f) solving A: t7 for .
If M is nonsingular then A need not be nonsingular, e.g.,

0 0 0

0

0 0

with A of order 1, 2, or 3.

However, if M and A are nonsingular, then A is guaranteed to be nonsingular since
det M det A det A.

But, in order to have meaningful answers on a computer, we also need to be
guaranteed that if M is well-conditioned then A and A are also well-conditioned so
that the solutions in (a), (d), and (f) will be accurate. Unfortunately, this is not true,
in general. We expect it not to be true since M can be nonsingular yet A can be
singular, as in the example above. Whenever you have such a situation of singularity,
then ill-conditioning (i.e., near singularity) must be lurking nearby.

Let us construct such examples. We shall do it for Toeplitz matrices so that we
may use them in 4 and 5. First, we will exhibit a 3 x3 Toeplitz matrix T3 which is
nonsingular but with a singular upper left 2 x2 block T2:

T3= T2=
0

Next, we shall perturb T3 slightly to obtain 3 x3 Toeplitz matrices T3 and T3, one

being nonsymmetric and the other being symrnetric but indefinite (i.e., having both
positive and negative eigenvalues), such that T and 3 are well-conditioned but with
ill-conditioned upper left 2 x 2 blocks T and T, respectively.

l+e os] [’3 e + with T2
E

0 1-e

where 0 < e << 1, is a well-conditioned nonsymmetric matrix,

9
oo(T3) Ilooll T; Iloo- 2= = 9,

but T2 is ill-conditioned,

E2 2"

1-s Oe] [T3 e with T2
e

0 1-e

354 JAMES R. BUNCH

where 0 < e << l, is a well-conditioned symmetric indefinite matrix,

(3-2e)2

:o(’3)
4e + 2e2 9,

but 2 is ill-conditioned,

Ko(T2)
2-e 2

(Since all norms are equivalent in finite-dimensional spaces, the above situation
holds independent of the norm used to measure the conditioning.)

This situation will make algorithms based on partitioning, as in 4 and 5, unstable
even when used on well-conditioned matrices, at least for nonsymmetric and symmetric
indefinite matrices. However, there is one class of matrices for which if M is well-
conditioned then A must be well-conditioned, namely, the symmetric positive definite
matrices: xrMx > 0 for all x # 0, or equivalently, M Mr and all the eigenvalues of
M are positive. (In the complex case, the class will be the Hermitian positive definite
matricesmbut we will restrict our discussion to the real case.)

Let

M= Br D

be symmetric positive definite. Then A, D, and A =--D-BrA-IB are also symmetric
positive definite [56]. For convenience, we shall use the 2-norm: IIMII2 largest singular
value of M. Thus,

tc2(M)
’max(M)

and tCE(A
’max(A)

trmin(M) O’min(A)

where O’ma is the largest singular value and O’mi is the smallest. Since M and A are
symmetric positive definite [56], O’max(M --.max(M), O-min(M)= ,,min(M), O-max(A)
Amax(A), O’min(A) Amin(A), where/max is the largest eigenvalue and/min is the smallest
eigenvalue. By the Cauchy interlace theorem [49, p. 186], [63, p. 104], since M is
symmetric positive definite,

0< hmin(M hmin(A) hmax(A hmax(M).
Thus,

tc2(A)
’max(A) ’max(A) }max(M) O’max(M)
Crmin(A--’- Amin(a--’-- Amin(M------ Crmin(M tc2(M)"

Hence, if M is well-conditioned then A is well-conditioned, or equivalently, if A is
ill-conditioned then M is ill-conditioned.

It would be instructive to see why it is impossible to construct a 3 3 symmetric
positive definite well-conditioned Toeplitz matrix T3 with an ill-conditioned upper left
2 2 block T,_. Let T3 be a 3 3 symmetric positive definite Toeplitz matrix,

with its upper left 2 2 block,

to tl t2]T3-- tl to tl,

t ti tod

tl to

being ill-conditioned. Let us see that T3 must be ill-conditioned.

STABILITY OF METHODS FOR TOEPLITZ SYSTEMS 355

Since T3 is positive definite, to eT3e >0 where e’=[1, 0, 0]. Without loss of
generality, let to 1. But if M is positive definite then IMol < 1/2(M,, /) for j [56].
Hence, It, < and It=l < . Since T2 is ill-conditioned, its rows (and columns) are almost
dependent. Hence, tl e, where 0 < e << 1, and

T2= 1-e

Since T3 is positive definite, det T3 > 0 [56]. But

det T3 + 2t2(e)2 t22 2(e)2 t2)[1 + t2 2(e)2].
Since det T3 > 0 and t2 > 0, we must have

or, equivalently,

So

+ t2-2(1-e)2>0,

t2> 1-4e+2e2.

1-e t2e]T3= 1-e 1-

2 e

where t2 cannot be outside the interval (1-4e + 2e2, 1). But then the rows (and columns)
of T3 are almost dependent. Thus, T3 is ill-conditioned.

For further discussion of partitioning of matrices and its relation to rank-r modifi-
cation of matrices and to Kron’s method of tearing, see [10].

4. The "classical" O(n2) algorithms. In 1941, N. Wiener [61] and A. N. Kol-
mogorov [35] independently analyzed the continuous case for linear filtering. In 1947
N. Levinson [39] analyzed the discrete case of linear filtering; the discrete case yields
a Toeplitz system of linear equations to solve. Levinson gave an O(n2) algorithm for
solving this Toeplitz system. In 1964, W. Trench [58] improved Levinson’s algorithm
(requiring only 4n2 multiplications) and gave a matrix formulation for the method. In
1969, S. Zohar [66] improved Trench’s algorithm to require 3n2 multiplications. Zohar’s
formulation of Trench’s algorithm is as follows.

Let T,+t be a Toeplitz matrix of order n + 1; let B,+l T+l. We shall partition
off the first row and column of T,+ and B,+l; let us assume that the element in the
upper left corner of Tn+ is 1:

T.+=[rn
Since T.+ B.+ I.+, we have

Hence,

where B.= T: 1.

s. h
ro)Uo

-?-(r + T.g.):0 and --.(r.hr. + TnM.)= I..

M. A,,B. B.r.h.r= A,,B,, + g.h r.

Thus, given B. T and the first row and column of B.+l T+I, we can compute
the other elements of T+.

356 JAMES R. BUNCH

An n x n matrix A is persymmetric if it is symmetric about the cross-diagonal, i.e.,
if Aij A,/ l-j.n/ l-i, i.e., if A JA’J, where

If T.+l is Toeplitz, then T.+l, B.+ T.-+l, T., and B. T-l are persymmetric. Let

x and X
R

Xk

then x= Jx. By persymmetry,

B.+l=-. g.A.B.+g.h.rj=’-, g r. j
The first equality gives

(B.+l)i+l,j+l (B,,)o+--.(g,,h for < i,j < n.

The second equality gives

(B.) +(Jh.gJ) for i,j n.(Bn+l),j

Subtracting

(Bn+l)i+l,j+l (B.+,lo+(g.hr Jh,gr

for i,j n. Thus, from the first row and column of Bn+l, we can generate the other
elements.

Now, we can write down an algorithm for computing A,, g,, and h, and then,
from them, B,+.

Initialize: (s.) t, (r.) t_ for i n.

A tt_, h --/1, g -t_.

Compute A,, g,, h,: For lin-l:

, -(t,+l + h fJs),

v,

hi+, Jgi
/h

Jgi+
jgi + h

This requires "- (4i + 3) 2n + O(n) multiplicationsi=!

STABILITY OF METHODS FOR TOEPLITZ SYSTEMS 357

Now we can form B.+ as follows.

(B.+,),l 1/A.,

(B.+,).j+, (h,,)j/A. for =<j <= n,

(B.+,)+,. =(g.)/A. for =< i<= n,

,,J)j =n.(B.+)i+,,j+, (B.+,) o +--.(g.hT+ Jh.gT for < i,j <

Then, by persymmetry,

(.+,)0 (.+,).+-..+-,.
This requires an additional n2+ O(n) multiplications. Thus, we can compute T+

with 3n2+ O(n) multiplications; and O(n2) storage is needed. The algorithm is easily
generalized to block Toeplitz matrices [54], [67].

Now, the above algorithm is not true unless we assume that the leading principal
submatrices of T.+ are nonsingular and that (T.+) 1. If the leading principal
submatrices of T.+ are nonsingular, then (T.+) to# 0, and we may normalize to
satisfy the second condition: S.+ (1/to)T.+. (Note that the leading principal sub-
matrices and the trailing principal submatrices are the same.)

Thus, Trench’s algorithm may fail if one of the leading principal submatrices is
singular. Worse, the algorithm will not fail but may give incorrect results if one of
these principal submatrices is nearly singular, i.e., ill-conditioned. As we have seen in

3, it is quite possible for a well-conditioned Toeplitz matrix to have an ill-conditioned
leading principal submatrix when the Toeplitz matrix is nonsymmetric or symmetric
indefinite.

However, if T.+ is symmetric positive definite then all its leading principal
submatrices are also symmetric positive definite. As we have seen in 3, if T.+ is also
well-conditioned, then its leading principal submatrices must also be well-conditioned.
Hence, we expect Trench’s algorithm to be stable on well-conditioned symmetric
positive definite matrices since it is based on partitioning and persymmetry; and we
expect that if Trench’s algorithm gave poor results for some symmetric positive definite
Toeplitz matrix T.+ then T.+ must have been ill-conditioned. Indeed, Cybenko [11],
[12], [13] has shown that Trench’s algorithm is stable for symmetric positive definite
Toeplitz matrices.

There are many other variants of Trench’s method [4], [51]-[54] which share its
stability properties: stable for positive definite matrices, and unstable otherwise. One
such is Durbin’s algorithm [15] for the Yule-Walker equations [60], [65]:

where

to t._

T

i_
and

tn .to
r---

tl

i.e., a symmetric Toeplitz system with a special right-hand side. Cybenko [12] showed
that Durbin’s algorithm is stable when T is symmetric positive definite. But, as with
Trench’s it is unstable when T is symmetric indefinite.

358 JAMES R. BUNCH

Another variant of Trench’s algorithm for Toeplitz systems is Bareiss’ method [2].
However, Douglas Sweet [57] showed that Bareiss’ method is unstable. Jain [29]
modified Trench’s algorithm so that instead ofcomputing T- and then x from x T- b,
Tx b is solved by the Gokhberg-Sementsul formula [21], [22], [23] in 2n2 + 8n log_ n +
O(n) multiplications (see 6). We shall show later in 6 that Jain’s algorithm is also
unstable. Rissanen’s algorithm [51], [52], [53] for the triangular factorization of Hankel
matrices, e.g., for the partial minimal realization problem, was shown by de Jong [14]
to be unstable.

In order to stabilize Trench’s method or its variants some kind of pivoting is
needed. HoWever, pivoting can destroy the Toeplitz structures. Thus, maintaining the
Toeplitz structure while having stability is a very difficult problem. A first step in this
direction has been made by Douglas Sweet [57] in attempting to stabilize Bareiss’
variant [4] of Trench’s algorithm.

5. New "fast" methods: the Bitmead-Anderson algorithm. The first "fast"
algorithm that we shall consider is by Bitmead and Anderson [5]; it uses block inversion
and the Fast Fourier Transform (FFT), and follows from work of Kailath, Morf, et
al. [17], [18], [31]-[34], [37], [46], [47].

Let T be an n n nonsingular Toeplitz matrix, where n 2r. We seek upper and
lower triangular Toeplitz matrices and L such that

k

where k is independent of n.
Then, to solv Tx= b, we ompute =) (Lb) b 2k FFT’s.
Let us paition T and T-= S as

T= r rJ’ S=
S S

where , Si) are n/2 x n/2, i, j 2.
Let A T22-TlT TI. Then

S T +T T2A- T2T, S2 TI TA-,
$2 -A- T2 T? $2 A-

The various matrix products (and convolutions) can be computed by FFT’s. This

algorithm is then applied recursively. If T(n) is the number of multiplications to
calculate the decomposition

k

T-=E L,
j=l

where T is n x n, then the recursion equation for the algorithm is

T(n) 2T(n/2)+ O(n log n),

since the decomposition of the n x n matrix T- requires the decomposition of two

n/2xn/2 matrices T and A-, and some subsidiary calculations (done by FFT’s
requiring O(n log n) multiplications). The solution of the recursion equation is T(n)
O(n log n) multiplications. The storage required is O(n).

A more precise operation count [5] gives T(n)=48n log n. This would be faster
than the 3 n2 for Trench’s algorithm for n 2000, not an unreasonably large order for

STABILITY OF METHODS FOR TOEPLITZ SYSTEMS 359

Toeplitz matrices. The Bitmead-Anderson algorithm is easily generalized to block
Toeplitz matrices.

Makarov [40] proved that if T is an n n nonsingular Toeplitz matrix then
computing T-l requires at least 1/2n2--n+ multiplications. Does the Bitmead-
Anderson algorithm contradict Makarov’s theorem? No! We have not computed T-1

T_I .--.kitself here, but only the U and Lj such that Lj= UL;. If we computed T- itself
from the U and L; then we would need O(n2) multiplications. However, we can
compute the U. and L; with O(n log2 n) multiplications. Then we can use T-l=
k__ ULj to solve Tx b by

k

x= Uj(Ljb)
j=l

using 2k FFT’s, requiring O(n log n) multiplications.
What is the difficulty with the Bitmead-Anderson algorithm? We had to assume

Tll and A T22-T2 T-1T12 were nonsingular, and this would have to be assumed at
each step of the recursion. As we have seen in 3, T may be nonsingular while T
may be singular. Even more dangerous is the situation when T is nonsingular and
well-conditioned but one of the needed submatrices is nonsingular but ill-conditioned,
i.e., nearly singular. (This is more dangerous since inaccurate answers may be produced
and we would not realize that they were inaccurate.) As we have seen in 3, this is
indeed possible for nonsymmetric and symmetric indefinite Toeplitz matrices. Hence,
the Bitmead-Anderson algorithm is unstable for nonsymmetric and symmetric
indefinite Toeplitz systems.

However, if T is symmetric positive definite, then TI and A are symmetric positive
definite, as are the necessary matrices at each step of the recursion. Furthermore, if T
is well-conditioned then’so is Tl . The Bitmead-Anderson algorithm is probably stable
for symmetric positive definite Toeplitz systems (although it has not been proved in
detail yet).

6. New "fast" methods: the Brent-Gustavson-Yun algorithm. The second "fast"
algorithm we will consider is by Brent, Gustavson, and Yun [7]. In 2 we showed that
the computation of the entries in the Pad Table requires the solution of a Toeplitz
system of equations. B-G-Y (Brent, Gustavson, and Yun) reverse the process: they
show that the (n, n) entry in a particular Pad6 Table gives the solution to Tx eo and
they compute this entry in O(n log2 n) operations by the Fast Extended Euclidean
Algorithm (for polynomials).

That the entries of the Pad6 Table can be computed by the Extended Euclidean
Algorithm was known to Kronecker [36]; although, it would require O(n2) operations
if the Extended Euclidean Algorithm was used in the usual manner. However, the
Extended Euclidean Algorithm can be modified by Divide and Conquer and the FFT
to give a Fast Extended Euclidean Algorithm (FEEA), with its recursion equation as:

T(n) 2T(n/2)+ O(n log n).

Here, a problem of degree n is divided into two problems of degree n/2 with some
subsidiary calculations which can be done by FFT’s. The solution of the recursion
equation is O(n log2 n). For a detailed discussion of the FEEA, see [2], [7], [43], [44].

The Extended Euclidean Algorithm for polynomials computes the greatest com-
mon divisor u of two polynomials p and q as well as polynomials w and v such that

wp + vq u,

where deg (w) < deg (q) and deg (v) < deg (p).

360 JAMES R. BUNCH

Let

be Toeplitz. Let p(x) x2"/1 and q(x) ao+ alx +" + a2nx2n. Then B-G-Y show that
their FEEA produces u, v, w such that

ao 0

an ao

(I2n

0 a2n

Thus, the nth through 2nth equations give

Lv._3

TI) uneo.

Hence, if u, 0, then x (1/u,,)v. Further, B-G-Y show that det T 0 itt u, 0.
So, if u, 0, we have determined that det T 0, while if u, 0 then we have computed
the first column of T-1.

Similarly, if det T 0, we can compute the first row of T- by solving

TyR T(Jy) Jeo e,,.

Given the first row and column of T- we can compute T- from the first
Gokhberg-Sementsul [23] formula if T- (= Xo Yo) # 0:

O. 0 Xn. X
Oo

Oo
We can solve Tz b from z T-b above by using four FFT’s. Thus, if T-I 0,

we can solve Tz b with O(n log2 n) multiplications and O(n) storage
However, if T-l1= 0, then T- need not depend solely on the first row and column

of T-; for example,

T= c 0 T- 0 -d2/c 1/c
d c 1/a 0 0

STABILITY OF METHODS FOR TOEPLITZ SYSTEMS 361

But, if T- 0, we can use the second Gokhberg-Sementsul formula. Let

Y
ao

T= T

an-1

fl a2n an+l an
If eo and R en+ exist, and if -ll(= o)70) 0, then

...., . 0 37

0

"fin "fin+ 0 n+l
B-G-Y show that if Xo Yo 0, det T # 0, and det T 0, then :0 0. Hence, we

only need to choose/3 and y to guarantee that det T 0. Let y 1. Then det T 0 iff
/3 1. Take/3 1.

Let

p(x) x2"+ q(x) -x2"+2 + a2,x
2"+ +. + aox +

Then and 37 exist, and ;o)70 0. So we may apply the second Gokhberg-Sementsul
formula and the FFT to solve Tz b with O(n log2 n) multiplications and O(n) storage.

This algorithm will never fail in exact arithmetic. In finite precision arithmetic the
FFT and the FEEA are stable. But what about the Gokhberg-Sementsul formulas?
Whenever we have an algorithm which says to do one thing when Xo 0 and to do
something else when Xo 0 must be unstable when Xo is near zero. For an algorithm
to be stable we need a continuous change in the algorithm as Xo 0. Here we have a
discontinuous jump in algorithms between when Xo is near zero and when Xo is zero.

Let us construct an example to show that the first Gokhberg-Sementsul formula,
and hence the B-G-Y algorithm, is unstable when T-ll= Xo is near zero.

Let T-I x0 Yo e # 0 and x y. Then

T=[ao a,],al ao
where ao=-e/(1-e) and a=l/(1-e). Let b=[]. Solving Tz=b by the first
Gokhberg-Sementsul formula gives

z=
l+e

in exact arithmetic, but gives

Zc=
0

in floating point arithmetic when e is small enough so that fl(1 + e)= 1. Hence, the

362 JAMES R. BUNCH

Gokhberg-Sementsul formula, the B-G-Y algorithm, and Jain’s algorithm are all
unstable. Note that T is not positive definite in this example, so it is possible that the
algorithms are stable for positive definite Toeplitz systems.

7. Conclusions. The classical O(n2) algorithms related to Trench’s method and
the Bitmead-Anderson O(n log2 n) algorithm are based on partitioning. But, in the
nonsymmetric case and in the symmetric indefinite case the principal submatrices may
be singular even though the entire matrix is nonsingular, and may be ill-conditioned
even though the entire matrix is well-conditioned. Thus, these algorithms may fail and,
worse, are unstable for nonsymmetric and symmetric indefinite Toeplitz matrices.

However, in the symmetric positive definite case the principal submatrices are
symmetric positive definite, and must be well-conditioned whenever the entire matrix
is well-conditioned. Hence, these algorithms will not fail for symmetric positive definite
Toeplitz matrices, and will be stable for well-conditioned symmetric positive definite
Toeplitz matrices unless orthogonal transformations are used.

Furthermore, any algorithm for solving Toeplitz systems which is based on par-
titioning (and does not do some form of pivoting) will share this property: stable for
well-conditioned symmetric positive definite Toeplitz matrices and unstable for non-
symmetric and symmetric indefinite matrices.

In order to stabilize these algorithms in the nonsymmetric and the symmetric
indefinite cases, some kind of pivoting techniques are needed in order to maintain
stability. However, pivoting can ruin the Toeplitz structure and can increase the
operation count. Stable O(n2) algorithms still elude us for nonsymmetric and symmetric
indefinite Toeplitz matrices unless orthogonal transformations are used.

In contrast to the above algorithms the B-G-Y O(n log2 n) algorithm will not fail
for any nonsingular Toeplitz matrix, i.e., it will always produce the solution (in exact
arithmetic). However, the algorithm is unstable on a computer for nonsymmetric and
symmetric indefinite matrices.

Addendum. Frank de Hoog (On the solution of Toeplitz systems of equations, to
appear in Linear Algebra and Appl.) has presented an algorithm which calculates the
first and last row of the inverse of a Toeplitz matrix T in O(n log2 n) operations but
in a different manner from [5] or [7]. He then uses the Gokhberg-Sementsul formula
to solve Tx b. Once again this method is unstable if T is general or symmetric
indefinite, but it may be stable if T is symmetric positive definite. Douglas Sweet (Fast
Toeplitz orthogonalization, Numer. Math., 43 (1984), pp. 1-21) has presented a stable
algorithm for computing the QR decomposition of a Toeplitz matrix in 25n2+ O(n)
operations.

REFERENCES

[1] B. P. AGRAWAL AND V. K. JAIN, Digital restoration of images in the presence of correlated noise,
Comput. and Elec. Eng., 3 (1976), pp. 65-74.

[2] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[3] M. AOKI, Optimization of Stochastic Systems, Academic Press, New York, 1967.

[4] E. H. BAREISS, Numerical solution oflinear equations with Toeplitz and vector Toeplitz matrices, Numer.
Math., 13 (1969), pp. 404-424.

[5] R. R. BITMEAD AND B. D. O. ANDERSON, Asymptotically fast solution of Toeplitz and related systems

of equations, Linear Algebra and Appl., 34 (1980), pp. 103-116.
[6] N. K. BOSE AND S. BASU, Theory and recursive computation of one-dimensional matrix Pad.

approximants, IEEE Trans. Circ. Sys., CS-27 (1980), pp. 323-325.

STABILITY OF METHODS FOR TOEPLITZ SYSTEMS 363

[7] R. P. BRENT, F. G. GUSTAVSON AND D. Y. Y. YUN, Fast solution of Toeplitz systems of equations
and computation of Padd approximants, J. Algorithms, (1980), pp. 259-295.

[8] A. BULTHEEL, Recursive algorithms for the Padd table: two approaches, in [64], pp. 211-230.
[9], Recursive algorithms for the matrix Pad. problem, Math. Comp., 35 (1980), pp. 875-892.

[10] J. R. "BUNCH AND D. J. ROSE, Partitioning, tearing, and modification of sparse linear systems, J. Math.
Anal. Appl., 48 (1974), pp. 574-593.

I11] G. CYBENKO, Error analysis of some signal processing algorithms, Ph.D. thesis, Princeton Univ.,Prin-
ceton, NJ, 1978.

[12], The numerical stability of the Levinson-Durbin algorithm for Teoplitz systems of equations, this
Journal, (1980), pp. 303-309.

13], Round-off error propagation in Durbin’s, Levinson’s and Trench’s algorithms, Proc. Inter. Conf.
on Acoustics, Speech and Signal Processing, Washington, DC, 1979.

[14] L. S. DE JONG, Numerical aspects ofrecursive realization algorithms, SIAM J. Control Optim., 16 (1978),
pp. 646-659.

[15] J. DURBIN, Thefitting of time-series models, Rev. Int. Stat. Inst., 28 (1959), pp. 229-249.
[16] L. ELDIN, Algorithms for the regularization of ill-conditioned least squares problems, BIT, 17 (1977),

pp. 134-145.
[17] B. FREIDLANDER, T. KAILATH, M. MORF AND L. LJUNG, Extended and Chandrasekhar equations

for general discrete-time estimation problems, IEEE Trans. Automat. Control, AC-23 (1978), pp. 653-
659.

[18] ., New inversion formulas for matrices classified in terms of their distance from Toeplitz matrices,
Linear Algebra Appl., 27 (1979), pp. 31-60.

19] G. FROBENIUS, Uber Relation zwischen den Naherungsbruchen yon Potenzreihen, J. fiJr Math., 90 1881),
pp. 1-17.

[20] P. E. GILL, G. n. GOLUB, W. MURRAY AND M. A. lAUNDERS, Methods for modifying matrix

factorizations, Math. Comp., 28 (1974), pp. 505-535.
[21] I. GOKHBERG AND I. FELDMAN, Convolution equations and projection methods for their solutions,

Trans. Math. Monographs 41, American Mathematical Society, Providence, RI, 1974.
[22] I. GOKHBERG AND G. HAJNIK, Inversion offinite Toeplitz with entries being elementsfrom a noncummu-

tative algebra, Rev. Roumaine Math. Pures Appl., 19 (1974), pp. 623-663. (In Russian.)
[23] I. GOKHBERG AND A. SEMENTSUL, On the inversion offinite Toeplitz matrices and their continuous

analogs, Mat. Issled., 2 (1972), pp. 201-233. (In Russian.)
[24] W. GRAGG, The Padd table and its relation to certain algorithms of numerical analysis, SIAM Rev., 14

(1972), pp. 1-62.
[25] W. GRAGG AND A. LINDQUIST, On the partial realization problem, Linear Algebra and Appl., 50

(1983), pp. 277-319.
[26] P. R. GRAVES-MORRIS, The numerical calculation of Padd approximants, in [64], pp. 231-245.
[27] U. GRENANDER AND G. SZEG(3, Toeplitz Forms and Their Applications, Univ. California Press,

Berkeley, 1958.
[28] R. E. HARTWIG AND M. E. FISHER, Asymptotic behaviour of Toeplitz matrices and determinants, Arch.

Rat. Mech. Anal., 32 (1969), pp. 190it.
[29] J. R. JAIN, An efficient algorithmfor a large Toeplitz set oflinear equations, IEEE Trans. Acoust., Speech,

Sig. Processing, ASSP-27 (1979), pp. 612-615.
[30] J. H. JUSTICE, A Levinson-type algorithm for two-dimensional Wiener filtering using bivariate Szeg6

polynomials, IEEE Proc., 65 (1977), pp. 882-886.
[31] T. KAILATH, A view of three decades of linear filtering theory, IEEE Trans. Inf. Theory, IT-20 (1974),

pp. 146-181.
[32] ., Some alternatives in recursive estimation, Int. J. Control, 32 (1980), pp. 311-328.
[33] T. KAILATH, B. LEVY, L. LJUNG AND M. MORF, The factorization and representation of operators in

the algebra generated by Toeplitz operators, SIAM J. Appl. Math., 37 (1979), pp. 467-484.
[34] T. KAILATH, A. VIEIRA AND M. MORF, Inverses of Toeplitz operators, innovations and orthogonal

polynomials, SIAM Rev., 20 (1978), pp. 106-119.
[35] A. N. KOLMOGOROV, Interpolation and extrapolation ofstationary random sequences, Izv. Akad. Nauk,

5 (1941), pp. 3-11 (Russian); German summary, pp. ll-14.

[36] L. KRONECKER, Zur Theorie der Elimination einer Variabelen aus zwei algebraischen Gleichungen,
Monatsb. Konigl. Preuss Akad. Wiss. Berlin (1881), pp. 535-600.

[37] S. KUNG AND T. KAILATH, Fast projection methodsfor minimal design problems in linear systems theory,
Automatica, 16 (1980), pp. 399-403.

[38] S. KUNG AND D. W. LIN, Optimal Hankel-norm reductions: multivariate systems, IEEE Trans. Automat.
Control, AC-26 (1981), pp. 832-852.

364 JAMES R. BUNCH

[39] N. LEVINSON, The Wiener rms (root-mean-square) error criterion in filter design and prediction, J. Math.
Phys., 25 (1947), pp. 261-278.

[40] D. MAKAROV, The lower bound on the number ofmultiplicationsfor algorithmsfor calculating the product
of Hankel matrices, USSR Comput. Math. and Math. Phys., 17 (1978), pp. 195-199.

[41] J. MAIHOtJL, Linear prediction: a tutorial review, IEEE Proc., 63 (1977), pp. 561-580.
[42] M. A. MALCOLM AND .1. PALMER, Afast methodfor solving a class oftridiagonal linear systems, Comm.

ACM, 17 (1974), pp. 14-17.
[43] R. MCELIECE AND I. SHEARER, A property ofEuclid’s algorithm and an application to Padd approxima-

tions, SIAM J. Appl. Math., 134 (1978), pp. 611-617.
[44] R. MOENCK, Fast Computation of GCD’s, Proc. Fifth Annual Symposium on Theory of Computing,

1973, pp. 142-171.
[45] M. MORE, Fast algorithms for multivariable systems, Ph.D. thesis, Stanford Univ., Stanford, CA, 1974.
[46] M. MORE, B. DICKINSON, T. KAILATH AND A. VIEIRA, Efficient solution of covariance equations for

linear prediction, IEEE Trans. Acoust., Speech, Sig. Processing, ASSP-25 (1977), pp. 429-433.
[47] M. MORE AND T. KAILATH, Square-root algorithms for linear least-squares estimation, IEEE Trans.

Automat. Control, AC-20 (1975), pp. 487-497.
[48] B. S. PARIISKI, An economical methodfor the numerical solution ofconvolution equations, USSR Comput.

Math. and Math. Phys., 18 (1978), pp. 208-211.
[49] B. N. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[50] W. D. RAy, The inverse ofafinite Toeplitz matrix, Technometrics, 12 (1970), pp. 153-156.
[51] J. RISSANEN, Recursive identification of linear systems, SIAM J. Control Optim., 9 (1971), pp. 420-430.
[52] ., Algorithmsfor the triangular decomposition ofblock Hankel and Toeplitz matrices with application

to factoring positive matrix polynomials, Math. Comp., 27 (1973), pp. 147-154.
[53] Solution of linear equations with Hankel and Toeplitz matrices, Numer. Math., 22 (1974),

pp. 361-366.
[54] P. ROEBUCK AND S. BARNETT, A survey of Toeplitz and related matrices, Int. J. Systems Sci., 9 (1978),

pp. 921-934.
[55] D. n. SINNOTT, Matrix analysis of linear antenna arrays of equally-spaced elements, IEEE Trans.

Antenna and Prop., AP-21 (1973), pp. 385-386.
[56] G. W. STEWART, Introduction to Matrix Computations, Academic Press, New York, 1973.
[57] D. SWEET, Numerical methods for Toeplitz matrices, Ph.D. thesis, University of Adelaide, Australia,

May 1982.
[58] W. TRENCH, An algorithm for the inversion offinite Toeplitz matrices, SIAM J. Appl. Math., 12 (1964),

pp. 515-522.
[59] T. J. ULRYCH, D. E. SMYLIC, O. G. JENSEN AND G. K. C. CLARKE, Predictive filtering and smoothing

of short records by using maximum entropy, J. Geophys. Res., 78 (1973), pp. 4959-4064.
[60] G. WALKER, On periodicity in series of related terms, Proc. Royal Soc. London A, 131 (1931), p. 518.
[61] N. WIENER, Extrapolation, Interpolation and Smoothing of Stationary Time Series, with Engineering

Applications, Technology Press and Wiley, New York, 1949 (origin.ally published in 1941 in a
technical report).

[62] R. A. WIGGINS AND E. A. ROBINSON, Recursive solution to the multichannel filtering problem, J.
Geophys. Res., 70 (1965), pp. 1885-1891.

[63] J. WILKINSON, The Algebraic Eigenvalue Problem, Oxford Univ. Press, London, 1965.
[64] L. WUYTACK, Padd Approximation and Its Applications, Springer-Verlag, New York, 1979.
[65] G. U. YULE, On a method ofinvestigating periodicities in disturbed series, with special reference to Wolfer’s

sunspot numbers, Phil. Trans. Royal Soc. London A, 226 (1977), pp. 267-298.
[66] S. ZOHAR, Toeplitz matrix inversion: the algorithm ofW. F. Trench, J. Assoc. Comput. Mach., 16 (1969),

pp. 592-601.
[67], The solution ofa Toeplitz set oflinear equations, J. Assoc. Comput. Mach., 21 (1974), pp. 272-276.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 2, April 1985

1985 Society for Industrial and Applied Mathematics
0O8

ON BARTKY’S METHOD FOR EVALUATION OF INTEGRALS OF
ELLIPTIC TYPE WITH APPLICATION TO ROUND-NOSED WEDGES*

VERNON J. ROSSOW"

Abstract. Bartky’s method for the numerical evaluation of integrals of the complete elliptic type is
modified to improve its accuracy. The resulting modified method is then applied to integrals involving
complex arithmetic which map the upper half of one plane onto either the interior or exterior of round-nosed
wedges. These solutions have engineering applications to such problems as the design of magnets and the
flow of fluids in and around corners.

Key words. Bartky’s method, numerical evaluation of integrals, mapping of round-nosed wedges

1. Introduction. The analysis of many scientific problems leads to integrals that
must be evaluated numerically to obtain results for engineering purposes. Bartky [2]
introduced an effective transformation method for evaluating a large class of integrals
which does not rely on finding clever algebraic relationships; e.g., King [9]. Unfortu-
nately, the procedure as presented by Bartky is subject to severe loss of accuracy. Two
modifications of Bartky’s original method are presented here which are effective in
maintaining accuracy. The first modification simplifies the procedure, and the second
avoids the propagation and growth of truncation and round-off error. The revised
technique is then applied to integrals which map the upper half of one plane onto
either the inside or outside of round-nosed wedges. Such a mapping has applications
in various physical problems that occur in electromagnetics and fluid dynamics (see
[3], [4], [6]-[8], [12]-[14]).

2. Alleviation of numerical inaccuracy in Bartky’s method. Bartky [2] considers
integrals of the type

/E Fo(Ro) d#o
(2.1) I(mo, no) ., o Ro
The integrand function Fo(Ro) is assumed to be a continuous function of a parameter
Ro defined by

R tn cosE qo+ n sinE qo,

where mo and no are positive real numbers. Bartky rewrote the integral as

m Fo(go) dgo
(2.2) I(mo, no)=

x/(R- n)(m- R)no

and then repeatedly applied Landen’s transformation

(2.3) R,+I= R,+
R, /

beginning with 0. Landen’s transformation has the property that Ri+l equals mi+
at both limits of integration where Ri mi and n. Since the integration parameter R+l
has its maximum excursion from rn/l at Ri+ =x/--n n+l, which occurs when

R x/mn, the substitution (2.3) folds the integration intervals at n. The integral (2.2)

Received by the editors July 14, 1982, and in revised form July 18, 1983.

" Low Speed Aircraft Research Branch, NASA Ames Research Center, Moffett Field, California 94035.

365

366 VERNON J. ROSSOW

may then be expressed as

Fi(R,) dRi f/:2 F(R,) dqi
(2.4) I(mo, no)= I(m,, n,)= x/(.g2 nE)(m,_ g2) ao

where

(2.5) mi+l 1/2 (mi + ni) and n,+ x/-n,

are the successive arithmetic and geometric means The integrand functions, Fi, are
based on the inverse of Landen’s transformation which is obtained from (2.3) as (in
Bartky’s notation)

(2.6) Ri Ri+l :t=x/Ri+l
so that F+l is related to F by

(2.7) F,+, (R,+,) 1/2[F,(R, +x/R2 n:2 2)+ F,(R, x/R,2.- n,)].

In effect, the process of going from the ith level to the (i+ 1)th level folds the integral
(2.2) or (2.4) once so that the integrand becomes the arithmetic mean of two functions
which are related to Ri+ by the inverse of Landen’s transformation.

The integral is more difficult to manage analytically in this form but repetition of
the folding process leads to a situation where m and ni are equal to each other to any
desired number of significant figures. The integration parameter Ri and, consequently,
the integrand function F(R) are then approximately constant over the integration
interval so that the integral may be written as

(2.8) I(mo, no)
a o Ri

EL(RL) __.._ eL
r Rr 2

The quantity eL can be made as small as desired by increasing the level L of the
approximation, to render R and consequently F(R) more nearly constant over the
integration interval.

The procedure used in the numerical evaluation of (2.8) begins with mo and no
and then determines the arithmetic and geometric means, mi and n, up to a chosen
level of agreement, L. Since the integrand function, FL(RL), is known only in terms
of 0, it must be expanded from L down to 0 by repeated application of (2.7).
This process requires a corresponding expansion in R as indicated in (2.6) and (2.7).
While a single subscript suffices for F, because it has the same form at each level, the
integration parameter, R, needs a double subscript to properly index the multiple
values it assumes at each level. The multiple values are brought about by the two roots
indicated in (2.6) by the + sign. Therefore, the number of values of R doubles at each
level below L. The indexing used here is then

2 2(2.9) Ri_ l,ki_l Ri,ki "+" x/R ki rl

where the subscript is again associated with the level being considered at that point
in the analysis, and k identifies the various values of the integration parameter at that
level. The computation of the Ri,k, begins with L and

(2.10) RL,1 mL and RL,2-- I’lL,

and progresses down to i-0 by repeated application of (2.9). After the integration
parameters have been evaluated, the integral is determined by

/- 2

(2 11) I(mo, no)- Z Fo(Roko).RL2L+I ko=l

8ARTK’S METHOD 367

Equation (2.11) incorporates the expansion of the integration functions from i= L to
0 using (2.7).
It first appears that the Lth approximation is independent of all the lower ones.

A relationship does however exist between the various levels which becomes apparent
when the integrand functions based on the arithmetic mean are written sequentially.
By use of (2.7) and the relationships,

mi m,+l+x/m2 2 x/ 2
i+1 t/i+l and ni mi+l mi+l tli+l

successive approximations to the integrand function are given by

Fl(ml) 1/2[Fo(mo) + Fo(n0)],

(2.12) F:(m2). 1/2[F,(ml) + F,(n,)],

Fi+,(mi+,) 1/2[F,(m,) + F,(n,)].

Hence, increasingly higher approximations to the integrand function may be obtained
by use of the recursion formula (2.12). Each higher approximation is determined by
evaluating only Fi(ni) and averaging it with the previous approximation based on mi
so that the integration parameters Ri.k, based on m need not be evaluated.

It is now noted that when L, the result

Ft+,(m+,) 1/2[F/(m) + Ft(n)]

could be used in (2.8) to evaluate the integral. Since m and n approach the same
value as L increases, only a small error (which can be made negligibly small) would
occur if FL in (2.8) were based on m, nL or both. The three possibilities are then

F(Rt.k.) F(mt.)+ m F.(nD+ e,, 1/2[F(m) + F(n,)]+ e.

These three choices for evaluating Fr are equivalent in the limit as L gets large, since
then era, e,, and e become negligibly small.

The numerical effort is smallest when the solution is based on only F(n) because
the lower approximations of F(m) do not then need to be determined for the evaluation
of Ft.(mr.). Furthermore, since (2.12) shows that Ft.(rot.) is based on F_, its conver-
gence rate lags behind that of Ft(nt.). Hence, if the computations are to be based on
one level of approximation only, it is more efficient to exclude F(m) and to use the
expression

(2.13) F(Rt.,k) F(nO.

Because of the foregoing reasons, the examples presented in the sequel were calculated
using (2.13).

The integration parameters, R,.k,, which originate with nt, must now be calculated
in order to evaluate the integrand function, F(n.). When these computations were
undertaken for the mappings presented in the sequel, it was found that the method
suggested by Bartky [2], (2.9) needed to be modified because an inaccuracy arises from
the square root term. This inaccuracy develops at the beginning of the computations
where

(2.14) Rt, n and RL_l,kt._, nt.+/n2t.-n2_.
In cases where the arithmetic/geometric mean has been determined to a high degree
of agreement (e.g., L> 4), the values of n and n_ also agree to a comparable number

368 VERNON J. ROSSOW

4
3
2

0

TABLE
Effect of initial error on computed value of integration parameter.

mi

1.340933
1.340933
1.341050
1.366025
1.000000

1.340933
1.340933
1.340817
1.316074
1.732051

No initial
error

1.340933
1.340933
1.340933
1.358568
1.695698

Ri,

+0.000001 error
in R4,

1.340934
1.342664
1.410818
1.849699
3.148443

of significant figures. Therefore, when the subtraction under the square root sign in
(2.14) is made, most if not all of the significant figures in the computer are lost to yield
a nearly meaningless remainder much less than one. The square root of this number
introduces uncertainty into the right half ofthe figures defining RL-.kL_, Since RL_.kL_,
is used to compute R-2.k,_2, etc., the uncertainty or inaccuracy is passed on to all of
the Ri, k, from L-1 down to 0. This growth of the error due to the square root
and its transfer to subsequent values of Ri. is illustrated in Table 1. The two results
for Ri. presented there differ because the second is assumed to have an error of
0.000001 (e.g., due to round off) in R4,. The divergence between the two numerical
results shows how an error at the beginning can grow and propagate through the
computations of Ri, l. Naturally, the same phenomena can occur with the other Ri, k,

so that a small error incurred near the beginning of the computations is capable of
destroying all of the significant figures in the result for the integral. Errors which occur
in later parts of the calculations are not as devastating but the loss in accuracy is often
not tolerable.

This rapid loss of accuracy in the computation of R.k, can be alleviated by
reformulating the square root quantities through the use ofthe arithmetic and geometric
means and their difference

(2.15) ci=1/2(m,-n,).

Equation (2.15) can be combined with (2.5) to yield

2
Ci-I(2.16) ci -4mi

The square root in (2.14) can then be rewritten as

(2.17) x/n:L n eL--1
2mL

which retains the same accuracy as nL because the difference under the square root
has been replaced by a stable calculation. Evaluation of R can now be made accurately
and systematically by use of recursion relationships which follow. Expansion of R by
repeated use of (2.14) and (2.17) produces the expression (n2L n_j) which is common
to all levels under the square root. Extension of the procedure used to obtain (2.17)
yields

B,RTK’S MwrI-IOD 369

or,

(2.18a)

where

(2.18b) PL_j= [(1/2)cL-jPL-j+’ + nL-j-’]2rn/_j

and

’/L-
(2.18c) PL

2mL
Introduction of the PL-; parameters into (2.14) for RL-,kL_, illustrates the prolifer-

ation of + signs,

CL-2 + PL- q- %L +... PLR_,kL_ n+ c_
i.4rn_ 2mL-I 4m_l

where the subscript kL-i serves as the index for the four values of R determined by
the four combinations of + signs. Repeated application of the equations for R leads
to the identification of a second recursion relationship which helps to keep the
computations orderly.

nt4’PL-j+I CL-j PL-j+IeL-j-1 + PL-j ql-(2.19) Qt-j,kt_j 4mt-:i 2mL_; 4ma_

where

(2.20) Q,, +x/-- and Q,2 -x/-.
After the Q parameters have been evaluated from Q,k down to L-j 1, or Ql,k,, the
integration parameters used in (2.12) for the evaluation of the integrand functions are
found by

(2.21) Ro, nL + Cl Ql.k

The arithmetic mean of the integrand functions F evaluated at the ko 2- locations
Ro,ko on the integration interval over R yields a numerical value for the integral
I(mo, no). The foregoing form of the recursion equations for R avoids the dramatic
loss of significant figures which arise from the use of the simpler square root version
of R. Such a technique permits Bartky’s method to be applied to any level of approxima-
tion with no more than the usual loss of significant figures.

3. Application to mapping of round-nosed wedges. Bartky’s method with the
foregoing two modifications will now be used to obtain numerical results for an integral
which is often of practical interest in engineering and physics. The integral is part of
a function that maps the upper half of one plane (i.e., the original plane) onto another
plane as the interior or exterior of a round-nosed wedge (see Fig. 1). The included
angle, 20, between the sides of the wedge can be of any value between 0 and 180.
The circular arc which comprises the rounded nose of the wedge has therefore a
corresponding angular content between 180 and 0. Such a shape approximates the
boundaries of a number of devices where the region on either side of the boundary
can be represented by differential equations such as Laplace’s equation (see e.g., [3],
[6], [7], [8], [13] and [14]). For example, the limiting case where the angular opening
of the wedge is zero has been analyzed using complete elliptic integrals [6], [7] to

370 VERNON J. ROSSOW

4 y

z-PLANE

A B

-6 -4 -2 0 2 4 o6 -4

w-PLANE

FIG. 1. Nomenclature used to map upper half of z-plane onto interior of round-nosed wedge in w-plane.

determine the electromagnetic characteristics of such a shape. In another example,
elliptic integrals have been used to analyze the flow around airfoils whose shapes were
composed of three circular arc segments [8], [14]. Although very limited numerical
data are presented for these examples, they illustrate the background and the need for
a general method which is capable of generating the numerical data accurately and
easily.

3.1. Derivation of a mapping function. Various books and research papers ([3],
[12], [13], for example) treat the theory of conformal mappings which uses complex
variables to develop geometrical relationships between two planes. The technique to
be used here is a special case of the conformal mapping that transforms the upper
half of one plane onto the interior area of a polygon composed of circular arcs (i.e.,
a curvilinear polygon) in another plane ([3, pp. 251ff] or [12, pp. 198ff]). Such a
mapping is an extension of the Schwartz-Christoffel theorem [3], [12], [13] which maps
the upper half plane onto the interior of straight-sided polygons and which is based
on the differential relationship

f"(z)_ g(z)=
f’(z)

where a prime indicates a derivative with respect to z. The quantity f(z) is the mapping
function for straight-sided polygons and g(z) determines through a the lengths of the
sides of the polygon and through/x, the angles at which the sides intersect. When the
Schwartz-Christoffel theorem for polygons with straight sides [f(z)] is extended to a
function w(z) which maps a straight line into polygons composed of segments of
circles, the mapping is developed through the Schwarzian or the Schwarzian differential
parameter [3], [12] which is written as

(3.1)
\w’(z)] --\w’(z)] ==, (a-z)2

=, a+z
where ra is an interior angle at the intersection of two circular arcs of the polygon
and the a’s again determine the lengths of the sides. The constants/3 are related to
both c and a. The general case is usually regarded as very difficult, but a curvilinear
triangle composed of three circular arcs is tractable. For such a figure, the mapping

BARTKY’S METHOD 371

function is defined by

(3.2)
2(z-a)(z-b)(z-c)

[(1-a2)(a-b)(a-c)z-a (1-fl2)(b-a)(b-c)
/

z-b (1-y2)(c-a)(c-b)]c

where w- u + iv, and a prime indicates a derivative with respect to z. In the mapping
to be studied here, a l,/3 1, y 20/7r, a =-1, b- + and c + as illustrated in
Fig. 1. The differential equation to be solved is then,

(w3, l(w,3 (3.3)
\w’/ --\w’] 2(z2-1)

The assumption is now made that the mapping function can be represented as
the ratio of two functions

(3.4) w W1 ah + bh2
W2 Chl + bh2’

where a, b, c and d are constants to be determined by the boundary conditions.
Substitution of (3.4) into (3.3) shows that both functions WI and WE must satisfy the
differential equation (with 3, 20/r)

(3.5)
W

(z2- 1) W"+ (1 y2) - 0.

The two solutions, h and h2, for the function W in the differential equation (3.5)
are found by relating (3.5) to the hypergeometric differential equation [1 l, p. 7]. When
the integral form of the solutions is integrated by parts once, it may be written as

h C .v r2) (-v)/2(’z2) -(l-v)/2 dr

or, if z sin q,

(tan q) v cos2 q do f/2 F(R)
(3.6) h csr

ao (i_-{/aiiizv-57-2= C Jo Rdq,

where C is a constant and " (1-z)/2 for h, and " (1 + z)/2 for h2. The parameter
R is given by

R2 " sin2 p cos2
(+ sr) sin2 q

so that

which yield

R- +st 1-R2

COS
2
("-, tan2 tp

" R2-1+sr

(I_R2)]-,,/2F(R)= R’(R2-1+ sr) (R2_l+.)

372 VERNON J. ROSSOW

as the integrand function. These substitutions convert (3.6) into the Bartky form shown
in (2.1).

In the limiting case, 3’ 0, the integral reduces to

(3.7) h C
(1 r2)j d’r, h= C[E(x/)-(1-)K(x/-)],

where K and E are the complete elliptic integrals of the first and second kinds of
modulus x/. The mapping function derived from (3.7) is equivalent to the one found
in [7].

The general expression for the mapping function w is now found as a combination
of the two integrals h and h2 in (3.6), i.e.,

(3.8) w h + h2 e

h i’rr(l-v)/2 + h2"
The exponential function ei(-)/2 fixes the junctures of the curvilinear triangle as
indicated in Fig. 1.

3.2. Application of mapping integrals to round-nosed wedges. The mapping function
equation (3.8) can be numerically calculated by evaluation of the integrals (3.6) using
Bartky’s method as modified in 2. Bartky derived his method for real positive values
of m and n, but nothing appears to prevent the application of his method to complex
values. Nonetheless, in the early part of this investigation the technique was checked
against known values for elliptic integrals by use of various expansions and transforma-
tions (e.g., [1], [2], [9], [10]) to be certain that Bartky’s method as modified here would
provide valid results when complex arithmetic is used on the computer.

The upper half of the original plane is mapped onto the interior or exterior of
round-nosed wedges by means of (3.4) and (3.6). In order to insure that the point to
be mapped is in the upper half of the original plane (Im (z)> 0), the boundary line
was chosen as y + 10-5. In the computations, it was first necessary to find out what
level of approximation L is needed to provide plotting accuracy (i.e., three or more
significant figures). Since the method suggested in this paper for the calculation of the
integration parameters, Ri,k, uses values for Ci_j, mi-j and ni_j in the computations,
the convergence rate is slower than the convergence of the arithmetic and geometric

TABLE 2
Numerical values of the wedge angle as a function

of L, x=-5, y=+10-5.

3
4
5
6
7
8
9
10
11

exact

Wedge angle, 0

86.009
4.731

-0.001
0.000
0.000
0.000
0.000
0.000
0.000
0

19.165
57.481
48.286
46.118
45.392
45.139
45.049
45.017
45.006
45

BARTKY’S METHOD 373

4

5th AND HIGHER LEVELS

2 w-PLANE

-2

%4 w-PLANE

4th LEVEL
(a) 3’ 2.0 -4 (b) 3’ 1.5 5th LEVEL

6th LEVEL
7th LEVEL
8th LEVEL

FIG. 2. Examples of the convergence rates of mapping integrals on the boundary for various approximations.

means to a common limit. It was also found that the convergence rate was dependent
on the integral being considered. These characteristics are illustrated in Fig. 2 and in
Table 2 where mapping data is presented for the boundary line of two wedge openings;
0 0 and 45 (i.e., y 2.0 and 1.5). Figure 2 illustrates graphically how the boundary
line converges to the limiting shape as the number of approximations L is increased.
Table 2 presents numerical values for the angle of the wedge when a point at x =-5,
y + l0-5 in the original plane is mapped onto the plane of the round-nosed wedge
for 0 0 and 45. Both Fig. 2a and the tabulated values in Table 2 indicate that when
y 2.0 the level of approximation, L 5, provides plotting accuracy. However, when
3/= 1.5, L should be eight or greater.

The mapping function (3.8) was used on a grid of one size when 3’ is less than
one, Fig. 3, and on a smaller grid when y is greater than one, Fig. 4. Both the interior
or exterior of the wedges are mapped from the upper half of the original or z-plane
by choosing values of / larger or smaller than one. Some of the curves stop at the
edge of the plotting field rather than at the end of the grid presented in Figs. 3a and 4a.

4. Concluding remarks. The foregoing text first recommends that the evaluation
of integrals by Bartky’s method be based on only the geometric mean rather than on
both the arithmetic and geometric means. Such a change simplifies the procedure used
in the computations and makes them more efficient. A new method for the computation
of the integration parameters was then introduced to circumvent the severe loss of
accuracy caused by a square root term in Bartky’s procedure. These changes broaden
the applicability of the method and increase the accuracy of the method for a wide
range of applications. Not mentioned in the previous text is that integrals which are
not necessarily of the elliptic type can also be treated by Bartky’s method. Even if R
does not occur naturally in the denominator of the integrand, the basic integrand could
be put in the Bartky form of F(R)/R by dividing and multiplying by R. The parameter
R in the numerator is then simply combined with the integrand function F(R) and
the computations conducted as described in the foregoing text. This possibility in
addition to those formulations that can be derived from the manipulation of the
integration variable and/or the limits of integration make it possible to evaluate a wide
variety of integrals by Bartky’s numerical method. Although the various integrand
functions may have different rates of convergence, the modifications introduced here
permit approximations to be carried out to any level with no more than the usual loss
of significant figures in the calculations.

374 VERNON J. ROSSOW

201 ,
z-PLANE

-30 -20 -10 0 10 20 30

(a) ORIGINAL PLANE
-10

4 4

2 w-PLANE

-g -i ." i i 4

-2

(b) ’7 0 (c) 7 0.5 -4

FIG. 3. Map of a grid in z-plane onto w-plane for two balues of 7 20/7r, less than one" L 8.

4 y

z-PLANE

-6 -4 -2 0 2 4 6

(a) ORIGINAL PLANE -2

4 ...4

4 - -i o d)/ - -
(b) 7 2.0 (c) 3" 1.5

FIG. 4. Map of a grid in z-plane onto w-plane for two values of y 20/7r, greater than one" L 8.

BARTKY’S METHOD 375

Acknowledgment. The author thanks David C. Galant for calling his attention to
Bartky’s method and for helpful discussions during the course of the investigation.

REFERENCES

[1] M. ABRAMOWITZ AND I. A. STEGUN, Handbook of Mathematical Functions, National Bureau of
Standards, Appl. Math. Series, 55, Washington, DC, 1964.

[2] W. BARTKY, Numerical calculation of a generalized complete elliptic integral, Rev. Modern Phys., 10
(1938), pp. 264-269.

[3] A. BETZ, Konforme Abbildung, Springer-Verlag, Berlin, 1948.
[4] R. BULIRSCH, An extension of the Bartky transformation to incomplete elliptic integrals of the third kind,

Numer. Math., 13 (1969), pp. 266-284.
[5] P. F. BYRD AND M. O. FRIEDMAN, Handbook of Elliptic Integrals for Engineers and Physicists,

Springer-Verlag, Berlin, 1954.
[6] N. DAVY AND N. H. LANGTON, The two-dimensional magnetic or electric field inside a semi-infinite

slot terminated by a semi-circular cylinder, Brit. J. Appl. Phys., 3 (1952), pp. 156-158.

[7] The external magnetic field of a single thick semi-infinite parallel plate terminated by a convex
semi-circular cylinder, Quart. J. Mech. Appl. Math., VI (1953), pp. 115-121.

[8] S. O. DAYMOND AND J. HODGKINSON, A type ofaerofoil, Quart. J. Math. (Oxford), l0 (1939), pp.
136-144.

[9] L. V. KING, On the Direct Numerical Calculation of Elliptic Functions and Integrals, Cambridge Univ.

Press, London, 1924.
[10] W. MAGNUS, F. OBERHETTINGER AND R. P. SONI, Formulas and Theoremsfor the Special Functions

of Mathematical Physics, Springer-Verlag, Berlin, 1966.
[11] W. MAGNUS AND F. OBERHETTINGER, Formulas and Theorems for the Functions of Mathematical

Physics, Chelsea, New York, 1949.
[12] Z. NEHARI, Conformal Mapping, Dover, New York, 1952.
[13] V. L. STREETER, Fluid Dynamics, McGraw-Hill, New York, 1948.
14] W. WOLFF, Einfluss der Abrundung scharfer Eintrittskanten aufden Widerstand yon Fluegeln, Ingenieur-

Archiv, IV (1933), pp. 521-544.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 2, April 1985

(C) 1985 Society for Industrial and Applied Mathematics

O09

THE NUMERICAL SOLUTION OF A NONLINEAR SYSTEM
ARISING IN TIME SERIES ANALYSIS*

DAVID H. ANDERSONt AND EUGENE C. GARTLAND, JR.

Abstract. This paper is concerned with the analysis and methods of solution of a particular system of
nonlinear equations that arises in the identification of parameters for certain time series models. Necessary
and sufficient conditions for the existence of real solutions to the system are given. Numerical solution
methods include a generating function factorization method, Newton’s method and the simplified Newton’s
method. Initial estimates for starting the algorithms are also investigated.

Key words, time series, parameter identification, generating functions, Newton’s method

AMS (MOS)subject classifications, primary 65H10, secondary 65U05

Introduction. In time series modeling, one encounters the problem of numerically
solving the nonlinear algebraic system F(0) 0, where 0 (0o, , 0n)T and the
component functions of F are

n-i

(0.1) Fi(O)=- E OjOj+,-c,, i=0,’..,n.
j=0

Here it is assumed that Co," ", cn are given real numbers where, in particular, Co> 0
and cn 0. If cn 0, then the system F(0)= 0 can be reduced in order.

In applications to time series analysis, the values Co," ", cn are estimates of the
autocovariances ofa moving average or (in the case ofan assumed mixed autoregressive-
moving average model) a derived moving average process. The system (0.1) must be
solved for the real solution that is invertible, provided one exists--it is possible
(depending on Co,’", on) that (0.1) will have no real solutions, and this must be
determined.

Once obtained, the invertible solution is used to provide an initial guess for a
nonlinear least squares routine that computes efficient estimates of the true moving
average parameters. This entire model identification and estimation procedure is
documented in Box and Jenkins (1970, 6.3.2 and A6.2).

Hereafter we will simply refer to Co," ", cn as covariances, and the reader may
think of them as the true autocovariances of a pure moving average process. In any
event, it is the solution of (0.1), and not the entire model identification process, with
which we are concerned.

The system (0.1) is a subclass of a more general system of the type

Pi ki
(0.2) Fi(O) E H Oq(i,j,k)- Ci, i= 0,’’’, n,

j=0 k--I

where each q(i,j, k) is an integer in {0, 1,..., n}, p is a nonnegative integer, and ci
is a prescribed real number. The integer ki, _-< k _-< n, deserves special comment. A
distinguishing feature of (0.2) is that for a given equation number i, the number ki of
factors in the product is the same for all j and thus is independent of the term number
j. We see that k 2 for all j (and i) in (0.1). Systems of nonlinear equations such as

Received by the editors August 11, 1982, and in revised form December 2, 1983.

" Department of Mathematics, Southern Methodist University, Dallas, Texas 75275; and Department
of Medical Computer Science, University of Texas Health Science Center, Dallas, Texas 75235.

$ Department of Mathematics, Southern Methodist University, Dallas, Texas 75275.

376

NONLINEAR SYSTEM SOLUTION 377

(0.2) arise in structural identification problems of compartmental analysis (see Ander-
son (1982), Delforge (1977) and Cobelli et al. (1979)).

The purpose of this article is to analyze real solutions of (0.1). The paper is
expository in that it reviews work done in the past on these equations. Yet new results
are also presented in a variety of areas: (1) new proofs of necessary and sufficient
conditions for there to exist real solutions; (2) a new polynomial solution method; (3)
a global convergence result for Newton’s method which can be applied even where
only a borderline invertible solution exists and the Jacobian F’(O) is known to be
singular at this solution; (4) local existence and uniqueness of solutions obtained by
the simplified Newton method (for which we prove convergence results subject to
conditions on the Co,’", cn that are easy to check and only slightly more restrictive
than a similar condition sufficient to guarantee existence of invertible solutions); (5)
improved starting vectors for which algorithm convergence is ensured. Moreover,
numerical results are reported, and the relative merits of the proposed schemes are
discussed.

The solution of interest to time series analysts is the (real) invertible solution. The
importance of invertible solutions is that the requirement of invertibility is needed if
we are to associate present events with past happenings in a sensible manner in the
time series model" that is, with invertibility we wish to exclude physical models that
do not make sense (see Box and Jenkins (1970, pp. 50-51)). A simple procedure, which
is based upon isolating roots of polynomials via Sturm sequences, to determine the
existence of invertible solutions is given.

We hope that this paper will be useful to specialists in time series as a summary
of relevant mathematical results and techniques, and to applied mathematicians by
providing them with an important application of numerical and comptltational tech-
niques to time series analysis.

1. Necessary conditions for solutions. To begin our discussion of (0.1), necessary
conditions for the existence of real solutions of the problem are given. The quadratic
nature of the equations suggests the possibility of using to our advantage forms like
(0, NO), where (.,.) is the usual inner product on Rn+. In fact, if we let N be the
(n + 1) (n + 1) matrix with ones on the superdiagonal and zeros elsewhere, then (0.1)
can be rewritten as

(1.1) (0, N’O)-c,=O, i=0, 1,..., n,

where 0 is any real solution of (0.1). With this form of (0.1), investigation of necessary
conditions can proceed in at least two ways.

The first comes from the addition of the equations of (1.1) to arrive at the single
equality

(1.2) (O, AO)=2
i=0

where A is the (n + 1)-square matrix with twos on its diagonal and ones elsewhere.
Since a real solution of (1.1) cannot be the zero-vector, and because A is positive
definite, then (1.2) tells us that a preliminary necessary condition for the existence of
a real solution 0* of (1.1) is that Y’. i=o ci > 0. This condition is now refined by appealing
to the Rayleigh principle. The eigenvalues of A are n + 2, 1, 1,. -, 1, and by utilizing
(1.1) and (1.2) the Rayleigh quotient is

(1.3) R(O*,=-(o*,ao*}/(O*,O*}=(2i=o ci)/Co.

378 DAVID H. ANDERSON AND EUGENE C. GARTLAND, JR.

Hence the inequalities of Rayleigh’s principle,

(1.4) min R(0) _-< R(0*) _-< max R(0) n + 2,
o#o o#o

direct us towards the first solvability condition.
THEOREM 1.1. if there exists a real solution of (0.1), then the inequalities

1__< n +

must be satisfied by the scalars ci.
We should also note that, according to the Rayleigh principle, the left-hand

inequality of (1.5) becomes an equality for just those 0* whose components satisfy

=o 0 0. Likewise, the right-hand side of (1.5) is an equality provided 0 for
all j=0, 1,..., n.

Anderson (1975) investigates bounds for the autocorrelations defined by

(1.6) O, 00+, E 0}, i= 1, 2,..., n,
=o =o

and po 1. For these autocorrelations taken as a whole, he states (without prooO that---- pi <(.7) _,=, =.
At a real solution vector 0* of (0.1), his p is our ratio c/Co, and it is then an easy
calculation to show that (1.7) is equivalent to our condition (1.5).

A second way to develop a necessary condition is to obsee that (1.1) implies

(.8) 0, IN + (N)]0> 2c, k 0, , , n.

Consider the maximum eigenvalue r(M) of the real symmetric nonnegative matrix

MN+(N)5 =0, ,...,n.
When k 0, Mo 2I and r(Mo)= 2. When k 1, M is tridiagonal and irreducible,
and the Perron root r(M) 2 cos (/(n +2)). When 2k n, M is reducible and its
normal form can be determined using directed graphs (see Lancaster (1969)). In this
case, M is similar to the irreducible block diagonal matrix diag {B, B,..., B, C},
where each block matrix B or C is a square matrix with ones on the superdiagonal
and subdiagonal, and zeros elsewhere. Let In denote the greatest integer in n/k.
Then B is of dimensions (In k]+ 1) (In k]+ 1), and the last block C is s s, where
s[n/k]+ 1. Thus the maximal eigenvalue r(M), 2k n, is

r(Mk) 2 COS
[n/k]+2

The above arguments combined with another application of the Rayleigh principle
produce the following second necessary condition on real solutions of F(O)=0.

THEOREM 1.2. If there exist real solutions of (0.1), then the inequalities

(1.9) Ck[<= Co cos k= 1, 2," ", n,
[n/k]+2’

must be satisfied by the scalars Ck"

NONLINEAR SYSTEM SOLUTION 379

Anderson (1974) gives the equivalent bound

r
k=l,2,.-, n.IPkl<=COS[n/k]+ 2,

These maximum possible autocorrelations also seem to have been discovered indepen-
dently by Davies et al. (1974). Both derivations are different than that presented above.
We might also note that inequality (1.9) immediately implies the more easily checked
conditions

n
Co, =< k =<-2’

n
-<k<n.Co/2,
2

2. Nature of solutions. Following Wilson (1969), we study the nature of solutions
of (0.1) by using generating functions. With the vectors 0=(0o,’", 0,) T and c=

(Co,’", c,)T associate the functions

O(z)=Oo+Ol+...+O.z and C(z)=co+cl + +...+c. z"+
Z"

Then the nonlinear system F(O)= 0 is equivalent to

(2.1) C(z) O(z)(R)(-lz),
that is, the vector 0 satisfies (0.1) if and only if the corresponding polynomial (R)(z)
satisfies (2.1). This is easily verified by expanding the right-hand side ofthe factorization
above and equating the coefficients of like powers of z.

The function C(z) has the properties that C(z) C(1/z) and, since the coefficients
Co,’", c, are real, C(z)= C(). The following properties of the roots of C(z)= 0 are
easily established.

PROPOSITION 2.1. Let a be a root of C(z)=O. Then and 1/a are also roots and
all have the same multiplicity. If or -1 is a root of C(z)- O, then it must have even
multiplicity.

These observations can be used to characterize the existence of real solutions to
(0.).

THEOREM 2.2. There exist real solutions to F(O)=0 if and only if those roots of
C(z) 0 of unit modulus have even multiplicity.

Proof. Given that there exists a real solution 0- (0o,. ", 0,)T. Let a be a root
of C(z)=0 with modulus one. Then a and ff are roots of (R)(z)-0, where O(z) is the
polynomial associated with the vector 0; let their common multiplicity be p. Thus

(-’z)C(z) O(z)(R) (z- a)P(z d)p a P,(z),

and D,(z) does not vanish at a or ci. But 6 l/a, since la[1, so

C(z) (z- a)2P(z 6)PDE(Z).

Again DE(Z) is nonzero at a and c, and it follows that the multiplicity of a (and if)
is even.

Conversely, given that those roots of C(z)= 0 of unit modulus have even multi-
plicity, then all of the roots can be listed a,..., a,, 1/a,..., 1/a,, where complex

380 DAVID H. ANDERSON AND EUGENE C. GARTLAND, JR.

roots in {al, an} occur in conjugate pairs of the same multiplicity. It follows that

(2.2) C(z)=K(z-a,)... (z-On)(lZ--Ol)""" (lz-- On)
where

(-1)"cn
(2.3) K

O O

The positivity of the constant term, Co, of C(z) implies that of the constant K
above. This can be seen as follows. First,

(z- ,) (z- .) z" + ._, z"-’ +-.. + o,

where 7o," ", yn-, are real. Similarly,

(1) (__1Z) (__lZ) (__Iz) n-I--a an +%,- +’’’+To.
Z

So the constant term of (z-a)... (Z-an)((1/z)-al)"" ((1/z)-an) is

and this is positive. But the constant term of C(z) is K(1 + y,_ +... + Y), and for
this to be positive K must be positive.

Now we can take

(2.4) O(z) K1/Z(z o1) (z- On).

Then C(z)=O(z)O(1/z), and O(z)=Oo+OlZ+...+Onzn, where 0=(0o,’", 0,) 7" is
a real solution of F(0)= 0. [3

3. Existence of an invertible solution. A (necessarily real) solution 0 of (0.1) is
called invertible if all of the roots of its associated polynomial O(z) have modulus
greater than one. In this case, the moving average process is equivalent to an (infinite
order) autoregressive process that is stationary. The same construction as in Theorem
2.2 above can be used to characterize the existence of invertible solutions. This
charaoterization appears to be well-known among time series analysts.

THEOREM 3.1. There exists an invertible solution to F(O)=0 ifand only if C(z)=0
has no roots of unit modulus. This solution is unique subject to the normalization Oo > O.

The question of whether or not C(z) 0 has a root of unit modulus can be treated
as follows. If Iz[l, then z exp (i), and C(z)= 0 is equivalent to

O= C(ei4") Co+ cl(e i4 + e-’4")+ "+ cn(e’" + e-i"4’)

Co + 2c cos +" + 2cn cos n.
If a exp (ib) is a root, then so is 1/a exp (-i); so it is sufficient to consider
0 <_- 4 <-- zr (we should note here that necessary and sufficient conditions for real solutions
of (0.1) are that the cj satisfy 0<Co+2C cos +...+2on cos n4 for all I$1_<- zr (see
Anderson (1975a, p. 137)).

Recall the definition of the Chebyshev polynomials Tk(X) in terms of the transfor-
mation x cos " Tk(COS) cos k.

NONLINEAR SYSTEM SOLUTION 381

Define the nth degree polynomial t(x) by

C(x) Co + 2Cl Tl(X)+" + 2cnT,(x).

Then C(z) =0 has a root of unit modulus if and only if ((x) =0 has a root in [-1, 1].
The question of whether or not a real polynomial vanishes in an interval can be
answered by the classical technique of Sturm se.quences (see,~ for example, Henrici
(1974)). One constructs a Sturm sequence from C(x) and C’(x) by successive poly-
nomial long divisions. The number of distinct zeros of t(x) in [-1, 1] is equal to the
difference between the number of strict sign variations in the sequence at x and
at x=l.

A related technique, the application of which is easier but which does not give as
much information, is provided by the Fourier-Budan theorem (see Henrici (1974)).
To apply this theorem, construct the sequence of derivatives {((x), (’(x), , t")(
x)}; the theorem states that the number of zeros (counted with multiplicity) of C(x)
in [-1, 1] is equal to the difference between the number of strict sign variations in this

seq.uence at x and at x minus an even integer. Thus if the difference is 0 or
1, C(x) has no root in the interval. See Henrici (1974) for examples.

There are other algorithms for determining when polynomials have roots in [z]-< 1,
or in Iz] < 1, orthe like. For instance, see Miller (1971) and references contained therein.

The discussion above leads to a sufficient condition for the existence of an invertible
solution. While this condition is rather stringent, it is very easily checked.

PROPOSITION 3.2. If the constants Co, Cl, c, satisfy

then F(O)= 0 has a unique invertible solution.

Proof. If x [- 1, 1], then 1, k- 0, 1,. .. So

I((x)l >- Co-2(Ic,l/.." / Ic.I), -<x -< 1,

and by assumption, this is positive. It follows that C(x) cannot vanish in [-1, 1] and
C(z)=O has no roots of modulus one. 71

4. Polynomial factorization method. Turning now to the actual solution of (0.1),
the first method to be considered is suggested by the above theory and consists of
factoring the function C(z) as in (2.2) and then constructing the solution
(0o, 0,. , 0,)r via (2.3) and (2.4) using the elementary symmetric functions relating
the roots ai to the polynomial coefficients 0k. The following steps can be used"

(a) The 2n roots of C(z) are found (for instance, through the calculation of the
zeros of the polynomial z"C(z)).

(b) In keeping with the results of 2, these zeros are listed as a,..., a,,
1/a,...,1/a,, where a,...,a, are in decreasing order of magnitude and the
complex roots in a,. ., an occur in conjugate pairs.

(c) Compute K from (2.3).
(d) Compute the coefficients 00, 0,. ., 0, of 19 from knowledge of a,. ., a,,

K, by utilizing the symmetric functions or the Newton identities.
This factorization method is feasible in practice provided n is not too large (as

in the case with many of these problems); one need only have access to a good
polynomial root finder. There can sometimes be a loss of accuracy in reconstructing
the 0k from the roots O through the symmetric functions, but this most often is only
a problem for larger n-values. Another difficulty is that with this method there is no
way to improve accuracy in the final 0k-estimates. However, in time series analysis,

382 DAVID H. ANDERSON AND EUGENE C. GARTLAND, JR.

this may be no problem since often the estimates for Ok are used as initial guesses for
further numerical calculations anyway and are therefore not needed to high accuracy.

5. Newton’s method. A standard method for the numerical solution of nonlinear
systems of equations is Newton’s method. Its use for the present problem is advocated
by Wilson (1969). Let 0(k) and F’(. denote the kth Newton iterate and the Jacobian
matrix. Newton’s algorithm proceeds as follows:

(5.1)
given 0()

o(k+l) o(k)__ F’(o(k))-lF(o(k)), k=0, 1,."

In Wilson (1969) it is shown (except for a couple of oversights) that if an invertible
solution 0* exists and if the initial vector 0) satisfies certain mild conditions, then
ok)--O* as k oo. Here those results are completed and expanded.

The iterate 0k/) is uniquely determined if and only if F’(Ok)) is nonsingular. It
is therefore of interest to know when F’(0) can be singular. If we associate with the
vector 0 (0o, 0,. ., 0,)T the polynomial 19(z)= 0o+ 01z +" + O,,z", as before, then
we can answer this question in terms of the zeros of (R)(z).

THEOREM 5.1. The Jacobian F’(O) is singular if and only if there exists a nonzero,
complex number a that satisfies 19(a 19(/ a) O.

Proof. The Jacobian F’(0) is singular if and only if there exists a nontrivial, real
vector x (Xo," , x,) T that satisfies F’(O)x 0. Now F’(0) G(0) + H(0), where

With the vector x, associate the polynomial X(z) defined by

X(z) Xo+ xz +. + x.z,,.
Then F’(O)x 0 is equivalent to

This is easily verified by expanding the left-hand side and equating like powers of
z--the coefficient of (zk+ 1/Zk) is precisely the kth component of F’(O)x.

Let a,..., a,, and l,...,fl, be the zeros of O(z) and X(z). Then (5.2) is
equivalent to

-1 (z-a) (z-a,,) (Z--i/l)’’" (Z--fin)
(5.3)

a,...a.(z-1/a,)...(z-1/a.) ill fl,, (z--1/ill) (z--1/fl.)

Thus there exists a nontrivial right null vector for F’(0) if and only if there exist
/3,. ,/3. producing an identity above. This can happen if and only if there is some
cancellation between the numerator and denominator of the left-hand side of (5.3).

To see this, suppose that a and 1/a are roots of @(z)= 0. We can assume, without
loss of generality, that a a and O2 1/a. Let/3j be equal to aj, j 3,. , n. Then
(5.3) becomes

-1 (z- al)(Z- (2)
a,a2 (z-1/a,)(z-1/a2) fl,fl2 (z-1/fl,)(z-1/fl2)"

NONLINEAR SYSTEM SOLUTION 383

But a 1/a2; so the left-hand side above is equal to -1, and this equation is satisfied
by fll and/32 -1. If no such reciprocal roots (a and 1/a) exist, then there cannot
be any/3,-..,/3, to satisfy (5.3) (the ill,’", ft, would have to be a reordering of
a 1,. , a,, and this would lead to the contradiction -1 1).

There are some important consequences of this theorem. If 0 is an invertible
solution, then all of the roots of (R)(z)=0 are strictly greater than one in modulus.
Consequently no two roots can be reciprocals, and F’(O) is guaranteed to be nonsin-
gular. If, on the other hand, 0 is a real solution such that @(z) has a root of unit
modulus, then the reciprocal must also be a root (because 1/z on [z[1), and it
follows that F’(O) is necessarily singular.

If real solutions of (0.1) exist, then there exists just one, 0", with the property
that all roots of the corresponding polynomial (R)*(z) are greater than or equal to one
in magnitude. The next theorem states that Newton’s method, if properly started, is
guaranteed to converge to this solution (even though F’(0*) may be singular).

THEOREM 5.2. If real solutions exist and if the initial vector 0() is such that the
corresponding polynomial (R)()(z) is greater than zero in [zl<= 1, then the sequence {0(k)}
produced by Newton’s algorithm is well defined and converges to the real solution O*
indicated above.

Proof First we show that the sequence {0(k)} is well defined, that is, F’(O(k)) is
nonsingular, k 0, 1,. .. It is sufficient to show that if o(k)(z) has no roots in [z[_--< 1,
then neither does o(k+l)(z). If (R)(k)(z) has no roots in Izl _--< 1, then F’(O(k)) is nonsingular,
and 0(k/) is uniquely determined. It can be shown that the Newton equation

F’(o(k)o(k+)= F’(O(k)O(k-- F(O
is equivalent to

(5.4) o(k)(z)O(k+l)()+ o(k+l)(z)O(k)() o(k)(z)O(k)()-[
Here we have used the facts that F’(O)O=2(F(O)+c) and C(z)=O*(z)O*(1/z).

Rewrite this equation in the form

o(k+l)(z)O(k+l)()--[o(k+l)(Z)--o(k)(z)][o(k+l)()
Now on Izl 1, we have l/z; so this implies that

(5.5) [o(k+l)(z)[2--[o(k+l)(z)--o(k)(z)12-Jf-[O:g(Z)[2 on [z[1.

It follows that 0(k+(2) does not vanish on]2] (that would imply the vanishing of
(R)(k)(2) there) and

[o(k+l)(z)--o(k)(z)] [o(k+l)(z)[on [z 1.

Thus the meromorphic function f(z) defined by f(g)=()(k)(g)/o(k+l)(z) has neither
zeros nor poles on]z] and satisfies

If(z)-1[=< on Iz[1.

Now the argument principle implies that the number of zeros off in [z[_-< minus
the number of poles there is equal to zero (the number of times that the trace w =f(z),
[z[1, encircles the origin). So the number of zeros of o(k+l)(z) in [z[_<-- is equal to
the number of zeros of o(k)(z) there, namely zero. Thus F’(O(k/)) is nonsingular, and
it follows by induction that the sequence {0(k)} is well defined.

384 DAVID H. ANDERSON AND EUGENE C. GARTLAND, JR.

The remainder of the proof can now proceed exactly as in Wilson (1969). It can
be shown that (R)(k+)(Z) and o(k)(z) are of the same constant sign on I-l, 1], which
will be positive since O(z) is chosen to be positive there, and

O<o(k)(z)<o(k+l)(z)o(k)(z) for-1 =<z=< 1.

It follows that {o(k(z)} is nonincreasing and bounded below on -l_-<z=l, and
therefore it converges to a limit polynomial that must be identical to O*(z) (this follows
from taking limits in (5.4)). Thus o(k- O* as kc.

The proof above follows closely that of Wilson (1969). It differs from Wilson’s
proof on two points. First, it addresses the question of the nonsingularity of the
JacobianWilson tacitly assumes that 0(k+ is uniquely determined from 0(k), i.e.,
that the Jacobians are all nonsingular. And second, it extends Wilson’s basic argument
to include the case of a Jacobian that is singular at the solution.

If the real solution 0* is invertible, then the convergence is (asymptotically)
quadratic. Otherwise the Jacobian F’(0*) is singular, and thus the convergence is only
linear. This has some nice implications in terms of the development of a code for these
problems. It says that if you use Newton’s method, properly started, then you will
observe one of three things: (1) quadratic convergence, in which case 0* is invertible,
(2) linear convergence, in which case 0* is noninvertible, or (3) no convergence, in
which case no real solutions exist.

The implications of this theorem in terms of the time series analysis are also
interesting. It says that while the underlying moving average process may be nearly
noninvertible, in which case the process with the estimated covariances can actually
be noninvertible, the Newton algorithm will still converge (albeit linearly) to the
borderline invertible solution 0", and this can still be used as a starting value in the
nonlinear least squares estimation of the parameters.

A starting vector that satisfies the hypothesis of the last theorem is given by

Co 1 /2(5.6) 0()=
Co2+. + c,,

-(Co,... c,)

Numerical experiments have shown this to be superior to the vector proposed by
Wilson (1969); it is obtained in the following way. Time series analysts suggest that a
"reasonable" starting vector is given by

(5.7) 0(-’ (c/=, 0,..., o)L

which is the solution of the modified system (0.1) with right-hand side (Co, 0, , 0)rm
the more Co dominates the remaining coefficients, the better this approximation becomes.
Now F’(0-)) is diagonal matrix, and consequently one iteration of Newton’s method
can be calculated explicitly to produce

t7()= (Co,’", co) "I cI-.

The initial vector (5.6) is then obtained by normalizing t7() so as to satisfy the first
equation (0(), 0()) Co of (1.1). Since 0() is obtained from 0(-) (which satisfies the
initial vector condition of Theorem 5.2) by a Newton step followed by a normalization,
we are assured that 0() too will be such that O()(z) has no roots in Izl<_-1.

6. Local existence and uniqueness of solutions. In time series models, it is common
for Co to be quite a bit larger than Icil for any >- 1. This type of condition is exactly
what is needed to show local existence and uniqueness of solutions to F(0) 0 by the

NONLINEAR SYSTEM SOLUTION 385

simplified Newton’s method (Ortega and Rheinboldt 1970, p. 421)). Using this method,
the vector sequence {0tp} is generated by

(6.1) 0(p+l) O(P)-F’(O))-IF(OP)), p=0, 1,2,. .
This method is especially attractive for at least two reasons. First, there is an initial
vector 0), which is the vector in (5.7), that is usually close to a desirable solution
and which makes F’(0)) a diagonal matrix and thus easy to invert. Second, conditions
for the existence and uniqueness of a real solution in a neighborhood about 0() can
be given just in terms of the scalars ci of the equation F(0)=0 (see (6.3) and (6.5)
below). In particular, condition (6.5) is only slightly stiffer than the sufficient condition
for the existence of an invertible solution of F(O)-O that was presented earlier in
Proposition 3.2. We also note that the conditions given below are sufficient for the
convergence of the Newton iterates in (5.1) as well as for the convergence of (6.1).
Therefore the point of attraction, 0", of the sequence generated from (6.1) is the
invertible solution of F(O)--0.

THEOREM 6.1. For the system F(O)=0 as given in (0.1), let 0() be the vector in
(5.7), and define the neighborhood

(6.2) Do=-{OR"+l’llO-O()llo<=Co/Z/(2n+2)}.

If the scalars ci satisfy the single condition

o(6.3) max [ci -<
i->- 4n+4’

then there exists a unique real solution O* of (0.1) in Do to which the simplified Newton
iterates (6.1) converge.

Proof The choice of the starting vector (5.7) is important because it allows the
Newton-Kantorovich conditions to be easily applied. For, observe that since no
off-diagonal entry in F’(0) contains 00, then

F’(0()) G(0()) + H(0()) 1o/2. diag {2, 1, 1,. ., }

is a diagonal matrix from which we can easily derive the matrix norm estimate
[[F’(O())-lllo= 1/c/2=-fl. Moreover, the jth entry of the first row of the matrix
F’(O)- F’(d), for any 0, b in R"+, is 2(0j- bj). This row has the largest (in magnitude)
row sum, and thus

n+l

[[F’(O)-F’(k)lloo-2 Y
j----l

In this inequality, define 3’--2(n + 1). Now let us consider

F’(O())-l F(O()) -(O, c, c:, c,) 7"/ c/2.
Then

IIF’(O()) -1 F(0)) I1< max Ic, II c/-=- n.

The demand that a--/33’r/<_-0.5 is met by condition (6.3):

fl3"rl 2(n + max Ic, II Co<-_ 2(n +)Co/(4n + 4)Co 0.5.
il

This requirement that a <_-0.5 is the basic Newton-Kantorovich condition for the

386 DAVID H. ANDERSON AND EUGENE C. GARTLAND, JR.

convergence of the iterates of (6.1). Furthermore, setting

t* --- (fly)-l[1 2a) 1/2],
we get t*<-(fly)-l=c/2/2(n+l). From (6.2), we then see that the closed sphere
(0(), t*) with center 0() and radius t* in Rn+l is a subset of Do. Also if

t**= (fl’)--l[1 -[-(1- 2a)1/2],
then t**=> (fly)-i c/2/2(n+ 1) and so the closed sphere (0(), t**) with center 0(0)

and radius t** in R+1 has intersection q(0(), t**) Do Do. Hence an appeal to
Ortega and Rheinboldt (1970, Thm. 12.6.1) tells us that the iterates of (6.1) converge
to a solution 0* of F(0)= 0 which is unique in Do.

By changing the norm on R+1, we arrive at another version of the last theorem
through arguments similar to those presented above.

THEOREM 6.2. The conclusion of Theorem 6.1 remains valid ifstatements (6.2) and
(6.3) are replaced by the statements

(6.4) Do=- { O R"+" [lO- O()[[<=}
(6.5) Ic, l<-_

i=l 4’
respectively.

7. Numerical results. In this section, we report some simple examples of numerical
experiments that were conducted in order to appraise the performance and relative
merits of the Newton and direct factorization methods. The four examples are given
below. Here c=(co,’’ ", c,), the covariances; 0=(0o,’", 0,), the moving average
parameters; and a =(al,’’ ", a,), the roots of O(z). For simplicity, these examples
are limited to the case n 3; they are, however, representative of larger scale problems
that were tested.

Example 7.1.

c=(8004,2491,622,85), 0=(85,27,7, 1), a=(-1-4i,-1+4i, 5).

This example is taken from Wilson (1969). It satisfies the sufficient condition of
Proposition 3.2 for the existence of an invertible solution, and in addition, all of the
roots are simple.

Example 7.2.

c=(450,-311, 100,-12), 0=(12,-16,7,-1), a=(2,2,3).

In this example again, an invertible solution exists, but the covariance generating
function now has multiple roots.

Example 7.3.

c (195.9462, -139.3835, 47.4706, -6.06), 0 (6.06, -11.05, 6.01, -1.0),

a (1.01, 2.0, 3.0).

This example is nearly borderline invertible: O(z) has the root al 1.01, which is close
to unit modulus.

Example 7.4.

c=(10,-6,5,-2), 0=(2,-1,2,-1), a=(i, -i, 2).

This example is borderline invertible: it has the roots O and 2 -i on the unit circle.

NONLINEAR SYSTEM SOLUTION 387

These examples were run on a CDC 6600 in single precision, the equivalent of
about 14 decimal digits. The Newton method was implemented in a straightforward
manner using a standard linear system routine (from LINPACK) to solve for the
Newton correction at each step. The iteration was continued until full attainable
accuracy was reached. The direct factorization method used a standard root finder
(from IMSL) to compute all of the zeros of the 2nth degree polynomial z"C(z). One
is able to improve the efficiency of this by using the fact that each computed root,
actually determines two roots, a and l/a, and then 6 can be given as a (sometimes
very accurate) initial guess for the next root. The moving average parameters, 0o, ,
were constructed from the roots, a l,’" ", a,, in terms of elementary symmetric func-
tions, which were computed recursively from sums of powers of the roots by using the
Newton identities (see, for example, Isaacson and Keller (1966, Chapt. 7, 2.1).

The results of these experiments are summarized in Tables and 2. For problem
7.1, Newton’s method gives very rapid convergence; it is helped by the fact that Co
dominates the covariances, which makes 0() a very good initial guessmit already has
almost 3 significant digits. The factorization routine also performs well, giving essen-
tially full machine precision.

TABLE
Newton’s method for problems 7.1-7.4.

Problem n Relative error n Relative error

7.1

7.2

7.3

7.4

0 5.7 (-3) 2 3.8 (-10)
2.7 (-5) 3 0.0

0 3.2 (- l) 4 1.6 (-4)
1.6 (-1) 5 8.8 (-8)

2 4.7 (-2) 6 1.1 (-14)
3 6.7 (-3)
0 4.6(-1) 7 3.6(-3)

2.9(-1) 8 1.0(-3)
2 1.6 (- 1) 9 1.4 (-4)
3 8.6 (-2) 10 3.6 (-6)
4 4.4 (-2) 11 2.4 (-9)
5 2.1 (-2) 12 6.8 (-12)
6 9.3 (-3)
0 3.8(-1) 12 8.9(-5)

1.9(-1)
2 9.1 (-2) 18 1.4 (-6)
3 4.5 (-2) 19 6.9 (-7)
4 2.3(-2) 20 3.5(-7)

21 1.7 (-7)
8 1.4 (-3) 22 7.6(-8)

23 3.8 (-8)

TABLE 2
Factorization method for problems 7.1-7.4.

Problem Relative error in roots Relative error in solution

7.1 2.8 (-14) 2.7(-14)
7.2 3.2(-7) 3.9(-8)
7.3 5.7 (-12) 9.8 (-12)
7.4 3.5 (-8) 6.8 (-8)

388 DAVID H. ANDERSON AND EUGENE C. GARTLAND, JR.

On Example 7.2, Newton does fine againmalthough the initial guess is not quite
as good as in the previous examplemdelivering quadratic convergence and a solution
that has full machine accuracy. The direct factorization method, however, delivers
only about half machine precision. This is due to the fact that C(z) has multiple roots,
which are ill-conditioned.

Example 7.3 is the nearly borderline invertible example. Both methods suffer a
bit, losing about two decimal digits. Newton’s method appears to converge linearly
for a while (because of the near singularity of the Jacobian at the solution) then homes
in quadratically once it gets close. The factorization method has trouble because
a 1.01 and 1/a 0.9901. These are both roots of C(z); they are poorly separated,
and this hurts their conditioning.

The last example is borderline invertible; so we know that the Jabobian is singular
at the solution and that Newton’s method will converge linearly. The solution is badly
conditioned, and we can only get about half machine accuracy. Factorization of the
covariance function suffers a similar fate, because although the roots of O(z) are
simple, the roots of C(z) that lie on the unit circle are multiple (as they must be for
real solutions to exist) and therefore ill-conditioned.

We mention that numerical experiments were also conducted with the simplified
Newton’s method. This method can easily be implemented, without any root finders
or linear system solvers, because the Jacobian F’(0()) is diagonal. In the cases where
the hypotheses of Theorems 6.1 and 6.2 were satisfied, the method provided linear
convergence, as predicted. It even was observed to converge in cases where the
hypotheses were not satisfied as long as an invertible solution existed. However the
rate of convergence became unbearably slow as a root of O(z) approached the unit
circle, and the iteration failed to converge in any borderline invertible case.

8. Conclusions. The Newton method and direct factorization method can be
compared with respect to attainable accuracy, efficiency and information provided.
Theory and experiment indicate that the attainable accuracy of the Newton method
is always at least as good as that of the factorization method. In those places where
Newton has low accuracy (where the Jacobian is singular or nearly singular at the
solution), so does factorization; but the factorization method can lose accuracy when
Newton does not (when the roots of O(z) are all much bigger than in modulus but
poorly separated). Also, for large n, the factorization method can lose accuracy due
to the accumulation of roundoff error in computing the moving average parameters
from the roots.

Both programs have about the same complexity. Newton’s method requires that
a dense (n + 1) by (n + 1) linear system be solved at each iteration; this requires O(n3)
multiplications. Actually, the special form ofthe Jacobian matrix (Toeplitz plus Hankel)
can be exploited to solve these systems more efficiently by using recursive techniques
(see Marple (1982) or Merchant and Parks (1982)). The fac’torization method gets just
as expensive in constructing {0o," ", 0n} from {a,..., a,} via symmetric functions.
These require the computation of sums of powers of the roots, a +. + a,, a 2 +... +
a 2., , a ln+ + an,, and this again leads to O(n3) arithmetic.

Both methods provide roughly the same information (in different ways). In
Newton’s method, by way of the rate of convergence, one can tell whether the solution
is invertible, borderline invertible or nearly borderline invertible, and from this infer
something about the accuracy of the computed solution. In the factorization method,
one has all of the roots of the covariance function in hand and can easily make the
same appraisals.

NONLINEAR SYSTEM SOLUTION 389

The methods are essentially equivalent. Both require little programming effort,
and both are guaranteed to converge to the required solution. Newton’s method would
have to be given a slight edge based upon the fact that the solutions computed using
the factorization method can lose accuracy in situations where Newton’s method
does not.

The simplified Newton method is easy to implement, but it only gives linear
convergence and is restricted in application to the case where Co dominates Cl," ", cn
sufficiently strongly. The analysis of this method is a clean and appealing application
of the Newton-Kantorovich theorem and gives rise to conditions on the data Co, , cn
that are easy to check. It does not possess the "robustness" of the Newton and direct
factorization methods, and it could only be considered a competitor in certain special
circumstances (in the case where one does not have access to a general root finder or
linear system solver, as in the case of desk top calculations, say).

REFERENCES

D. H. ANDERSON (1982), Structural properties of compartmental models, Math. Biosci., 58, pp. 61-81.
O. D. ANDERSON (1974), An inequality with a time series application, J. Econometrics, 2, pp. 189-193.

(1975), Bounding sumsfor the autocorrelations ofmoving average processes, Biometrika, 62, pp. 706-707.
(1975a), Time Series Analysis and Forecasting: A Box-Jenkins Approach, Butterworths, London.

G. E. P. Box AND G. M. JENKINS (1970), Time Series Analysis, Forecasting and Control, Holden-Day, San
Francisco.

C. COBELLI, A. LEPSCHY AND G. ROMANIN-JACUR (1979), Identifiability of compartmental systems and
related structural properties, Math. Biosci., 44, pp. 1-18.

N. DAVIES, M. B. PATE AND M. G. FROST (1974), Maximum autocorrelations for moving average processes,
Biometrika, 61, pp. 199-200.

J. DELFORGE (1977), The problem of structural identifiability of a linear compartmental system: solved or

not?, Math. Biosci., 36, pp. 119-125.
P. HENRICI (1974), Applied and Computational Complex Analysis, Vol. l, John Wiley, New York.
E. ISAACSON AND H. I. KELLER (1966), Analysis of Numerical Methods, John Wiley, New York.
P. LANCASTER (1969), Theory of Matrices, Academic, New York.
S. L. MARPLE (1982), Fast algorithms for linear prediction and system identification filters with linear phase.

IEEE Trans. Acoust. Speech Signal Process ASSP-30, pp. 942-953.
G. A. MERCHANT AND T. W. PARKS (1982), Efficient solution of a Toeplitz-plus-Hankel coefficient matrix

system of equations, Ibid., ASSP-30, pp. 40-44.
J. J. H. MILLER (1971), On the location ofzeros ofcertain classes ofpolynomials with applications in numerical

analysis, J. Inst. Math. Appl., 8, pp. 397-406.
J. M. ORTEGA AND W. C. RHEINBOLDT (1970), Iterative Solution ofNonlinear Equations in Several Variables,

Academic, New York.
G. WILSON (1969), Factorization of the covariance generating function of a pure moving average process,

SIAM J. Numer. Anal., 6, pp. 1-7.

SIAM J. SCI. STAT. COMPUT.
Vol. 6, No. 2, April 1985

1985 Society for Industrial and Applied Mathematics
010

AN IMPLEMENTATION OF GAUSSIAN ELIMINATION WITH
PARTIAL PIVOTING FOR SPARSE SYSTEMS*

ALAN GEORGE’ AND ESMOND NG"

Abstract. In this paper, we consider the problem of solving a sparse nonsingular system of linear
equations. We show that the structures of the triangular matrices obtained in the LU-decomposition of a

sparse nonsingular matrix A using Gaussian elimination with partial pivoting are contained in those of the
Cholesky factors of ATA, provided that the diagonal elements of A are nonzero. Based on this result, a
method for solving sparse linear systems is then described. The main advantage of this method is that the
numerical computation can be carried out using a static data structure. Numerical experiments comparing
this method with other implementations of Gaussian elimination for solving sparse linear systems are
presented and the results indicate that the method proposed in this paper is quite competitive with other
approaches.

Key words. Gaussian elimination, sparse matrices, partial pivoting

1. Introduction. In this paper, we consider the direct solution of the system of
linear equations

Ax b,

where A is a given n x n matrix, b is a given n-vector, and x is the n-vector to be
computed. We assume that A is sparse, nonsymmetric and nonsingular. One of the
most popular techniques for solving such a linear system involves computing an
LU-decomposition of A using Gaussian elimination with partial pivoting. That is, A
is decomposed into

A P1LIPzL2 Pn_lLn_l I.[,

where Pk is an n n permutation matrix corresponding to the row interchanges in step
k, Lk is an n x n unit lower triangular matrix whose kth column contains the multipliers,
and U is an n x n upper triangular matrix. Then the solution to the original linear
system is obtained by solving the systems

and

PLPzL2 P,,-1L,,-y b

Ux= y.

Given a sparse matrix A, it is usually true that fill-in will occur during the
decomposition process; that is, nonzeros may be created in positions where there are
zeros in A. Thus, space has to be allocated not only for the nonzeros in A, but also
for the fill-in. Note that the structures of the triangular matrices Lk and U depend on
both the structure of A and the row interchanges (Pk). Also, the row interchanges
depend on the numerical values of A (and of the subsequent reduced matrices). Thus,
it appears that one cannot predict where fill-in will occur before the numerical

* Received by the editors June 6, 1983, and in revised form December 15, 1983. This research was
sponsored by the Canadian Natural Sciences and Engineering Research Council under grant A8111, and
was also sponsored by the Applied Mathematical Sciences Research Program, Office of Energy Research,
U.S. Department of Energy under contract W-7405-eng-26 with the Union Carbide Corporation and by the
U.S. Air Force Office of Scientific Research under contract AFOSR-ISSA-83-00060.

t Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

390

GAUSSIAN ELIMINATION FOR SPARSE SYSTEMS 391

decomposition begins, since the row interchanges are not known beforehand. Con-
sequently, it is common practice in the implementation of sparse LU-decomposition
with row interchanges to allocate space for any fill-in during the numerical computation
phase. (That is, one uses a dynamic data structure.) Most computer packages that
compute an LU-decomposition of a sparse matrix with row interchanges use a dynamic
data structure. This usually results in substantial overhead in both storage requirements
and execution time.

In this paper we show that the structures of the triangular matrices Lk and U are
contained in the structures of the Cholesky factors of the symmetric positive definite
matrix ATA, as long as the diagonal elements of A are nonzero. Assume ATA and its
Cholesky factor are sparse. Since it is possible to determine the structure ofthe Cholesky
factor of AT"A efficiently from the structure of AT"A, this gives us a scheme for
implementing the LU-decomposition of A using Gaussian elimination with partial
pivoting. The attractive feature of this scheme is that a dynamic data structure is not

needed. By analyzing the structure of AA, we determine the structure of the Cholesky
factor of AA and set up a storage scheme. Then we simply use that static storage
scheme in the numerical decomposition of A using Gaussian elimination with partial
pivoting.

The proposed scheme assumes that AT"A and its Cholesky factor are sparse if A
is sparse, but there are examples in which AT"A and its Cholesky factor are dense even
though A is sparse. However experience shows that this usually occurs when a relatively
small number of the rows of A are dense. We will consider the problem of dense rows

briefly and propose a technique to handle these dense rows so that we only have to
compute the LU-decomposition of a sparse submatrix of A.

An outline of the paper is as follows. In 2 we derive the main results which
show that the structures of the triangular matrices Lk and U are contained in those
of the Cholesky factors of ArA. The effect of permuting the columns of A is examined
in 3. In 4 the proposed method is described and in 5 it is compared with other
implementations of Gaussian elimination for solving sparse linear systems. Numerical
experiments are also provided to compare the performance of the various implementa-
tions in 5. We consider the effect of dense rows and propose a technique to handle
them in 6. Finally, some concluding remarks are provided in 7.

The structure of the Cholesky factor of AA is also used in the solution of sparse
least squares problems minx IIAx-bll2 [1] and sparse underdetermined systems of
linear equations AT"x b [13], where A is m n, with m >-n.

2. Preliminary results.
LEMMA 2.1 (Duff [1]) Let A be a sparse nonsingular matrix. Then there exists a

permutation matrix Q such that the diagonal elements of QA are all nonzero.
The matrix QA is then said to have a zero-free diagonal. The problem of finding

such a permutation matrix is a well-known one and it is sometimes called the assignment
problem. See [1] for a description of this problem and [4] for an efficient algorithm for
finding Q.

Since Lemma 2.1 is true for every nonsingular matrix A, we may therefore assume
that the rows of the given matrix A have already been permuted. That is, in the
remainder of this section, we assume that A has a zero-free diagonal.

The following notation will be used throughout the discussion in this section. Let
A be a sparse n n matrix. The (i,j)-element of A is denoted by Aij. The set of
subscripts of the nonzeros of A is denoted by Nonz (A). That is,

Nonz (A)= {(i,j)lAi 0}.

392 ALAN GEORGE AND ESMOND NG

Furthermore, we assume that exact structural cancellation does not occur. Hence, for
any n by n matrices A and B, Nonz (A +/- B)= Nonz (A)U Nonz (B).

The following result, which we state without proof, is an immediate consequence
of the fact that A has a zero-free diagonal. It says that Nonz (A) is contained in
Nonz (AT"A).

LEMMA 2.2. Assume A has a zero-free diagonal and let B AT"A. If Ao O, then
Bo O. That is, Nonz (A) Nonz (AT"A).

Now consider applying the first step of Gaussian elimination to A with partial
pivoting,

v v/ 0

Here P is an n xn permutation matrix chosen so that I 1 11o11 (and a#0). For
simplicity, we assume the elements of u and v are given by

uT=(u2, u3,’’’,u.) and vT=(Vz, V3,’",v.).

We also assume that

E22 E23

E= E32 E33

En2 En3
It is easy to see that

E2n G2 G3 Gn\
E.3. and F= F32 F33

fnn Fn2 Fn3

TF= E---vu

Thus, if structural cancellation does not occur,

Nonz (F) Nonz (E) U Nonz (vur).
We now consider the structure of F more carefully. Assume P1 interchanges rows
and s of A (1 -<_ s -<_ n). If s 1, then P1 I, and Eii A, 0 for 2 <_- <-- n, since A has
a zero-free diagonal. Hence F, 0 for 2 _-< -<_ n. If s 1, then first note that us Ass 0
and vs=All0. Now E,=A,0for2_-<i<-n and is, but Ess=As may be zero.
For 2 _-< <_- n and # s, clearly

For s,

F. Eii---ViUi z O.

G, G,--vu # O,

since both us and vs are nonzero. Thus we have proved that all the diagonal elements
of F are nonzero.

LEMMA 2.3. The (n 1) (n 1) matrix F has a zero-free diagonal.
COROLLARY 2.4. Nonz (F)

_
Nonz (FrF).

Consider the n n symmetric positive definite matrix B AA,
B ATA ATpIP’(A (P’(A)T(p’(A)

_-(’ v:)(,)=(a+v% ,,+vV.)=(wo)u E v au+ ETv UU
T + ETE w

GAUSSIAN ELIMINATION FOR SPARSE SYSTEMS 393

where fl a 2 + v TO, W aU -[" E TO, and G uu 7- + E TE. Applying the first step of
Cholesky decomposition to B, we obtain

W 2

where

H= G _1 ww T.

The following results show the relationship between the structures of F, H, u, v and w.
THEOREM 2.5. Nonz (FT-F)c_ Nonz (H).
Proof. Note that

and

T T T TH G ww F_, TF_.. + uu
[3

a2uu h- otF_, Tvu -b auITE q F_, TvvTE),

FTF E T T T
----VU E---VU ETE----uvTE----ETvu T +---TUU

Thus, assuming exact structural cancellation does not occur,

Nonz (H) Nonz E 7-E (_J Nonz uu 7-) (.J Nonz (E 7-vu 7-) (_j Nonz uv 7-E
t2 Nonz E 7-vv 7-E),

and

Nonz (FT-F) Nonz (E 7-E (.J Nonz uvrE (A Nonz E 7-vu 7-) (_J Nonz uu 7-)
Nonz (H).

Using Corollary 2.4 and Theorem 2.5, we obtain the next result.
THEOREM 2.6. Nonz (F) Nonz (H).
THEOREM 2.7.
(1) Nonz (u)c__ Nonz (w).
(2) Nonz (v)c_ Nonz (w).
Proof. It is obvious that Nonz (u) Nonz (w), since w au+ ET-v.
Now consider the structure of v. First assume that s 1. Then Eii= A, # 0 for

2 -<_ _-< n. Note that

wi au + Ekvk au + E.vi + Ekvk for2<=i<=n.
k=2 k=2

ki

Thus, w 0 if v 0.
On the other hand, suppose s 1. For s, E, A, 0 and

Wi otui + Eiivi + Ekilk.
k=2
ki

394 ALAN GEORGE AND ESMOND NG

Thus, if vi 0, then wi # 0. For s, Ess may be zero, but vs 0 and us 0. Hence

W Ottl q- Eksl)k O.
k=2

This shows that Nonz (v)
Theorems 2.6 and 2.7 show that, at least for the first step of the LU-decomposition

of A, the structures of u, v and F are contained in those of w and H. These two results
can be extended to cover the complete LU-decomposition of A using Gaussian
elimination with partial pivoting, as the following discussion shows. First recall that
F is (n l) (n l) and has a zero-free diagonal, and FTF is (n l) (n 1), sym-
metric and positive definite. If we apply one step of Gaussian elimination with row
interchanges to F and one step of Cholesky factorization to FTF, we obtain the
following"

0

Applying Theorems 2.6 and 2.7, Nonz(t) Nonz(), Nonz() Nonz(ff) and
Nonz (F) Nonz (H). Now consider the first step of the Cholesky decomposition of
the (n- 1)x (n- 1) symmetric positive definite matrix H,

By Theorem 2.5, Nonz (FTF)_ Nonz (H). It is therefore obvious that Nonz () and
Nonz (/-) must be contained in Nonz () and Nonz () respectively. Combining these
observations, Nonz (t) Nonz (), Nonz (3)___ Nonz (), and Nonz (/)_ Nonz (/).
By applying these arguments repeatedly, we obtain Theorem 2.8 which is an extension
of Theorems 2.6 and 2.7.

Before stating Theorem 2.8, we first introduce more notation. Consider the two
sequences of matrices"

and

{F(), F(1), F(2),... F(n-l)}

{H(), H(1), H(2), H("-’)},
where F()= A and H()= ATA. For k 1, 2,..., n-1, F(k) is obtained by applying
one step of Gaussian elimination to F(k-l) with partial pivoting"

v((
v((u() , (u()

I.-k 0 F()]= 0 F(k)

k

where Pk is a permutation matrix of order (n- k + 1), I,-k is the identity matrix of

GAUSSIAN ELIMINATION FOR SPARSE SYSTEMS 395

order (n k) and F(k) E(k)- (1 /a)I)(k)(U (k)) T. Similarly, for k 1, 2, , n 1, H(k)

ecomposition to H(k- 1):

H(k-l) (k (}v(k)))B?(k) G(k) ’ o
(k)W

H(k) Rk,

where Hk= Gk--(1/flk)wk(wk). Clearly

where

HO(k))(o

and

Also,

where

A PLIP2L2" Pn_IL._I U,

and

Ik-1 0 0
0

D(k)
Olk

,/ (w<)10 I.-k

(u’) "
U= az (u<-)) r

0 a3 (u3))
0

B RR Rr R R,,R,, R2R,n--I --1

0 Rk

Ik- 0 0

o ’/
0 0 I.-k

0 (H("-)) /2

l<-k<__n-1,

for <- k_-< n-1,

The proof of Theorem 2.8 is the same as those of Theorems 2.6 and 2.7, and hence is
omitted.

THEOREM 2.8 For k- l, 2,-.., n- l,
(1) Fk has a zero-free diagonal.
(2) Nonz (uk)

_
Nonz (wk).

(3) Nonz (v(k)_ Nonz (wk)).
(4) Nonz (Fk)

_
Nonz (Hk).

Because of the way in which H(k)’s are generated, it is not hard to see that

n-l

U Nonz (H(k)) Nonz (Rk + R’).
k=0 k=l

396 ALAN GEORGE AND ESMOND NG

Thus, Theorem 2.8 essentially says that the structures ofthe triangular matrices obtained
in the LU-decomposition of A are contained in those of the Cholesky factors of ATA.
Consequently, if we allocate space for the nonzero structure of the Cholesky factor of
A’A, then that data structure will always have space to accommodate any fill-in that
occurs during the LU-decomposition of A. These results are important since it allows
the LU-decomposition of A using Gaussian elimination with partial pivoting to be
computed in a predictable amount of space. One may regard this result as saying that
the structures of the Cholesky factors of ArA predicts the worst possible structures of
the triangular matrices Lk and U, for any pivotal sequence {P, P2," Pn-1}.

Suppose B is a sparse symmetric positive definite matrix and denote its Cholesky
factor by RB. It is well known that the structure of RB can be predicted from that of
the matrix B. Thus one can allocate space for the nonzeros of R before the numerical
computation begins. Furthermore, there are algorithms that accomplish these tasks
efficiently. See 15] for details.

Hence, by setting B ATA and finding a data structure for the Cholesky factors,
Rn and R, of B, we know from Theorems 2.6, 2.7 and 2.8 that there will always be
space in that (static) data structure to accommodate any fill-in created during the
LU-decomposition of A using Gaussian elimination with partial pivoting. Note that
the symmetric positive definite matrix A’A and its Cholesky factor are assumed to be
sparse. This may not be true in some cases and we will address this problem in a later
section.

3. Effect of permuting the columns of A. Let P be an n n permutation matrix
and consider the matrix AP. Assume for the moment that AP has a zero-free diagonal.
Denote the LU-decomposition of AP by

APe PLP2L2 Pn-lLn- U.

The results in the previous section show that the nonzero structures of the triangular
matrices are contained in those of the Cholesky factors of (APc)(APc)= PArAPc
PBPc, where B AA. We assume that B is sparse. It is well known that, for a sparse
symmetric and positive definite matrix B, the choice of the permutation matrix Pc can
drastically affect the sparsity of the Cholesky factor of PBPc 15]. Hence it is desirable
to find a Pc so that PBPc has a sparse Cholesky decomposition.

The problem of finding a Pc that yields minimal fill-in is an NP-complete problem
[18]. However, there are efficient heuristic algorithms that produce a Pc so that PBPc
has a reasonably sparse Cholesky decomposition. Examples include the nested dissec-
tion algorithm and the minimum degree algorithm [15].

It should be noted that even though A has a zero-free diagonal, the matrix APe
may not necessarily have one. We illustrate this by a small example. Consider the
following 4 4 matrix"

A=

Then
x X

X X

GAUSSIAN ELIMINATION FOR SPARSE SYSTEMS 397

and Nonz (A)
_
Nonz (ATA). Let

Now

x x

and

X

p ATAp
x x
X X

X

Note that APe does not have a zero-free diagonal and the nonzero structure of PATAPc
does not even contain that of APe.

One way to preserve the property that A has a zero-free diagonal is as follows.
Instead of permuting the columns of A by Pc, we permute both the columns and rows
of A symmetrically by Pc. That is, we would consider the matrix P[APc. Note that

(pT APc)T(pT Apc)= pT ATApc.

Thus premultiplying APe by pT does not affect the structure of pTATApc at all.
However, pTAp now has a zero-free diagonal (as long as A has one). To illustrate
this, consider the previous 4 x 4 example again,

X

pTApc x
X X

X

and the structure of P[ATAPc indeed contains that of PcAPc.
Alternatively, one can reorder the columns of A first and obtain APe. Then a row

permutation Q is determined so that QAPc has a zero-free diagonal. Since

QApc)T QApc) T T=PeA APo
permuting the rows of APe does not affect the structure of the Cholesky factor of
PATAPc. Finally an LU-decomposition of QAPc is computed using the approach we
have described in the previous section. Notice that it is not necessary for A to have a
zero-free diagonal in this case.

In our implementation, we have chosen the first approach because it facilitates
the use of existing sparse matrix software.

4. Proposed method. The results and discussions in 2 and 3 provide us with a
scheme for solving a sparse system of linear equations

398 ALAN GEORGE AND ESMOND NG

In general, the given coefficient matrix A may not have a zero-free diagonal. Thus it
is necessary to find a row permutation Q so that the diagonal elements of QA are
nonzero. This can be achieved by using the algorithm described in [4].

We now summarize the solution scheme below:
(1) Find a permutation matrix Q so that QA has a zero-free diagonal.
(2) Determine the structure of B=(QA)r(QA) ArA.
(3) Find a symmetric permutation Pc so that PfBPc has a sparse Cholesky factor.

Denote the Cholesky factorization by PcBPc
(4) Determine the structure of the Cholesky factor / of PcBPc, and set up a

storage scheme that exploits the sparsity of/ and /.
(5) Input the numerical values of A, storing it as PQAPc.
(6) Compute the LU-decomposition of PcQAPc using Gaussian elimination with

partial pivoting. Store the triangular factors in the storage structure for
and R.

(7) Solve (PQAPc)Px= PQb using the LU-decomposition.
A few remarks on the implementation are in order. First, we only work with the

structures of A and AT"A in Steps (1)-(4). Second, efficient algorithms are available
for performing Steps (1)-(4). In the experiments which we will describe in the next
section, we use the code given in [4] to find the permutation Q in Step 1. We use the
minimum degree algorithm from SPARSPAK to find the symmetric permutation -Pc in
Step (3) and also the symbolic factorization routine from SPARSPAK to carry out
Step (4) [14]. Third, the approach we have employed assumes that ATA and R are
sparse if A is sparse. However there are some instances in which AT"A and/ may be
dense even though A is sparse. We will deal with this situation in 6.

5. Comparison with other methods for solving sparse linear systems. There are
several codes available for solving sparse systems of linear equations Ax b using an
LU-decomposition of A. The ones we have considered include SPARSPAK 14], MA28
from Harwell [2], NSPIV [17], and an implementation of the method proposed in 4.
In this section, we first consider the basic methodology used by each package and
examine its advantages and disadvantages.

SPARSPAK. This package computes an LU-decomposition of A without partial
pivoting. A symmetric row and column ordering is first chosen so that the Cholesky
factor of the permuted A + AT is (hopefully) sparse. Then a data structure is set up
for the Cholesky factors. Finally it uses that static data structure to compute an
LU-decomposition of A using Gaussian elimination without partial pivoting. Since
there are no row interchanges, numerical stability may be a problem. Also, the Cholesky
factor ofthe permuted A / AT may be unnecessarily full ifA is far from being symmetric.
Furthermore, it requires the diagonal elements of A to be nonzero. Of course, this can
be circumvented by finding an assignment before choosing the symmetric ordering.
However, there is still a chance that some of the diagonal elements may become zero
during the decomposition process because of exact numerical cancellation. This is
illustrated in our experiments. The symmetric ordering we have used in the numerical
experiments was a minimum degree ordering.

MA28 from Harwell. In this code, column and row permutations are chosen to
maintain numerical stability and preserve sparsity simultaneously. That is, the permuta-
tions will depend on the numerical values of the nonzero elements of A and the pivotal
sequence. Thus one cannot predict how much space is needed before numerical
computation begins, and storage has to be allocated during the numerical computation
phase. Experience shows that the overhead, both in terms of execution time and storage,

GAUSSIAN ELIMINATION FOR SPARSE SYSTEMS 399

can be quite significant. A threshold pivoting technique is used in search for a pivot;
that is, at the kth step of the decomposition process, an element in the reduced matrix,
say Aki, will be chosen as the pivot if it satisfies

IA,I u max IAI,

where u is a user specified parameter satisfying 0 -< u_-< (see [2], [7] for details).
Increasing the threshold parameter may improve the accuracy, but this may also
increase both the storage requirements and execution times. In our experiments, we
have set u 0.1.

NSPIV. This code computes an LU-decomposition of A using partial pivoting.
The elimination is carried out row by row. Storage for fill-in is allocated during the
numerical decomposition phase. The user is responsible for the choice of initial row
and column orderings. In our experiments, the initial orderings were those suggested
by Sherman [17]. The column ordering was the original ordering of the variables, and
the rows were arranged in increasing number of nonzeros. Experience indicates that
it can be very efficient. However, the lower triangular matrix L is not saved. Thus, a

potential drawback is that if it is used to solve several systems which have the same
coefficient matrix, the factorization must be repeated for each new right-hand side.

The method proposed in 4. The method we propose computes an LU-decomposi-
tion of A using Gaussian elimination with partial pivoting. Data structures for storing
Lk, 1--< k-< n- 1, and U can be set up before the numerical computation begins by
finding the structures of the Cholesky factors of A’A. The numerical computation is
then performed using the static data structure. The triangular matrices Lk, <-- k <- n 1,
and U are saved so that solution of several systems with the same coefficient matrix
is very convenient and efficient. A potential weakness is that it makes use of the
structure of the Cholesky factor of the symmetric matrix ArA which could be dense
or severely overestimate the storage for Lk and U. (More on this can be found in 6.)
A good column ordering (that would yield low fill-in in the Cholesky factor of ArA)
is chosen prior to the numerical computation. In our experiments, we have used a
minimum degree ordering as the column ordering.

It should be mentioned that both MA28 and NSPIV have been superseded by
new codes. New pivoting strategies which are based on the work of Zlatev [19] have
been incorporated in a new version of MA28. It is claimed that these new strategies
are effective on matrices arising from finite element problems. A new code, which is
called NSPFAC, now replaces NSPIV and it computes (and saves) both the lower and
upper triangular matrices using Gaussian elimination with a threshold pivoting tech-
nique. Unfortunately comparisons with these two codes cannot be made since we do
not have access to them.

There are other packages which we have not considered. Examples include MA32
[5] and MA37 [8] from Harwell and the Yale sparse matrix package [10]. The package
MA37 should be of particular interest. It computes an LU-decomposition of A using
the so-called multi-frontal technique and is based on the ideas used in MA27 [9] for
solving sparse symmetric indefinite systems. Based on our experience with MA27, we
expect MA37 to be effective in terms of storage and execution times. Unfortunately
we do not have a copy of MA37 available.

We now provide some numerical experiments to compare the performance of the
various implementations. The experiments were carried out on an IBM 4341. The
programs were written in ANSI standard FORTRAN and compiled using an IBM VS
FORTRAN Optimizing compiler. Single precision arithmetic was used. The test prob-

400 ALAN GEORGE AND ESMOND NG

lems include thirteen finite element and nine nonfinite element problems. (The nonfinite
element problems were obtained from Harwell.) Their characteristics are given in Table
5.1. For the finite element problems, the numerical values for the coefficient matrices
were generated using a uniform random number generator. For each of the twenty-two
test problems, the right-hand side vector was chosen so that the solution vector
contained all ones.

TABLE 5.1
Characteristics of test problems.

Problem Number of Number of
Remarks

number unknowns nonzeros

265 1,753
2 406 2,716
3 577 3,889
4 778 5,272

Graded-L finite element mesh.
Graded-L finite element mesh.
Graded-L finite element mesh.
Graded-L finite element mesh.

5 936 6,266
6 1,009 6,865
7 1,089 7,361
8 1,440 9,504
9 1,180 7,750
10 1,377 8,993
11 1,138 7,450
12 1,141 7,465
13 1,349 9,101

Finite element meshma hollow square (small hole).
Finite element meshma graded-L problem.
Finite element meshma square problem.
Finite element mesha hollow square (large hole).
Finite element meshma +-shaped problem.
Finite element meshan H-shaped problem.
Finite element meshma 3-hole problem.
Finite element mesha 6-hole problem.
Finite element meshma pinched hole problem.

14 113 655
15 54 291
16 57 281
17 199 701
18 130 1,037
19 363 3,279
20 541 4,282
21 991 6,027
22 192 2,992

Matrix pattern supplied by Morven Gentleman.
Matrix pattern supplied by Curtis.
Matrix pattern supplied by Willoughby.
Matrix pattern supplied by Willoughby.
Matrix from laser problem (A. R. Curtis).
Matrix from linear programming problem.
Facsimile convergence matrix.
Matrix from Philips Ltd (J. P. Whelan).
Matrix from parabolic pde.

Tables 5.2 and 5.3 contain respectively the storage and execution times required
by the various methods. Storage requirements are given in terms of number of storage
locations required, including space for pointers, subscripts, etc., and execution times
are in seconds. Table 5.4 shows the accuracy achieved. We have used IIx- ll as a
measure of the accuracy, where denotes the computed solution. Other terms used
in the tables are explained below.

SPARSPAK.
analysis storage and analysis timemamount of space and time required to find

an assignment for A, to find a symmetric ordering for A + AT and to allocate
space for the LU-decomposition of A.

solution storage and solution timemamount of space required to store the
LU-decomposition and the time required for the computation.

total timemsum of analysis and solution times.
MA28 and NSPIV.

total storageamount of space required to compute the LU-decomposition
total timemamount of time to compute the LU-decomposition (including the

times required to do any structure analysis for MA28).

GAUSSIAN ELIMINATION FOR SPARSE SYSTEMS 401

TABLE 5.2
Storage requirements (in number of storage locations).

Problem
SPARSPAK MA28 NSPIV New method

analysis solution total total analysis solution

5,362 9,795 21,985 17,326 10,902 18,765
2 8,275 17,184 37,716 38,747 17,007 35,239
3 11,818 26,688 71,700 55,152 24,461 55,672
4 15,991 38,347 93,449 96,863 33,267 84,716

5 19,081 42,874 119,831 81,527 39,257 96,581
6 20,794 51,712 134,336 123,914 43,422 119,039
7 22,346 52,803 147,364 141,046 46,406 114,967
8 29,089 61,818 155,042 106,907 59,081 125,702
9 23,761 42,966 98,066 71,675 48,061 76,957
10 27,626 47,739 107,349 82,694 55,566 83,870
11 22,867 46,194 108,391 113,869 46,123 94,512
12 22,918 46,294 120,558 85,876 46,266 98,366
13 27,646 64,876 192,496 133,844 57,306 143,317

14 3,050 3,900 3,897 2,932 5,494 4,229
15 983 1,002 1,851 1,609 1,835 1,575
16 1,022 935 1,781 1,422 1,730 1,310
17 3,716 6,268 6,493 7,240 5,044 7,435
18 3,903 3,285 5,057 4,401 12,247 7,305
19 13,948 18,799 17,219 19,934 20,280 23,132
20 14,722 23,308 39,846 99,696 31,798 45,252
21 20,471 73,540 178,779 164,498 57,220 279,483
22 7,329 9,271 21,136 21,011 16,033 15,894

New method.
analysis storage and analysis timemamount of space and time required to find
an assignment for A, to determine a symmetric ordering for ATA and to
allocate space for the Cholesky factors of ATA.

solution storage and solution timemamount of space required to store the
Cholesky factors ofATA and the time required to compute the LU-decomposi-
tion of A.

total timemsum of analysis time and solution time.
Following are some remarks on the results:
(1) Even though SPARSPAK requires the least amount of space and execution

times in most cases, its accuracy is usually poor. This is expected since there is no
pivoting for stability performed.

(2) The results indicate that the method proposed in this paper is quite competitive
with both MA28 and NSPIV in most cases. In particular, for finite element problems,
our method is certainly better than MA28, in terms of storage requirements, execution
time and accuracy. The method may occasionally require a little more storage and
execution time than NSPIV. However, it should be pointed out that NSPIV only stores
the upper triangular matrix U, whereas in our case, we store both the lower and upper
triangular matrices in the LU-decomposition. Furthermore, we have ignored the prob-
lem of finding "good" initial column and row orderings (if they exist) for NSPIV.
Thus, taking these comments into account, it is fair to say that our method performs
at least as well as NSPIV for these finite element problems. (Of course, both the storage

402 ALAN GEORGE AND ESMOND NG

TABLE 5.3
Execution times (in seconds).

Problem
SPARSPAK MA28 NSPIV New method

analysis solution total total total analysis solution total

0.327 0.450 0.777 3.113 3.040 0.783 3.530 4.313
2 0.617 1.070 1.687 6.663 9.083 1.410 9.123 10.533
3 0.810 1.967 2.776 27.038 15.822 1.800 17.779 19.579
4 1.137 3.290 4.426 36.261 33.225 2.703 31.168 33.871

5 1.237 3.170 4.406 60.196 21.845 2.996 34.401 37.398
6 1.377 4.566 5.943 81.238 53.970 3.840 51.167 55.006
7 1.467 4.156 5.623 111.190 56.263 3.496 42.627 46.124
8 1.950 3.836 5.786 77.828 28.263 4.596 36.628 41.224
9 1.557 1.890 3.446 30.765 9.716 3.560 13.672 17.232
10 1.803 1.973 3.776 24.312 11.426 4.120 13.176 17.296
11 1.590 2.606 4.196 50.317 32.701 3.480 24.309 27.788
12 1.680 2.613 4.293 78.435 20.159 3.780 27.978 31.758
13 1.733 5.046 6.780 154.237 47.307 3.923 50.820 54.743

14 0.380 0.160 0.540 0.233 0.070 0.930 0.290 1.220
15 0.053 0.013 0.067 0.087 0.050 0.110 0.077 0.187
16 0.053 0.013 0.067 0.077 0.023 0.110 0.053 0.163
17 0.350 0.210 0.560 0.410 0.547 0.480 0.637 1.117
18 1.837 0.070 1.907 0.250 0.080 2.710 0.863 3.573
19 3.370 fail 1.280 2.823 4.366 3.606 7.973
20 11.363 1.503 12.866 5.043 1721.269 14.062 10.196 24.258
21 5.633 17.819 23.452 147.264 184.002 19.692 302.144 321.836
22 0.527 0.620 1.147 3.116 3.883 1.620 3.313 4.933

requirements and solution times for NSPIV may be improved if good initial column
and row orderings are available.)

(3) For nonfinite element problems, the performance of our method is somewhat
disappointing in some cases. Both the storage requirements and solution times are in
general larger than those for MA28, but are comparable to NSPIV. A possible explana-
tion is that the structures of the Cholesky factors of the permuted ATA may have
overestimated the actual amount of fill-in in the triangular matrices Lk and U. (Also
see the discussion in (4).)

(4) Note that we have only proved that the structures of the triangular matrices
obtained in the LU-decomposition of A are contained in the structures of the Cholesky
factors ofATA. There is a possibility that the amount of space allocated for the Cholesky
factors of ATA may be much larger than that required to store the LU-decomposition.
In order to explore this question, we have shown in Table 5.5 the percentage of storage
that is actually utilized. The results indicate that, for the finite element problems, the
utilization is approximately 50% for the lower triangular portion and 66% for the
upper triangular portion. For the nonfinite element problems, the corresponding
percentages are roughly 40% and 50% respectively. Moreover, there are examples in
which the percentages of utilization are very low. For these examples, MA28 usually
performs better than our method.

(5) One nice feature about the new method is that the amount of space allocated
to store the LU-decomposition is not sensitive to the numerical values in A and the
row interchanges. In other words, the same amount of space (or the same data structure)

GAUSSIAN ELIMINATION FOR SPARSE SYSTEMS 403

TABLE 5.4
Errors (in l norm).

Problem SPARSPAK MA28 NSPIV New method

1.23 1.53 2 3.16 3 9.44 4
2 2.78-2 4.60-2 6.26-4 8.47-4
3 4.42- 1.76- 4.33 3 2.56- 3
4 1.15- 1.31-1 2.75-3 4.31-3

5 1.58 + 0 7.68 1.32 2 8.57 3
6 5.34- 1.18 + 0 3.36- 3 6.29 3
7 8.66 2 1.09 5.81 3 1.62 3
8 1.88 + 0 5.77 + 0 4.55 2 4.49- 2
9 5,06 2 2.88 3.71 3 5.95 3
10 5.76-2 1.67-1 2.16-3 2.76-3
11 2.22 +0 1.17 +0 7.43-2 1.41-2
12 3.76- 5.26+0 4.59-3 1.20-2
13 2.25-1 5.95+0 1.19-2 2.66-3

14 1.18 + 0 5.43 3 1.02 2 1.23
15 3.90- 3 1.39- 3 3.19-4 2.26- 3
16 2.93-3 6.03-3 9.70-4 3.72-4
17 5.75 + 0 5.98- 3 1.99- 3 1.52- 3
18 6.69- 7.50-1 5.91 3.05-
19 fail 1.30- 3 1.90- 3 1.27 2
20 4.29- 5 7.63 -6 6.68-6 1.34- 5
21 2.22-4 6.42 +0 3.17-4 5.02-4
22 1.30- 5 2.43 3 1.56 5 1.16 4

can be used for different coefficient matrices as long as they have the same structure.
In fact, after the first system has been solved, it is not necessary to determine the data
structure again when subsequent systems having the same structure are to be solved.
This is not true in MA28 and NSPIV, in which the amount of space depends on the
numerical values and the row interchanges (unless one wants to decompose a new
matrix having the same structure using the pivotal sequence obtained during the
decomposition of the old matrix). To illustrate this, we have generated, for each of
problems and 2, three matrices that have different numerical values but the same
nonzero structure. The results are given in Table 5.6. For MA28, the storage requirement
is in general smaller if one decomposes a second matrix having an identical structure
using a previously determined pivotal sequence. The same is true for our method. After
the decomposition of the first matrix, we can postprocess the data structure to release
any unused storage locations. This allows us to recover some storage from the data
structure. Thus when we decompose a new matrix having the same structure using the
same pivotal sequence, the storage requirement will also be smaller. Efficient
implementation of this idea is under consideration.

(6) Note that the threshold pivoting technique in MA28 does not necessarily give
satisfactory results for some of our test problems. In our experiments, we have assigned
the threshold parameter u the value 0.1. Obviously, one can use a larger threshold
parameter so as to obtain more accurate results. The tradeoffs are increases in storage
requirements and execution times. Similar observation has been made elsewhere. For
example, see [3].

(7) Finally, the amount of space reported for MA28 is the minimum amount

required in order to solve a given problem. With the minimum amount of space, MA28

404 ALAN GEORGE AND ESMOND NG

TABLE 5.5
Data structure utilization by L and U in the

new method (percentage).

Problem L U

51.8 62.7
2 49.7 62.1
3 49.7 66.1
4 48.7 66.8

5 50.2 66.2
6 49.9 67.6
7 49.9 66.4
8 49.9 66.6
9 49.7 62.4
10 48.5 63.5
11 50.5 64.8
12 49.9 66.5
13 48.6 65.5

14 20.5 63.4
15 45.1 68.9
16 40.4 65.4
17 40.6 54.5
18 13.1 29.3
19 30.2 42.4
20 40.4 44.2
21 47.1 48.9
22 57.7 66.6

has to perform numerous data compressions and consequently requires substantial
execution time. Thus, in order to reduce the execution time, it is common practice to
provide more space than the minimum amount. The extra space is sometimes known
as the elbow room. See [12] for some numerical experiments. In our experiments, we
have provided a lot of elbow room so that data compressions do not occur.

TABLE 5.6.
Solution of systems with same nonzero structure.

Method n 265 265 265 406 406 406

MA28 total storage 21,985 22,702 20,503 37,716 40,743 37,870
total time 3.113 3.650 2.750 6.663 11.100 8.750
error 1.53 2 3.70- 2 2.11 4.60- 2 3.34-1 2.60- 2

NSPIV total storage 17,326 19,146 19,906 38,747 40,743 37,870
total time 3.040 3.043 3.670 9.083 7.057 7.973
error 3.16-3 1.51-4 3.01-3 6.26-4 5.31-3 1.85-3

New method analysis storage 10,902 10,902 10,902 17,007 17,007 17,007
solution storage 18,765 18,765 18,765 35,239 35,239 35,239
analysis time 0.783 0.783 0.783 1.410 1.410 1.410
solution time 3.530 3.537 3.557 9.123 9.270 9.287
total time 4.313 4.320 4.340 10.533 10.680 10.697
error 9.44-4 3.35-4 6.40-3 8.47-4 6.06-4 5.52-4

GAUSSIAN ELIMINATION FOR SPARSE SYSTEMS 405

6. Handling of dense rows. Throughout our discussion in the previous sections,
we have assumed that the symmetric matrix ATA can be permuted symmetrically so
that its Cholesky factor is sparse whenever A is sparse. However, there are some
instances in which this assumption is invalid. An example is given below.

X X X X

X

X

X

Clearly ATA and its Cholesky factor are dense matrices, but the LU-decomposition
of A is as sparse as the original matrix A.

This example illustrates the main disadvantage of the method we propose in this
paper. The structures of the Cholesky factors of ATA may overestimate the structures
of the triangular matrices obtained in the LU-decomposition of A. Experience indicates
that this is usually caused by a relatively small number of dense rows of A. (In the
previous 4)<4 example, the first row is dense.) One way to handle this situation is
described below and it is similar to a technique employed by Heath in the treatment
of dense rows in the solution of sparse linear systems using orthogonal transformations
[16]. For convenience, let A be partitioned into

where B and C contain respectively the sparse and dense rows of A. Assume B is
p)< n and C is (n-p))< n. We also assume that B has a "zero-free diagonal"; that is,
Bii 0 for _-<i_-< p. Suppose a sparse LU-decomposition of B is given by

B PIL1P2L2 Pp_lLp_,(R S),

where Pk is a p)< p permutation matrix, Lk is p)<p unit lower triangular, R is p)< p
upper triangular, and S is p x (n- p). This can be achieved using the method we have
proposed earlier. For simplicity, let

That is,

Partition C into

L= P,L,P_L Pp_lLp_l

B L(R S) LR LS).

c (c, G),

where C1 and C2 are respectively (n p) p and (n p))< (n p). Then we have

Now we can eliminate C using block elimination. That is, we find an (n -p))< p matrix
V so that

:)0

It is not hard to see that V CIR-I and W C2-CR-S. Then we can decompose

406 ALAN GEORGE AND ESMOND NG

the (n- p) x (n-p) matrix W using Gaussian elimination with partial pivoting:

where Pk is an (n p) (n p) permutation matrix, Lk is (n p) (n p) unit lower
triangular, and T is (n p) (n p) upper triangular. Let

"- l122 n_p_l--_,n_p_l
Then

and

W=IT,

Combining all identities, we obtain the following decomposition.

,4--

Let the right-hand side vector b be partitioned into

where c and d are respectively p- and (n- p)-vectors. Similarly, partition the solution
vector x into

where u and v are respectively p- and (n-p)-vectors. Then x is obtained by solving

and

(o" (;).
This approach will be effective if (n- p) is small. In that case, the matrices C, V

and W can be stored and processed as small dense matrices.
Suppose A has a zero-free diagonal. In practice, it may not be possible to partition

A into

such that B contains the sparse rows of A and at the same time has a zero-free diagonal.
To illustrate this, consider the following example.

x 0 0 0 0

0 x 0 0 0
X X X X X

0 0 0 x 0

0 0 0 0 x

GAUSSIAN ELIMINATION FOR SPARSE SYSTEMS 407

Thus,

0 0 0 0

0 0 0 0
0 0 0 x 0

x0 0 0 0

and it does not have a zero-free diagonal. To solve this problem, we use the following
approach in our implementation. Let B be the n n matrix obtained from A by replacing
the dense rows by null rows. Thus, in the previous example,

x 0 0 0 0

0 x 0 0 0

0 0 0 0 0
0 0 0 x 0
0 0 0 0 x

Then we perform the LU-decomposition on B using Gaussian elimination with partial
pivoting, skipping any step where we encounter a zero pivot. The resulting n n upper
triangular matrix, denoted by U, will be a (row) permuted form of

(0 0s o
Finally, to eliminate C, all we have to do is to identify those rows in U whose diagonal
elements are nonzero.

7. Cdmtg rerks t le lrbles. In this paper we have considered the
solution of the sparse linear system Ax b using Gaussian elimination with partial
pivoting. We have proved that the structures of the triangular matrices obtained in the
LU-decomposition of the n x n matrix A are contained in the structures of the Cholesky
factors of the symmetric positive definite matrix ArA, regardless of the choice of the
row interchanges. These results are important since they allow us to implement Gaussian
elimination with partial pivoting using a static data structure which is obtained by
analyzing the structure of ArA. The latter can be achieved etficiently using techniques
developed for solving sparse symmetric positive definite systems. As a result, the
overhead (in terms of storage for pointers and execution times) involved in the
numerical computation is smaller than that needed by most existing methods which
usually employ dynamic data structures. Preliminary numerical experiments indicate
that, in general, the method we have proposed can be quite competitive with existing
methods for solving general sparse systems of linear equations. (The results derived
in this paper can also be obtained using a bipartite graph model which will be described
elsewhere.)

Clearly, our approach will perform poorly if the matrix ArA and its Cholesky
factor are dense. Experience has indicated that this usually occurs when A has a
relatively small number of dense rows. We have derived an algorithm to cope with
this situation. However the problem of identifying dense rows remains open. (This
problem does not only occur in our scheme; it also occurs in the solution of sparse
least squares problems and sparse underdetermined systems using orthogonal
decomposition. See [11], [13] for details.) A common strategy is to use the number of
nonzeros in a row; a row will be regarded as dense if the nonzero count is larger than
certain threshold which is usually problem-dependent.

408 ALAN GEORGE AND ESMOND NG

It is possible to improve the performance of our method further. First, suppose
the matrix A is reducible. That is, there exist permutation matrixes P and Q so that
PAQ is block triangular. For definiteness, assume PAQ is block lower triangular.

PAQ

/A
Az, A22
A3 A32 A33

Ap Ap2 Ap3

Here Ao is the (i,j)-block in PAQ. If we partition the right-hand side vector b and
the solution vector x conformally,

hi
b
b

X

X:
X

X--

X

then the solution x is obtained simply by solving

k-I

AgkXk bk Agj xj, k 1, 2, , p.
j=l

Thus, all we need are the LU-decompositions of the matrices Akk which can be obtained
using the approach proposed in this paper. Note that the order of each Akk is smaller
than that of A. Consequently, the space required to store the LU-factorization of the
Akk’S should be smaller than that required for A, as long as A is reducible. This idea
has been used in MA28 and its incorporation into our scheme is currently under
investigation. Note that there are efficient algorithms for permuting a reducible matrix
A into block triangular form. See [6] for details.

Note that the actual number of nonzeros obtained in the LU-decomposition of
A is usually smaller than the number of nonzeros in the Cholesky factors of ATA.
Thus, an open problem is whether there exists an efficient scheme that would compress
the data structure for the Cholesky factors of ArA so that the compressed structure
provides a more efficient data structure to store the LU-factorization, regardless of the
row interchanges used. A related problem is to determine alternate schemes for
predicting fill-in in the LU-decomposition with row interchanges.

Finally, similar techniques can be used to derive a scheme that computes an
orthogonal decomposition of a sparse n n matrix A using Householder transforma-
tions. It can be shown that the nonzeros in the transformations and the resulting upper
triangular matrix can be stored in a data structure allocated for the Cholesky factors
of ATA. The ideas can be generalized to rn n matrices, where m > n. These results
will appear elsewhere.

GAUSSIAN ELIMINATION FOR SPARSE SYSTEMS 409

REFERENCES

[1] I. S. DUFF, Analysis of sparse systems, D. Phil. Thesis, Oxford Univ., Cambridge, 1972.
[2] ., MA28--A set of FORTRAN subroutines for sparse unsymmetric linear equations, Tech. Report

AERE R-8730, Harwell, 1977.
[3] ., Practical comparisons of codes for the solution of sparse linear systems, in Sparse Matrix

Proceedings 1978, I. S. Duff and G. W. Stewart, eds., Society for Industrial and Applied Mathematics,
pp. 107-134.

[4] ., Algorithm 575. Permutations for a zero-free diagonal, ACM Trans. Math. Software, 7 (1981),
pp. 387-390.

[5] ., The design and use of a frontal scheme for solving sparse unsymmetric equations, in Proc. Third
IIMAS Workshop on Numerical Analysis, 1981, J. P. Hennart, ed., Lecture Notes in Mathematics
909, Springer-Verlag, New York, 1982, pp. 240-247.

[6] I. S. DUFF AND J. K. REID, An implementation of Tarjan’s algorithm for the block triangularization of
a matrix, ACM Trans. Math. Software, 4 (1978), pp. 137-147.

[7], Some design features ofa sparse matrix code, ACM Trans. Math. Software, 5 (1979), pp. 18-35.
[8], The multifrontal solution ofunsymmetric sets oflinear equations, Report CSS 133, Harwell, 1983;

this Journal, 5 (1984), pp. 633-641.
[9], The multifrontal solution of indefinite sparse symmetric linear equations, ACM Trans. Math.

Software, 9 (1983), pp. 302-325.
[10] S. C. EISENSTAT, M. C. GURSKY, M. H. SCHULTZ AND A. H. SHERMAN, Yale sparse matrix package,

II, the nonsymmetric codes, Research Report 114, Dept. Computer Science, Yale Univ., New Haven,
CT, 1977.

11 J. A. GEORGE AND M. T. HEATH, Solution ofsparse linear least squares problems using Givens rotations,
Linear Algebra Appl., 34 (1980), pp. 69-83.

[12] J. A. GEORGE, M. T. HEATH AND E. G. Y. NG, A comparison ofsome methodsfor solving sparse linear
least squares problems, this Journal, 4 (1983), pp. 177-187.

[13], Solution of sparse underdetermined systems of linear equations, this Journal, to appear.
[14] J. A. GEORGE AND J. W. n. LIu, The design of a user interface for a sparse matrix package, ACM

Trans. Math. Software, 5 (1979), pp. 134-162.
[15], Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, Englewood Cliffs,

NJ, 1981.
[16] M. T. HEATH, Some extensions of an algorithm for sparse linear least squares problems, this Journal, 3

(1982), pp. 223-237.
[17] A. H. SHERMAN, Algorithm 533. NSPIV, a FORTRAN subroutinefor sparse Gaussian elimination with

partial pivoting, ACM Trans. Math. Software, 4 (1978), pp. 391-398.
[18] M. YANNAKAKIS, Computing the minimum fill-in is NP-complete, SIAM J. Alg. Disc. Meth., 2 (1981),

pp. 77-79.
[19] Z. ZLATEV, On some pivotal strategies in Gaussian elimination by sparse technique, SIAM J. Numer.

Anal., 17 (1980), pp. 18-30.

SIAM J. ScI. STAT. COMPUT.
Voi. 6, No. 2, April 1985

1985 Society for Industrial and Applied Mathematics
011

AN ANALYSIS OF THE TOTAL APPROXIMATION PROBLEM IN
SEPARABLE NORMS, AND AN ALGORITHM FOR THE TOTAL

PROBLEM*

M. R. OSBORNE," AND G. A. WATSONt

Abstract. In many data fitting problems there are errors in the m x n data matrix M as well as in the
observed vector f R". It is possible to take account ofthis by formulating and solving the total approximation
problem in which some norm of the m x (n + 1) error matrix is minimized. For a general class of matrix
norms, which we call separable, it is shown that the solution is a rank one matrix, and that the problem
may be solved when the solution is known to a vector norm minimization problem on R" with a single
equality constraint. Attention is focussed on the total l problem. A finite descent algorithm is developed,
and numerical results illustrating it are given.

Key words, total approximation problem, separable norms, resistant estimation procedure, I norm,
finite descent algorithm

1. Introduction. The standard linear regression problem requires that x R be
found by solving the problem

(1.1) min Ilrll: r Mx f,

where M:R"--> R and f R are given, and where M has full column rank n < m.
Usually it is assumed that the expected values of the ri are zero (for example, as
experimental errors in observing f). If I1" is the Euclidean vector norm then (1.1) can
be interpreted as giving the maximum likelihood estimate for x under the assumption
that the ri are independent and identically normally distributed random variables.
However, there is interest in estimates for x which have ,a certain resistance to isolated
gross errors. A suitable procedure corresponds to choosing the norm in (1.1) to be the
l norm

i=1

This norm is not differentiable if any ri 0, and it is useful to introduce the subdifferen-
tial of a convex function to characterize the minimum in (1.1). Let r be the index set

(1.3) o’= {i: r, =0}

where the number of elements in o- is [o-[k, where there is an assumed enumeration
of the elements so that or(j) or, j 1, 2,. ., k, and where the dependence on x is
implicit. Then the subditterential of [[rll with respect to x is given by

(1.4) 0xllr(x)llt OimTi + [-1, 1]m/
io icr

where 0i sgn (ri), m p(M), the ith row of M (the corresponding column operator

Received by the editors March 7, 1983.

" Department of Statistics, Institute of Advanced Studies, Australian National University, Canberra,
Australia.

t Department of Mathematical Sciences, University of Dundee, Dundee DD14HN, Scotland. The work
of this author was carried out while a Visiting Fellow in the Institute of Advanced Studies, Department of
Statistics, and was supported by a grant from the Mathematics Research Centre, Australian National
University. This visit was assisted by a grant from the Carnegie Trust for the Universities of Scotland.

410

TOTAL APPROXIMATION PROBLEM IN SEPARABLE NORMS 411

is i(M)), and tr

(.5)

so that there exist scalars

(1.6)

denotes the complement of o-. The condition for a minimum at i is

o oxllr()l[,
-< ui <- 1, e r, such that

0-- Oimi4- tlimi.
io io"

There always exists a minimizer for which dim (mi, e o-)= n (for example, see
Watson [8]), and in practice it is convenient to ignore the possibility [tr[> n which
corresponds to a degenerate situation. Then is determined by the system of linear
equations

(1.7) ri(x) O, o’.

In particular, is independent of f, i cr c, and (1.6) is unchanged by (possibly very
large) perturbations of the f, o" which do not change sgn (r), o’, so that

ax au

We say that an estimator with these properties is resistant.
The assumption that the errors are restricted to the dependent variable f in (1.1)

can be a significant over-simplification. However, the more general situation of the
errors in variables model is complicated by the need to make further assumptions
about the error structure in order to ensure identifiability (Moran [7]). If the model
equations in the errors in variables problem are

(1.9) M + N)x f+ r,

and if the errors are assumed to be independent and identically normally distributed
with zero mean, then the maximum likelihood method leads to the minimization
problem

(1.10) min II[Nldll

subject to (1.9) where the norm is the Frobenius matrix norm. A generalization of this
"total least squares problem" is considered by Golub and Van Loan [5]. They solve

(1.11) min T,ENIr]T=II

subject to (1.9) where Tl, T: are positive diagonal matrices. Let Z TI[MIf]T, and
let v, vTv 1, be a singular vector associated with the smallest singular value of Z.
Then if v,+ # 0

(1.12) T,[NIr]T2 -Zwr

is a solution to (1.11). The condition on v,+l is necessary to ensure the existence of a
minimizing x. However, the problem of finding the perturbation matrix of smallest
norm such that Z 4- T[NIr]T2 does not have full rank is well determined.

Example 1.1. Let

M= f= Tl=/3, T2=/2.

412 M. R. OSBORNE AND G. A. WATSON

Then the smallest singular value of Z is and the corresponding singular vector is
v (1/x/)(1,-1, O) T. Thus

and has norm 1. However

-1 0t-1 0[Nlr]--
o o o

f+r range (M + N).

The striking feature of (1.12) is that it is a rank one matrix. In this paper we
generalise this result to total approximation problems for a class of norms which we
call separable and at the same time extend results given in Watson [9]. This class of
problems includes the total least squares problem and also the total least pth problem
for p _>- 1. We show that

(i) the solution of the total approximation problem

min II[NIr]
subject to (1.9) has rank one whenever the norm is separable, and

(ii) the solution can be computed when the solution to a vector minimization
problem subject to a single normalizing constraint is known. We concentrate on the
total 11 problem and show that in the absence of degeneracy the solution has the
characteristic property that only one column of [N[r] is differentfrom zero. It is possible
to determine the resistance of the total ll problem by examining the sensitivity of the
solution to perturbations in the problem data, and we obtain the somewhat disappoint-
ing result that this cannot be expected to have the strong resistance properties associated
with the l regression problem. An effective descent algorithm for finding a local
minimizing solution is presented and its finiteness established in the nondegenerate
case. Finally numerical results are given which show that a number of local solutions
may exist, highlighting the nonconvex nature of the problem.

2. Separable norms and the total approximation problem. Let the matrix Z R"+1

R having full column rank n + =< m be given. We consider the total approximation
problem in the form: determine a perturbation matrix E such that, for a given norm,

(i) [[EI[is a minimum, and
(ii) rank (Z / E) < n / 1.

If we consider a matrix as a particular organisation of an extended vector in R
then we can readily define a suitable class of matrix norms, as the required concepts
from vector analysis generalise in a straightforward manner. For example, we can
define the subdifferential of IlZll by

ollzll {G: R"+’ --> R" Ilsll >-- II/11 + trace (SX Z) TG), VS: R"+ --> R"}.

It is easily seen that G e o11211 is equivalent to the statements
(i) II211- trace (GrZ), and
(ii) all* --< 1,

where

IIGll *= max trace (SrG)
IlSll--I

and I1" I1" is the polar or dual norm to I1" II. It should be noted that the role of the norm
and its dual can be interchanged in this definition.

Here we restrict attention to norms on E which are separable.

TOTAL APPROXIMATION PROBLEM IN SEPARABLE NORMS 413

DEFINITION. The norm I1" on the set of m (n + 1) matrices is separable if there
exist vector norms II" II and I1" Ilo on g and Rn+l, the range and domain spaces
respectively, such that for all u R", v Rn+

(2 la) (i) ilu,ll-Ilullll,ll*D,
and

(2.1b) (ii) Iluvll *- Ilull*llvllo.
The second condition is needed to prove Lemma 2.1 which states a key property

of the subdifferential of a separable norm.
LEMMA 2.1. Let I1" be separable. Then

(2.2) Z uvT- =:> G stT- allzll
where sOllull and tallvll*D-

Proof It follows from the definitions of s and t and (2.1a) that

trace (GT-uvT-)= vrGT-u (vT-t)(s7-u)= Ilull IIv[l*o- Iluvll,

where we have used the result that if v 011zll then Ilzll wz, Thus G olluv provided
IIGIl*-< . But this is an immediate consequence of (2.1b) as Ilsll, Iltllo--<l ollow
from the assumptions.

We now prove our main result for separable norms.
THEOREM 2.1. Let I1" be separable. Then

(2.3) Ilzll => max IlZvll.
Ilvll --<

Proof Let v solve the optimization problem in (2.3). Then the necessary conditions
for an optimum are that there exist y 011Zvll, w 011vll r--> 0 such that

yT-Z ywT- O

(for example see [6]). Taking the scalar product with v gives

IIzll.
Let G yv. As G[[*-<_ by (2.1b) it follows that

IIzll--> trace (GT-Z) trace (vyT-Z) yT-Zv 3’.

Example 2.1. (i) If the norm is defined by requiring that equality hold in (2.3)
then it is an operator or subordinate norm. In this case

Ilzll max .y
Ilyll--1
Ilvll

so that G =yvT- llzll. That (2.1a) is satisfied is an immediate consequence. Equation
(2. b) requires that

Ilslllltllo max trace
s --<

This follows directly from the constraint on S which gives

=> max trace (SywT).
Ilyll
[lwll

The total approximation problem in operator norms is discussed in Watson [9].

414 M. R. OSBORNE AND G. A. WATSON

(ii) In the case considered by Golub and van Loan [5] (see (1.11)) we verify (2.1a)
only as (2.1b) is similar. We have

n+l

Iluvll=- TuvT=ll E v(T2),ll T,ull Tullll Tvll.
i=1

Thus Ilull-II T,ull=, IlvllD-II T’vll=, and IlZll* IIT;’ZT;’II. Theorem 2.1 gives

Ilzll max IIT,Zvll== max

This shows that llZI[is bounded below by the largest singular value of TZT2.
(iii) In the l norm

II211 E Iz= j=

It follows that

so that

n+l
pIluTII- E Iv E [u,I,

j=l i=1

Thus II" is the p norm on R and I1" liD is the q norm on R"+1 where lip + 1/q 1.
This verifies (2.1a). Here (2.1b) is similar with p replaced by q.

(iv) It is not difficult to find meaningful norms which are not separable. Consider,
for example, the case where the errors in different columns are independent, but where
the errors in each particular column have non-trivial variance-covariance matrices.
Under the assumption of normal errors the method of maximum likelihood leads to

n+l (E)TW-the minimization of IIEII =- Y,=, ,(E) where W is the variance-covarience
matrix of the errors in the ith variable (assumed known). Here

n+l

l)iU Wi u
i=1

and is separable only if ilTwII! k, llull.
THEOREM 2.2. Let I1" be any separable norm. Then the problem

subject to

(2.4) rank (Z + E) < n +
has the solution

(2.5) E -ZtT

where solves the problem

(2.6)
IIVlID =1

and I111 o.
Proof. If E satisfies the rank condition in (2.4) then there exists r,]]]1o 1, such

that
Z -E.

TOTAL APPROXIMATION PROBLEM IN SEPARABLE NORMS 415

Thus, using Theorem 2.1, for each feasible E

(2.7) Ilvll,--min IlZvlIR <= IIz ll -IIEII < IIEII.
However, E--Z" satisfies the rank condition (since (Z+E)-0) and gives
equality in (2.7) as a consequence of (2.1a).

Remark 2.1. The vector x satisfying (1.9) can be deduced from (2.5), (2.6) by
noting that Z- [M If] so that

(2.8)
-1 v,+

provided ,+ # 0.
The minimization problem (2.6) is not convex (the feasible region is the outside

of the unit ball Ilvll 1), so that uniqueness is not immediately guaranteed. In fact
local minima are possible, and the interpretation of these is aided by considering the
Lagrange multiplier formulation of (2.4). To be specific we say that a point is a

stationary point if the first order necessary conditions are satisfied. If, in addition, there
exists no feasible descent direction then the point is a local minimum, and it is an
isolated (or strong) local minimum if the objective function increases in every feasible
direction. The appropriate Lagrangian function is

(2.9) w =]]E + kT(Z -]- E)v + y(]]v[] 1)

where the equality constraints

(2.10) (Z+)v=0

ensure that rank (Z + E) < n + 1, while the constraint [[v]] serves as a normalising
condition. To develop multiplier relations for this equality constrain problem it is

necessary that the matrix

wr 0 0 0

have full row rank where w011v]lo (Hiriart-Urruty [6]). This condition is clearly
satisfied as v, w necessarily 0 when rank (Z)= n + 1.

The multiplier conditions are developed in the following lemma.
LMMA 2.2. The necessary conditions for a solution of (2.4) are that there exist

R, (3 0 E such that

(.11) x(z+)=0,

(2.12) G+v= 0.

Proof The necessary conditions that follow from considering (2.9) are

(2.) x(z+)+w :0

for some w o[[vll, and

(2.14) G+Av=O, i=l,2,...,m, j=l,2,...,n+l

som 0il ll. Taking the scalar product of (2.13) with v gives

(Z+ E)v+ ywv 0,

so that =0 by (2.10) and the result follows.

416 M. R. OSBORNE AND G. A. WATSON

Remark 2.2. It is interesting that (2.14) shows that G always has rank one
independent of the assumption of separability.

In order to establish the main result on local minima of (2.6) we require a
preliminary lemma which is effectively a strengthened form of the first order necessary
conditions for a solution of (2.6). A proof is given in Watson [9].

LEMMA 2.3. Let fi be a local minimum of (2.6). Then for every we allello there
exists y e allzall, such that

(2.15) y=z-- Ilzll,w
THEOREM 2.3. Let be a local minimum of (2.6) and we oll*llo. Then

E -Z(vr

is a stationary point of the total approximation problem.
Proof. By Lemma 2.3 (2.15) is satisfied. Set

_y.
By Lemma 2.1 ollEII, and it remains to show that k=y satisfies (2.11). We have

y(z + E)=y(z-zc=)=y=z-llzll,w=o.

3. The total I1 problem. We now specialize to the norm

n+l

Ilzll Y. E Iz,l.
= j=

This is shown to be separable with

and

in Example 2.1 (iii). It follows from Theorem 2.2 that the solution of the problem (2.4)
is given by

_z,
where @ solves

(3.1)
I1,,11

and we allll.
Remark 3.1. Here (2.15) holds with (compare (1.3), (1.4))

(3.2) yTZ ovllZvll E Oiz["- E [-1, 1]zT,
io io"

where

tr { zi v O},

Oi sgn (zfv), tr, and zi oi(Z) 7", and
w all,ll conv{be, j E u}

TOTAL APPROXIMATION PROBLEM IN SEPARABLE NORMS 417

where bj sgn (vj), and

The special structure of the problem permits us to extend the results of the previous
section.

THEOREM 3.1. A necessary and sufficient condition for to be a local solution of
(3.1) is that for every we oil@lID there exist y e llz@ll satisfying (2.15).

Proof Necessity follows from Lemma 2.3. Sufficiency is a consequence of Watson
[9, Thm. 4] and uses the polyhedral nature of the constraint explicitly.

This result can be interpreted in terms of the number of zeros of Z and extrema
of.

THEOREM 3.2. Either there exists a solution to (3.1) with I 1/1 1 > n/ or there
is a nearby point which can be reached without increasing the objective function at which
there is a downhill direction.

Proof. Let be a solution to (3.1) with Then there always exists a
nontrivial s e R"+I such that

z,s O,
and

(3.3)

where

ieo’, s=0, jet,,

gs=<O,

g-- E OiZi"
io

It follows that for r > 0 small enough

IIz(/ s)ll,- IIzll, / gTs----< IIZll,
and

Thus + rs must be a solution for all r small enough. However, there must be a first
value of " for which the slope of one of the piecewise linear functions
and I1+ rsll changes (both -> as r->). This must correspond either to a new zero
residual (Itrl := Irl+ 1), or a new extrema (Ivl := vl+ 1). If is increased then the
argument can be repeated provided Irl+lvl<n+l. However, if Iv[:=[vl+l then
I1+ rsll begins to increase and the objective function can be reduced by renormaliz-
ation so that s is downhill for minimizing IIZvll at +

Remark 3.2. The existence of a downhill direction at a nearby point does not
conflict with being a local minimum as this requires only that there is no downhill
direction at . However, if s is downhill at + roS then v fq V(ro+) . The implication
is that while it is possible to build up tr systematically, vl > appears to happen only
by chance, and it is argued that this corresponds to a degenerate situation.

The next theorem gives sufficient conditions for an isolated local solution when
Iv[1. The argument does not extend when vl > (in fact it suggests how to construct
a direction of nonuniqueness), and this provides additional evidence that the case
Iv > at an isolated solution corresponds to a kind of degenerate behavior.

THEOREM 3.3. Let vl and be a local solution of (3.1). Then is an isolated
solution provided

rank ((zi, e tr, lYil < 1), w) n + 1,

where w e o1111- 4)kek, k e v.

418 M.R. OSBORNE AND G. A. WATSON

Proof Let Sk --O, SO that zs is a feasible displacement at for r > 0 small enough.
In this displacement

Equation (2.15) applied to this ase gives

gs+ E y,zYs: I]zllWS=0.

Thus

as

g s+ Z Iz, sl: X {[zs[-y,zs} E {1-[y,l}lz,s[>0

Iz/ s[0, cr and lYi[< 1, and Sk 0===>S 0

by the rank assumption. It is this last step which cannot always be applied when Iv[> 1,
and this provides the difficulty in extending the argument.

The above considerations lead us to define the usual case which will be the one
for which a descent algorithm is developed in the next section.

DEFINITION 3.1. The point v is nondegenerate if Io’1 k <- n, Iv[and

rank ((Zi, r), w) k + 1.

By Theorem 3.1 the search for nondegenerate minima is narrowed down to points at
which [cr[n. At a nondegenerate local minimum only one column of E is different
from zero.

To conclude this section we consider the resistance properties of" the total 1
problem solution. Recall that in the l regression problem it is the f corresponding to
the nonzero residuals that can be allowed to vary substantially. However,the above
argument shows that there are comparatively few non-zero elements in E. To show
resistance, the analogous condition to (1.8) requires that we evaluate the rate of 9hange
of the solution quantities with respect to the elements of Z. To do this we note that v
and ui, i or, are determined by the conditions (2.15) which by (3.2), (3.3) are

(3.4) g + Z UiZi ’)/W 0,

where

and

Let Zkl be a general element of Z subject to the restriction that k tr. Differentiating
the above conditions with respect to Zkl gives

dtl
Okel + Zi

aZ,k!

dv

0.
dZ

TOTAL APPROXIMATION PROBLEM IN SEPARABLE NORMS 419

In particular, dv/dZkl--0 (this corresponds to the result obtained in the 11 regression
problem), but (d/dZkl)()=a constant vector#0 so the second of the resistance
conditions (1.8) does not hold. The conditions that a perturbation

leave v unchanged become

(i)

and

Zk --> Zk + mki

0, (z Iv+ a,av > 0

(ii) >0, io’.

It is this second condition that causes difficulty as it imposes strict limits on the size
of possible perturbations.

4. An algorithm for the ll problem. In this section we outline an algorithm for the
total l problem. It is a modification of a reduced gradient algorithm for the I regression
problem which can be shown to be equivalent to the well-known linear programming
algorithms (this result does not seem to have been published, but the verification is
just a matter of computation). For simplicity we again make appropriate nondegeneracy
assumptions. Specifically, if v is the current point then

(i) the index set r {i; zv 0} satisfies Io-I k_-< n,
(ii) there is a unique index s such that

and

(iii)

where

s arg max <1o, I, 1, 2," ", n + 1),

dim (H)= k +

H span ((z, j or), e).

At the current point the algorithm consists of two main parts.
(i) Let F(v)- IIz ll,. Then a descent step is performed on the problem

mix F(v).

Apart from this trivial modification to take account of the equality constraint this is
just a step of the l solver. It has two components.

(a) A descent vector t is computed satisfying

F’(v; t) < 0, ts 0.

If suitable t cannot be found the computation is terminated.
(b) Given t we find a to minimize F(v+ at) and set =v+ at.
(ii) It is possible that]]]]> 1. Thus must be renormalized. We have

/3 1/llll_< 1,

F(v) F() <- F().

The descent step. The reduced gradient algorithm is used to generate the descent
vector. Let B" Rn+l ._) R"+I be given by

420 M. R. OSBORNE AND G. A. WATSON

where

Ki(Ztr Zcr(i), 1, 2," ", k,

and I consists of columns of the unit matrix including es chosen to make rank (B)
n + 1. It is convenient to make K,+I(B)= es. Define

u= lUll,U2

whereuRk,u2Rq, q=n-k+l, by

Bu -g,

where g is given by (3.3). If u2= Teq then g H and u provides a tentative multiplier
vector in (3.4). Thus the conditions for v to be a nondegenerate, local solution of (3.1)
are

(4.1) gH

and

(4.2) -1 <= ui<_- 1, i= 1,2,. ., k.

Otherwise there are two ways to compute a descent vector depending on which of
(4.1) and (4.2) is violated.

(i) gO= H (so that u2 Teq). Let

j=argmax (luil, i= k+ 1,..., n).

Then uj # 0 and

t sgn uj)(B,T)
defines a descent direction. To verify this note that the directional derivative in the
direction of t is

F’(v;t)=gTt

and

gTt= -sgn (uj)pj(Brl)Bo.u -lull < o.
(ii) lull > o for some j, <j <= k. Then

t=sgn (u)(BST)
defines a descent direction for

F’(v;t) gTt+IzTj)t =--lUjl + < 0.

In this case

Tz)t sgn (uj) # 0
Tso that z)v# 0 and o-:= r/{r(j)}.

The second part of the descent step involves minimizing F in the direction
determined by t in order to compute a. Now F is a piecewise linear function of a
with jumps in derivative at the points ai at which

z/(v+ cit) 0, itr

TOTAL APPROXIMATION PROBLEM IN SEPARABLE NORMS 421

Also, only values of ai > 0 are of interest, and for 6 > 0 small enough

F’(v+ (% + a)t; t)- F’(v+ (% a)t; t)= 2[zrtl.
Thus the point ap sought must correspond to the first p such that

F(v; t)+2 Y Izrt[>- 0.
O oti

Efficient computation of ap has been discussed for the 11 regression problem. For
example Bloomfield and Steiger [2] recommend Hoare’s partitioning algorithm, while
Clark and Osborne [3] find this satisfactory for the initial steps but note that the process
settles down so that the number of terms in the summation is small after about n/2
steps and suggest a comparison sort to order the small

Given p, or:= rU {p}. B must now be updated by replacing either z() or x(I)
by Zp depending on the manner in which the descent vector is chosen. The exact
mechanism of the updating and reorganization is determined by considerations of
computational efficiency and stability (see Bartels and Golub [1], for example). It is
a routine calculation to show that nonsingularity of B is preserved in the updating.

Both possibilities (i) and (ii) can give adequate descent directions at the current
point so that it may be necessary to choose between them. Assuming scale differences
are not important our experience suggests a criterion of the form

j arg max ([u[- 1,j 1, 2,..., k, txlul,j k + 1,..., n)

where/z > 0 is chosen to favour deleting columns of I unless there is a relatively large
violation of the multiplier bound. This approach has the advantage that it does not

require explicitly the rank of Z to be known in advance. In the rank defective case

columns of I in addition to the one corresponding to the norm constraint persist, and
the corresponding components of v are unchanged from their initial valueg as each
descent vector is constructed to be orthogonal to the columns remaining in B. Here
this is a diagnostic device--without further assumptions the correct solution to the

rank deficient problem is/ 0.
The renormalization step. This step provides the main difference between our

algorithm and a method for the 11 regression problem. The subgradient inequality gives

[Iv+ t[[-> Ilvl[/ abtre->-[Ivll,

so that if [Iv+ ctll> IIvl[then

arg max (Ivi+ati[, i= 1, 2,..., n+ 1) s.

Thus, apart from rescaling and F, it is necessary to make the update

K,,+I(B)<---et, s:=l.

Here the advantage of forcing the scaling constraint to be K,+I(B) becomes clear

because in the Bartels-Golub algorithm this step involves only the last two columns
of B (the scaling constraint having been moved to the penultimate column in the
update which follows the descent step).

It is easy to take account of constraints of the form (E) =0 corresponding to

columns of Z which are known exactly in the errors in variables application. It is

necessary only to exclude these columns from consideration in the renormalization
step so that components of v associated with these columns are unconstrained.

422 M. R. OSBORNE AND G. A. WATSON

Remark 4.1. If v is chosen to be es initially then at each subsequent step of the
algorithm

vTBu VsUn+l psUn+l

as vT"Ki(Z)= 0, i= 1,2,..., k by the definition of tr and vK(I) O, i= 1,2, , q-
by the choice of initial conditions. However,

vBu -vg= F(v).

Thus, at each step, the correct multiplier vector is given by the scaling constraint. This
has value as a numerical check, but it also shows that information is not available
from this source concerning the appropriateness or otherwise of the scaling constraint.

Remark 4.2. Finiteness of the algorithm in the nondegenerate case follows from
the usual arguments. If the initial vector satisfies v es then at each subsequent step
v is uniquely determined by the linear equations

en+l,

and each possible B is associated with a particular value of F. As the algorithm
reduces F at each step it follows that the configuration specified by B cannot repeat.
As there are only a finite number of such configurations finiteness is an immediate
consequence.

To illustrate the use of the algorithm with Bartels-Golub updating it was applied
to Z" R5-> R2 given in Table 4.1. This is the well-known stack loss data set considered
in Daniel and Wood [4, Chap. 5]. In Table 4.2 values of F, v, u are given for the
successive steps of the algorithm starting from v-es. In this case the same solution is
found for each of the starting points v=ej, j l, 2,..., 5, and the optimal scaling
could be predicted by noting that the elements in (Z) are small compared with those

TABLE 4.1
The stack loss data set.

80 27 89 42
2 80 27 88 37
3 75 25 90 37
4 62 24 87 28
5 62 22 87 18
6 62 23 87 18
7 62 24 93 19
8 62 24 93 20
9 58 23 87 15
10 58 18 80 14
11 58 18 89 14
12 58 17 88 13
13 58 18 82 11
14 58 19 93 12
15 50 18 89 8
16 50 18 86 7
17 50 19 72 8
18 50 19 79 8
19 50 20 80 9
20 56 20 82 15
21 70 20 91 15

M f

TOTAL APPROXIMATION PROBLEM IN SEPARABLE NORMS 423

TABLE 4.2
Values ofF, v, u for successive iterations ofthe reduced gradient algorithm applied to the data given in Table 4.1.

2 3 4 5 6 7 8 9 10

F 368.0 138.3 64.86 64.64 1.359 .9891 .9022 .8840 .8043 .7840

v 0 0 0 0

v2 0 0 -1 -1

v3 0 0 0 .0934
v4 0 -.1724 .4982 .5201

v5 .9774 .9933

.0269 -.01522 -.00494 -.00878 -.00923 -.00845

.00034 -.02174 -.02612 -.002239 -.00848 -.01079

.00190 0 -.00435 -.00321 -.00541 -.00524

.02688 .02174 .01306 .01592 .01200 .01031

u -21.00 .3103 .7641

u2-1269. -89.00 -2.328
u -443.0 -40.86 5.760
u4-1812. -.3103 -3.524
u -368.0 138.3 64.86

.7590 -1.370 -1.815 -2.204 -2.013 -1.439 -.4647
4.834 .9542 -2. -3.891 3.101 -.5001 .8594

-3.279 5.667 4.076 3.997 -1.601 1.214 .7616
-.3145 7.434 -.2717 .2001 .3972 .5295 .6277
64.64 -1.359 -.9891 -.9022 -.8840 -.8043 -.7840

TABLE 4.3
Solutions produced by starting with different coordinate vectors as initial conditions
when the intercept is not constrained. The solutions corresponding to e3, e are

identical. The permutation of the components of u is an implementation artifact.

0 e2 e3 e4 5

F 43.75 24.20 24.20 42.08

v -34.83 -20.50 -20.50 39.69
/)2 .00334 .00334 -.8319

v3 .3013 -.5739

v4 1949 .05071 .05071 .06087

v5 -.8558 -.2900 -.2900

u 1464 .5527 .04604 .1899
u -.06796 .04604 .4184 -.5580
u .4696 .4184 .5527 -.7290
u .7447 -.0171 -.0171 .639

u -45.75 24.20 24.20 -42.08

in the other columns so that choosing v ej, j > 1, would be likely to make vl large.
However, the first column corresponds to an intercept term and is known exactly. If
this column is not included (KI(E)=0) then the results are rather different and several
isolated local minima are found by varying the initial conditions so that v ej, j
2, 3,..., 5. The values of F, v, u obtained corresponding to each of these initial
conditions are given in Table 4.3. It is readily checked that isolated local solutions are
obtained. Also the solution with v5 gives the solution to the l regression problem.

The calculations were performed on an HP9845B programmed in BASIC.

Acknowledgments. The work of the second author was carried out while he was
a Visiting Fellow in the Institute of Advanced Studies, Department of Statistics, and
was supported by a grant from the Mathematics Research Centre, Australian National
University. This visit was assisted by a grant from the Carnegie Trust for the Universities
of Scotland.

424 M. R. OSBORNE AND G. A. WATSON

REFERENCES

R. H. BARTELS AND G. H. GOLUB, The simplex methodfor linear programming using LU decomposition,
Comm. ACM, 12 (1969), pp. 266-268.

[2] P. BLOOMFIELD AND W. STEIGER, Least absolute deviation curve fitting, this Journal, (1980), pp.
290-301.

[3] D. I. CLARK AND M. R. OSBORNE, A descent algorithm for minimizing polyhedral convexfunctions, this
Journal, 4 (1983), pp. 757-786.

[4] C. DANIEL AND F. S. WOOD, Fitting Equations to Data, John Wiley, New York, 1971.
[5] G. n. GOLUB AND C. F. VAN LOAN, An analysis of the total least squares problem, SIAM J. Numer.

Anal, 17 (1980), pp. 883-893.
[6] J. B. HIRIART-URRUTY, Tangent cones, generalized gradients and mathematical programming in Banach

spaces, Math. Oper. Res., 4 (1979), pp. 79-97.
[7] P. A. P. MORAN, Random processes in economic theory and analysis, Sankhya, 21 (1959), pp. 99-126.
[8] G. A. WATSON, Approximation Theory and Numerical Methods, John Wiley, Chichester, 1980.
[9] The total approximation problem, in Approximation Theory IV, L. L. Schumaker, ed., to appear.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 2, April 1985

1985 Society for Industrial and Applied Mathematics

012

A QUASI-QUASI-NEWTON METHOD FOR GENERATING
QUASI-CHOLESKI FACTORS*

JOHN GREENSTADTf

Abstract. Previous attempts to derive quasi-Newton update factors by variational means have foundered
on the nonlinearity (in the update increment D) of the quasi-Newton condition. By neglecting the quadratic
term in D, the QN condition is linearized, so that it becomes possible to derive a perspicuous recipe for
least-norm factor-updates. However, in order to restore the robustness which is lost by this approximation,
D is replaced by a suitable multiple of itself, based on minimizing a norm of the discrepancy in the QN
condition. The resulting update (in two versions) is compared with the BFGS update for a small sample of
"standard" functions. The upshot is that the new factor-update which is covariant under affine transformations
is comparable in efficiency with the BFGS update, while the noncovariant factor-update is much worse. A
table is given, indicating the numbers of gradient and function evaluations required to bring the function
values down to the levels shown.

Key words, quasi-Newton methods, Choleski factors, unconstrained minimization

1. Introduction. In any method of quasi-Newton (QN) type, for the unconstrained
minimization of a function F(x), a recursive procedure is used to generate successive
approximations to the Hessian H of the function. One of the most important desiderata
for these methods is the maintenance of positive-definiteness in the approximants {Bk}
when the true Hessian is itself positive-definite. If this property is not maintained, it
is very easy for the Newton-step directions generated with the approximate Hessians
to fail to be descent directions, and hence for the minimization algorithm to "hang
up". It is well known that the DFP and the BFGS formulas do have this property of
preserving positive-definiteness [1] (or at least semi-definiteness), which may in large
measure account for their efficacy.

It has been of special interest to the author for some time, to find new quasi-Newton
updating formulas by means of a variational approach [2], [3], [4]. This method for
generating update formulas has resulted in some interesting results: For example,
Goldfarb succeeded in deriving the DFP formula this way, and supplied one of the
derivations of the BFGS formula [5]. Moreover, the Fletcher-dual form of Powell’s
Broyden-symmetric formula turned out to be included in the class of updates derived
in [2]. (Some attention was also devoted there to the problem of insuring a downhill
direction, even when the approximate Hessian is not positive-definite.)

In attempting to find QN methods which did not require the explicit calculation
of the gradient g of F (either exactly, or by differences), it was found [3] that the lack
of positive-definiteness impeded the convergence of the method very seriously, and in
many cases caused it to fail altogether. In a revision of this method [4], whose aim
principally was to rectify this defect, it was necessary to incorporate a very elaborate
(and expensive) recursive procedure to build an approximate Hessian which was
certain to be positive definite. This distinctly improved the performance of the method,
but at a stiff price.

On another tack, an alteration was made in the way in which B is usually updated
to form B*. This is normally done by the addition of an increment D:

(1.1) B*=B+D.

An attempt was made to make use of the obvious fact that if, on the other hand, B is

* Received by the editors February 22, 1983, and in final revised form December 28, 1983.
f IBM Corporation, Palo Alto Scientific Center, Palo Alto, California 94304.

425

426 JOHN GREENSTADT

updated by means of a product:

(1.2) B* (I 4- D)rB(I 4- D)

(where D is now the correction to the unit matrix I), then the positive-definiteness of
B implies that of B* (provided that D is real and that 14- D is nonsingular).

The "standard" way of deriving update formulas for symmetric D’s by variational
means starts with the weighted Frobenius norm of D, viz.,

(1.3) 0-=1/2 Tr {P-DP-DT}

where P- is a symmetric, positive-definite weight matrix, and "Tr" means that the
matrix trace is to be evaluated. Various terms incorporating, constraints on D via
Lagrange multipliers are then added, so as to form the complete Lagrangian function
which is to be made stationary by the suitable choice of D. In general, we wish to add
the so-called quasi-Newton condition on the updated matrix B*, namely:

(1.4) B*s=y

where s is the difference x*-x, between the new position vector x* and the old one
x, and y is the corresponding difference g*-g between the computed gradients. When
the correction to B is additive, the QN condition reduces to

1.5) Ds y Bs =- r.

To this may be adjoined, if B is to be kept symmetric, a symmetry condition on D,
viz., Dr- D 0. The complete Lagrangian is then

(1.6) 1/2 Tr {P-DP-Dr} A r(Ds r)-Tr {A(Dr- D)}.

The solution to this variational problem is quite simple and the formula for D is given
in [2]. The reason for this simplicity is almost solely a result of the fact that the
Lagrangian function is quadratic in its arguments D and the lambdas. When the
conditions for a stationary are derived by differentiating it with respect to its
arguments, the resulting equations are linear.

The situation is quite different if the QN condition for the product form is used.
This condition (on D) takes the form

(1.7) DTB$ 4- BDs + DTBDs y Bs =- r

which is not linear in D. (There is no symmetry condition on D, because the form of
the update automatically preserves the symmetry of B.)

When D need not be symmetric, the Frobenius norm can contain two weight
functions [6], so that

(1.8) Oo 1/2 Tr {P-’DQ-1Dr}
where Q- is another positive-definite weight matrix. The equation for D which results
then has the form

(1.9) p-1DQ-l_2BDsh T= BsA r + AsTB,
which has a bilinear term in the arguments (D, A). It is clear that, if P- # B, the matrix
D is entangled in the left-hand side and cannot, in general, be solved for. However,
even if P-= B and it is possible to solve for D in terms of A, it turns out that when
D is substituted back into (1.7) for the purpose of solving for A, the result is a very
complicated set of quartic equations for various inner products involving A. It does

QUASI-QUASI-NEWTON METHOD FOR QUASI-CHOLESKI FACTORS 427

not seem worthwhile to go to such lengths to obtain a minimum-norm product-form
update.

However, these efforts at that time were not entirely in vain. Through a lucky
mistake, the correct result was obtained that the DFP update could be written in
product form, and that the wrongly-derived formula was the right one. After A. R.
Gourlay and K. W. Brodlie were apprised of this, they very rapidly derived the
relationship of the product form with most of the best-known updates, including the
DFP, the BFGS and the Murtagh-Sargent rank-one. We were independently able to
characterize the changes in condition number of the sequence of approximants in
terms of the determinatnts of the update factors. Our efforts were then pooled and
published in [7], which also contains the classification of rank-two updates in terms
of definiteness characteristics.

2. Treatment of the binary product form. More recently, in the course of collabora-
tive discussions on the problem ofsparse updates, Prof. John Dennis, of Rice University,
proposed the possibility of deriving minimum norm updates for Choleski factors. If
the matrix B is expressed in the form

(2.1) B LLT

(where L is a lower-triangular matrix), and if the new approximant B* is expressed
in like manner

(2.2) B* L*L* T

then the updating of B is done via a simple additive update of L, viz.,

(2.3) L* L+ D.

The QN condition for the correction D reduces to

(2.4) LDTs + DLTs + DDTs y LLTs =- r

which is quite similar to (1.7) and is, of course, nonlinear in D.
Direct updates of Choleski factors have already been developed, but not by a

variational approach. When the objection was raised to Dennis’ suggestion that the
inevitable nonlinear QN condition would present insuperable difficulties, he proposed
"linearizing" the QN condition. As he later explained, he meant replacing the single
nonlinear QN condition

(2.5) L*L* TS y

by two coupled linear ones. This would be done by defining the variable u by

(2.6a) L* TS =-- U,

in which case (2.5) would become

(2.6b) L*u= y.

Of course, this linearization is achieved at the cost of introducing a new variable. In
a 1981 paper [8], Dennis and Schnabel described the algorithm based on this decomposi-
tion of the QN condition.

Dennis’ remark was misinterpreted, in that it was thought that he meant simply to
neglect the nonlinear term in (2.4) and to take

(2.7) LDTs+ DLTs= r

428 JOHN GREENSTADT

as an approximate QN condition. This, of course, greatly simplifies the Lagrangian,
which is now quadratic

(2.8) 1/2 Tr {p-1DQ-IDT}- A T{LDTs + DLTs r}.

It is very east to solve the necessary conditions for stationary for D in terms of A.
The result is

(2.9) D P(sA T + AsT)LQ.
When this result is substituted into (2.7), for the purpose of finding A, the equation to
be solved is

(2.10) [(sTps)R + (sTRs)P]A -[(A Tps)R + (A TRs)P]s + r,

where R is defined as LQLT, and is symmetric.
The left-hand bracket contains known quantities only; hence we may denote it

by Z for convenience (Z is also symmetric), and solve (2.10) for A. The result is

(2.1 l) A =-Z-’[(sTpA)R+(sTRA)P]s+Z-Ir,

which gives A in terms of the two inner products involving A. Therefore, we must first
solve for these two quantities, so that we finally obtain D explicitly. This can be done
by premultiplying (2.11) by s Tp and s TR in turn, which yields

s TPA --(s TPZ-’ US)(S TPh. s TPZ- Ps)(s TR,k
(2.12a)

+ (s Tpz-I r)
and

sTRA -(sTRZ-Rs)(s TpA s TRZ-’ Ps)(s TRA
(2.12b)

+ sTRZ-l r).

If we denote (sTpZ-IRs) by a, (sTpZ-Ips) by/3 and (sTRZ-IRs) by y, then we have
to solve the system of equations

y + a (sTRA)] (s T--l r)

for (S TPA and (s TRA). We then substitute these into (2.11), thereby obtaining A, and
then substitute the result into (2.9) to get D. Thus, the linearization of the QN condition
has enabled us to obtain an explicit solution for D. Unhappily, this solution is too
inefficient to evaluate just to get an approximate QN update.

Founately, the most interesting special choice for P and Q has the effect of
greatly simplifying Z, and hence all the formulas. To motivate this special choice, we
shall consider ceain general features of this way of generating updates. First, we take
note of the fact that the exact Newton formula for the step p, defined by

(2.14) p -H-’g,

where H is the true Hessian of F, is covariant under all linear (nonsingular) transforma-
tions of the independent variables, and also under a scaling transformation of F(x).
We need not consider the translatory part of these transformations on x, because we
only make use of the difference of two values of x (to evaluate s), so that we need
consider only the group of affine transformations, i.e., those of the form

(2.15a) Y= Sx

QUASI-QUASI-NEWTON METHOD FOR QUASI-CHOLESKI FACTORS 429

where represents the new set of coordinates, and S is any nonsingular matrix. In
the Appendix, where these matters are discussed in more detail, it is shown that (2.15a)
defines x as a contravariant vector. The gradient g transforms via

(2.15b) ,=S-rg

and is thus defined as a covariant vector. (We define S-r to mean (S-).) The Hessian
transforms as follows"

(2.15c) I?I S- 7"HS

and is a covariant tensor of the second rank. If B is to be an approximation to H with
the same covariance properties, then L, in (2.1), is permitted to transform according to

(2.15d)

where U is any orthogonal matrix. It is clear that D ought to transform in like manner.
The QN condition itself is covariant under affine transformations. It therefore

seems desirable to construct the original Frobenius norm in such a way that it is an
invariant of the affine group. We shall show in the Appendix that the resulting necessary
conditions for stationarity ofthe Lagrangian function are then covariant (the multipliers
being defined to have the right transformation properties), and the update which
satisfies these conditions is also covariant. Experience has already shown that the
scaling (meaning multiplication by a factor) of variables and equations can have a
decisive effect on the speed and robustness of a quasi-Newton method, and affine
covariance can be regarded as the natural generalization of scaling invariance, in the
quasi-Newton context. These affine transformations have already been recognized as
having some significance, although they are called by the more restricted name of
"scaling" transformations in the book by Gill, Murray and Wright [9].

It is a great misfortune that sparsity, which plays such an important role in the
efficient solution of very large problems, is not affinely invariant, but is almost totally
coordinate-dependent. A sparsity pattern is invariant only under the very restricted
class of transformations consisting of row scalings, column scalings and row or column
interchanges. Any other transformation of the affine group, outside of this very small
subgroup, will spoil the sparsity pattern of the transformed matrix. For this reason, it
is to be expected that the update increment D, generated by formula (2.9), will not
retain any sparsity that L might start with. Hence, since triangularity is itself a form
of sparsity, we cannot expect D to be triangular.

In fact, therefore, since L is not defined uniquely, but only up to an orthogonal
transformation, we can opt for affine invariance of the sequence of updates and, after
the minimization is completed, transform the final approximant to triangular form by
orthogonal reduction. We can thus regard this "precursor" of the true Choleski factor
as a kind of "quasi-Choleski" factor. (We should therefore think of the letter L as
standing for "left", instead of "lower").

Because of the unusual transformation (2.15d) associated with L, we must pay
special attention to the transformation properties of P and Q. Since these matrices are
both symmetric, it is reasonable to assume that

(2.16a) /3= XrPX,
(2.16b) (= YOY,
where X and Y are transformation matrices to be determined. The trace used for the

430 JOHN GREENSTADT

norm should be formally invariant, which means that

Tr {/3-/--1/T} Tr {X-p-Ix-Ts-TDUY-Q- y-TuTDTS-I}

(2.17) Tr {P-’(XS)-rD(UY-’)Q-’(Uy-I)TDT(XS)-’}

Tr {P-’DQ-’DT}.

For (2.17) to be an identity, it is proved in the Appendix that the relations

(2.18) XS= lzI and UY-’= +tzI
must hold, where/x is an arbitrary constant. The factors/z and +/z may be absorbed
into S and U respectively, so we may assume them both to be unity.

The relations (2.18) are clearly sufficient to guarantee (2.17) for all D, P and Q,
so that

(2.19a) /3--- s-Tps-1

and

(2.19b) (= UTQU.
This means that P transforms like H (or LLT), and Q transforms according to the
unitary subgroup of the full linear group. It is not clear what choice ought to be made
for Q, but on the principle that only the quantities that occur naturally in the algorithm
should appear in the update formulas, it would seem that Q-- I, the identity matrix
(which is "present" in any matrix context), is the only sensible choice. By the same
token, a natural choice for P is LLT" which, in fact, yields the so-called "proportional"
update. The Frobenius norm in this case has the form: Tr {(LLT)-’(DDT)}.

Looking back now at the form of Z that appears in (2.10), it is clear that requiring
R to be equal (or at least proportional) to P results in a great simplification. This
amounts to setting P lzLQL. Equations (2.10) to (2.13) then simplify greatly, so that
the formula for D becomes

(2.20) D=p (Psrr + rswP)- PssTp L-r

where p =---sTps and
This simplification adds to the already strong motivation for setting Q I and

P-- LLr. For the sake of comparison, we shall show, in 4, results based also on the
other "obvious" choice" P Q I; this choice is interesting because the Frobenius
norm then becomes just the Euclidean norm Tr (DDT), which corresponds to an
"absolute" update, as compared with a "proportional" one.

3. The last "quasi". The linearization of the QN condition yields a great benefit;
viz., it makes feasible a simple, closed formula for the quasi-Choleski factor update.
Unfortunately, it also exacts a stiff price. At the start of a minimization, when one is
far from the solution, the magnitude of D (in any norm) may easily be far larger than
that of L. Preliminary trials, using simple quadratic functions, gave very disappointing
results; the algorithm almost never converged, but instead got "stuck" far from the
solution.

The difficulty, of course, is that the QN condition is too far from being satisfied.
Clearly, we cannot satisfy it exactly, because that would involve applying precisely
the nonlinear exact condition that leads to intractable problems in solving for D.
However, it is still possible, using the approximate solution for D derived in the

QUASI-QUASI-NEWTON METHOD FOR QUASI-CHOLESKI FACTORS 431

preceding section, to satisfy the exact QN condition "as closely as possible". In
mathematical terms, this means minimizing some norm of a suitably defined "dis-
crepancy" in the QN condition.

Our strategy is precisely that used in the original minimization problem itself. The
Newton "step" D is interepreted, not as a step, but as a search direction, and a

parameter is introduced which measures the actual extent of the difference between
the starting point of the search and the current point being examined. Insofar as the
Newton step is derived by linearizing a nonlinear problem, and solving the resulting
approximate problem exactly, the value of D may be regarded as a "Newton direction"
in the NE-dimensional space of N N matrices.

We can then consider the family of new factors L*(r)-- L+ rD, where r is the
running parameter along the line thus defined. The exact QN condition is

(3.1) L*(r)L*r(r)s=(L+rD)(L+rD)rs-y,

which can never in general be satisfied by the D ,calculated in 2, for any value of r.

However, we can make the discrepancy A, defined by

(3.2) A_= L*L*rs y (LDr + DLr)sr+ (DDr)sr2- r

as small as possible, in the sense that we can minimize some norm of A by the
appropriate choice of r.

The simplest norm to use for A is a weighted Euclidean norm of the form

(3.3) W= Ilall =--- awa.
For W =/, W is the Euclidean norm, and for W (LLr)-, it is the affanely invariant
norm. If we substitute for A from (3.2), the result is a quartic in r:

(3.4) W C " c2r-- c3r2- c4r3 - c5 r4.

For compactness, we define

(3.5)

so that the c’s can be written

u (LDr + DLr)s,
v DDrs,

Cl rTWr,
C2 -2rTwgl,

(3.6) c3 -2rrWv + u rWu,
C4 2u TW1),

C5 v Two.
The solution of" this subproblem was done by finding a root of the equation

(3.7) dxlt= 0

using Newton’s method. Just starting with unity for r, and performing the raw Newton
iteration (i.e., without line-searching or other protective devices) always gave the correct
value for r, thereby obviating the usually mandatory line search. A programmed check
of the progress of IIAII disclosed no cases when it did not decrease monotonically
through the r-iterations. The ratio of final to initial norms varied from 10-7 to unity,

432 JOHN GREENSTADT

indicating that at times, A was being grossly overestimated, while at other times, it
was very accurate (the latter usually occurred near the minimum of F).

The complete "linearized" quasi-Newton, quasi-Choleski factor update algorithm,
with a "best fit" to the QN condition, worked amazingly well. In the next section, the
results of various numerical trials will be presented, showing the performance of this
algorithm on a few representative functions.

4. Numerical results. A most important feature of any minimization algorithm is
the line-search which it uses. We have used a rather simple one, which proceeds as
follows:

(1) Starting with the initial point Xo in each step, for which Fo and go are known,
we denote the function F(xo+ Ap) by f(A) (where A is a parameter along p),
and the directional derivative df/dA at A 0 by fo, which has the value g Tp.

(2) We next evaluate fl --f(Al) (where Ais initially set to unity), and combining
it with the two pieces of information in step l, we construct the second order
approximation to f(A) which matches fo, fo and fl. This parabola has a
minimum or maximum at A,,, where its value is f,, --f(A,). We compute the
ratio/3--f +f,, which measures the extent to which fl is near the estimated
minimum of f(A). If f(A) were exactly quadratic,/3 would be equal to unity.

(3) If/3 falls above a predetermined lower bound, the value of A, is regarded as
satisfactory, and the step based on it is accepted. (In practice, the value of .1
for this lower bound was found to work well).

(4) If/3 is too small (including negative), and if A, lies between 0 and A1, then
A1 is set equal to A,, fl is set equal to f,, and step (2) is repeated.

(5) If A, is outside of this range, a "trap" sequence is initiated, which consists
of an extrapolation of f(A) until the middle value of three successive values
is smaller than the other two. The line search is regarded as finished at this
point.

With this search (which, be it noted, does not ensure "average positive curvature"),
five functions were minimized, using the BFGS (with the inner product y rs checked
for positivity at every step), the "absolute" quasi-Choleski (QCHOL1) and the affinely
invariant quasi-Choleski (QCHOL2) updating formulas. The weight W, used for finding
A in (3.3), was chosen to correspond to the type ofupdate used; i.e. W I for QCHOL1,
and W= (LLT)- for QCHOL2. The five functions tested were:

(a) A quadratic function in 5 variables, for which the Choleski factor of its
(constant) Hessian matrix was generated randomly. The linear and constant parts were
constructed so as to make (1, 1, 1, 1, 1) the minimum point, and to make the function
vanish at that point. The starting value of x is denoted by Xo. The function is given by

F(x)=(Ax-b)r(Ax-b),

(3.8)

60 5
62

16

-72

82

-8

-10

-43

78

17
-53

-48

-64

72

b {90,-73,-9, 14, 72},

Xo= {1, 2, 3, 4, 5}.

QUASI-QUASI-NEWTON METHOD FOR QUASI-CHOLESKI FACTORS 433

(b) Rosenbrock’s function [11]. The standard starting value was used, as it was
for all the rest of the "standard" functions tested. The function is

(3.9)
V(x) oo x (x x)- + x,),
Xo {-1.2, 1}.

(c) The "banana function" [12] in 10 variables.

(3.10)

9

2)2F(x)= E (lOOX(Xi+l-Xi +(I-x,)2),
i=1

Xo ={-1.2, 1,-1.2, 1,-1.2, 1,-1.2, 1,-1.2, 1}.

(d) Powell’s quartic function [11].

(3.11)
F(x) (x + 10x2)2 + 5(x x4)2 -- (x2 2x3)4 + 10(x x4)4,

Xo {3, -1, O, 1}.

(e) Wood’s function 11].

F(x) lO0(x2 X:)2 + (1 Xl)2 + 90(X4-- X3)2 + (1 x3)2

(3.12) + 10.1[(x2- 1)2-F (X4 1)2]+ 19.8(x2- 1)(x4 1),

Xo {-3,-1,-3, -1}.

All of these functions vanish at the solution points. With double-precision used
throughout (all the calculations were done in APL), the final value of F can be driven
down to approximately the square of the machine precision (about 10-32). However,
it is felt by some workers in this field that, since many real problems are not formulated
as sums of squares, it is generally not possible to drive the value of F below the basic
machine precision (in our case, 10-16). The two chief termination criteria used were
(1) the increase of the directional derivative fo to an insufficiently negative value and
(2) the shrinking of the value of F to the point where the difference between fl and

fo became subject to excessive relative rounding error. Both versions of the latter
termination criterion were handled by evaluating the difference as (R +fl)-(R +fo),
where R was given the value 0 for the "double-precision" run and the value for the
"single-precision" one.

Table shows the results of these runs. GS and FS are the numbers of gradient
and of function evaluations at termination, and the minimum values achieved are listed.

5. Discussion. While no effort has been made to give anything like an exhaustive
demonstration of the performance of these update formulas, an important inference
can be drawn even from the small sample of tests shown here. It is obvious that the
quasi-Choleski update which is not affinely invariant gives a very poor performance,
while the affinely invariant one is comparable with the BFGS update (which is currently
regarded as the "best" one). It would therefore appear that closer attention should be
directed to wider invariance properties of quasi-Newton methods than just scaling
invariance. It is remarkable that a unique (and efficient) update can be derived based
on a variational principle and a strict requirement of affine invariance. It may be that
the disappointing performance of a priori sparse quasi-Newton updates is due to their
meager invariance properties.

While our tests have shown, once again, that the BFGS update is supreme (it also
has a sparse form [13]), one of our original motivations was to broaden the range of
choices for sparse quasi-Newton updates beyond those derivable from known nonsparse

434 JOHN GREENSTADT

TABLE
Minimization results for three updateformulas andfivefunctions. The numbers ofgradient and offunction

evaluations are given, as are the final values of the functions. The numbers in parentheses indicate powers of
10. Results for both double and single precision terminations are shown.

Results with double-precision minimum

UD type BFGS QCHOL1 QCHOL2

Function GS FS Minimum GS FS Minimum GS FS Minimum

Quad 5 11 12 0.0 24 24 9.2 (-28) 20 24 1.2 (-26)
Rosenbrock 39 48 4.1 (-26) 44 57 2.1 (-29) 36 45 4.9 (-31)
Banana 10 75 92 7.3 (-27) 130 211 3.6 (-27) 81 116 1.8 (-27)
Powell 85 97 5.6 (-26) 261 328 2.7 (-23) 68 84 6.9 (-24)
Wood 85 117 1.0 (-28) 147 164 2.2 (-26) 90 152 4.7 (-29)

Results with single-precision minimum

Quad 5 10 12 2.3 (-22) 21 22 3.2 (-18) 18 23 5.3 (-17)
Rosenbrock 38 48 1.1 (-20) 39 53 8.2 (-17) 34 44 1.8 (-18)
Banana 10 69 87 1.1 (-16) 112 184 4.3 (-16) 76 112 1.1 (-16)
Powell 46 54 9.4 (-15) 180 215 8.9 (-14) 48 65 1.4 (-16)
Wood 82 115 1.5 (-16) 136 154 7.2 (-18) 87 150 3.5 (-19)

ones, and also to try to extend the results of Toint 14] on variationally derived updates.
Since Toint relied on a unit weight matrix in the Frobenius norm, it was our hope to
be able improve the efficiency of his update by extending the set of transformations
under which that norm was invariant, subject to the sparsity constraints.

To some extent, we were successful, and have programmed a sparse updating
scheme which, while still incomplete in some formal respects, is able to generate
updates with prespecified sparsity, which are still covariant with respect to row and
column scaling only. Moreover, it has been possible to extend this procedure, so that
it can generate true Choleski factor updates, simply by prespecifying a triangular
sparsity pattern for the update. Unfortunately, apart from the formal incompleteness
of the technique (which, however, gives correct results), the updates are relatively
inefficient, when compared with (nonsparse) affinely covariant ones.

Of course, if one starts with a triangular initial approximation for L (such as the
unit matrix), one can always restore the triangularity of each update approximation
by the methods of Gill, Golub, Murray and Saunders. The best such method [15]
requires N2 multiplications for adding a rank-one correction, and -N2 for subtracting
one. Since the quasi-Choleski update is of this type, it requires N2 multiplications to
retriangularize L.

6. Appendix.
Demonstration of covariance properties. We shall first show that in order that the

Frobenius norm o in (1.3) be invariant under transformation of its tensor components
D, P and Q (as shown in (2.17)), P and Q must transform according to (2.16) and (2.18).

Since (2.17) is to be an identity for any D, P and Q (with P and Q symmetric),
we may differentiate it with respect to D, and still expect an identity. We apply the
general rules (which may be readily verified in terms of components)

0
Tr(DR)=R T, O Tr(DTR)=R,(A1) 0-- ODr

QUASI-QUASI-NEWTON METHOD FOR QUASI-CHOLESKI FACTORS 435

to the last two lines of (2.17). If we denote XS by A, and UY-l by B, the result
simplifies to

(A2) A-*P-1A-TDBQ-tBT= P-IDQ-t.

Next, we premultiply by ArPA and postmultiply by Q to obtain

(A3) ATpAp-ID DBQ-IBTQ.
Recalling again that (A3) has to hold for any D, we simply set D to I, the unit

matrix, to obtain

(A4) ATpAP-l= BQ-1BTQ,

and we shall denote the common value of these two matrices by R. We are now ready
to apply the second part of Schur’s celebrated lemma, which we quote from [10] (with
our own variable names):

If a matrix R commutes with all the matrices of an irreducible system {D}, then
R is a numerical multiple of the unit matrix.

Inasmuch as the system {D} consists of the set of all nonsingular matrices, it is
certainly an irreducible system. Therefore, we are entitled to assert that R =/xI. We
thus have

(A5) ATpAp-1 IXI, BQ-IBTQ tzI.

Recalling again that P and Q are arbitrary symmetric matrices, we may set each of
them to the unit matrix, to obtain

(A6) ATA= txI, BBT= txI,

so that both A and B are quasi-unitary; we may make them both unitary by absorbing
x/ into each of them. We then have ATA I and BBT= L This means that we can
regard/x as equal to unity in (A5).

If we therefore premultiply the first equation in (A5) by P-iA, and postmultiply
the second one by Q-IB, the result is

(A7) Ap-I=p-1A, BQ-’=Q-IB.
Recalling yet again that P and Q are arbitrary symmetric nonsingular matrices, and
hence form an irreducible system, we can apply Schur’s lemma once more, to obtain

(A8) A =/zI, B oL

Referring back to the last two lines of (2.17), we replace XS(=A) by/zI and UY-(B)
by o/, and we have

Tr {P-II-IDD(-IDDTI,L-1}= Tr {p-Io(-IoT}
(A9)

=Tr{P_DQ_IDT}

so that o must be equal to +/x. Hence finally,

(A10) A =- XS txI, B =- UY- +tzI,

which is the same as (2.18).
We shall now show that an update increment derived from an invariant Lagrangian

function has the correct covariance properties. We first consider the way in which the

436 JOHN GREENSTADT

quasi-Newton condition itselftransforms. Let us consider the coordinate transformation

(All) ’= Sx
which was written as Y= Sx in (2.15a) and is defined in tensor analysis [16] as a
contravariant transformation of the vector x. (The corresponding inverse is, of course,
x S-Y.) From this transformation, we may derive

(A12) Oxi=Si,
which is written in matrix form as OY/Ox S, etc. The function F(x) is assumed to be
invariant in value under this transformation, i.e.,

(A13) f(;) F(x).

When we differentiate this relation with respect to x i, we obtain

(A14)
OF OY Off" Off"
ox’ }

so that, if the gradient of F is denoted by g, (A14) can be written in matrix form as
g sr. This kind of transformation is called covariant, and g is called a covariant
vector. Obviously, we have s-rg, which is the same as (2.15b).

In a similar manner, we can derive (2.15c), which shows the Hessian H to be
covariant tensor of the second rank. In keeping with the point of view.expressed in
this paper, we wish the approximants B and B* to have the same covariance properties
as H, so we require

(A15) = S-rBS-’, J*= S-rB*S-1.

Moreover, since B LLr, it is obvious that the most general transformation for L is
that shown in (2.15d). This is rather an unusual transformation, which does not exactly
fit into the classical framework of tensor analysis, but is certainly meaningful from a
group-theoretic point of view. In any case, if L (and hence D) transform in this way,
B will transform correctly (as will B*, etc). We need only note further that s, being
the difference of x* and x, transforms in the same way as x, and that y, being the
difference of g* and g, transforms like g. The "quasi-Newton discrepancy" A is then
found to transform as follows,

(a16) -=/*-- 3 S-TB*S-Ss S-ry s-T(B*s- y) S-TA,

so that A is also a covariant vector.
In order that the expression that we add to the invariant Frobenius norm also be

invariant, so that the entire Lagrangian function in (2.8) be invariant, the multiplier
A must transform properly. Since A is a vector, the most general transformation for it
is" AA, where A is some matrix. If A TA is to be invariant, we must have

(A17) T-- A TATs-TA-- A TA

SO that clearly, A S, and - SA, showing it to be a contravariant vector.
Let us now assume nothing about the transformation properties of D, but derive

them from the variational formula (2.9), using only the transformations on P, Q, L, s

QUASI-QUASI-NEVdTON METHOD FOR QUASI-CHOLESKI FACTORS 437

and A which were necessary to make invariant. We have

s-Tps-I(SsA TsT + SAsTST)S-TLUUTQU
(Al8)

s-p(sA - + As)LO:S-D,
which shows that D transforms like L, so that their sum is consistent.

This result, albeit quite simple, illustrates the more general result that the solution
to the equations resulting from the variation of an invariant functional has the property
of being covariant.

Acknowledgments. My thanks are due to Prof. John Dennis for prompting this
investigation, to Drs. P. Gill, W. Murray and M. Saunders for suggestions as to testing
procedures and references, and to the Referees for many fascinating and extremely
helpful comments, criticisms and corrections.

REFERENCES

[1] J. E. DENNIS AND J. J. MORI, Quasi-Newton methods, motivation and theory, SIAM Rev., 19 (1977),
pp. 46-89.

[2] J. GREENSTADT, Variations on variable-metric methods, Math. Comp., 24 (1970), pp. 1-22.
[3], A quasi-Newton method with no derivatives, Math. Comp., 26 (1972), pp. 145-166.
[4], Revision of a derivative-free quasi-Newton method, Math. Comp., 32 (1978), pp. 201-221.
[5] O. GOLDFARB, A family of variable-metric methods derived by variational means, Math. Comp., 24

(1970), pp. 23-26.
[6] E. SPEDICATO AND J. GREENSTADT, On some classes of variationally derived quasi-Newton methods

for systems of nonlinear equations, Numer. Math., 29 (1978), pp. 363-380.
[7] K. W. BRODLIE, A. R. GOURLAY AND J. GREENSTADT, Rank-one and rank-two corrections to

positive-definite matrices expressed in product form, J. Inst. Math. Applics., 11 (1973) pp. 73-82.
[8] J.E. DENNIS AND R. B. SCHNABEL, A new derivation ofsymmetric positive definite secant updates, in

Nonlinear Programming 4, O. L. Mangasarian et al., eds., Academic Press, New York, 1981.
[9] P. E. GILL, W. MURRAY AND M. H. WRIGHT, Practical Optimization, Academic Press, New York, 1981.

[10] H. BOERNER, Representations of Groups, North-Holland, Amsterdam, 1963.
[l l] P. E. GILL, W. MURRAY AND R. A. PITFIELD, The implementation of two revised quasi-Newton

algorithms for unconstrained optimization, Report : NAC l, National Physical Laboratory,
Teddington, England, 1972.

12] S. S. OREN, Self-scaling variable metric algorithmsfor unconstrained optimization, Thesis, Dept. Engineer-
ing-Economic Systems, Stanford Univ., Stanford, CA, 1972.

[13] J. E. DENNIS, JR, AND PHUONG Vu, Toward direct sparse updates ofCholeskifactors, Rice Univ. Tech.
Report 83-13, Houston, TX, April 1983.

[14] PH. L. TOINT, On sparse and symmetric matrix updating subject to a linear equation, Math. Comp., 31
(1977), pp. 954-961.

[15] P. E. GILL, W. MURRAY AND M. A. SAUNDERS, Methodsfor computing and modifying the LDVfactors
of a matrix, Math. Comp., 29 (1975), pp. 1051-1077.

[16] J. L. SYNGE AND A. SCHILD, Tensor Calculus, Univ. Toronto Press, Toronto, 1949.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 2, April 1985

(C) 1985 Society for Industrial and Applied Mathematics
013

ITERATIVE METHODS FOR SOLVING BORDERED SYSTEMS
WITH APPLICATIONS TO CONTINUATION METHODS*

TONY F. CHAN" AND YOUCEF SAADf

Abstract. Consider the linear system

where A may be nearly singular but the vectors b and c are such that M is nonsingular. If A is large and
sparse, use of iterative methods seems attractive. In this paper, a number of conjugate gradient like methods
are considered. Estimates of eigenvalues of M based on those of A are derived. A primary issue is the
exploitation of special properties of A, e.g. symmetry, in these algorithms. Often, a good preconditioning
for A is available and we show various ways of exploiting it. Results of numerical experiments derived from
the use of a continuation method for solving a nonlinear elliptic problem are presented and some general
conclusions concerning the relative performance of these algorithms are drawn.

Key words, continuation methods, bordered systems, Krylov subspaces, iterative methods, precon-
ditioning, constrained optimization

(1)

1. Introduction. Consider the linear system

or

where the n by n matrix A is bordered by the vectors b and c to form a larger system
of dimension (n + 1) by (n + 1).1 In particular, we are primarily interested in the use
of conjugate gradient type iterative methods for solving (1) which may be appropriate
when the matrix A (and consequently M) is large and sparse as for example when A
is derived from discretizations of multi-dimensional partial differential equations. We
shall present algorithms for solving systems of this form and perform numerical
experiments to compare their relative efficiency.

Systems of this form arise in many applications. The matrix A often represents
the regular part ofthe problem, whereas the vectors b and c represent either a constraint
on the solution x or a coupling among the variables x and y. For example, these
matrices are common in Lagrangian methods for constrained optimization [14]. We
are primarily interested here in the class of path-following continuation methods for
solving nonlinear problems. These include continuation procedures for solving non-
linear eigenvalue problems of the form G(u, A)=0, where u represents the usual
"solution" and A is a real parameter intrinsic to the problem [8], [18], [25]. Usually,
one is interested in tracing the solution curves [u(A), A]. However, due to the fact that
these solution curves may possess multiple solutions for a fixed value of A and that
they may admit singular points such as turning points and bifurcation points, it may
not be best, or even possible, to parameterize the solution curves by the naturally

* Received by the editors May 26, 1982, and in revised form November 28, 1983. This research was

supported in part by the U.S. Department of Energy under contract DE-ACO2-81ER10996.
f Computer Science Department, Yale University, New Haven, Connecticut 06520.
In general, b and c could be rectangular matrices although in this paper we shall only be concerned

with the vector case. All the algorithms presented can be easily generalized to the higher dimensional cases.

438

ITERATIVE METHODS FOR BORDERED SYSTEMS 439

occurring parameter A. Often it is better to parameterize these solution curves either
by another independent variable in u or by an arclength parameter. In these cases,
the matrix A represents the Jacobian Gu, the vector b represents Ga, and the last
equation in (1) represents the "arclength constraint" on [u, X]. For example, with the
pseudo arclength method [18], (c r, d) is a scalar multiple of the unit tangent
at a solution (u r, A).

Another related application area is the class of homotopy continuation methods
designed to improve the global convergence of iterative algorithms (e.g. Newton’s
method) for solving general nonlinear systems and fixed-point problems [13]. In these
homotopy techniques, one transforms a nonlinear system F(x) 0 by a homotopy into
a larger system, for example, H(x, t) (1 t)(x Xo) / tF(x) 0. Note that H(xo, O) 0
and H(x, 1)= F(x). Thus, one can start from the known solution Xo at 0 and trace
the solution curve of H(x, t) until the solution of H(x, t)= 0 at is reached, which
by construction is a solution of F(x)=0.

The matrix M is partitioned in the way exhibited in (1) because in many applica-
tions, such as the ones mentioned above, the matrix A possesses special structures
which one would like to exploit. Two such structures that we consider here are
sparseness and symmetry. In the use of direct methods, the sparseness of A can be
exploited in a variety of ways. Rheinboldt [26] has suggested a technique suitable for
banded A and Keller [18] has employed a block elimination algorithm (see 3.1). On
the other hand, in addition to sparseness, the symmetry of the coefficient matrix often
plays a critical role in both the efficiency and the convergence of iterative methods
[15]. For example, for conjugate gradient type methods ([7], [12]), efficient methods
and rather complete theories exist for symmetric problems, whereas the situation for
nonsymmetric problems are not as well-understood. In many applications, although
A is symmetric, the vectors b and c in (1) are unequal in general, resulting in a matrix
M that is nonsymmetric. An obvious approach for solving is to apply a nonsymmetric
iterative method directly, without explicitly taking advantage of the symmetry of A.
In this paper, we also consider algorithms for solving (1) that do exploit the symmetry
of A. However, all of these algorithms require solving two symmetric systems for each
system of the form (1). One of the main issues that we would like to address in this
paper is the obvious trade-otis among these different approaches. A related issue is
the construction of effective preconditioning techniques to be used with these
algorithms, assuming that a preconditioning matrix is available for the matrix A. We
note that symmetric conjugate gradient methods (without preconditionings) have been
used by Abbott 1] and Mittelmann [21].

Another property of the matrix A that plays an important role in our discussion
is its indefiniteness. In fact, in the path following applications mentioned above, A
can actually become singular near the singular points. However, the vectors b and c
are constructed so that the matrix M remains nonsingular. Since the convergence of
conjugate gradient type methods depends critically on the distribution of the eigen-
values of the coefficient matrix, for example, positive definiteness and the spread of
the eigenvalues, it is important to understand the relationship of the eigenvalues of M
to those of A. In 2, we shall present some general results in this direction and apply
them to matrices arising from the use of continuation methods on nonlinear elliptic
problems. In 3, we shall present three algorithms for solving systems of the form (1),
two of which exploit the symmetry of A. Preconditioning techniques will be discussed
in 4. Numerical experiments were carried out which apply these algorithms to a
pseudo-arclength continuation procedure ([8], [18]) for tracing the solution curve of
a two dimensional nonlinear elliptic eigenvalue problem that possesses a turning point.

440 TONY F. CHAN AND YOUCEF SAAD

The numerical results will be presented in 5 and we attempt to draw some general
conclusions from these results in 6.

2. Estimates of eigenvalues for bordered matrices. In order to be able to interpret
the behaviour of various iterative methods, in this section, we study the eigenvalues
of matrices of the form

(2) M= cr d

We assume that A is symmetric.

2.1. General case. Let us start by block factoring the matrix (2) as follows

[A b]=[I]IA b]M= cr d qr 0 y
with

(3) q=A-lc,

(4) y=d-qrb=d-crA-’b.

Let the eigenvalues ofA be Oi, 1, , n, where we assume that 0 <= 02 =<" <= 0n.
We will denote by Ixi the eigenvalues of M, and label them according to increasing
real parts.

Since ,4 is symmetric we can write ,4= QTAQ, where Q is orthonormal and
A=diag (0, 02,’", 0n). We will denote by fli (resp. 6) the ith component of the
vector Qrb (resp. QT"c). From the above factorization applied to M-IXI, we get for
all Ix not in the spectrum of A

(5) Det(M-ix/)=Det(A-ixI).[d-ix flS!].
i=1

From (5) we can easily show the following:
PROPOSITION 1. 1) If flfii- O, then Oi is an eigenvalue of M.
2) Ifflfii and fli+6i+ have the same sign, then there is an eigenvalue ofM between

Oi and 0i+l. Iffln6n (resp. fl6) is positive, then M has an eigenvalue larger than On (resp.
less than 0).

3) In particular if all flfii’s are positive, then all the eigenvalues ofM are real and
interlace with those of A.

The assumption for the last property is in particular satisfied when c b, i.e. when
M is symmetric, which gives the well known Cauchy interlace theorem for symmetric
bordered matrices, see, e.g., [24, p. 186].

2.2. The case when b or c is an eigenvector of A. Next we consider the particular
case, when either b or c is an eigenvector of ‘4. This situation may arise around certain
turning points [18] in continuation methods. If c happens to be an eigenvector of ,4

associated with 0, then all the y’S are zero, except for i. Likewise if b is an eigenvector
of ,4 associated with 0i, all of the fly’S are zero except for fl. Hence in either case, the
first point of Proposition yields the following result.

PROPOSITION 2. ,4ssume that b (resp. c) is an eigenvector ofA associated with the
eigenvalue 0 and let), c 7"b. Then all eigenvalues ofA, other than 0, are eigenvalues of
M. Moreover M has two extra eigenvalues which are roots of thefollowing equation in Ix:

(6) Ix2- O + d)Ix + dO y O.

Furthermore, when y is nonnegative, the two roots are real

ITERATIVE METHODS FOR BORDERED SYSTEMS 441

It follows from the last part of the proposition that, for some iterative methods,
it may pay to scale the last row by a sign change so that the extra eigenvalues are real.

2.3. Application to arclength continuation methods for nonlinear elliptic prob-
lems. The above proposition determines completely the spectrum of M in the situation
when either b or c is an eigenvector of A. In the context of pseudo-arclength continu-
ation methods, the matrix A becomes singular near a turning point and the vector c
(a scalar multiple of f) becomes an eigenvector of A associated with the eigenvalue
zero [8], [18]. Moreover, the scalar d (a multiple of ,() also goes to zero. Hence the
result of Proposition 2 applies. The spectrum of M consists of all the nonzero
eigenvalues of A, plus the two eigenvalues that are solutions of (6). Of particular
interest in the use of iterative methods is the size of these eigenvalues as compared to
that of the nonzero eigenvalues of A, as the rate of convergence of most iterative
methods depends on the spread of the eigenvalues of M.

We shall use the following two-dimensional nonlinear elliptic problem as a typical
example:

(7) Au+heU=O

with zero Dirichlet boundary conditions on a unit square. Consider a typical second
order finite difference discretization of (7) with mesh spacing h. This problem has a

turning point at A 6.8, see [8]. In a typical continuation algorithm, the matrix A and
the vector b of the matrix M correspond to the linearized and discretized version of
(7) and e respectively and the last row of the matrix M(c, d) is usually a scaled
multiple of (hEf T, ,). The scaling of the last row is arbitrary and we choose to scale
it to be (fir, h-2,() because this makes the vectors b and c have the same order of
magnitude and the matrix M more symmetric. With this scaling, we can easily verify
that 01 O(1), 02 O(1), 0n O(h -2) and 2’ O(h-2). Moreover, except near the
turning point, d O(h-2). On the lower branch all the eigenvalues of A are negative
and d is positive. As the turning point is crossed over to the upper branch, 0 becomes
positive and d becomes negative.

Based on these order of magnitude estimates, we shall now try to estimate the
size of the two extra eigenvalues /x+ and /x_ as the turning point is approached, as
given by the solution of the quadratic equation (6). First, we shall assume that
d (- 0) d (0) which is at least qualitatively correct. With this simplifying assumption,
it easily follows that/x+(-0) -/x_(0) and thus we can limit our attention to the lower
branch where 01 is negative. Next, we consider two regions on the solution branch:
one near the turning point and the other away from it.

Region I: Near the turning point, we have the estimates 00 and /= O(h-2)) >>
d >> 01. The quadratic equation (6)then reduces to /zE-d/x-,=0 from which one
can easily derive the estimates/x+ x/-+ d/2= O(h-), tz-x/--+ d/2= O(h-).

Region II: Away from the turning point, we have the estimates
d O(h-2), 0 O(1) and thus d >> 0. The quadratic equation (6) then reduces to

Iz
2 dtx + dO y 0 from which one can easily derive the estimates/x+ d O(h-2),

ix_ O // d O(1).
Based on these estimates and (6), we can deduce the behaviour of the two new

eigenvalues as 0 goes to zero, as illustrated in Fig. 2.1. There are two things worth
noting in Fig. 2.1. First, the extra eigenvalues are always in the range [O(1), O(h-2)],
i.e., they are of the same order of magnitude as the other eigenvalues of A. Thus they
do not in general increase the spread of the spectrum of A. Second, the minimum
absolute value taken on by these two eigenvalues occurs when 0 is near, but not at,

442 TONY F. CHAN AND YOUCEF SAAD

0(1)

x/-- 0(h-’)

FIG. 2.1. Behaviour of the two extra eigenvalues of M.

zero. Although this minimum value is O(1) in general, its actual value can be consider-
ably smaller than 02, as is verified by numerical experiments in 5. In the symmetric
case such a small isolated eigenvalue does not usually affect the convergence too much.
However, in the nonsymmetric case, it is observed that the situation may be quite
different, especially in the nonpreconditioned case.

3. Iterative method. We are interested in several ways of applying Krylov subspace
methods to system (1). A classical approach widely used in conjunction with direct
methods is the block elimination algorithm which requires the solution of two systems
with A as is described in 3.1.

An interesting alternative to this approach is to work directly with M, which unlike
A, is not singular near the singular point. Here, only one system with M has to be
solved but the problem becomes unsymmetric. This will be described in 3.2.

Somewhere in between these two approaches lies a whole class of methods in
which one attempts to split M into the sum of a symmetric matrix and a low rank
matrix. These will be described in 3.3.

3.1. Block-elimination. An algorithm which is very useful in the context of direct
methods is the following block-elimination algorithm:

ALGORITHM BE [8], [18]. (1) Solve

(8,9)

(2) Compute

(10)

(3) Compute

Av=b, Aw=f.

(11) x= w-yr.

ITERATIVE METHODS FOR BORDERED SYSTEMS 443

With direct methods, the work consists mainly of one factorization of A and two
backsolves with the LU factors of A. Moreover, for problems with many right-hand
sides, the factorization need be computed only once. Since the factorization usually
costs much more than a backsolve, the cost of Algorithm BE is, in general, approxi-
mately the same as that of factoring the matrix M directly. Furthermore, Algorithm
BE is modular in the sense that special structures or solvers for A, when available,
can be easily exploited. For example, in some cases, a fast elliptic solver can be applied
to (8) and (9) although this is limited to separable problems on special domains. When
such is not the case iterative methods may become competitive. With iterative methods,
however, two linear systems of dimension n have to be solved for each system of the
form (1). On the other hand, Algorithm BE does exploit fully any special properties
that may be possessed by A, for example, symmetry or positive definiteness, which
are important for the convergence of the iterative methods but are usually not inherited
by the matrix M.

In situations where A is nearly singular, the iterative methods may encounter
some convergence difficulties in solving (8) and (9). In application to the path following
continuation methods mentioned in 1, this usually does not present great difficulties
for the purpose of tracing the solution curves, unless one is actually interested in
computing the singular points themselves accurately [1], [9], [20], [22]. For direct
methods, Algorithm BE can be shown to be unstable if A is nearly singular but can
be stabilized through deflation techniques [6], [29], while retaining most of its desirable
properties with minimal overhead [5]. We are currently investigating similar deflation
techniques to be used with iterative methods.

3.2. Methods that work on M directly. Consider the linear system

(12) Mz p,

where M is unsymmetric. If Zo is an initial approximation of z, and ro the corresponding
residual vector ro b- Mzo, then one defines the jth Krylov subspace K as the linear
span of the finite sequence ro, Mro," ", M-l ro. The Krylov subspace methods consist
of finding an approximate solution to (12) belonging to the affine subspace Zo+ Ks,
such that the residual vector r of z satisfies certain Galerkin conditions. Among such
methods let us mention the ORTHOMIN (k) methods studied by Vinsome [30] and
by Eisenstat, Elman and Schlutz [11], the method of Axelsson [3], the ORTHODIR
and ORTHORES methods due to Jea and Young [17] and the incomplete orthogonaliz-
ation method (IOM) described by Saad in [28]. ORTHOMIN (k) and ORTHORES (k)
require that the symmetric part of M be positive definite, in order that they do not
breakdown.

In the numerical experiments of this paper we will use the IOM method, a full
description of which may be found in [28]. The main properties characterizing the
method are the following:

(13) zj z0+{r0, Mro, MJ- ro},

(14) (r,r)=O, j-k<-_i<j,

where zi and ri denote the iterate and the corresponding residual at the ith iteration
and k is an integer parameter larger than one.2 In other words the residual vector r

When M is symmetric any value of k larger than one leads to the classical conjugate gradient method
[28]. The value k would lead to the steepest method and is not considered.

444 TONY F. CHAN AND YOUCEF SAAD

is orthogonal to the previous k residuals. Note that k vectors from the previous
iterations have to be stored.

In the Krylov subspace methods, the only operations performed with M are
operations of the form y Mz, i.e. matrix-vector multiplications. Such operations are
easy to perform for bordered matrices and cost at most 2n more multiplications than
the corresponding operation with A. This feature makes it possible to take full advantage
of sparsity.

3.3. Symmetric splittings. Consider the matrix M in (1). If A is symmetric, then
clearly M is a low rank perturbation of a symmetric matrix, and one would like to
take advantage of this fact. Let us split M as follows:

[A c] [b-c] r(15) M= cr d
+ e,+l.

0

We will denote by S the first matrix on the right-hand side of (15). Then writing
the second matrix of (15) as uv, the solution of (1) can easily be obtained via the
Sherman and Morrison formula [16],

(16) $1 + uv r)-Ip s-lp o.S- u
with

+ vrS? u"

To apply the above formula, one needs to solve two systems with Sl, namely S-lp
and S- u. Note, however, that as opposed to methods where M is used directly (3.2)
these systems are symmetric.

Since the matrix Sl is symmetric but not, in general, positive definite, we must
resort to some generalization of the conjugate gradient similar to the SYMMLQ
algorithm for solving the systems involving S [23]. We have used a method based on
the IOM algorithm which is equivalent to the SYMMLQ algorithm, but slightly less
expensive [28].

Note that there are other ways of splitting M. Here are two other possibilities:
M $2-vu , with u and v defined earlier and

(17) S2- b ar‘ d

and M S -{-- (M $3) where $3 is

[a e](18) S3--
e r d

with e 1/2(b + c).
Only the splitting $1 defined by (15) will be considered in this paper.
Although symmetry is an important factor in iterative methods, it is not clear

a priori whether solving two symmetric linear systems instead of one unsymmetric
linear system of the same dimension will be more costly. The main objective of the
numerical experiments to be described in 5 is to provide some empirical evidence
on this issue.

An interesting observation concerning the computational work ofblock elimination
and symmetric splitting is that in both cases we have to solve two linear systems with
matrices of dimensions differing by one. Note also that Sl is a low rank perturbation

ITERATIVE METHODS FOR BORDERED SYSTEMS 445

of A and therefore we may expect the methods to converge in approximately the same
number of steps. There is however a big difference in the context of pseudo-arclength
continuation methods, which is that A becomes nearly singular near the singular point,
while SI is nonsingular as can be easily seen from Proposition 2 and the fact that c is
an eigenvector of A associated with the eigenvalue zero. Thus, in theory, the symmetric
splitting algorithm should be more robust.

3.4. Conjugate gradient method on the normal equations. Another classical way of
preserving symmetry, is via the normal equations

(19) MTMz Mrp.
The regular conjugate gradient algorithm can then be applied to (19) which is positive
definite. However, not only is the amount of work per step doubled but, as is well
known, the condition number of MTM is the square of that of M, thus rendering the
method slowly convergent.

4. Preconditionings. The use of a good preconditioning is often essential for the
successful application of Krylov subspace based iterative methods. In this section, we
shall discuss the use of preconditioning techniques in the algorithms presented in 3.
For this purpose, we shall assume that a good preconditioning is available for the
matrix A in the form of a matrix B such that B- A- and such that the matrix-vector
product B-x is easy to compute. Since we wish to exploit the symmetry of A, we
shall also assume that B is symmetric, so that a symmetric method can be used with
the preconditioned systems in some of the methods.

The use of preconditioning in the block-elimination algorithm is straightforward,
because the preconditioning B-1 can be applied directly to the systems with A as
coefficient matrix. A possible difficulty with this approach occurs when A is indefinite.
The reason is that in order to use the symmetric preconditioned conjugate gradient
algorithm, the preconditioner must be symmetric positive definite [7]. When A is
indefinite, it may not be easy to find a positive definite preconditioner B- that is
"close" to A- in some sense. If A is not too indefinite, however, the situation may
not be too serious because one can use a shifted incomplete factorization of A to
obtain a reasonably good preconditioner [19].

For the other two algorithms presented in 3, the construction of a preconditioner
is not as straightforward. We shall only consider the more general unsymmetric case
here (3.2), as the same techniques can be applied to the symmetric splittings as well.
One way to obtain a preconditioning for M based on one for A is to first express the
exact inverse of M in terms of A- and then replace A- by B-. Thus, we have

(20)

where

l,l
T

A-lc A-lb
(21) y=crA-b-d, u- v-

Y Y

Replacing A-1 by B-1 in (20), one obtains the following preconditioner for M:

(22) PI [B-(I- baT)]
where the quantities are defined analogous to (21), with A-l replaced by B-1. We

446 TONY F. CHAN AND YOUCEF SAAD

assume here that the preconditioner B is chosen so that)7 is nonzero. Note that the
preconditioning is nonsymmetric.

The above preconditioning requires some preprocessing to compute the quantities
y, u and v and the matrix-vector product Pz requires a few more inner-products to
compute than does Bz. For this reason, we shall also consider the following simpler
(also nonsymmetric) preconditioning:

(3) P= 0

Since P1 is nonsymmetric it should only be used with M and not with the
symmetric Si’s.

We note that a preconditioning similar to P has been used in a slightly different
context by Bristeau et al. [4] for transonic flow problems. It is of interest to compare
the two preconditionings Pl and P2, assuming that we have the same preconditioning
B for A. Let E I AB-1 and consider first the "error" I MP2, in the preconditioning
P2. We clearly have

(24) I- MP2 _crB_ 1- d

(25)

For Pl a similar but somewhat more complicated computation leads to the equality

I MP 0

A comparison of (24) and (25) indicates that if E is small then the preconditioning
P will be more accurate than P_ in general. This is not surprising because of the way
this preconditioning is constructed. In general, however, the norm of E will not be
small. On the other hand the effect of a preconditioning P of M is not to provide a
small error E in the inverse but rather to transform the eigenvalues of p-1M in such
a way that most of them will be close to one. From this point of view the two
preconditioned matrices PIM and P2M should not behave too differently as they only
differ by a low rank perturbation. This fact is confirmed by the numerical experiments.

5. Numerical experiments. When the preconditioning techniques presented in 4
are combined with the basic algorithms of 3, a large number of methods result. In
order to focus our discussions on a few representative methods and to facilitate the
presentation of numerical results, we shall limit our attention to the combinations in
Table 5.1.

The algorithms in Table 5.1 were implemented in a path-following continuation
program package written by the authors for tracing solution curves of parameterized

TABLE 5.1
List of algorithms.

BE:
M:
SS:
NE:
PBE:
P1M:
P2M:
P2SS:

Block-elimination, symmetric conjugate gradient for A
Nonsymmetric conjugate gradient for M
Symmetric splitting, symmetric conjugate gradient for $1
Normal equation on M, symmetric positive definite conjugate gradient
Preconditioned BE, symmetric conjugate gradient for B-IA
Nonsymmetric conjugate gradient for PM
Nonsymmetric conjugate gradient for P2M
Preconditioned symmetric splitting, symmetric conjugate gradient for P2S

ITERATIVE METHODS FOR BORDERED SYSTEMS 447

nonlinear eigenvalue problems. All our numerical experiments were performed in the
context of applying this program package to solve the following model nonlinear
elliptic eigenvalue problem"

(26) G(u,A)=--Au+AeU=O,

on [0, 1] [0, 1] with zero Dirichlet boundary conditions. This problem is discretized
by a standard five-point finite difference formula on a uniform m by m grid, resulting
in a system of nonlinear equations of size n (m-1)2. The solution curve for this
problem has one simple turning point at [A 6.808, u(0.5, 0.5) 1.3] (for m 20),
where the Jacobian Gu is singular [8]. The matrix A-= Gu is symmetric, and sparse
(banded and no more than 5 nonzeros per row). On the lower branch of the solution
curve A is negative definite, whereas on the upper branch, it is indefinite, with one
eigenvalue being positive. For the preconditioner, we choose B -= A, which is symmetric
positive definite. For the basic continuation procedure, we use the pseudo-arclength
parameterization of Keller [8], [18], corresponding to using the unit tangent vector
[ti r, ,(] for the vector [c, d]. At each step of the continuation procedure, a Newton
iteration is used to bring a predicted solution to converge to the solution curve. At
each step of the Newton iteration, a linear system of form (1) has to be solved.

The iterative methods that we have used are the usual conjugate gradient method
for symmetric positive definite matrices, a method similar to SYMMLQ [23], [28] for
symmetric indefinite problems, and the incomplete orthogonalization method (IOM)
for general nonsymmetric systems [28].

A form of truncated Newton method was used for the corrector 10]. The conjugate
gradient like inner iteration was stopped when the norm of the residual was reduced
by a factor less than 10-3, and the Newton iteration was stopped when the norm of
the residual for the nonlinear equations was less than 10-4 All computations were
performed on a VAX-780 with mantissa of 24 bits, corresponding to a relative machine
precision of about 10-7.

The experiments were carried out by starting at the trivial solution [0, 0] and
tracing the solution curve slightly past the turning point. In the case ofblock elimination
methods this represents the total of the two solves with A. For each of the methods
listed in Table 5.1, we record the total number of inner iterations used by the iterative
method. We note that exactly the same continuation steps are taken in the outer
iteration independent of which iterative methods is used in the inner Newton iteration.
The continuation steps are tabulated in Table 5.2. They are automatically chosen by

TABLE 5.2
Continuation steps.

0.0
1.0
2.996
4.991
5.984
6.475

6.594
6.804
6.697
6.466

0.0
0.078
0.270
0.555
0.792
0.990

1.065
1.404
1.660
1.897

448 TONY F. CHAN AND YOUCEF SAAD

TABLE 5.3
Total number of iterations.

method

BE
M (k-9)
SS
NE
PBE
aIM (k=9)
alM (k=4)
P2M (k=9)
P2M (k 4)
P2SS

m=10
II

305 465
206 328
350 533
433 1426
72 134
49 85
49 87
49 84
49 84
100 186

m=20
II

633 1554
623 2217
737 1193
large large
72 143
49 88
49 150
49 80
49 83
106 201

an adaptive strategy analogous to those used in ODE solvers. The results are tabulated
in Table 5.3 for m- 10 and 20. Since the matrix M is qualitatively different around
the turning point (due to the fact that A is nearly singular), the number of iterations
taken near the turning point (denoted by II in Tables 5.2, 5.3) is presented separately
from the part away from it (denoted by I in Tables 5.2, 5.3).

All the methods encountered some convergence difficulties near the turning point.
From the results of 2, this may be partly due to the near-singularity of A which
introduces a small eigenvalue for M. We have tabulated in Table 5.4 some of the
eigenvalues of the matrix M as the turning point is approached, together with the
estimates for the two extra eigenvalues/21 and/"2 as given by the solution of (6), which
is strictly applicable only at the turning point where c is an eigenvector of A. The
eigenvalues of M are computed by a version of Arnoldi’s method [2], [27]. We note
that the estimates are rather accurate, especially around the singular point, showing
that c is actually approaching an eigenvector of A. Moreover, these values confirm the
qualitative behaviour described in Fig. 2.1. Observe that the value of the extra eigen-
values of M changes drastically in the neighbourhood of the turning point (01 0).
For this particular problem, the minimum absolute value for the extra eigenvalues is
an order of magnitude smaller than 02. We can also observe a correlation between the
larger number of iterations in Table 5.3 and the small value of the extra eigenvalue in
Table 5.4. For direct methods this is not as important since this effect manifests itself
through the loss of a few digits, which usually is not so drastic as to make the Newton
diverge.

TABLE 5.4
Eigenvalues of M, m 20,

A

3.0
6.0
6.47
6.73
6.8

, 6.77

-16.00
-8.62
-5.89
-2.95
-0.55
+2.23

-3179.0
-3169.0
-3166.0
-3163.0
-3162.0
-3162.0

-16.0
-9.2
-6.5
-3.6
-2.2

-31.4

399.0
398.0
395.0
364.0
311.0
11.8

/22

-45.5
-8.8
-6.1
-3.7
-2.2

-90.2

/21

400.0
398.0
395.0
364.0
311.0
11.8

*/ computed directly by Arnoldi’s method,
/2 computed as solution of (6),
/22 is not the second largest eigenvalue of M, /.L corresponds to 02.

ITERATIVE METHODS FOR BORDERED SYSTEMS 449

TABLE 5.5
Work and storage per iteration.

BE
M
SS
NE

PBE
P1M
P2M
P2SS

Ax, Mx

Work

Mult. B-
7n 0

(3k+2)n 0
7n 0
5n 0

7n
(3k+2)n
(3k+2)n

7n

* Storage does not include A or B.

*Storage

Vector

671
(2k+2)n

6n
4n

6n
(ak+2)n
(ak+2)n

6n

Although we have presented the total number of inner iterations for each method
in Table 5.3, the work per iteration is different for each method. In Table 5.5, we
tabulated the work per step and the storage requirement of each of the competing
methods.

6. Conclusions. In this section, we wish to draw some conclusions based on the
numerical results presented in 5.

First observe that when no preconditioning is used, a large part of the computa-
tional effort is spent near the turning point. In this case, method (M) takes less iterations
in all but the last column, i.e., near the turning point. This shows the importance of
symmetry near a singular point if the systems are not preconditioned. By comparing
the corresponding preconditioned methods (PBE), (P2SS) and (P2M, k --4), and their
corresponding operation counts in Table 5.5, we find that, when a preconditioning is
available, it seems best to work directly with an iterative method on the unsymmetric
matrix M. Note that from Table 5.5, each step of method (P2M) with k-4 is less
expensive than with k 9, and is not much more expensive than each step of method
(PBE) or (PASS).

Also of importance is the observation that despite the fact that the matrices do
not have positive definite symmetric parts, a simple preconditioning based on the direct
solver associated with a shift of the matrix can be quite effective. The preconditioning
continues to work around the singular point for which the matrix is badly conditioned.
The two preconditionings Pl and P2 yield results that are almost identical, except for
a slight difference around the turning point. Surprisingly, the less accurate P2 always
does better than Pl. Their performances may be more equal if a better approximation
B of the inverse of A is available. Note that for k 4, P1M has some difficulties around
the turning point for the case m 20. One possible explanation for this is that P is
not symmetric positive definite while P2 is. In general, it seems that using a small value
for k may be unreliable.

Finally we can assess the various methods tested as follows.
If a good preconditioning is available then the preconditioned unsymmetric

conjugate gradient method (PaM) gives the best results in execution time.
Symmetry is not as important for well conditioned problems as for ill-condi-

tioned ones. In particular as shown in Table 5.3, the iterative methods that do not use
preconditioning are slow and sensitive to symmetry near the singular point.

The normal equations approach is to be avoided if unpreconditioned.

450 TONY F. CHAN AND YOUCEF SAAD

Acknowledgments. The authors would like to thank Prof. Stanley Eisenstat for his
helpful suggestions throughout this project and the referees for their comments and
corrections.

REFERENCES

[1] J. P. ABaOTT, An efficient algorithm for the determination of certain bifurcation points, J. Comput. Appl.
Math., 4 (1978), pp. 19-27.

[2] W. E. ARNOLDI, The principle of minimized iteration in the solution of the matrix eigenvalue problem,
Quart. Appl. Math., 9 (1951), pp. 17-29.

[3] O. AXELSSON, Conjugate gradient type methods for unsymmetric and inconsistent systems of linear
equations, Linear Algebra Appl., 29 (1980), pp. l-16.

[4] M. O. BRISTEAU, R. GLOWINSKI, J. PERRIAUX AND G. POIRIER, Nonunique solutions ofthe transonic

equation by arc length continuation techniques and finite element least squares methods, Proc. 5th
International Conference on Finite Elements and Flow Problems, Austin, Texas, Jan. 23-26, 1984.

[5] T. F. CHAN, Deflation techniques and block-elimination algorithmsfor solving bordered singular systems,
Tech. Rep. 226, Computer Science Dept., Yale Univ., New Haven, CT, 1982; this Journal, 5 (1984),
pp. 121-134.

[6], Deflated decomposition ofsolutions ofnearly singular systems, Tech. Rep. 225, Computer Science
Dept., Yale Univ., New Haven, CT, 1982; SIAM J. Numer. Anal., 21 (1984), pp. 738-754.

[7] R. CHANDRA, Conjugate gradient methods for partial differential equations, Ph.D. thesis, Computer
Science Dept., Yale Univ., New Haven, CT, 1978.

[8] T. F. CHAN AND H. B. KELLER, Arclength continuation and multi-grid techniquesfor nonlinear eigenvalue
problems, this Journal, 3 (1982), pp. 173-194.

[9] T. F. CHAN, Newton-like pseudo-arclength methodsfor computing simple turning points, Tech. Rep. 233,
Computer Science Dept., New Haven, CT, 1982; this Journal, 5 (1984), pp. 135-148.

[10] R. S. DEMaO, S. EISENSTAT AND T. STEIHAUG, Inexact Newton methods, SIAM J. Numer. Anal., 18
(1982), pp. 400-408.

I11] S. C. EISENSTAT, H. C. LEMAN AND M. H. SCHULTZ, Variational iterative methodsfor nonsymmetric
systems of linear equations, SIAM J. Numer. Anal., 20 (1983), pp. 345-357.

[12] H. C. LEMAN, Iterative methods for large sparse nonsymmetric systems of linear equations, Ph.D. thesis,
Computer Science Dept., Yale Univ., New Haven, CT, 1982.

[13] C. B. GARCIA AND W. I. ZANGWILL, Pathways to solutions, fixed points and equilibria, Prentice-Hall,
Englewood Cliffs, NJ, 1981.

[14] P. E. GILL, W. MURRAY AND M. WRIGHT, Practical Optimization, Academic Press, New York, 1981.
[15] A. L. HAGEMAN AND D. M. YOUNG, Applied Iterative Methods, Academic Press, New York, 1981.
[16] A. S. HOUSEHOLDER, Theory of Matrices in Numerical Analysis, Blaisdell, Johnson, CO, 1964.
17] K. C. JEA AND O. M. YOUNG, Generalized conjugate gradient acceleration ofnonsymmetrizable iterative

methods, Lin. Algebra and Appl., 34 (1980), pp. 159-194.
[18] n. B. KELLER, Numerical solution of bifurcation and nonlinear eigenvalue problems, in Applications of

Bifurcation Theory, P. Rabinowitz, ed., Academic Press, New York, 1977, pp. 359-384.
[19] T. A. MANTEUFFEL, An incomplete factorization technique for positive definite linear systems, Math.

Comp., 34 (1980), pp. 473-497.
[20] R. G. MELHEM AND W. C. RHEINBOLDT, A comparison of methods for determining turning points of

nonlinear equations, Computing, 29 (1982), pp. 201-226.
[21] H. D. MITTELMANN, An efficient algorithm for bifurcation problems of variational inequalities, Tech.

Rep. NA-81-14, Stanford University, Stanford, CA, 1981; Math. Comp., 41 (1983), pp. 473-485.
[22] H. D. MITTELMANN AND H. WEBER, Numerical methods for bifurcation problems--a survey and

classification, in Bifurcation Problems and their Numerical Solution, H. D. Mittelmann and H.
Weber, eds., Workshop on Bifurcation Problems and their Numerical Solution, January 15-17,
Birkhauser, Dortmund, 1980, pp. 1-45.

[23] C. C. PAIGE AND M. A. lAUNDERS, Solution of sparse indefinite systems of linear equations, SIAM J.
Numer. Anal., 12 (1975), pp. 617-624.

[24] B. N. PARLETT, The Symmetric Eigenvalue Problem, Prentice Hall, Englewood Cliffs, NJ, 1980.
[25] W. C. RHEINBOLDT, Solution fields of nonlinear equations and continuation methods, SIAM J. Numer.

Anal., 17 (1980), pp. 221-237.
[26] ., Numerical analysis of continuation methods for nonlinear structural problems, Computers and

Structures, 13 1981), pp. 103- 13.

ITERATIVE METHODS FOR BORDERED SYSTEMS 451

[27] Y. SAAD, Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices,
Lin. Algebra and Appl., 34 (1980), pp. 269-295.

[28], Practical use of some Krylov subspace methods for solving indefinite and unsymmetric linear
systems, Tech. Rep. 214, Computer Science Dept., Yale Univ., New Haven, CT, 1982; this Journal,
5 (1984), pp. 203-228.

[29] G. W. STEWART, On the implicit deflation of nearly singular systems of linear equations, this Journal, 2
(1981), pp. 136-140.

[30] P. K. W. VINSOME, ORTHOMIN, an iterative method for solving sparse sets of simultaneous linear
equations, in Proc. Fourth Symposium on Reservoir Simultation, Society of Petroleum Engineers
of AIME, 1976, pp. 149-159.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 2, April 1985

1985 Society for Industrial and Applied Mathematics
014

m-STEP PRECONDITIONED CONJUGATE GRADIENT METHODS*

LOYCE ADAMS?

Abstract. This paper discusses preconditioners for the conjugate gradient method which are based on
several iterations of stationary iterative methods. Necessary and sufficient conditions are given for the
applicability of these preconditioners to symmetric and positive definite systems of linear equations. Efficient
computer implementations of these methods are discussed and results on the CYBER 203 and the Finite
Element Machine under construction at NASA Langley Research Center are included.

Key words, multi-color ordering, preconditioned conjugate gradient, SSOR (symmetric successive over-
relaxation)

1. Introduction. In this paper we are concerned with the solution of a sparse
N N system of symmetric and positive definite linear equations

(.)

by preconditioned conjugate gradient (PCG) methods. For a detailed description of
these methods see Concus, Golub, O’Leary (1976) and Chandra (1978).

The PCG method solves the system, Kfi f, where

(1.2) / QTM-’KQ-r, fi= QTu, = Q-’f.

Q is a nonsingular matrix, and the symmetric and positive definite preconditioning
matrix is given by M QQ. The algorithm for the solution of u directly is described
in Chandra (1978) and is given below where u, r, ? and p are vectors and (x, y) denotes
the inner product x T"y.

ALGORITHM 1. Preconditioned conjugate gradient algorithm.
(1) Choose u,
(2) r f Ku,
(3) M=r,
(4) pO= o,
(5) For k 0, 1,..., kma

(1) c (’, r’)/(p ’, Kp’),
(2) uk+t= uk+ap,
(3) If [[u+’- ug[[o< e then stop, otherwise continue,
(4) r+ r- aKp,
(5) M+= r+

(6) /3 (?+’, r’+’)/(’, r),
(7) p+t +t +/3pk.

The standard conjugate gradient algorithm results by choosing M =/.

In the next section preconditioners that are based on taking rn steps of an iterative
method are described, conditions for their applicability to and effectiveness for sym-
metric and positive definite systems are given, and their relationship to the precondition-
ers of Dubois, Greenbaum, Rodrique (1979) and Johnson, Micchelli and Paul (1982)

* Received by the editors April 19, 1983, and in revised form October 11, 1983. The research reported
in this paper was supported in part by the National Aeronautics and Space Administration under contract
NAS1-46 while the author was at the University of Virginia, Charlottesville, and in part by the National
Aeronautics and Space Administration under contracts NASl-15810, NASI-17070 and NASI-17130 while
the author was in residence at ICASE, NASA Langley Research Center, Hampton, VA 23665.

? Institute for Computer Applications in Science and Engineering, NASA Langley Research Center,
Hampton, Virginia 23665.

452

PRECONDITIONED CONJUGATE GRADIENT METHODS 453

is discussed. In 3, the implementation of the m-step SSOR preconditioner on parallel
machines is discussed and results of this preconditioner on the CYBER 203/205 and
the Finite Element Machine are included.

2. m-step preconditioners.
2.1. Choosing M. Algorithm ofthe last section requires a symmetric and positive

definite preconditioning matrix M to be specified or computed. The question arises
as how to choose M so that the condition number of K,

(j) maxi Ai
mini hi’

where , are the eigenvalues of M-K, is as small as possible since the error in the
jth conjugate gradient step (see Concus, Golub, O’Leary (1976)), is bounded by

[[t--(J[[A<2(aa--1)J(2.1)
Ila- a()llA /1

where a (K(/)) /2 and Ilvlla (vmv) ’/=,
The best choice for M in the sense of minimizing K(/) is M K but this gains

nothing since K[= r is just as difficult to solve as Ku f. One approach that has been
taken in the literature is to choose M to be an incomplete Cholesky factorization of
K (Manteuffel (1979)). Another approach is to choose M to be a symmetric and
positive definite splitting of K that describes a linear stationary iterative method (refer
to Concus, Golub, O’Leary (1976) and the references therein).

The question of interest here is whether it would be beneficial to take more than
one step of a linear stationary iterative method to produce a preconditioner M that
more closely approximates K. We begin by deriving an expression for M. Let K P- Q
be a splitting of K that is associated with the linear stationary iterative method with
iteration matrix G P- Q. Then the m-step iterative method applied to K[= r is

(2.2) P(I+G+. .+Gm-)-(m)=[P(I+G+ "+G"-)-l-(p-o)]$(+r.

By choosing $(o =0, (2.2) yields

(2.3) M=P(I+G+. .+G"-)-.
Rutishauser (1959) describes how to implement an inner-outer iterative method where
the outer method is the conjugate gradient method.

Before we establish the necessary and sufficient conditions for M to be symmetric
and positive definite, we prove the following lemma.

LEMMA 1. IfA BC is symmetric, B is symmetric positive definite and C has positive
eigenvalues, then A is positive definite.

Proof. Multiplying A by B-1/ on the left and right, we find

(2.4) B-1/2AB-/2 B/CB-/2.

The matrix on the right of (2.4) is similar to C and hence has the same eigenvalues,
while the matrix on the left is congruent to A and hence has the same number of
positive eigenvalues; see Gantmacher (1959). Thus A has the same number of positive
eigenvalues as C and so is positive definite.

The necessary and sufficient conditions for M to be positive definite are given in
Theorem 1.

454 LOYCE ADAMS

THEOREM 1. Let K P- Q be a symmetric positive definite matrix and let P be a
symmetric nonsingular matrix. Then

(1) The matrix M of (2.3) is symmetric.
(2) For m odd, M is positive definite if and only if P is positive definite.
(3) For m even, M is positive definite if and only ifP+ Q is positive definite.
Proof. To prove symmetry, we write M-1 as

M-’ P-’ + P-’ QP-’ + P-’ QP-’ QP-’ +... +P-’ QP-’ Q. P-’ Q,P-’.
terms

Now since P and K and hence Q are symmetric, each term in (2.5) is symmetric.
Thus M is symmetric.

The matrix G P-Q can be expressed as G K-/2(I- K1/Ep-1K/2)K 1/2. Since
p-I is symmetric the eigenvalues of the congruence transformation K/Ep-IK /2 are
real. Hence, the eigenvalues of G are real.

To prove (2), let m be odd. If g is any eigenvalue of G other than l, the
corresponding eigenvalue of

R=(I+G+. -+Gm-)

l+g+...+g--
_gm

which is positive since m is odd. If g 1, the corresponding eigenvalue of R is equal
to m and is also positive. Now, since P- MR and M is symmetric and R has positive
eigenvalues, it follows from Lemma that if P is positive definite then M must also
be positive definite. Conversely, M can be written as M PR-1. Since R -l has positive
eigenvalues and P is symmetric, we conclude from Lemma that if M is positive
definite then P is also positive definite.

Next, to prove (3) let m be even. It is sufficient to consider M-1 since any
conclusions about the definiteness of M- will apply to M. Since m is even, M-l from
(2.5) can be written as

M- p-l(p + PG+ PG2 + PG +" + pGm-I)P-1,
or

M-l-= P-’[(P + PG)+(P+ PG)GZ+(P+ PG)G’+ .+(P+ PG)Gm-Z]P-l.

Now, since PG Q, M-I can be written as

(2.6) M-I P-’(P + Q)(I + G + G4 +... + G"-Z)P-1.

Since P is nonsingular and symmetric, M- is positive definite if and only if the
symmetric matrix

(2.7) S= (P + Q)(I + G + O’+ + G’’-z)
is positive definite.

Assume P+ Q is positive definite. Since S is symmetric and the matrix (I +
Ga+ + G"-z)-l has positive eigenvalues, S is positive definite by Lemma 1. Con-
versely, if S is positive definite, since P+ Q is symmetric and the series I + Oz+ G4+

+ G"-- has positive eigenvalues, P + Q is positive definite by Lemma 1.
Dubois, Greenbaum, and Rodrique (1979) considered a truncated Neumann series

for K -l as a preconditioner. Their preconditioner is equivalent to that of (2.3) if

PRECONDITIONED CONJUGATE GRADIENT METHODS 455

K P-Q corresponds to a Jacobi splitting where P=diag (K), but they do not
consider more complicated splittings that result from other iterative methods. Theorem
extends their main result. Under the hypothesis that K and P are both symmetric

and positive definite matrices and p(G)< 1, they prove that M is symmetric and
positive definite for all m. For odd m the condition that p(G)< is not needed. The
relationship between the condition p(G)< and the positive definiteness of P,+ Q is
given in Theorem 2.

THEOREM 2. Let K P-Q be a symmetric positive definite matrix and let P be
symmetric and nonsingular. Then p(P-IQ) < if and only if P + Q is positive definite.

Proof. First, assume P+ Q is positive definite. Since K is symmetric positive
definite and P is nonsingular, K P-Q is a p-regular splitting. Hence, from Ortega’s
p-regular splitting theorem, Ortega (1972), p(P-t Q) < 1.

Now, assume that/9(G) < 1. Then (I G)-1 exists and since G has real eigenvalues,
it easily follows that the matrix H defined by

(2.8) H=(I-G)-’(I+G)

has real eigenvalues. But we know from Young (1971, p. 82) that H is N-stable. Hence
H has positive eigenvalues. Now, we can write H as

(2.9) H=K-’(P+Q),

or equivalently,

(2.10) K=(P+Q)H-’.

Finally, since K is symmetric and positive definite and H- has positive eigen-
values and P+ Q is symmetric, we conclude from Lemma that P+ Q is positive
definite.

We note that the Jacobi convergence theorem given in Young (1971) is a special
case of Theorem 2.

Theorem and Theorem 2 are helpful in choosing a splitting of K that will
produce an m-step preconditioner that is symmetric and positive definite. For example,
if the Jacobi splitting of K (P D and Q D-K where D is the diagonal of K)
were considered, part (3) of Theorem says that if m is even, P + Q must be positive
definite, and by Theorem 2 this is only true when the Jacobi method is convergent.
However, for problems of interest to us, the Jacobi method is not guaranteed to be
convergent since we only know that K will be symmetric and positive definite; therefore,
for these problems, only odd values of m will yield m-step Jacobi preconditioning
matrices that are guaranteed to be positive definite.

2.2. Analysis of the condition number. In the last section, we gave conditions for
M to be symmetric and positive definite and hence to be considered as a preconditioner
for the conjugate gradient method. In this section we determine if increasing rn will,
in fact, produce a better conditioned system. For this purpose, we now denote by M,,
the matrix of (2.3).

As a first step towards answering this question, we derive an expression for K (K,).
Recall from (1.2) that/ is similar to M,K so that K(/,) is the same as the ratio
of the largest to smallest eigenvalue ofM,K. An expression for M K as a polynomial
in G is

(2.11) M’K (I + O+. + Gm-’)P-’(P Q),

456 LOYCE ADAMS

or

M,K I Ca",

where G= P-Q.
We wish to compare K(/") to /((/"+1), when both M" and M"+I are symmetric

and positive definite. By Theorem 1, this implies that P and P + Q are positive definite
and thus by Theorem 2, p(G)< 1. Under the hypothesis of Theorem the eigenvalues
ai of G are real, and can be ordered as

-1 <AIA2. A < 1.

Furthermor,e, let 6 be the eigenvalue with the smallest absolute value. Then the condition
number of K" is

(2.12) : (K")

odd,

_>-Ial, rn even,

lallla.I, m even.

If a <0 and]a,lla.I, it is impossible to decide whether K(K"+I) n(K") without
knowledge of the values of a, a, and 8. The conditions for the remaining two cases
are stated below:

If a -> 0,

(2.13a) K(Km) is a nonincreasing function for all m.

If a. => [a 1[and /1 < 0,

(a) for rn odd, n(/"+,) -< (/m),
(2.13b)

(b) for m even, K (K"+) <- (K") if and only if
(1 / IA,I"+I)(1- a m)--< (1- a")(1-/, rim+l).

As an application of (2.13a) consider the SSOR splitting of a symmetric and
positive definite matrix. Recall from the basic convergence theorem for SSOR that if
K is a symmetric matrix with positive diagonal elements, the SSOR method converges
if and only if K is positive definite and 0 < to < 2. Therefore, p(G) < for this splitting
and from Young 1971 we know that all the eigenvalues of G are real and nonnegative.
Since P is symmetric, it follows from Theorems and 2 that Mm is symmetric and
positive definite and from (2.13a) it follows that (K") is a nonincreasing function of m.

Results of the m-step SSOR preconditioned conjugate gradient method on a
1536 x 1536 symmetric and positive definite matrix derived from a finite element
discretization (triangles with linear basis functions) of a plate in plane stress are given
in Table and the results on a 768 x768 matrix derived from the 5-star discretization
of Laplace’s equation are given in Table 2. For these problems, results are given for
both the natural rowwise ordering and the multi-color ordering (see Adams and Ortega
(1982)) of the grid. The convergence criterion was Ilu/l -ulloo < , where e 10-6 for
both problems. The conjugate gradient results with no preconditioning are indicated
by m=0.

The results in Tables and 2 show that the number of iterations is a decreasing
function of rn as was predicted by (2.13a). The results also indicate that there will be

PRECONDITIONED CONJUGATE GRADIENT METHODS 457

TABLE
m-step SSOR PCG for 1536 1536 plane stress problem.

RBG Natural
iterations (co= 1) # iterations (co= 1) # iterations (co 1.6)

363
139
99
82
71

363 363
111 93
80 66
65 54
57 47

TABLE 2
m-step SSOR PCG for 768768 Laplace’s equation.

RB Natural
iterations (w # iterations (co 1) # iterations (w 1.8)

56
30
22
18
16

56 56
28 17
21 13
17 10
15 9

an optimal value of m, say mopt; since for rn > mopt, the reduction in the number of
CG iterations is not enough to balance the increase in the time required for the iterations
of the SSOR preconditioner. The actual relative cost of the CG and SSOR iterations
on a computer will be a function of the amount of arithmetic and communication
operations in each algorithm as well as the times to perform these operations on the
machine. Therefore, the optimal value of rn will depend on the architecture of the
machine and the problem size as indicated by the results in 3.

As an example of an application of (2.13b) we consider the Jacobi splitting of
any symmetric and positive definite matrix K that has Property A (see Young (1971)).
For this splitting, P D where D is the diagonal of K and therefore P is symmetric
and positive definite. Now, since K has Property A, the eigenvalues Ai of G occur in

+Ai pairs and An =IAII and 6 =0. From (2.13b) we conclude that going from m (even)
to m + (odd) is advantageous if and only if

(2.14) (1 + A nm+l)(1 Anm) < (1 A nm+l),

or equivalently,

A’+ 2An + > 0.

As m increases.the inequality in (2.14) reduces asymptotically to

(2.15) An<-.2

For rn 2 and rn 3, the exact conditions are An <.62 and An <.53 respectively, but
for problems of interest to us, An will be closer to and we can conclude that it is not
advantageous to increase rn from rn (even) to m + (odd). This fact has been verified
by numerical experiments for the m-step Jacobi preconditioner on an 89 89 symmetric
and positive definite system that had Property A. The results are given in Table 3.
Note from Table 3 that increasing rn from even to odd increases the number of

458 LOYCE ADAMS

TABLE 3
m-step Jacobi results 89 x 89.

m # iterations

45
45
23
36
21
30
18
26
16

iterations. On the other hand, observe that increasing m from an odd to a consecutive
even number always reduces the number of iterations. Dubois, Greenbaum, Rodrique
(1979) reported similar results for Poisson’s equation. Their results may also be
explained by (2.13b). Also note from Table 3 that the number ofiterations is a decreasing
function of m if we restrict m to be even. In fact this can easily be shown to be true
for all three cases in (2.12).

So far we have only addressed the question of whether a better conditioned system
results by increasing m. We now turn to the question of how much improvement over
m can be made by taking m > steps of the preconditioner. Dubois, Greenbaum
and Rodrique (1979) proved that the m-step PCG method can at most reduce the
number of iterations needed by the 1-step PCG method by a factor of m. In practice,
this theoretical bound may not be reached and for a given distribution of eigenvalues
it may be sharper for some values of m than for others. The results of Dubois et al.
(1979) show this for the m-step Jacobi PCG for Laplace’s equation. Tables and 2
show for the m-step SSOR PCG method applied to both the plane stress problem and
Laplace’s equation that the bound is best for m 2. Table 3 shows that for the m-step
Jacobi PCG applied to a problem with Property A that the bound is extremely sharp
for m 2 and extremely poor for odd values of m.

The above results show that the m-step PCG method is not very effective as m
increases. However, by parametrizing the preconditioner by using the techniques of
Johnson, Micchelli, and Paul (1982), the method is more effective. They have suggested
symmetrically scaling the matrix K to have unit diagonal and then taking m terms
of a parametrized Neumann series for K-1= (I-G)-t as the value for M-. This
corresponds to a symmetric preconditioning matrix that is a polynominal of degree
m-linG,

(2.16) M=aoI+aG+a2G2+ "+Olm-i Gm-I
derived from the Jacobi splitting,

(2.17) K=I-G

of K. Also the values of a are chosen so that M, is positive definite and the eigenvalues
of M2K are close to those of L This same idea applied to the splitting

(2.18) K=P-Q,

with G P-Q yields

(2.19) M, (aoI + alG+ a2G2 +" + am_Gm-l)P-1

PRECONDITIONED CONJUGATE GRADIENT METHODS 459

as the inverse of the parametrized preconditioner corresponding to (2.3). The appropri-
ate values of the ai, =0, 1,..., m-1 for the SSOR splitting are given in Adams
(1983). In the next section we discuss the efficient implementation of the m-step SSOR
preconditioner and the choice for the relaxation parameter to for the SSOR method
if the grid points are ordered by a multi-color ordering.

3. Implementation and results.
3.1. Implementation considerations. In order to implement efficiently the m-step

SSOR preconditioner on vector computers, the equations at the grid points of the
problem domain must be colored, see Adams and Ortega (1982), so that any two
equations at points on the same grid point stencil are different colors. The equations
are then ordered by colors with the equations of the same color being ordered left to
right, top to bottom (for a rectangular grid). In particular, if three colors are used, the
system K r has the decoupled form,

(3.1) B D22 B23 /2 r2

B3 B2 D33 /r3 r3

where D,, i= to 3 are diagonal matrices. The vector length will be the number of
equations of each color.

For parallel arrays, the grid points (not equations) are colored for the purpose of
assigning an equal number of points of each color to the processors. Once this is done,
the equations at a given grid point are considered different colors so that the matrix
K has the form given in (3.1).

The m-step SSOR iteration is implemented as a forward followed by a backward
multi-color SOR iteration (Adams and Ortega (1982)) but care is taken to save results
from the forward pass in an auxiliary vector to be used in the reverse pass so that the
cost of one SSOR iteration is no more expensive than the cost of one SOR iteration
(Conrad and Wallach (1979)). Specific details on this implementation (in conjunction
with Algorithm 1) for the CYBER 203 and the Finite Element Machine can be found
in Adams (1983).

In addition to the computational work saved by using the auxiliary vector, the
multi-color ordering permits even more savings. To explain this, we begin by writing
a 3-color SOR iteration matrix, ,, in the following factored form:

(3.2) ,,, G,,,B,,,R,o,

where R,, B,o and G,o are the matrix operators for the Red, Black and Green equations
respectively. Nicolaides (1974) discussed the factorization of an n n SOR iteration
matrix ,o into n operator matrices, one for each equation, and then showed how
these factors combine for matrices with Property A into two factors, B,,R,,,,
corresponding to the red and black equations respectively. Young (1971) also gives
the factorization of ,o for these 2-colored matrices. Equation (3.2) is a straightforward
continuation of these ideas. To be precise, if the matrix K is given by

(3.3) K
11 -X12 -XI31

1

with no loss in generality by assuming D I on the diagonal, the R,,, B,o and G,

460 LOYCE ADAMS

matrices in (3.2) are

Ro 0 I, Bo toX2 (1-to)Iu toXu3
0 0 I:d 0 0 h

and

(3.4) Go, 0 I 0

.OXl .0X3 (1 -to)I

respectively.
Similarly, the backward multi-color SOR iteration matrix may be written in the

factored form

(3.5) all, R,,B,,Go.,

where R,o, B,o, G,o are the same as those of (3.2). Now, the multi-color SSOR iteration
matrix may be written as

(3.6) R,oBo.,G,oG,,,B,,,R,,.

A trivial calculation shows that G,oG G,o2-,o and R,oR,, Ro2-,o. Hence,

(3.7) 00, R,,B,,G,,(2_,,)B,oR,o.

From (3.7), we see that the green equations only need to be calculated on the forward
pass with relaxation factor to’= to(2-to). Likewise, the R,o operators combine from
the backward pass and the next forward pass so that the red equations should be
updated on the first forward pass with relaxation factor to and on the last backward
pass with relaxation factor to. For the intermediate forward passes, the red equations
should be updated with to’ o3(2 to). The black equations, however, must be updated
on both the forward and backward passes with relaxation parameter to but part of this
calculation can be saved by the use of the auxiliary vector mentioned earlier. By
organizing the computation in this fashion, with c colors, 2re(c-1)+ rather than
2mc operation matrices need to be applied. Also, this computational organization is
not affected by the introduction of ai, 1, 2, , m since the parameter ai multiplies
only the right-hand side vector r on step m + of the preconditioner.

We now briefly discuss the choice for to. From Young’s (1971) theory of matrices
with Property A (2-colored) we know that the optimal to for SSOR is to 1. In fact,
Young’s proof shows that

(3.8) ., R,oBo,B,oRo,

and

(3.9)

and, for matrices with Property A, 0,(2-) has the smallest spectral radius whenever
to 1. In particular, .91---. Now, for multi-color matrices, 8., and 0,(2-) do not
necessarily have the same eigenvalues, since from (3.7) with 3 colors, we see that

(3.10) ._,ce,,., B,,Goo(2-,o)B,,R,.o(2-,,),

and for to 1,

(3.11) Bw.

PRECONDITIONED CONJUGATE GRADIENT METHODS 461

In general, when the number of colors is equal to c and C (k),,, denotes the matrix
associated with color k,

(3.12) ,..o(2_w)Co C I,---o ,..o(2-w),

and for to 1,

(3.13) ,.91 C2)C3)’’’ CC-1),91.

(In the above equations, X---Y means that X and Y have the same eigenvalues.)
Assume that (3.12) represents an equal number of equations of each color and let
to > so that to(2- to) < 1. For two colors, (3.9) shows that all equations are underre-
laxed. For three colors, (3.10) shows that we can regard only the black equations as
being overrelaxed (once on the forward and once on the reverse pass). In general,
(3.12) shows that the equations of c-2 colors can be regarded as overrelaxed and the
equations of 2 colors as underrelaxed. When the number of colors equals the number
of equations, all but two equations can be regarded as being overrelaxed. Although
not a proof, this observation suggests that overrelaxation becomes more worthwhile
as the number of colors increases and choosing to when a small number of colors
is used is a good choice. This was the case for the results in Table 1, where for the
R/BIG ordering of nodes (really six colors--two unknowns per node) to was
optimal for m-step SSOR PCG. Results in Adams (1982) show that to was also
optimal for the SSOR method (used alone) for this same problem.

3.2. Results on parallel computers. We now give results of the m-step SSOR PCG
method for a square plate in plane stress on both the CYBER 203 and the Finite
Element Machine. These results were discussed in detail in Adams (1983) and are only
included here to show that the method is effective on these machines. Table 4 gives
the number of iterations, I, and the time, T, in seconds to solve this problem using
m=O, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. The parametrized preconditioner results are
denoted by P, the number of rows in the plate by a, and the maximum vector length
by v.

We now give the Finite Element Machine results. The same problem with 6 rows
and 6 columns of nodes (60 equations) was solved on a 1, 2, and then on a 5-processor
Finite Element Machine using the m-step SSOR PCG method (as more processors
become available on this machine the solution of larger problems will be possible).
Each processor was assigned equations at an equal number of R, B and G nodes.
Therefore, in the absence of communication time and any differences in processor
speeds, a speedup of 2 (5) over the one processor case should be realized whenever
2 (5) processors are used respectively. The number of iterations, I, and the time, T, in
seconds as well as the respective speedups are given in Table 5.

4. Summary and conclusions. Preconditioners for a symmetric and positive definite
system of linear equations based on taking m steps of an iterative method that is
derived from a symmetric splitting of the coefficient matrix have been described.
Necessary and sufficient conditions were given for these preconditioners to be sym-
metric and positive definite for m both odd and even in Theorem 1, and the relationship
between a splitting and its associated iteration matrix was given in Theorem 2.

The m-step SSOR preconditioner was shown to lead to a system whose condition
number was a nonincreasing function of m; however, for small problems, the actual
decrease in the number of iterations is not enough to balance the extra work involved
in the preconditioner as shown in Tables 4 and 5. By parametrizing this preconditioner,
the number of iterations is reduced enough so that larger values of m should be used

462 LOYCE ADAMS

for smaller problems as well. The optimal number of steps of the preconditioner is
seen from Tables 4 and 5 to be a function of the architecture as well as the problem.
The more expensive the inner products of the outer CG iteration become, the more
likely rn should be increased.

TABLE 4
CYBER 203 iterations and timings, m-step SSOR PCG.

v =22 v =41 v= 132
a=8 a= 11 a=20

m I T I T I T I

v 561 v 1282 v 2134
a =41 a =62 a =80

T I T I T

0

2
2P
3
3P
4P
5P
6P
7P
8P
9P
10P

112 .133
52 .129
38 .143
31 .116
31 .155
24 .121
22 .138
19 .143
18 .159

157 .213
66 .184
50 .208
40 .167
39 .216
30 .167
24 .166
20 .167
18 .175

271
111
79
61
65
46
35
29
25
26
21

.565

.454

.478

.369

.520

.369

.350

.347

.348

.413

.375

536 3.293
214 2.373
152 2.428
118 1.885
124 2.585
88 1.836
67 1.726
56 1.716
47 1.670
43 1.739
36 1.634
33 1.660
31 1.709

788 11.845
311 7.832
221 7.773
172 6.052
181 8.174
129 5.828
99 5.471
82 5.345
70 5.263
64 5.451
54 5.139
48 5.056
44 5.070

929 22.780
395 17.194
280 17.380
218 13.534
229 18.469
163 13.151
124 12.306
104 12.260
88 12.011
80 12.410
69 11.985
61 11.731
55 11.594

TABLE 5
FEM iterations, timings, speedups, m-step SSOR PCG.

p-1
m I T

p=2
I T Speedup I

p=5
T Speedup

0

2
2P
3
3P
4
4P
5P
6P

48 63.35
19 47.90
13 48.75
11 41.95
11 54.95
8 41.25
10 62.40
6 39.80
5 40.60
5 47.05

49 33.70 1.92
19 25.85 1.85
13 26.65 1.83
11 22.95 1.83
11 30.15 1.82
8 22.75 1.81
10 34.30 1.82
6 22.00 1.81
5 22.50 1.80
5 26.20 1.80

48 17.70 3.58
19 14.85 3.23
13 15.50 3.15
11 13.30 3.15
11 17.65 3.11
8 13.25 3.11
10 20.20 3.09
6 12.90 3.09
5 13.25 3.06

We noted that although a theoretical optimal value of to, the relaxation parameter
for the SSOR method, can not be found, the choice to (when the nodes are ordered
by the multi-color ordering) was optimal for our plane stress test problem (6 colors).
It is well known that to is optimal for SSOR for matrices that have Young’s Property
A (Red/Black), but in general this theory does not extend beyond two colors. However,
we conjectured that if the number of colors is small, choosing to is a good choice.

A problem still remains in applying the method to irregular regions since the grid
must be colored and for array machines must also be distributed to the processors in
light of this coloring.

Acknowledgments. The author would like to thank Professor James M. Ortega for
his useful discussions and suggestions concerning this manuscript. The author also
acknowledges useful suggestions by the referees.

PRECONDITIONED CONJUGATE GRADIENT METHODS 463

REFERENCES

[1] L. ADAMS AND J. ORTEGA, A multi-color SOR method for parallel computation, Proc. 1982 IEEE
Conference on Parallel Processing, Bellaire, MI, August 1982, pp. 53-58.

[2] L. ADAMS, Iterative algorithms for large sparse linear systems on parallel computers, Ph.D. thesis, Dept.
Applied Mathematics and Computer Science, Univ. Virginia, January 1983; NASA Contractor
Report 166027, NASA Langley Research Center, Langley, VA 1982.

[3] ., An m-step preconditioned conjugate gradient method for parallel computation, Proc. 1983 IEEE
Conference on Parallel Processing, Bellaire, MI, August 1983, pp. 36-43.

[4] R. CHANDRA, Conjugate gradient methods for partial differential equations, Ph.D. thesis, Research
Report # 129, Dept. Computer Science, Yale Univ., New Haven, CT, 1978.

[5] P. CONCUS, G. GbLua AND D. O’LEARY, A generalized conjugate gradient method for the numerical
solution of elliptic partial differential equations in Sparse Matrix Computations, J. Bunch and D.
Rose, eds., Academic Press, New York, pp. 309-332.

[6] V. CONRAD AND Y. WALLACH, Alternating methods for sets of linear equations, Numer. Math., 32
(1979), pp. 105-108.

[7] P. DuaoIs, A. GREENBAUM AND G. RODRIQUE, Approximating the inverse of a matrix for use in
iterative algorithms on vector processors, Computing, 22 (1979), pp. 257-268.

[8] F. GANTMACHER, The Theory of Matrices, Vol. l, Chelsea, New York, 1959.
[9] O. JOHNSON, C. MICCHELLI AND G. PAUL, Polynomial preconditioners for conjugate gradient calcula-

tions, IBM Research Report #40444#, IBM Thomas J. Watson Research Center, Yorktown Heights,
NY, 1982.

10] T. MANTEUFFEL, An incompletefactorization techniquefor positive definite linear systems, Math. Comp.,
34 (1979), pp. 473-479.

11] R. NICOLAIDES, On a geometrical aspect of SOR and the theory ofconsistent orderingfor positive definite
matrices, Numer. Math., 27 (1974), pp. 99-104.

[12] J. ORTEGA, Numerical Analysis: A Second Course, Academic Press, New York, 1972.
[13] H. RUTISHAUSER, Theory of gradient methods, in Refined Iterative Methods for Computation of the

Solution and Eigenvalues of Self-Adjoint Boundary Value Problems, T. Engeli, H. Ginsburg, H.
Rutishauser and E. Stiefel, Mitteilungen aus dem Institut tiir angewandte Mathematik, No. 8,
Birkh/iuser-Verlag, Berlin, Chapter II, pp. 24-45.

14] D. YOUNG, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.

SIAM J. Sci. STAT. COMPUT.
Vol. 6, No. 2, April 1985

1985 Society for Industrial and Applied Mathematics
015

THE VECTOR HARMONIC ANALYSIS OF LAPLACE’S TIDAL EQUATIONS*

PAUL N. SWARZTRAUBER" AND AKIRA KASAHARA"

Abstract. A modal analysis is presented of the linearized shallow-water equations on the sphere called
Laplace’s tidal equations, using the spherical vector harmonics. The present approach is more compact and
conceptually simpler than past analyses in which the order of the differential equation was raised. The
modes, called Hough harmonics, are expressed as a series in the spherical vector harmonics whose coefficients
are then computed as the eigenvectors of an infinite, banded, symmetric, linear system of equations. The
frequencies of the modes are determined as the eigenvalues of the banded system. New zonal rotational
modes for zonal wavenumber m =0 are obtained as the limit of Hough vector harmonics as m tends to
zero. Although the zonal rotational modes are not unique, this new set of functions shares many properties
with the nonzonal rotational modes, including orthogonality of characteristic functions. Some limiting cases
of the Hough harmonics are also discussed, including the Haurwitz modes, which are determined as the
limit of solutions to the untransformed shallow-water equations as the equivalent height tends to infinity.
Finally, a description of the software for computing the Hough harmonics as well as the Haurwitz modes
is presented. This software package is available from the National Center for Atmospheric Research and
consists of four user-entry FORTRAN subroutines. Subroutine SIGMA computes the frequencies of the
normal modes. Subroutine ABCOEF computes the coefficients in the expansion of the normal modes in
terms of the spherical vector harmonics. Subroutine UVH tabulates the components of the meridional
structure of the Hough vector functions and subroutine UVHDER tabulates certain derivatives of the
components.

Key words, spherical vector harmonics, Hough functions, Laplace tidal equations, shallow water
equations

1. Introduction. The motions of a thin layer of incompressible, homogeneous, and
hydrostatic fluid over a rotating sphere are described by the shallow-water equations,
which are of fundamental importance to meteorology and oceanography [21]. The
linearized version of the inviscid shallow-water equations with respect to the resting
basic state are called Laplace’s tidal equations. (See references in [15].) Eigensolutions
of Laplace’s tidal equations have been used to solve atmospheric tidal problems [1].

More recently, eigensolutions of free oscillations described by Laplace’s tidal
equations, referred to as the normal modes, have been applied in the analysis of global
meteorological data [7] and in the prediction of global atmospheric motion [13]. The
representation of meteorological data in terms of the normal modes is used to identify
the characteristics of the wave motions which evolve from the global initial data. This
property of normal mode expansion has been used extensively to initialize the input
data for global numerical weather prediction models. (See references in [3].)

Various aspects of the eigensolutions of Laplace’s tidal equations, including the
methods of solution, their asymptotic characters, and tables of their eigenvalues and
eigenfunctions, are discussed in [17], 10], [6], 16], 12] and [4]. Because Hough 10]
was the first to solve the normal mode problem by means of spherical harmonics, .the
eigensolutions of Laplace’s tidal equations are now referred to as Houghfunctions [24].

One of the main purposes of this article is to describe the software that has been
developed at the National Center for Atmospheric Research to calculate the Hough
functions. In 2, we describe Laplace’s tidal equations and derive their form in
dimensionless variables. Solutions of Laplace’s tidal equations are presented in the
case of positive fluid depth, and the orthogonality of normal modes with distinct
frequencies is discussed.

* Received by the editors August 9, 1983, and in final revised form February 13, 1984.
t National Center for Atmospheric Research, Boulder, Colorado 80307. The center is sponsored by the

National Science Foundation.

464

VECTOR HARMONIC ANALYSIS OF LAPLACE’S TIDAL EQUATIONS 465

In 3, we describe the method of solving Laplace’s tidal equations used in the
software. Earlier, Kasahara [12] presented a method which is similar to, but different
from that discussed by Longuet-Higgins [16]. We show that this earlier approach can
be rewritten compactly using spherical vector harmonics [19]. The use of spherical
vector harmonics in global meteorology and aeronomy was suggested by Moses [20].
A similar approach was also used by Jones Ill] to develop a general theory of
atmospheric oscillations. We express the normal modes as a series expansion in terms
of the spherical vector harmonics. By substituting the series into Laplace’s tidal
equations, we obtain an infinite, symmetric, homogeneous, pentadiagonal linear system
of equations. The development of these equations is simplified by using the identities
given by Swarztrauber [28], which enable one to represent the Coriolis term as a linear
combination of the spherical vector harmonics. The frequencies are computed as the
eigenvalues of the matrix, and the coefficients in the expansion series are computed
as the eigenvectors. The orthogonality of the modes corresponding to distinct frequen-
cies follows from the symmetric property of the pentadiagonal matrix.

The zonal modes are treated separately in 4, since their frequencies are not all
distinct. All the rotational modes in this case are steady with zero frequencies and,
therefore, are not necessarily orthogonal. Earlier Kasahara [14] formulated a method
of solution for the zonal mode problem which requires the orthogonalization of the
geostrophic modes. In this article, however, we propose a different method after an

approach suggested by Shigehisa [23]. These new zonal modes are computed as a limit
set. This approach is attractive from the point of view that these zonal modes exhibit
the same fundamental characteristics that are displayed by the nonzonal modes. This
method for computing the zonal modes is similar to that for the nonzonal modes,
except that the coefficients in the expansion of the gravity and rotational modes are

computed from two distinct symmetric tridiagonal systems of equations.
Certain limiting cases are presented in 5, including the case of the nonrotating

sphere and the calculation of the Haurwitz modes [9]. A computational program for
the Hough vector functions is presented in 6. The program consists of four subroutines
for computing the frequencies, coefficients, Hough vector functions and related quan-
tities.

2. Laplace’s tidal equations. Small-amplitude motions of an incompressible,
homogeneous, hydrostatic and inviscid fluid with free surface over a rotating sphere
may be described by the following form of the shallow-water equations:

Ou g Oh
2fl sin bv(2.1)

Ot a cos b OA’

Ov g Oh
(2.2) --+ 2fl sin bu

Ot a

--+ + (vcos4,) =0,
Ot acosd?

where A, th and represent, respectively, longitude, latitude and time; u, v the eastward
and northward components of velocity; h the vertical displacement of the free surface
from the mean height of the fluid ho; and [l, a and g denote, respectively, the angular
velocity, radius and the acceleration of gravity of the earth, all assumed to be constant.
Equations (2.1) through (2.3) are often referred to as Laplace’s tidal equations without
the tide-generating terms I15].

466 PAUL N. SWARZTRAUBER AND AKIRA KASAHARA

The system of equations (2.1)-(2.3) appears as that of the horizontal structure
equations when the linearized model of a compressible atmosphere at rest is resolved
into its vertical and horizontal parts using the method of separation of variables. In
this case, the mean free surface height ho is interpreted as the constant of separation
which links the vertical and horizontal operators and is known as the equivalent height
[29].

For cases offorced oscillations, such as a tidal problem with a prescribed frequency,
(2.1)-(2.3) may admit a negative value of ho as an eigenvalue [1]. However, for the
case of free oscillations, we are normally concerned with the solutions for positive
values of ho. Hence, in this article, we restrict ourselves to the case of positive ho.

If we introduce the dimensionless variables

u v h
(2.4) t-x/o’ t-4o’ h =o’ ’= 2f/t,

then (2.1)-(2.3) can be written in the form

(2.5) W0..+LW 0,
Ot

where W denotes the vector dependent variable

(2.6) W= (t, t,/)r.
Here L is the linear differential matrix operator

0 -sin b

(2.7) L

in which

sin b 0

y 0 3’ 0

cos b 0X cos 4 04

cos 4’ Oh

[cos 6(.)] 0

4"0 --1/2)(2.8) 3’ 2fl (= e

is a single dimensionless constant that characterizes the nature of shallow-water flows.
The related quantity, e 2,-2, is called Lamb’s parameter [16].

Since (2.5) is a linear system with respect to ?, the solution W can be expressed
as a linear combination of functions that have the form

(2.9) W(h, b, t’)= H(A, b) exp (-icrt’),

where H(A, b) is the horizontal structure ofthe normal mode and cr is the corresponding
dimensionless frequency scaled by 21. Substituting (2.9) into (2.5), we see that the
problem reduces to finding H(A, b) and cr such that

(2.10) (L-kr)H(h, b) 0.

Because (2.5) is linear with respect to longitude A, the horizontal structure function
H(A, b) can be expressed in the form

(2.11) H(A, b) (R)($) e ’",

VECTOR HARMONIC ANALYSIS OF LAPLACE’S TIDAL EQUATIONS 467

where m denotes the zonal wavenumber and (R)(d) is the meridional modal function
which depends only on latitude d. There are a number of meridional modal functions
corresponding to each zonal wavenumber m. We use index to denote the/th meridional
normal mode. Hence, the horizontal structure of normal mode H(A, 4) and the
associated frequency tr depend on the zonal wavenumber m and meridional index
in addition to Lamb’s parameter e.

In 3 and 4, we present a method of calculating the frequencies tr and their
associated horizontal structure function H(A, th). In the case of m_-> l, two different
kinds of motion with distinct frequencies exist: eastward and westward propagating
gravity-inertia waves (first kind) and westward propagating rotational waves of the
Rossby-Haurwitz type (second kind). (For an example see [16].)

In the case of m- 0, the frequencies of gravity-inertia motion (first-kind) appear
as pairs of positive and negative values with the same magnitudes. Although the
meaning of eastward and westward propagations is lost in the case of m- 0, we shall
use the term eastward (westward) to indicate positive (negative) frequency. On the
other hand, the frequencies of the rotational motion (second-kind) as well as the gravity
frequencies corresponding to the lowest meridional index l-0 are zero [16].

The dimensionless frequency tr is tabulated for zonal wavenumbers m 0, l, 2
and 3, in Tables 5 through 8, respectively, with the exception of certain entries in Table
5. Instead of tabulating zeros for all the rotational frequencies as well as the eastward
gravity frequencies corresponding to the lowest meridional index l- 0, the asymptotic
rate at which the frequencies go to zero is tabulated. The computation of the gravity
frequencies and the asymptotic rates of the rotational frequencies for the case m 0
is quite different from the case m > 0 and is discussed in detail in 4.

All of the tabulated values are obtained from subroutine SIGMA described in 5
and they are in agreement with those computed by Longuet-Higgins [16], except for
the asymptotic rates which do not appear in [16]. The first column indicates the

10

Zonal Wavenumber m--0

b Gravity Mode

o ,=

W

_J

t.

0.1 I0 I00

[--
FIG. 1. Curves of dimensionless frequency Io’1, for gravity waves for zonal wavenumber m O, plotted

against /-.

468 PAUL N. SWARZTRAUBER AND AKIRA KASAHARA

meridional modal index l, in which 1=0 denotes the lowest meridional mode. As
shown later, the meridional modal functions (R)(b) for the eastward and westward
gravity modes are symmetric (antisymmetric) with respect to the equator for even (odd)
meridional index I. On the other hand, for the rotational modes, 19(b) are symmetric
(antisymmetric) for odd (even) I. Figure shows the dimensionless frequencies tr of
the gravity waves for the case of m 0 plotted against x/- on the abscissa. The different
curves correspond to the cases of meridional index through 9.

In Fig. 2(a) the dimensionless frequency tr for the case m eastward propagating
gravity waves is plotted versus x/ on the abscissa. The mode 0 is symmetric and
is referred to as a Kelvin wave. Figure 2(b) shows the same, but for the westward
propagating gravity and rotational waves. The rotational 0 mode behaves like a
rotational mode for small values of e, but behaves more like a gravity mode for large
values of e. For this reason, this particular mode is referred to as a mixed Rossby
gravity wave. The reader is referred to similar diagrams in Longuet-Higgins [16] for
zonal wavenumbers up to m 5.

b

LIJ

LL

_J
z

z

0.01
0.1

EASTWARD PROPAGATION WESTWARD PROPAGATION_,
Zon(:ll W(]venumber l

-(11

[- 5Ir 67
8

()
1 1 rN -001 9I0 I00

0.1 I0 I00

FIG. 2. (a) Curves of dimensionless frequency tr, for eastward propagating gravity waves for zonal

wavenumber m plotted against x/- on the abscissa. (b) Curves of dimensionless frequency tr, for westward

propagating gravity waves and rotational wavesfor zonal wavenumber m plotted against x/e on the abscissa.

We now show that for real y or positive e, L is skew Hermitian. Let u and v be
arbitrary vector functions defined on the surface of the sphere. It can be shown by
direct substitution followed by integration by parts that

(2.12) (u, Lv)= -(Lu, v),

where the innerproduct is defined by

(2.13) (u, v)= (u v cos 4 db dh
.t -r/2

and (u)* is the conjugate transpose of u.

VECTOR HARMONIC ANALYSIS OF LAPLACE’S TIDAL EQUATIONS 469

The significance of (2.12) is that it can be used to determine that all the frequencies
0- of L are real and that any modes corresponding to distinct frequencies are orthogonal
([5], [18], [22] and [12]). Let H and H2 be modes that correspond to frequencies o-1
and 0"2, respectively. In (2.12) set u H, and v H2; then

(2.14) (H, i0"2H2)= -(i0"1H,, H2)

or

(2.15) (0",- 2)(H,, H:) 0,

where the overbar denotes a complex conjugate.
If H, H2, then (H1, H2) is nonzero and therefore 0" 51. Thus, all the frequencies

0" are real. On the other hand, if the frequencies are real and distinct, then 0-- t2 is
nonzero, which implies that (H,, H2)=0, meaning that the modes are orthogonal.

In the case of m > 0, the frequencies are distinct and hence orthogonal. However,
for the case m 0, the frequencies of the rotational modes are all zero and hence the
modes are not necessarily orthogonal. However, in 4 we derive an orthogonal set of
rotational modes for m 0. These modes are also orthogonal to the modes for m > 0
and therefore all of the horizontal structure functions H(A, 4) are orthogonal for m -> 0.
That is:

(Hj)*Hk cos 6 d6 dA ajk,(2.16)
2rr a-rr/2

where the right-hand side is unity if j k and zero otherwise.
In this article, we introduce the subscript a, which takes on the values of 1, 2 and

3 corresponding to the cases of eastward gravity, westward gravity and rotational mode,
respectively. Hence, the normal modes are expressed by using three indices, namely
m, and a in the form

(2.17) HI,L(A, t))l,ma((/) _ima

where we designate HI,(A, th) as the Hough vector harmonics and (R)/,(tb) as the
Hough vector functions which depend on latitude 4). The Hough vector function has
three components" zonal velocity U,, meridional velocity Vl, and height ZI,, and
is expressed by

(2.18) Oi,L(b) iVl,"(cb).
Zl,ma /)

The factor in front of V is introduced to account for a phase shift of r/2.
By substituting (2.17) into (2.16), the orthonormality of the Hough vector functions

is seen:
rr/2 f ,n-/2

(2.19) ((R)’)*(R), cos d? dcb U’U+ VV, + ZZ,) cos q d4 61r,
--rr/2 d-rr/2

where the subscript a is suppressed.

3. The vector harmonic analysis of the shallow-water equations. In this section we
will describe a method for computing the frequencies 0- and corresponding Hough
vector harmonics H(A, 4). The method consists of expanding the eigensolutions of
(2.10) in terms of the spherical vector harmonics. When the expansion is substituted
into the differential equations, an infinite, symmetric and pentadiagonal matrix is

470 PAUL N. SWARZTRAUBER AND AKIRA KASAHARA

obtained. The eigenvalues of this matrix correspond to the frequencies, and the
eigenvectors correspond to the coefficients in the expansion of H(A, b). We begin with
a review of the spherical vector harmonics.

For n -0,... and m --n,..., n, the spherical vector harmonics are given by

|

,/nCn+ I)’ Y"m’2=: im
P x/n(n+ I)’

Y n,3 0 e imx

P
where P are the normalized associated Legendre functions

/2n+ (n- m)!
(cos b)(3.2) P’-E"n! 2 (n+m)’---. dx,+,,(x-l)

Use of the normalized associated Legendre functions induces the normalization
{y, y,,} 2r for j l, 2 and 3. The components of the vectors in (3.1) can be
computed easily from the identities

dP 1[/(n m)(n+m+l)p,,+ /(n+m)(n re+l) ’-P],(3.3)
d4 2

m 22/2n +
(3.4) COSP=/2 Pn-I m m l)_l[/(n+m)(n+m-1) ,.-l+/(n_)(n-

Apart from a scale factor, the vectors (3.1) correspond to the spherical vector
harmonics B,,,, C,,,,, and P,,,, respectively, given in [19]. They form a complete set
under the inner product (2.13) for vector functions defined on the surface of the sphere

We proceed now to list the identities for the spherical vector harmonics that will
be used in the analysis of L. Let Ur= (u, v, h) be an arbitrary vector and define

(3.5) divU [0 0+ (cos
cos

(3.6)

Then it is known that
cos+ +u).

(3.7) div y., -x/n(n + 1) Y", div Y,,,2 O, div Yn,3 0,

and

(3.8) rot =0, rot x/n(Y., Y..2 n + 1) Y, rot Y.,3m 0,

where Y." are the scalar spherical harmonics given by y.m p ei.,. Furthermore,
using the identities in [28], it can be shown that

(3.9) sin by Pn+ y,+ iqy2,P.Y.- ,1 l,ln,l . _.
(3.10) sin by".,2 pro.y,.._ ,2 + P+I"Yn+l,2--m iqm.y,.,,,,

VECTOR HARMONIC ANALYSIS OF LAPLACE’S TIDAL EQUATIONS 471

where

(3.11) p_ /(n-1)(n+ l)(n-m)(n+ m) m_m

nE(2n- 1)(2n+ 1)
q"

n(n+ 1)

Let f be an arbitrary scalar function on the sphere and define

4,
(3.12) Vf

V y,m x/n(n + 1)y,m,,.

Using these identities we can express Ly,,a as a linear combination of the Y,,a for
j 1, 2 and 3. From (2.7) and (3.1),

(3 14) LYn,1

dP’
- in

irn
sin t cos t

P

yx/- ii div y,,,
Using (3.1) and (3.7), we can rewrite (3.14) as

(3.15)

imA

/n(n + 1)"

Ly" /n(n + 1)y3..,1 sin &y,,2- Y

Substituting (3.10) into the first term on the right, we obtain

(3 16) Lym =p, y,,_l,2 + iqm, y,,, 1)y.,3P,,+Y,+,2n,l

Next, from (2.7) and (3.1),

(3.17) Ly"’,2

-sin ,;b
cos b

P" [
/

_. dP__ |

sln2 1 x/n(n+ 1)

or

(3.18)

But from (3.9),

(3.19)

From (2.7) and (3.1),

(3.20)

Ly,,2 =-sin by,,1.

Ly,,,2 pmn Yn_l, -b Pn+lYn+l,1-b iq,, y,,.

Ly,,3 | dP ei’x

k 0

472 PAUL N. SWARZTRAUBER AND AKIRA KASAHARA

or

(3.21) Ly,,3 y.,/n(n + 1)y,,m,,.

Equations (3.21), (3.16) and (3.19) provide the identities that are necessary for the
analysis of the operator L. If we assume the expansion

(3.22) H(A, &) (R)’ e imx =E (iAnynm, + Bmnynm,z-Cmnynm,3),

and substitute (3.22) into (2.10), then

(3.23) -icr 2 (iA. y,,m,, + B’Y.,2 C.my.m.3)+2 (iA.Ly.m,l + B.LY,,.2 C’Ly,,m,3)=0.

Substituting (3.21), (3.16) and (3.19) into (3.23) and equating coefficients of y.ma for
j 1, 2 and 3, respectively, we obtain

(3.24) o-+ q, A, r,C, +p, B + BPn+ln--I n+

(3.25) (cr+q’)B. =p.A._+p.+lA.+,,

(3.26) crC." r.a",

where r. y x/n (n + 1).
This system of equations can be divided into two subsystems. The first subsystem

consists of the equations that are satisfied by the coefficients A.", B."+l and C." for
n rn, rn +2, rn +4,.... For this case, the free surface height and zonal velocity
component are symmetric with respect to the equator and the meridional velocity
component is antisymmetric. We call this case symmetric. Let X be the vector

C, B, ...)r(3.27) X C’, A", Bin+l, m+2, Am+2, rn+3,

and A be the matrix

(3.28) A

-0 rm
rm -q
0 Pm+l

0

0

Pm+l 0

--qmm+l 0 pm+2

0 0 rm+:2

Pro+2 rm+2 --qmm+2
0 prom+3

Then the symmetric case is written as

(3.29) AX crX.

The second subsystem consists of the equations from (3.24) through (3.26) that are
satisfied by the coefficients A".+, B’ and C.+l for n m, rn +2, rn +4,. For this
case, the free surface height and zonal velocity component are antisymmetric with
respect to the equator and the meridional velocity component is symmetric. We call
this case antisyrnmetric. Let Y be the vector

(3.30) y=(B,, Cm+l,A B A.,+3 .)Trn+l m+2 Cm+3

VECTOR HARMONIC ANALYSIS OF LAPLACE’S TIDAL EQUATIONS 473

and B be the matrix

(3.31) B-

-q 0 Pm+l
0 0 r.,+ 0

pmm+l rm+l --qm+l Pro+2 0

0 P+ --qm+2 0

0 0 0

Pro+3 rm+3

rm+3

--qm+3

Then the antisymmetric case is written as

(3.32) BY=crY.

The problem thus reduces to computing the eigenvalues cr and corresponding
eigenvectors of the real symmetric pentadiagonal matrices A and B. We note that the
eigenvalues must be real, which is in agreement with the results that were obtained in
the previous section.

We can restrict our attention to the case m -> 0, for if AT, BT, C7 and cr, comprise
an eigensolution of (3.24)-(3.26), then -A-ran B -ran C-m. and _cram also comprise an
eigensolution of (3.24)-(3.26) with m replaced by -m. This implies that HIS
(_l)mn l, sincey,j =(-1) y,jforj 1,2and3.

Once the coefficients are computed, H(A, b) can be determined from (3.22). In
addition, several related quantities can also be determined. From (3.7), (3.8) and (3.22)

(3.33) div H(h, b) =-E i,/n(n+ 1)AY,
(3.34) rot H(/,

The velocity potential and stream function are defined by V2q div H(h, b) and
V rot H(h, 4). Therefore,

A.(3.35) Y" x/n(n + 1)
v"

B’(3.36) -2 x/n(n +
using the relationship V2Y n(n + 1) y,m.

4. The zonal modes. The case m 0 is unique since the frequencies of the gravity
waves (first kind) appear as pairs of positive and negative values ofthe same magnitudes
and the frequencies of the rotational motions (second kind) are all zero [16]. The
meaning of eastward and westward propagation is lost in this case. The meridional
structure functions of the gravity modes (R) are symmetric (antisymmetric) with respect
to the equator for even (odd) meridional index I. Eastward and westward gravity modes
that correspond to the same meridional index are the complex conjugates of one
another. Also, because the frequencies of the gravity waves are all distinct, the (R) are
orthogonal in the sense of (2.19). However, the frequencies of the rotational modes
are all zero, and therefore not distinct, so that the modes are not necessarily orthogonal.
In this section we will present a computational method for determining an orthogonal
set of rotational modes.

We now proceed to the analysis of the zonal normal modes. The notation can be
simplified by deleting the superscript rn 0. To this end, we define

474 PAUL N. SWARZTRAUBER AND AKIRA KASAHARA

(4.1) A.=A, B.=B, C.=C.,

(4.2) p, =pO / (n- 1)(n+ 1)
and.(- 1)(2n+ 1)

For m 0 the system (3.24) through (3.26) has the form

(4.3) o’A,

(4.4) rB.
(4.5) trC,, r.A..

If o- is a frequency that corresponds to a mode with coefficients A,, B, and Cn,
then from (4.3) through (4.5), -tr is a frequency that corresponds to the mode with
coefficients A,, B, and C,. Hence the nonzero frequencies occur in pairs. We now
show that these frequencies can be determined as the eigenvalues of two symmetric
tridiagonal systems rather than from the pentadiagonal systems (3.29) and (3.32). If
we multiply (4.3) by cr and eliminate o’Bn-1, crCn and trB,+l from the result by using
(4.4) and (4.5), we obtain

2 2 tr2)An +P.+Pn+2An+2 O.(4.6) p,-lP,A,-2 + r, +p +p,+,

The eigenvalues r2 of this system can be computed efficiently from two distinct
tridiagonal systems that are obtained by separating (4.6) into systems with even and
odd subscripts. The frequencies can then be computed as plus and minus the square
root of the eigenvalues. Consider first the symmetric case which corresponds to (4.6)
with n =0, 2, 4,.... Let U be the vector

(4.7)

and C be the matrix

(4.8) C

U=(Ao, A2, A4, ,)T

rZo+P PIP2
PlP2 r+p+p

PaP4

Then the symmetric case is written as

P3P4
r24+p]+p25

PsP6

(4.9) CU o’2U.

PsP6

The antisymmetric case consists of the equations from (4.6) corresponding to n 1,
3, 5,. .. Let V be the vector

(4.10) V=(AI, A3, As, .)T
and D be the matrix

(4.11) D=

r{+p+p
P2P3

P2P3
r+p+p]

P4P5

P4P5
r2s+p2s+p

P6P7

P6P7

VECTOR HARMONIC ANALYSIS OF LAPLACE’S TIDAL EQUATIONS 475

Then the antisymmetric case is written as

(4.12) DV o’2V.

Once the frequencies have been determined as plus and minus the square root of the
eigenvalues of C and D, the coefficients of the mode corresponding to tr can be
determined by first computing the coefficients A, as the eigenvectors of C and D and
then B, and C, from (4.4) and (4.5). As mentioned above, the coefficients corresponding
to -tr are given by -A,, B, and C,.

There are two modes with zero frequency which are classified as gravity modes.
The first is obtained by noting that UT= (1, 0, 0,...) is an eigenvector of C which
corresponds to the eigenvalue tr2= 0. Therefore the first of these modes is identified
by the indices n, c 0, 2 for which Ao- and all other coefficients are zero. Since y,
is identically zero, this mode is also identically zero, which corresponds to solid rotation
with respect to the nonrotating coordinate system. The second mode will be identified
by the indices n, a 0, 1. It will be determined at the end of this section. The remaining
zonal modes are steady with tr 0.

The case m 0 and tr 0 is quite different from the previous cases, since there
are an infinite number of modes that correspond to the same frequency. If r 0, then
from (4.4) and (4.5) it can be seen that A, 0 and hence the flow is strictly rotational.
In addition, from (4.3),

(4.13) r.C. +p.B._ +p.+B.+ =0.

However, this equation alone does not determine a unique mode. For example, if we
let N be any positive integer, then we can determine a sequence of coefficients whose
elements are solutions of (4.13). If we set B, 0 for all n except BN l, then (4.13)
is satisfied if CN_ =-p/r_, C+ =-p+/rN+ and C, =0 for all other n. This
method of solution was adopted in [14]. However, we note that the resulting modes
are not orthogonal and although they could be orthogonalized using the Gram-Schmidt
process, a more satisfactory approach has been suggested by Shigehisa [23].

In this new approach, the modes for m 0 are determined as the limit of modes
for which m >= 0. This seems like a reasonable approach since the limit of an orthogonal
set can also be expected to be orthogonal. However, it is interesting to note that the
limit is taken through noninteger (infinitesimal) values of m for which the normal
modes have not been defined. Nevertheless, the approach does work in the sense that
an orthogonal set is obtained, and although any linear combination of the resulting
modes is also a mode, this particular set exhibits some basic characteristics that are
shared with the m 0 modes.

Near m 0 we assume that the coefficients and tr have the following asymptotic
forms.

Am=A,m+O(m)

Bm=n,+O(m),,
(4.14)

C, =C,+O(m),

o" o’m + O(m2).

Substituting these forms into (3.24) and equating coefficients of m= 1, we obtain
(4.13) as expected. If we then substitute the forms (4.14) into (3.25) and (3.26), we
obtain the following additional equations which will enable us to compute the desired

476 PAUL N. SWARZTRAUBER AND AKIRA KASAHARA

modes

(4.15) (o-a+n(n + 1) B. p.A._ +pn+lAn+l,

(4.16) raC. r.A..
Eliminating A. and C. from (4.13), (4.15) and (4.16) we obtain

(4.17) 72-- B,_2+ + + + B,,+
r,_ \ r,+/ n(n+ 1)o’

Pn+l Pn+2
2
Fn+l

Bn+2 O.

If we define

(4.18)

d. =/n(n-1) P= (n- 1)

r. y/(2n 1)(2n+ 1)

e. =/(n + 1)(n +2) P"+’- (n+2)
r,, y/(2n +)(2n + 3)

then (4.17) takes the form

(4.19) 2 +d2 _]/.+d.+,e.+,/.+2 0.e,,_,d._,,_z+[n(n+ 1) + e._, .+,

From this equation we obtain two independent symmetric tridiagonal equations for
/, and from which the desired modes can be determined. Consider first the symmetric
case which corresponds to (4.19) with n =-1, 1, 3,. .. Let S be the vector

(4.20)

and E be the matrix

d doeo
oeo 2+e+d22 de

(4.21) E= d2e: 12-t- e + d24 d4e4
d4e4

Then the symmetric case is written as

(4.22) ES S.

The antisymmetric case consists of the equations (4.19) that correspond to n 2, 4,
6,. .. Let T be the vector

(4.23) T (/2, /4, 6,""" T

VECTOR HARMONIC ANALYSIS OF LAPLACE’S TIDAL EQUATIONS 477

and F be the matrix

6 + el + d d3e3
d3e 20+ e+d dse5

(4.24) F dse5 42 + e+ d27 d7e7
dTe7

Then the antisymmetric case is written as

(4.25) FT tT.

Once/n and t are determined from the eigenvectors and eigenvalues of either (4.21)
or (4.24), Bn and tr can be computed from (4.18). Finally, Cn can be determined from

(4.26) Cn -dn/n-1- e,,/n+,

which is obtained by substituting (4.18) into (4.13).
It may be of interest to note that the subscripts of B, begin at n -1 as compared

with those of Bn which begin at n =0. The initial subscript on Bn is determined by
the tridiagonal system. For the symmetric case the equations beginning at n are
decoupled from the previous equations since the subdiagonal element d__e_2 is zero.
Similarly, for the antisymmetric case the equations beginning at n 2 are decoupled
from the earlier ones. These results do not contradict earlier results in which B_ did
not appear, since by definition (4.18) B_ 0. However B_ is not zero and is needed
in (4.26) in order to compute Co.

In practice we find that all eigenvalues t are positive except one, which is negative
for the lowest symmetric mode. Since the symmetric cases begin at n 1, it may be
appropriate to designate the lowest symmetric mode to be -1. The other symmetric
modes, which have positive eigenvalues, are referred to as 1, 3 and so on. On the
other hand, it may be appropriate to designate the antisymmetric modes to be 2, 4
and so on. Figure 3 shows the curves of frequencies tra as defined by -1/t in (4.18).
The abscissa is x/-. The values of o-a are all negative except for the mode identified
as 1, which has a positive value of o-. The frequency curves of the 1, 2,...
modes in Fig. 3 are similar in appearance to those of the rotational modes in Fig. 2(b).
On the other hand, the mode corresponding to =-1 is analogous to the eastward
propagating Kelvin mode. For this reason, the =-1 mode is listed in the eastward
gravity mode 0. In Table 5 we show the values of o- for the meridional indices
=-1, 0, 1, 2,... and for various values of e. The values of o- are tabulated under

the heading of rotational except for the index =-1 which is tabulated under the
heading of eastward gravity and 0.

We proceed now to show that these modes are orthogonal beginning with the
symmetric case. Let Bin and B2n be eigenvectors of E corresponding to (1 and t2,
respectively. Also let B ln, B2n, C1, and C2, be the coefficients in the expansion of
the modes H and Ha in terms of the spherical vector harmonics. Then we wish to
show that

(4.27) (H1, H:)= E BlnB2n+ ., ClnC2n=O.
n=l n=0
odd

478 PAUL N. SWARZTRAUBER AND AKIRA KASAHARA

)-

Z
I.t.I
D
O
I.t.I

It_

Ld
_.I
Z
O

Z

-I

-0.1

-0.001
0.I

ll lltl’i " illi Ili.-

Zonal Wavenumber m--0

, \

2."
7

IIIIII
10 100

 oa, o]
FIG. 3. Curves of asymptotic dimensionless frequency tra, which is defined in (4.14) in the case of m->O

and calculated from / t, plotted against /-.

From (4.18) and (4.26)

(4.28) (H,.H2> ?. n(n+l)Bl.B2.+ E [d.B1._,+e.Bl.+l][d.,B2._,+e.,B2.+,].
n=l n=0
odd

The conjugate of d, is used on the right-hand side of (4.28) since do is strictly imaginary.
Expanding the right side of (4.28) and combining terms, we obtain

(H,, H2)= (Id01= _, + doeol ,)_,

(4.29)

or, using (4.19),

(4.30)

+ E {d-._,e._,ffi._2
n-----l
odd

2 2
1 J’/Z,’ n+2

l’+[n(n + 1)+e.,_+d.+l]B1. +d.+le.+

(H,. H2)= t, -B"i_,B’_, + E B1.B2..
odd

If H H2, then from (4.27) and (4.30) it can be observed that t as well as all
eigenvalues of E must be real. Furthermore, E is similar to a real matrix under a

diagonal similarity transform diag (i, l,. , 1). Therefore all components of the eigen-
vectors of E are real with the exception of the first component, which is strictly
imaginary. Hence (4.30) can be written

(4.31) (n, HE)-- 1 E B I,B2,.
n=--l
odd

VECTOR HARMONIC ANALYSIS OF LAPLACE’S TIDAL EQUATIONS 479

Proceeding in a similar manner we can obtain

(4.32) (Hi, H2)=t2 B1.B2.
odd

or

(4.33) (t=-tl) E B1.B2.=0,
odd

which completes the proof that modes corresponding to distinct eigenvalues are
orthogonal. The proof for the antisymmetric case is simpler than the symmetric case
since all of the d. are real and therefore F is a real symmetric matrix with orthogonal
eigenvectors.

5. The limiting case y-o and the Hauitz waves. From (2.8) it can be seen that
if the sphere is not rotating (fl 0) or if the equivalent height is infinite (ho), then
y . Recall from (2.4) that the Hough vector functions define modes in the transfor-
med variables if, ff and h. The purpose of this transform was to reduce the number of
physical parameters in the shallow-water equations to the single dimensionless para-
meter y. For the dependent variables u, v and h the transform is not a function of fl
and is therefore applicable to the limiting case fl 0. However, in order to apply the
transform, the limit of the Hough vector functions must be determined. In the first
pa of this section we will determine the limit of the Hough vector functions as y
tends to infinity.

The case in which ho tends to infinity is somewhat different since the transform
(2.4) is no longer applicable. This case will be treated later in this section by computing
the limit of the modes in the untransformed variables u, v and h. These limiting modes
are called the Haurwitz modes [9]. We begin by first computing the limit of the Hough
vector functions.

If we divide (3.24) and (3.26) by y and then let y go to infinity, we find that
C A, 0. Fuhermore, (3.25) is satisfied if we set -q and B 1. Therefore
the limit of the rotational mode as y goes to infinity is

m
(5.1) H,a=y,2 for=

n(n+l)

In order to obtain this limit we assumed that the frequencies were finite. In
order to obtain the limit of the gravity waves we must assume that the limit of the
corresponding frequencies is infinite. If (3.24)-(3.26) are divided by y, and we define

(5.2) lim -,
o Y

then we obtain

(5.3)

(5.4)

’rA. x/n(n + 1) C,

’B =0,

(5.5) ,rC’=x/n(n+ 1) A’.
For nonzero ’, (,,5.4)implies that B’ 0. The remaining equations (5.3) and .5) have
the solution a, 1/x/, C, lx/ corresponding to - 4n (n + 1) and a, 1/
C 1/x/ corresponding to r -x/n (n + 1). The limit ofthe gravity waves is therefore

480 PAUL N. SWARZTRAUBER AND AKIRA KASAHARA

i" y3)l/- fort Un(n+l)(5.6) H,,1 y,,,-

73)/x/ for -x/n(n + 1).(5.7) H,,2 Y,,1 + Y r

Equations (5.1), (5.6) and (5.7) define the limit of the Hough vector functions as y
tends to infinity. It is of interest to note although the frequencies of the gravity waves
tend to infinity in the transformed variable ?, they are finite in the untransformed
variable as 1 tends to zero.

We proceed now to compute the Haurwitz waves [9] as the limit of the modes in
the untransformed variables u, v and h, as ho goes to infinity. Define

x/gh x/gh h C(58) rn: A" B’= B" m__
0 0 0

as the coefficients in the expansion of the modes in the untransformed variables u, v
and h. Then substituting into (3.24)-(3.26) we obtain

(5.9) (o’+ q,m)A
gvnn+ ^., .,^,,, ..,.

Cn +Pn Bn-1 +p.+B.+,2a1

(o’+qT)BT=p,,A,,-+p,,+, ,,+,,

(5.11) o" ,, /n(n+ 1)
"= A.,

ho 2af

From the last equation we see that the limit of ,’ is zero as ho tends to infinity,
which implies that the^right-hand side of (5.10) is zero. Therefore, (5.10) has the
solution o-=-q: and B 1. From (5.9) we determine that

2a12 2af
(5.12) C,_

g/n(n 1)
pT’ d,,+l-

gx/(n + 1)(n + 2)

These coefficients define the Haurwitz waves

2aO(x/ P p,"+)(5.13) Unto ynm,2+T ynm_l,3 +
n(n-1) x/(n+ 1)(n +2)

y"+l’3

with corresponding frequencies tr -m/[n(n + 1)].

6. A computational facility. In this section we will describe a set of programs for
computing the Hough vector functions and the computational techniques that are used
in each of the programs. In addition to their application in the analysis of global
meteorological data and in the prediction of global atmospheric motion, the Hough
functions have been used to test the performance of computational methods that have
been used to solve the global primitive equation model [2]. Since the Hough vector
harmonics are the exact solution of the linearized shallow-water equations with respect
to the basic state at rest, they can be used to verify the numerical solutions of the
linearized part of the global shallow-water equations. The software that is described
in this section can be used to assist in these applications.

The programs can compute the Hough vector functions for the limit case 3’
or e 0 and also for the zonal modes corresponding to rn 0. There are four programs
in the set: subroutine SIGMA, which computes the frequencies of the normal modes;
subroutine ABCOEF, which computes the coefficients A,m, B7 and C7 in the expansion
of the Hough vector harmonics in terms of the spherical vector harmonics; subroutine
UVH, which uses the coefficients computed by ABCOEF in order to compute the
Hough vector functions o,m(b); subroutine UVHDER, in which a number of derived

VECTOR HARMONIC ANALYSIS OF LAPLACE’S TIDAL EQUATIONS 481

quantities are computed, including vorticity, divergence, stream function and velocity
potential. We begin with the calling sequence of subroutine SIGMA (Table l) and
a description of its parameters, followed by a discussion of the computational
methods.

Subroutine SIGMA computes the frequencies as the eigenvalues of the matrices
A, B, C, D, E or F, depending on the case. For computational purposes these matrices
must be truncated to some finite order. For A and B the frequencies are determined
in triplets corresponding to eastward gravity, westward gravity and rotational modes
and therefore the order is selected as a multiple of 3, say 3N. Furthermore, the value
of N must be sufficiently large that the computed frequencies will be accurate approxi-
mations to those of the infinite matrix. In practice it was determined that this was the
case if the matrix was truncated at a point where rn =’,/n(n + 1)/e was at least as large
as the other coefficients, P and q For this reason N is selected as the maximum of
20, MAXL and x/-, where MAXL is the total number of meridional modes requested
by the user.

The eigenvalues of the truncated matrices A and B are computed by first transform-
ing the pentadiagonal matrix to a tridiagonal matrix using the EISPACK subroutine
BANDR [8], and then computing the eigenvalues of the tridiagonal matrix using
EISPACK subroutine IMTQL1. An eigenvalue is classified as westward gravity, rota-
tional or eastward gravity mode depending on whether it is in the lowest, middle, or
highest third, respectively, of the ordered set of eigenvalues.

The eigenvalues of C, D and F are computed using IMTQL1. The eigenvalues of
the non-Hermitian matrix E are computed using a method based on determinants that
was derived from a method for solving general tridiagonal systems [25].

The coefficients in the expansion of the Hough vector harmonics in terms of the
spherical vector harmonics are computed in subroutine ABCOEF. See Table 2.

For tn > 0 the coefficients A, B, C are computed as the eigenvectors of A or B
using EISPACK subroutine BANDV. For m =0 the coefficients are computed using
a program written by Swarztrauber which computes the eigenvectors of a general
tridiagonal matrix using inverse iteration. The program was written in such a way that
the higher-order coefficients do not plateau at machine precision but rather converge
asymptotically to zero. If the high-order coefficients are not small compared with the
largest coefficients, then IERR is set to 3. A possible solution is to increase the size
of MAXL, which can increase the number of coefficients in the series.

Subroutine UVH uses the coefficients that were computed by ABCOEF to compute
the Hough vector functions. See Table 3. The fundamental computation in subroutine
UVH is that of the associated Legendre functions P, which are computed using a
package written at NCAR called ALFPAC. The spherical vector harmonics are then
computed using (3.1), (3.3) and (3.4). The Hough vector functions are computed by
summing the series (3.22) without the longitudinal dependence. The divergence, vor-
ticity, velocity potential and stream function are computed from (3.33) through (3.36)
in UVHDER which is like UVH but includes derived quantities. See Table 4.

7. Summary. In this paper we have performed a modal analysis of the linearized
shallow-water equations using the spherical vector harmonics. This analysis differs
from past approaches in which the vector dependent variables are replaced by scalar
variables using stream function and velocity potential. Use of the vector harmonics
can be generalized to other vector differential equations since it is not necessary to
raise the order of the differential system. This analysis is made possible by the avail-
ability of new identities for the spherical vector harmonics that permit the replacement

482 PAUL N. SWARZTRAUBER AND AKIRA KASAHARA

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

TABLE

SUBROUTINE SIGMA (M, MAXL, IERR, EPS, EASTGS ,WESTGS, ROTATS ,W

THIS PROGRAM COMPUTES THE FREQUENCIES OF THE LINEARIZED
SHALLOW WATER EQUATIONS

INPUT PARAMETERS

M ZCNAL WAVENUMBER

MAXL TOTAL NUMBER OF MERIDIONAL MODES. THE
MODES ARE COMPUTED FOR L=O,... ,MAXL-I

EPS :4 .*(A*OMEGA)**2/(G*HM) WHERE

k RADIUS OF THE EARTH
OMEGA ANGULAR SPEED OF THE EARTHS ROTATION
G GRAVITY ACCELERATION
HM EQUIVALENT HEIGHT

W WORK STORA{! WITH AT LEAST
15X0(20 ,MAXL, INT (SORT (EPS) LOCATIONS

************************ IMPORTANT *********************************
NOTE THAT THE LENGTH OF THE WORK ARRAY W DEPENDS

ON THE PARAMETER EPS

OUTPUT PARAMETERS

IERR 0 NO ERROR
MODES ARE NOT DISTINCT OR
NOT ORDERED

2 EISPACK SUBROUTINE IMTQLI WAS
UNABLE TO DETERMINE ALL FREQUENCIES

3 EPS IS LESS THAN ZERO

EASTGS

WESTGS

ROTATS

THE EASTWARD GRAVITY MODES FOR L=O,... ,MAXL-I
STORED IN EASTGS THROUGH EASTC, (MAXL)

THE WESTWARD GRAVITY MODES FOR L=O,... ,MAXL-I
STORED IN WESTGS THROUGH WESTGS (MAXL)

THE ROTATIONAL MODES FOR L=O,... ,MAXL-I STORED
IN LOCATIONS ROTATS THROUGH ROTATS (MAXL)

THEREFORE THE ARRAYS EASTGS,WESTGS AND ROTATS
MtT HAVE AT LEAST MAXL LOCATIONS

SPECIAL ASYMPTOTIC CASES

FOR CERTAIN CASES IN WHICH THE FREQUENCIES ARE EITHER
ZERO OR INFINITY, THE ASYMPTOTIC FORMS OF THE
FREQUENCIES ARE COMPUTED.

I. IF EPS 0 THEN THE FREQUENCIES OF THE GRAVITY WAVES
ARE INFINITE AND BOTH EASTGS AND WESTGS ARE COMPUTED
AS THE LIMIT OF SORT(EPS) TIMES THE FREQUENCY AS EPS
GOES TO ZERO. THESE FINITE LIMITING QUANTITES CAN
BE USED TO COMPUTE THE NATURAL FREQUENCIES OF A
NON-ROTATING SPHERE.

2. IF M=O THEN THE FREQUENCIES OF THE ROTATIONAL WAVES
ARE ZERO. IN THIS CASE SUBROUTINE SIGMA RETURNS SIGMA
TILDE (SEE REFERENCE) WHICH IS USED BY SUBROUTINE ABCOEF
WHEN COMPUTING THE MODES FOR M=O. THIS IS ALO THE
CASE FOR THE SINGLE MODE EASTGS(CORRESPONDING TO L:O.

DOES NOT HAVE TO BE SAVED

VECTOR HARMONIC ANALYSIS OF LAPLACE’S TIDAL EQUATIONS 483

TABLE 2

SUBROUTINE ABCOEF (M,MAXL ,L, IEWR, IERR ,SIG ,EPS ,BETA ,A ,B ,C,W)

INPUT PARAMETERS

M ZONAL WAVENUMBER

MAXL TOTAL NUMBER OF MERIDIONAL MODES. NOTE THAT
THE MODES ARE COMPUTED FOR L=O,... ,MAXL-I

L MERIDIONAL MODE INDEX

IEWR :1 FOR EASTWARD GRAVITY WAVE
:2 FOR WESTWARD GRAVITY WAVE
:3 FOR ROTATIONAL WAVE

IERR =0 NO ERROR
:I L IS GREATER THAN OR EQUAL TO MAXL
:2 ERROR IN EISPACK SUBROUTINE BANDV
:3 THE HIGH ORDER COEFFICIENTS ARE NOT SMALL

COMPARED TO THE LOW ORDER COEFFICIENTS

SIG DIMENSIONLESS FREQUENCY

IF IEWR:I THEN SIG:EASTGS(L+I
IF IEWR:2 THEN SIG:WESTGS (L+I)
IF IEWR:3 THEN SIG:ROTATS(L+I

WHERE THE ARRAYS EASTGS,WESTGS AND ROTATS ARE COMPUTED
BY SUBROUTINE SIGMA.

EPS 4.*(A*OMEGA)**2/(G94) WHERE

A RADIUS OF THE SPHERE
OMEGA ANGULAR SPEED OF ROTATION
G GRAVITY ACCELERATION
HM EQUIVALENT HEIGHT

BETA IS USUALLY ZERO UNLESS HAURWITZ WAVES ARE TO BE COMPUTED
IN WHICH CASE BETA

2.*A*OMEGA/G WHERE

A RADIUS OF THE SPHERE
OMEGA ANGULAR SPEED OF ROTATION
G GRAVITY ACCELERATION

W A WORK ARRAY WITH 30*N LOCATIONS WHERE

N--MAXO (20 ,MAXL INT (SQRT (EPS)

OUTPUT PARAMETERS

A,B,C ARRAYS WITH N LOCATIONS (SEE INPUT PARAMETER W ABOVE)
WHICH CONTAIN THE COEFFICIENTS IN THE EXPANSIONS OF
THE HOUGH VECTOR FUNCTION

W W DOES NOT HAVE TO BE SAVED

of the differential system with an algebraic system. The normal modes are then
determined as the eigensolutions of infinite, banded, linear systems of equations.

New zonal rotational modes (m-0) are computed as the limit of the Hough
vector functions as the longitudinal wavenumber m tends to zero. Although the zonal
modes are not unique, the set that is obtained in this manner is particularly interesting
since it shares many properties with the nonzonal modes. The frequencies of these
modes are zero and therefore correspond to steady solutions with respect to the rotating
sphere. The asymptotic behavior of the frequencies, as rn tends to zero, is obtained as
a by-product of the method that is used to obtain the normal modes. The gravity modes
with finite frequencies are also computed. All modes are determined from the eigensol-
utions of infinite tridiagonal linear systems of equations.

484 PAUL N. SWARZTRAUBER AND AKIRA KASAHARA

TABLE 3

SUBROUTINE UVH (M,MAXL,L,IEWR,EPS,NT,PHI,A,B,C,U,V,H,W)

GIVEN THE COEFFICIENT ARRAYS A,B AND C COMPUTED BY SUBROUTINE
ABCOEF, THEN THIS SUBROUTINE TABULATES THE HORIZONTAL VELOCITY
FIELDS U,V AND HEIGHT FIELD H AT THE LATITUDES SPECIFIED
IN THE ARRAY PHI

INPUT PARAMETERS

M ZONAL WAVENUMBER

MAXL TOTAL NUMBER OF MERIDIONAL MODES. NOTE THAT
THE MODES ARE COMPUTED FOR L=O,...,MAXL-I

L MERIDIONAL MODE INDEX

IEWR :I FOR EASTWARD GRAVITY WAVE
=2 FOR WESTWARD GRAVITY WAVE
=3 FOR ROTATIONAL WAVE

EPS :4 .* (AE*OMEGA)**2/(G*HM WHERE

AE RADIUS OF THE SPHERE
OMEGA ANGULAR SPEED OF ROTATION
G GRAVITY ACCELERATION
HM EQUIVALENT HEIGHT

NT NUMBER OF LATITUDES IN THE ARRAY PHI BELOW

PHI AN ARRAY WHICH CONTAINS THE LATITUDES AT WHICH U,V
AND H ARE TABULATED (LATITUDES SHOULD BE SPECIFIED
IN RADIANS

A,B,C ARRAYS WITH N LOCATIONS (SEE INPUT PARAMETER W BELOW)
WHICH CONTAIN THE COEFFICIENTS COMPUTED BY SUBROUTINE
ABCOEF

W A WORK ARRAY WITH IO*N+5*M LOCATIONS WHERE

N=MAXO (20 ,MAXL INT (SQRT (EPS))
NOTE

THIS ARRAY CAN BE THE SAME AS THE
ARRAY USED IN SUBROUTINE SIGMA

OUTPUT PARAMETERS

U AN ARRAY OF LENGTH NT WHICH CONTAINS THE LONGITUDINAL
VELOCITY TABULATED AT THE LATITUDES SPECIFIED IN THE
ARRAY PHI

V AN ARRAY OF LENGTH NT WHICH CONTAINS THE MERIDIONAL
VELOCITY TABULATED AT THE LATITUDES SPECIFIED IN THE
ARRAY PHI

AN ARRAY OF LENGTH NT WHICH CONTAINS THE HEIGHT FIELD
TABULATED AT THE LATITUDES SPECIFIED IN THE ARRAY PHI

DOES NOT HAVE TO BE SAVED

The components of the Hough vector functions are in transformed variables. They
consist of the velocity components and the height of the free surface that have been
transformed in such a way as to reduce the number of physical parameters in the
shallow-water equations to a single dimensionless parameter. All of the modal solutions
to the original untransformed equations cannot be obtained from the transformed
system. The particular modes that,correspond to an infinite equivalent height cannot
be obtained as a limiting case of the transformed system. These modes are called the
Haurwitz modes and are determined as the limit of solutions to the untransformed
shallow-water equations as the equivalent height tends to infinity.

VECTOR HARMONIC ANALYSIS OF LAPLACE’S TIDAL EQUATIONS 485

TABLE 4

SUBROUTINE UVHDER (M,MAXL,L,IEWR,EPS,NT,PHI,A,B,C,U,V,H,STRMFN,
VELPOT, DVRGNC, VRTCTY, GRDNTU,GRDNTV,GRDNTH ,W

M

MAXL

L

IEWR

INPUT PARAMETERS

ZONAL WAVENUMBER

TOTAL NUMBER OF MERIDIONAL MODES

MERIDIONAL MODE INDEX

=I FOR EASTWARD GRAVITY WAVE
:2 FOR WESTWARD GRAVITY WAVE
=3 FOR ROTATIONAL WAVE

EPS :4 .*(A*OMEGA)**2/(G*HM) WHERE

A RADIUS OF SPHERE
OMEGA ANGULAR SPEED OF THE EARTHS ROTATION
G GRAVITY ACCELERATION
HM EQUIVALENT HEIGHT

NT NUMBER OF LATITUDES IN THE ARRAY PHI BELOW

PHI AN ARRAY WHICH CONTAINS THE LATITUDES AT WHICH U,V
AND H ARE TABULATED (LATITUDES SHOULD BE SPECIFIED
IN RADIANS)

A,B,C ARRAYS WITH N LOCATIONS (SEE INPUT PARAMETER W BELOW)
WHICH CONTAIN THE COEFFICIENTS COMPUTED BY SUBROUTINE
ABCOEF

W A WORK ARRAY WITH 27"N+32 LOCATIONS WHERE

N--#4AXO (20 ,MAXL INT (SQRT (EPS)

NOTE
THIS ARRAY CAN BE THE SAME AS THE
ARRAY USED IN SUBROUTINE SIGMA

OUTPUT PARAMETERS

U AN ARRAY OF LENGTH NT WHICH CONTAINS THE LONGITUDNAL
VELOCITY TABULATED AT THE LATITUDES SPECIFIED IN THE
ARRAY PHI

V AN ARRAY OF LENGTH NT WHICH CONTAINS THE MERIDONAL
VELOCITY TABULATED AT THE LATITUDES SPECIFIED IN THE
ARRAY PHI

H AN ARRAY OF LENGTH NT WHICH CONTAINS THE HEIGHT FIELD
TABULATED AT THE LATITUDES SPECIFIED IN THE ARRAY PHI

STRMFN AN ARRAY OF LENGTH NT WHICH CONTAINS THE STREAM FUNCTION
PSI TABULATED AT THE LATITUDES SPECIFIED IN THE ARRAY PHI.

VELPOT AN ARRAY OF LENGTH NT WHICH CONTAINS THE VELOCITY POTENTIAL
TABULATED AT THE LATITUDES SPECIFIED IN THE ARRAY PHI.

DVRGNC AN ARRAY OF LENGTH NT WHICH CONTAINS THE DIVERGENCE
TABULATED AT THE LATITUDES SPECIFIED IN THE ARRAY PHI.

VRTCTY AN ARRAY OF LENGTH NT WHICH CONTAINS THE VORTICITY
TABULATED AT THE LATITUDES SPECIFIED IN THE ARRAY PHI.

GRDNTU AN ARRAY OF LENGTH NT WHICH CONTAINS D(COS(PHI)*U)/DPHI
TABULATED AT THE LATITUDES SPECIFIED IN THE ARRAY PHI.

GRDNTV AN ARRAY OF LENGTH NT WHICH CONTAINS D(COS(PHI)*V)/DPHI
TABULATED AT THE LATITUDES SPECIFIED IN THE ARRAY PHI.

GRDNTH AN ARRAY OF LENGTH NT WHICH CONTAINS DH/DPHI TABULATED AT
THE LATITUDES SPECIFIED IN THE PHI ARRAY.

W DOES NOT HAVE TO BE SAVED

486 PAUL N. SWARZTRAUBER AND AKIRA KASAHARA

oooooooooooo333

o

VECTOR HARMONIC ANALYSIS OF LAPLACE’S TIDAL EQUATIONS 487

o

5oO

oooo,oo

oooooooo

488 PAUL N. SWARZTRAUBER AND AKIRA KASAHARA

333 33 oooooo

oOOO

ddddd222222222 ddddd ooo""d 000"

7777

VECTOR HARMONIC ANALYSIS OF LAPLACE’S TIDAL EQUATIONS 489

490 PAUL N. SWARZTRAUBER AND AKIRA KASAHARA

The description of software for computing the Hough vector functions as well as
the Haurwitz modes was also presented. The software package consists of four user-
entry FORTRAN subroutines called SIGMA, ABCOEF, UVH and UVHDER. Sub-
routine SIGMA computes the frequencies of the normal modes as eigenvalues of the
infinite banded systems. Subroutine ABCOEF computes the coefficients in the
expansion of the mode in terms of the spherical vector harmonics. Subroutine UVH
tabulates the components of the Hough vector function as functions of latitude and
subroutine UVHDER tabulates certain derivatives of the components.

REFERENCES

[1] S. CHAPMAN AND R. S. LINDZEN, Atmospheric Tides, Gordon and Breach, New York, 1970.
[2] W. C. CHAO AND M. A. GELLER, Utilization of normal mode initial conditions for detecting errors in

the dynamics part of primitive equation global models, Monthly Weather Review, l0 (1982), pp.
304-306.

[3] R. DALLY, Normal mode initialization, Rev. Geophys. Space Phys., 19 (1981), pp. 450-468.
[4] I. A. DIKII, The terrestrial atmosphere as an oscillating system, Izv. Atmosph. Oceanic Phys., (1965),

pp. 275-286.
[5] R. E. DICKINSON, Propagators of atmospheric motions, Ph.D. thesis, Massachusetts Institute of Tech-

nology, Cambridge, 1966.
[6] T. W. FLATTERY, Hough functions, Tech. Rep. 21, Dept. Geophys. Sci., Univ. Chicago, Chicago, 1967.
[7] Spectral modelsfor global analysis andforecasting, Proc. Sixth AWS Technical Exchange Conf.,

U.S. Naval Academy, Air Weather Service Tech. Rep. 242 (1970), pp. 42-53.
[8] B. S. GARBOW, J. M. BOYLE, J. J. DONGARRA AND C. B. MOLER, Matrix Eigensystem Routines-

EISPACK Guide Extension, Lecture Notes in Computer Science 51, Springer-Verlag, New York,
1977.

[9] B. HAURWITZ, The motion ofatmospheric disturbances on the earth, J. Marine Res., 3 (1940), pp. 254-267.

[10] S. S. HOUGH, On the application of harmonic analysis to the dynamical theory of the tides--Part II. On
the general integration ofLaplace’s dynamical equations, Phil. Trans. Roy. Soc. London, A191 (1898),
pp. 139-185.

[ll] M. N. JONES, Atmospheric oscillations--I, Planet. Space Sci., 18 (1970), pp. 1393-1416.
[12] A. KASAHARA, Normal modes of ultralong waves in the atmosphere, Monthly Weather Review, 104

(1976), pp. 669-690.
13],Numerical integration ofthe global barotropicprimitive equations with Hough harmonic expansions,

J. Atmos. Sci., 34 (1977), pp. 687-701.
[14], Further studies on a spectral model of the global barotropic primitive equations with Hough

harmonic expansions, J. Atmos. Sci., 35 (1978), pp. 2043-2051.
[15] H. LAMB, Hydrodynamics, 6th edition, Dover, New York, 1932.
[16] M. S. LONGUET-HIGGINS, The eigenfunctions of Laplace’s tidal equations over a sphere, Phil. Trans.

Roy. Soc. London, A262 (1968), pp. 511-601.
[17] M. MARGULES, Luftbewegungen in einer rotierenden Spharoidschale. Theil II, Sitz.-Ber., Akad. Wiss.

Wien, Math.-Naturwiss. I., Abt. IIa, 102 (1893), pp. 11-56. (English translation by B. Haurwitz is
available from the National Center for Atmospheric Research, Boulder, Colorado, as technical
note NCAR/TN-156+ STR, entitled "Air motions in a rotating spheroidal shell".)

[18] T. MATSUNO, Quasi-geostrophic motions in the equatorial area, J. Meteor. Soc. Japan, 44 (1966), pp.
25-43.

[19] P. M. MORSE AND n. FESHBACH, Methods of Theoretical Physics, McGraw-Hill, New York, 1953.
[20] H. E. MOSES, The use of vector spherical harmonics in global meteorology and aeronomy, J. Atmos. Sci.,

31 (1974), pp. 1490-1499.
[21] J. PEDLOSKY, Geophysical Fluid Dynamics, Springer-Verlag, New York, 1979.

[22] G. W. PLATZMAN, Two-dimensional free oscillation in natural basins, J. Phys. Oceanogr., 2 (1972), pp.
117-138.

[23] Y. SHIGEHISA, Normal modes of the shallow water equationsfor zonal wavenumber zero, J. Meteor. Soc.
Japan, 61 (1983), pp. 479-494.

[24] M. SIEBERT, Atmospheric tides, Advances in Geophysics, 7 (1961), pp. 105-187.
[25] P. N. SWARZTRAUBER, A parallel algorithm for solving general tridiagonal equations, Math. Comp., 33

(1979), pp. 185-199.

VECTOR HARMONIC ANALYSIS OF LAPLACE’S TIDAL EQUATIONS 491

[26] P. N. SWARZTRAUBER, On the spectral approximation of discrete scalar and vector functions on the
sphere, SIAM J. Numer. Anal., 16 (1979), pp. 934-949.

[27] ., The approximation of vectorfunctions and their derivatives on the sphere, SIAM J. Numer. Anal.,
18 1981), pp. 934-949.

[28], On the spectral analysis of vector differential equations on the sphere, Proc. Fifth IMACS
International Symposium on Computer Methods for Partial Differential Equations, Lehigh Univ.,
Bethlehem, PA, 1984.

[29] G. I. TAYLOR, The oscillations of the atmosphere, Proc. Roy. Soc. London, A156 (1936), pp. 318-326.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 2, April 1985

1985 Society for Industrial and Applied Mathematics
016

THE CONVERGENCE RATE OF MULTI-LEVEL ALGORITHMS APPLIED TO
THE CONVECTION-DIFFUSION EQUATION*

P. M. DE ZEEUWf AND E. J. VAN ASSELTf

Abstract. We consider the solution of the convection-diffusion equation in two dimensions by various
multi-level algorithms (MLAs). We study the convergence rate ofthe MLAs and the stability ofthe coarse-grid
operators, depending on the choice of artificial viscosity at the different levels. Four strategies are formulated
and examined. A method to determine the convergence rate is described and applied to the MLAs, both
in a problem with constant and in one with variable coefficients. As relaxation procedures the 7-point ILU
and symmetric point Gauss-Seidel (SGS) methods are used.

Key words, artificial viscosity, convection-diffusion equation, multi-level algorithm, asymptotic stability,
Galerkin approximation

1. Introduction. We consider the convection-diffusion equation

Ou Ou
+b2(x,y) =f(x,y)(1.1) Lu eAu + b,(x, y)
Ox -y

for (x, y) f = 2, e > 0, with Dirichlet and Neumann boundary conditions on different
parts of 6f.

When the diffusion coefficient e is small in comparison with the mesh-width h, the
stability of discretizations of (1.1) by central differences (CD) or the finite element
method (FEM) can be improved by augmenting e with an artificial viscosity of O(h).
This rather crude way of stabilizing the discrete problem may form part of more subtle
iterative methods for solving (1.1) with small e, for instance the mixed defect correction
process (cf. Hemker [4]) or the double discretization process (of. Brandt [3]).

In 2 we introduce four strategies for choosing the artificial viscosity on the coarse
grids in the multi-level algorithm (MLA) (of. Van Asselt [1]). In 3 we describe the
method which is used to determine the convergence behaviour of the multi-level
algorithm for these strategies. In 4 we compare the convergence rates as measured
by the method described in 3. Finally, some conclusions are formulated in 5.

2. Artificial viscosity, strategies, stability and asymptotic convergence rate. In this
section we derive all theoretical results for the constant coefficient case by local mode
analysis neglecting the boundaries. We introduce various strategies for choosing the
coarse-grid operators in the MLA. We give a motivation for the choice of these
strategies, and analyze their stability (cf. Theorem 2.14, Corollary 2.18, Theorem 2.19,
Corollary 2.24). Further we formulate some important properties of the different
strategies (cf. Conjectures 2.25-2.27). In the case ofFEM discretization we also consider
the Galerkin coarse-grid approximation. In this paper we only consider the FEM based
on a uniform triangulation of 12 with right-angled triangles.

The trial and test space is spanned by the set of piecewise-linear "hat-functions"
bij which take the value at x0 and 0 at all other vertices of triangles.

We consider the MLA (cf. Hemker [5]) with l+ levels: 0,..., and uniform
square meshes on each level with meshwidths ho and hk hk_/2 for k 1,..., I.

Let {L"1} t=o,...,! be a sequence of discretizations of L,. For the constant-coefficient
equation we denote by L(w), wR2 the symbol (or characteristic form) of the

* Received by the editors May 5, 1983, and in revised form January 3, 1984.

" Mathematical Centre, Kruislaan 413, 1098 SJ Amsterdam, the Netherlands.

492

MULTI-LEVEL ALGORITHMS FOR CONVECTION-DIFFUSION 493

continuous operator L. By k’l(to), W Tk =[--Tr/hk, 7r/hk]2, we mean the symbol of
the discrete operator k

When a symbol is small the corresponding operator is unstable in the sense that
small changes in the right-hand side cause great changes in the solution. Depending
on the boundary conditions the continuous problem can be well posed. Therefore we
allow the symbol of the discrete operator to be small only for those frequencies for
which the symbol of the continuous operator is small. This idea is formalized in the
following definitions.

DEFINITION 2.1. The e-asymptotic stability degree of L with respect to the mode
e is the quantity lim+o[()l.

DzviyivIOy 2.2. The -domain ofLis the set of all w for which lim+o[(w) >
8>0.

DEFINITION 2.3. The -asymptotic tability degree ofL" with respect to the mode
e is the quantity lim,olL’()l

DINITION 2.4. The 8-domain of L" is the set of all T for which
> a > 0.

DFINITION 2.5. A strategy for coarse-grid operators is a set {L, L, ., L, .}
with

DEFINITION 2.6. Let S be a strategy for coarse-grid operators, then S is -asymptotically stable with respect to L if for every 8o > 0 there exists a 8 > 0 such that
for all 0 k 1, we have the 8-domain of L’ 8o-domain of L T.

Remark 2.7. In order to avoid residual transfers in the MLA that are useless due
to oscillating solutions, we require that a strategy is -asymptotically stable with respect
to L. Moreover we need a relaxation method for which the smoothing factors on all
grids are less than 1. We then expect rapid convergence of the MLA.

Another approach would be to admit -asymptotically unstable strategies and to
require that the relaxation method is such that bad components in the residuals are
suciently smoothed. This poses very strong demands upon the relaxation method. If
a strategy is not -asymptotically stable with respect to L, and the relaxation method
Can not suciently damp the osdllations we may expect divergence if the number of
levels increases.

By L+zg, we denote a disCretization of (1.1) with aificial viscosity g and
meshwidth h, and for fixed ho and T > 0 (independent of , k and 1) we will consider
the following four strategies for coarse-grid operators:

Strategy (SI):

(2.8) Lk’t=L+t,,h and /3= yh,, k=0,..., I.

Strategy 2 ($2):

(2.9) L1= L+l,,hk, fill= yht,

Strategy 3 ($3):

fllk= yhk+, k=0,...,l-1.

Strategy 4 ($4):

(2.11) L1=- L+,l,h with ll yhl, Lk"1-- Rk,k+Lk+’Ipk+,k, k 1- 1,’’’, 0.

(Rk,k+ and Pk+l,k are the restriction and the prolongation which are consistent with
the FEM used.)

(2.10) Lk"l= L+t,h andfl=yhk, k=0,...,/.

494 P. M. DE ZEEUW AND E. J. VAN ASSELT

Remark 2.12. The choice of Lk’ according to $4 is called Galerkin coarse-grid
approximation. If we consider a constant-coefficient problem and neglect the bound-
aries, then a coarse-grid operator constructed with the FEM according to $1, is identical
with the Galerkin coarse-grid approximation as in $4. The molecule is given by

e+fllk[0-lhEk]+ bt [-116hk 1 b2 [2],,,,Le+t,hk -1 4 -1 -2 0 2 +--. -1 0

-1 0 -1 -2 -1

Remark 2.13. It follows from (2.8)-(2.10) that

for $1" lim o/hk =lim y/2 0,

for S2: flk/hk => 3’/2 uniformly for all k, l,

for $3" fl lk/hk 2’ uniformly for all k, I.

In Theorem 2.14, Corollary 2.18 and Corollary 2.24 we will prove that $1 and $4 are
not e-asymptotically stable and $2 and $3 are. Further we will point out that the
convergence rate of the MLA with $2 is better than with $3.

THEOREM 2.14. Consider the CD- or FEM-discretizations of (1.1) with artificial
viscosity flk and constant coefficients; then S is not e-asymptotically stable with respect
to Le.

Proof. We give the proof only for the CD-discretizations; the proof for the
FEM-discretizations is similar. The CD-discretization of (1.1) with artificial viscosity
/3k and constant coefficients bt and bE, b+ b l, reads

Ze+fl,hk u h2k Ui,j_ 1+ h2k
t- u,.j+l

(e+fllkhk -b2k)hk (’’Jf-lk bh)hk(2.15) + ui-l.j+ h---k + ui+,

+4 "h2k ui,j=f j.

Its characteristic form reads

(2.16) L+flLhk(W)
2(e+fl)(cos tOlhk+COS tO2hk--2) i_(b sin tOlhk+ b2sin to2hk)

h2k +
hk

The characteristic form of L reads

(2.17) (to) e(to + to2) +j(blWl + b2w2),

hence the o-domain of L is the set of all to e 2 for which blto2 + b2tozl > 60 > 0. We
have to show that a 6o> 0 exists such that for all 31 > 0 there exist k, e 7/, 0 -< k_-< l,
such that for an o3 2 with o3 e (6o-domain of Le)fq T we have 03 61-domain of

L+Lh. For that purpose we proceed as follows. Take 6o 0.17r/ho and let 61 > 0 be
arbitrary. Take k 0 and > 1og(42’/howl); then for either 03 (r/ho, 0) To or o3
(0, Tr/ho)To both [bt+b2o2[>to and lim+olf_.+3,o,ho()l=42"/(ho21)<6 hold.
Hence $1 is not e-asymptotically stable with respect to L.

This leads us to
COROLLARY 2.18. Consider L with constant coefficients b and b2; then $4 is not

e-asymptotically stable with respect to L.

MULTI-LEVEL ALGORITHMS FOR CONVECTION-DIFFUSION 495

Proof The proof follows immediately from (2.12) and (2.14).
THEOREM 2.19. Consider the CD-discretizations of (1.1) with artificial viscosity

and constant coefficients. Let S be a strategy with k/hk >- C > 0 uniformly for all
k, l(k -< 1) Z; then S is e-asymptotically stable.

Proof Again we use (2.15)-(2.17). We have to prove:

/6o> 0 !6 >0 /k, l, 0<_- k_-<

=> 6o-domain of L fq Tk c 6-domain of L+Lhk.

Take 8-=min (1/2, 2C/5)8o. In the case 80> 2/27r/hk the inclusion is trivially satisfied
because 8o-domain of L f’) Tk =. If 0< 8o<--2/27r/hk then to 8o-domain of L f’) Tk
implies

80hk < [bltolhk + b2to2hk[.
The normalization b+ b= and the inequality [sin x-x[_-< 1x31/4 for all x yield

(2.20) 8ohk < Ib sin tolhk + b2 sin to2hk[+ +
4 4

We distinguish the two complementary cases"

(i) [tol hk{ 8ohk and [to2hk[8ohk
(ii) [tolhk[> 8ohk or Io2hl > 8ohk.

Because of (2.16) and (2.20) case (i) implies:

Ib sin tohk + b2 sin ohl> > .(2.21) lim[+Z.h(O) >

o hk 2

To complete the proof we now consider case (ii). It follows from (2.16) and/3/hk >= C
that

2C(1 -cos tohk + --cos to2hk)
(2.22) liml,+t,hk(to)[

0 hk

and from (ii) and 0 < 8ohk < 2/27r it follows that the right-hand side of (2.22) is greater
than or equal to

2C8o(1 -cos ((8ohk)’/3))
80hk

hence

2C8o(2.23) lim[+ ,h(to)l > >---- 81 > 0.
o 5

Both (2.21) and (2.23) hold uniformly for all k, so S is e-asymptotically stable with
respect to L.

Note that the condition of Theorem 2.19 is satisfied by taking on coarser grids
the artificial viscosity proportional to the current meshwidth.

COROLLARY 2.24. Consider the CD-discretizations of (1.1) with artificial viscosity

fl lk and constant coefficients; then $2 and $3 are e-asymptotically stable with respect to L.
Proof. The proof follows immediately from Remark 2.13 and Theorem 2.19.
It is obvious that the e-asymptotic stability degree of the individual grid-operators

belonging to $2 is larger than in the case of Sl. Moreover for decreasing 3’ the smoothing
factors for $1 become worse (cf. Table 2). We formulate this in the following

496 P. M. DE ZEEUW AND E. J. VAN ASSELT

Conjecture 2.25. For a fixed number of levels the set of 5,-values for which the
MLA with $2 converges, is larger than that for which the MLA with S converges.

In case of a two-level algorithm (TLA), 1, and a constant-coefficient problem,
a two-level analysis shows that the asymptotic rate of convergence for S or $2, for
which the artificial viscosity is equal on both levels is better than for $3, where the
artificial viscosity corresponds to the meshwidth. (cf. Van Asselt [1]). Therefore in S
we take an equal artificial viscosity on all levels. For this strategy, however, stability
problems may occur on coarser grids (cf. Theorem 2.14). $3 is e-asymptotically stable
(cf. Corollary 2.24), but the two-level analysis indicates that the convergence rate is
slower. $2 is an intermediate strategy where on levels and l- the artificial viscosity
is the same, and it is also e-asymptotically stable (cf. Corollary 2.24). These arguments
lead to the following

Conjecture 2.26. S combines the rapid convergence rate of $1 with the stability
of $3.

At level the discrete operators Le+13,ht using S, S, $3 are equal.
At level l-1 the discrete operators Le+t31_,ht_ using S, S. are equal ($3 is not),

and the relative order of consistency of the S and $2 operators on level and l- is
the same and higher than that of $3. Furthermore, consider the part of T where the
smoothing effect of a relaxation method applied to $2 and $3 is the same as in the
case of S in terms of local mode analysis. For $2 this part is larger than for $3 (cf.
Fig. 1). For $4 the same arguments hold as for S (cf. Remark 2.12). This leads us to
formulate the following

Conjecture 2.27. For afinite number of levels and 5, sufficiently large the difference
between the asymptotic rate of convergence of the MLAs using S or $4 and S is
smaller than that between $3 and $2. The properties stated in Theorem 2.14, Corollary
2.18, Corollary 2.24 and Conjectures 2.25-2.27 will be confirmed by numerical experi-
ments in 4.

h ht- 0 h-2 h

S" $4

FIG 1. Parts of T! where for S and S the smoothing effect is the same as for S and $4.

MULTI-LEVEL ALGORITHMS FOR CONVECTION-DIFFUSION 497

3. Numerical approximation of the convergence rate. In this section we give a
description of the method used to determine the asymptotic rate of convergence of
the MLA. Let

(3.1) Ahl)h =j be a discretization of (1.1).

The MLA used to solve (3.1) can be described as a defect correction process (cf.
Hemker [5]):

v given start approximation,
(3.2)

i+l MhDiVh h + B-fh, O, 1,

with amplification matrix Mh Ih--B-Ah. Ih is the identity matrix, and B is an
approximate inverse of Ah, determined by coarse-grid and smoothing operators, pro-
longation and restriction. We suppose Ah and Bh to be nonsingular. For the error
eh--1)h- Vh, i--0, 1,’’" the following relation holds"

i+1
eh Mheih.

The convergence behavior of the MLA is determined by the spectral radius of Mh.
This motivates the following:

DEFINITION 3.3. The asymptotic rate of convergence of the MLA (3.2) is
-logo p(Mh where p(Mh maxlAl is the spectral radius of Mh Aj are the eigenvalues
of Mh.

THEOREM 3.4.

sup lim (llMxll) /k
with I1" an arbitrary norm.

p(Mh),

Proof See Stoer and Bulirsch [7, (8.2.4)], Varga [8, Thm. (3.2)]. Because of
Theorem 3.4 we can compute an approximation Pm,k(Mh, eOh) of p(Mh) defined by

(3.5) flm.k(Mh, eOh)=-- (llM+egll=
where I[" I1= is the Euclidean norm. Note that

(3.6) sup lim Pm,k(Mh, eOh)= p(Mh).
eOh#O m,k

In numerical computations v, j m, , m + k are obtained by the iterative method
under consideration. When for increasing m and k, IleLll= reaches values near the
square root of the machine accuracy, we replace e by eh,n

(3.7) "(J) ---- Te(r/>>),

and replace v, by /h,r/J"
(3.8)

Thus

498 P. M. DE ZEEUW AND E. J. VAN ASSELT

and as

(3.9) p,,.k(Mh, eOh)= !2

in this way values of P,,,k(Mh, e) can be computed for large m and k. By this method
ultimately the eigenfunctions of Mh corresponding to nondominant eigenvalues will
decrease exponentially relative to the dominant eigenfunctions. Note that for small m
and k, P,,,k depends strongly on while t9 does not. There are more refined methods
to determine the spectral radius. (cf. Wilkinson [11]). However for our purpose the
method described is sufficiently accurate.

4. Numerical results. In this section we give the results of numerical experiments
to compare the strategies S, $2, $3 and $4 and to verify the properties stated in Theorem
2.14 Corollaries 2.18 and 2.24 and Conjectures 2.25-2.27. We take three test problems.
Test problem with constant coefficients closely resembles the problem analysed by
two-level analysis in Van Asselt [1]. Test problem 2 has variable coefficients. Although
a strict application of Fourier analysis arguments does not hold for these variable
coefficient problems, the experiments for the latter test problem show that globally the
same properties hold as for the constant-coefficient case. For the second problem we
also show to what extent the strategies S, , $4 are better than relaxation alone (i.e.,
without coarse-grid correction). Test problem 3 differs from Test problem by discretiz-
ation (FEM), relaxation (ILU) and number of levels.

Test problem 1. We consider the following convection-diffusion equation (see
Fig. 2)

-(+ yh)au+ u =O

(4.1)
Oy

e’-- 10-6, h=6.
The boundary conditions are"

1,

(4.2) ul,n 106(X --1/2),

1,

u ou

with 6fl,..., 4- in Fig. 2.

(0, -1)

convection-
direction

on f [0, 1] x[-1, 1],

0<---X <1/2-- 10-6,
1/2-- 10-6--<X<--1/2+ 10-6

21-+ 10-6<X 1,

Ou
=0,

82f
FIG. 2. The domain

(0,1)
Y,J

8312
(ih, jh)

(1,1)

Equation (4.1) is discretized by CD on levels k=0,...,/=3 with meshsize

hk 1/2k+. The boundary conditions are not substituted. The Dirichlet boundary

MULTI-LEVEL ALGORITHMS FOR CONVECTION-DIFFUSION 499

conditions are implemented with a large number on the main diagonal to avoid
unwanted coarse-grid corrections at the boundary. The Neumann boundary conditions
are discretized as follows"

t2-: u(1, y) u(1-- hk, y) O, --1 <y<_--l,

63f: u(x, 1) u(x, hk) O, 0 < X < 1,

i4-: u(O, y) U(hk, y) O, < y <--_ 1, k 0," , 3.

For various values of 3’ the discretized equation is solved with the W-cycle MLA (i.e.,
the application of 2 multi-level-iteration steps to approximate the solution of the
coarse-grid equation).

We perform one pre- and one post-relaxation step consisting of symmetric point
Gauss-Seidel relaxation (SGS) in the y-direction. We use 7-point prolongation and
7-point restriction (cf. Hemker [6], Wesseling [9]). On the coarsest level we solve
exactly. A random initial approximation of the solution is used. The values for m and
k in (3.9) are 30 and l0 respectively.

Test problem 2. We consider the following convection-diffusion equation (see
Fig. 3)

0

-(e+yh)Au+blxU+b2oyU=O on [0, 1] x[-1, 1],
(4.3)

e=10-6 h=6, b=y(1-x2) bE=--x(1--y2)

The boundary conditions are

(4.4)
[,/111" +tanh (10+20x),

o__u_u ou Ou Ou

-1 -<x_<0,

(-1, 1)
64f

(1,1)

convection direction

(ih, jh)

FIG. 3. The domain O.

(-1,0) (1,0)

Equations (4.3) and (4.4) are discretized by the FEM on levels k =0,. ., =4 with
mesh-size hk--(1/2) k. The boundary conditions are not substituted and the Dirichlet
boundary conditions are implemented with a large number on the main diagonal. For
different values of y, and S-$4 the discretized equation is solved with the W-cycle
MLA. We perform one pre- and one post-relaxation step by means of 7-point ILU
relaxation, (cf. Wesseling and Sonneveld [10]). The ILU-decomposition is ordered
lexicographically (cf. Fig. 3). On the coarsest level we solve exactly. Again we use
7-point prolongation and 7-point restriction (that are consistent with the FEM discretiz-
ation), and a random initial approximation. In (3.9) m and k are again 30 and 10.

Test problem 3. For 4, 5, 6, we consider (4.1) with different h, and (4.2) discreto
ized by the FEM on levels k 0,. , 1, with mesh size hk (1/2)k+l, Y 1/2. The boundary

500 P.M. DE ZEEUW AND E. J. VAN ASSELT

conditions are not substituted and the Dirichlet boundary conditions are implemented
with a large number on the main diagonal.

The discretized equation is solved with the W-cycle MLA. We perform one pre-
and post-relaxation step by means of 7-point-ILU relaxation (on the coarsest level we
do not solve directly, but perform 2 relaxation sweeps). The ILU-decomposition is
ordered lexicographically (cf. Fig. 3). We use 7-point prolongation and 7-point restric-
tion. A random initial approximation of the solution is used. The values for m and k
in (3.9) are 20 and 10 respectively.

Figures 4 and 5 show the properties in Conjectures (2.25)-(2.27) for Test problems
and 2, respectively. Figure 5 also shows that all strategies S1-S4 are better than

relaxations without coarse-grid corrections. In Table for S, $2 and $3 the smoothing
factors of SGS are given at different levels and for different 3’. We notice that for
1og23’ > 0 the big difference in the asymptotic rate of convergence of S: and $3 (cf.
Fig. 4) is mainly caused by the order of consistency and to a small extent by the
relaxation method, because the smoothing factors are almost the same.

In order to demonstrate Theorem 2.14, Corollaries 2.18 and 2.24 in connection
with Remark 2.7 we take Test problem 3. Table 2 shows the convergence rates as
measured (cf. Definition 3.3). Note that S and $4 show similar stability and convergence
behavior (cf. Remark 2.12).

Remark 4.5. With respect to Remark 2.7 we notice that in many cases a decreasing
stability coincides with a worsening smoothing factor (cf. Table 1).

L

o LEGEND
v- S1
n- 52- 53

-3 01 11-4.0 .5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 .5 .0

2
Log’

FG. 4. Asymptotic convergence ratesfor Test problem 1. Only the part of thefigure with positive asymptotic

convergence rate is drawn. (l= 3, h).

MULTI-LEVEL ALGORITHMS FOR CONVECTION-DIFFUSION 501

FIG. 5. Asymptotic convergence rates for Test problem 2. The graph depicted by "+" represents two ILU
relaxation sweeps in one iteration step without coarse-grid correction. Only the part of the figure with positive
asymptotic convergence rate is drawn. (/= 4, h).

5. Conclusions. In order to solve the convection-diffusion equation in two
dimensions by a multi-level algorithm (MLA), we consider 4 strategies for coarse-grid
operators:

Sl" on each coarse grid the same artificial viscosity as on the finest grid;
$3: on each coarse grid the artificial viscosity corresponding to the mesh width;
$2: an intermediate choice, with the same artificial viscosity on the two finest grids;
$4: Galerkin approximation for the coarse-grid operators.
For S and $4 the artificial viscosity may become too small on coarse grids, and

hence stability problems and bad smoothing-factors may occur. S and $4 are not
e-asymptotically stable, $2 and $3 are. (cf. Definition 2.6, Theorem 2.14, Corollaries
2.18, 2.24 and Table 1).

If the finest-grid artificial viscosity is sufficiently large, the asymptotic rate of
convergence of the MLA according to $2 is far better than that of $3 (cf. Conjecture
2.26 and Figs. 4, 5).

Acknowledgments. The authors would like to thank Dr. P. W. Hemker
(Mathematisch Centrum, Amsterdam) and Prof. Dr. Ir. P. Wesseling (Department of
Mathematics, Delft University) for their constructive comments and careful reading
of the manuscript.

502 P. M. DE ZEEUW AND E. J. VAN ASSELT

S

TABLE
Smoothing-factors for one SGS sweep, Test problem 1, different % levels and strategies

(local mode analysis, cf Brandt [2]).

S
SI $2 S S1 $2

0.36 0.36 0.36 0.24 0.24
4.84 4.84 0.36 0.80 0.80

186 4.84 0.36 15625 0.80

log2 y 1.5 log2 y 1.0

0.24
0.24
0.24

S $2 8 S1 $2

0.23
0.36
4.84

0.23
0.36
0.36

0.23 i 0.24
0.23 0.24
0.23 0.80

$3

0.24
0.24
0.24

0.24
0.24
0.24

log y =--0.5 log2 T 0.0

S1

0.24
0.23
0.36

0.24
0.23
0.23

S
$3 i S

0.24 0.25
0.24 0.24
0.24 0.24

$2 $3

0.25
0.24
0.24

0.25
0.25
0.25

log ’ 0.5 log y 1.0

TABLE 2
Convergence rates for Test problem 3, S-$4, and increasing I.

strategy

level h S S S S4

1/32
1/64
1/128

2.01
<<0
<<0

1.78
1.70
1.17

1.61
1.33
0.87

2.01

<<0

REFERENCES

[1] E. J. VAN ASSELT, The multi-grid method and artificial viscosity, Multigrid Methods, Proc. Conference
held at K/Sln-Porz, November 23-27, 1981, W. Hackbusch and U. Trottenberg, eds., Lecture Notes
in Mathematics 960, Springer-Verlag, Berlin, 1982, pp. 313-327.

[2] A. BRANDT, Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31 (1979), pp.
333-390.

[3], Guide to multigrid development, Multigrid Methods Proc. Conference held at KiSln-Porz,
November 23-27, 1981, W. Hackbusch and U. Trottenberg, eds., Lecture Notes in Mathematics
960, Springer-Verlag, Berlin, 1982, pp. 220-312.

[4] P. W. HEMKER, Mixed defect correction iteration for the accurate solution of the convection diffusion
equation, Multigrid Methods. Proc. Conference held at K61n-Porz, November 23-27, 1981, W.
Hackbusch and U. Trottenberg, eds., Lecture Notes in Mathematics 960, Springer-Verlag, Berlin,
1982, pp. 485-502.

MULTI-LEVEL ALGORITHMS FOR CONVECTION-DIFFUSION 503

[5] P. W. HEMKER, Introduction to multigrid methods, Nieuw Archief voor Wiskunde (3), XXIX (1981),
pp. 71-101.

[6] ., Fourier analysis of gridfunctions, prolongations and restrictions, Rep. NW 93/80, Mathematical
Centre, Amsterdam, 1980.

[7] J. STOER AND R. BULIRSCH, Einfiihrung in die Numerische Mathematik II, Springer-Verlag, Berlin, 1973.
[8] R. S. VARGA, Matrix lterative Analysis, Prentice-Hall, Englewood Clitts, NJ, 1962.
[9] P. WESSELING, Theoretical andpractical aspects ofa multigrid method, this Journal, 3 (1982), pp. 387-407.

[10] P. WESSELING AND SONNEVELD P. Numerical experiments with a multiple grid and a preconditioned
Lanczos type method, in Approximation methods for Navier-Sto,kes problems, Proc, Paderborn
1979, R. Rautmann, ed., Lecture Notes in Mathematics 771, Springer-Verlag, Berlin, 1980, pp.
543-562.

[11] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 3, July 1985

1985 Society for Industrial and Applied Mathematics
001

EVALUATION OF THE NONCENTRAL F-DISTRIBUTION
BY NUMERICAL CONTOUR INTEGRATION*

CARL W. HELSTROM" AND JAMES A. RITCEY

Abstract. The noncentral F-distribution, which yields the power function of tests of linear hypotheses
as in the analysis of variance and of covariance, is computed by numerical integration of a contour integral
in the complex plane. Determining the percentage points of this distribution is facilitated by approximating
the integral by Laplace’s method during the initial stages of a search by the secant method.

Key words. F-distribution, beta distribution, contour integration

AMS (MOS) subject classifications. 65U05, 65R10

1. The noncentral F-distribution. The noncentral F-distribution originates in a
common hypothesis-testing problem. Under the null hypothesis Ho, fl independent
normal random variables x, x2," , xi have known means, which we can take as zero;
under the alternative H their means ml, m2,. ., rnA differ from zero. The unknown
common variance r: of these variables is estimated from observations of fa normal
random variables y, y:,..., Yf2 of mean zero and equal variance or:; the y’s are
independent among themselves and of the x’s. The alternative hypothesis H is chosen
when X > 0, where

lm fx- X Y,(1.1) X =2 = m=l

the factor m having been set to yield a preassigned size a of the hypothesis test, or
false-alarm probability,

a= Pr (X > 01 No).
To be calculated are the value of w and the power of the test, which is the probability
of rejecting the null hypothesis Ho when the alternative H is true,

(1.2) q(A, w ;f,fa) Pr (X > 01H);
is a function of the mean values m, kf, but happens to depend on them only

through the noncentrality parameter

(1.3) A :, .
This problem arises in the analysis of variance and of covariance and more

generally in tests of linear hypotheses about observed data [1]-[4]. It also arises in
radar signal detection, in which the presence or absence of an echo signal from a target
at a paicular range is decided on the basis of the sum of the filtered and quadratically
rectified inputs to the radar receiver during time intervals following a transmitted
pulses. This sum is compared with w times an estimate of the noise variance based on
similarly filtered, rectified, and summed receiver inputs during a total of b f intervals

* Received by the editors July 11, 1983. This research was sponsored by the U.S. Air Force Office of
Scientific Research, Air Force Systems Command, under grant AFOSR-82-0343.

" Department of Electrical Engineering and Computer Sciences, University of California, San Diego,
La Jolla, California, 92093.

505

506 CARL W. HELSTROM AND JAMES A. RITCEY

known or assumed to contain no signals [5]-[9]. In the application to radar f--2a
and f2 2b are even numbers, and b is usually an integral multiple of a.

In statistics the quantity f2to/ft is customarily denoted by F, and the distribution
of probabilities q for h 0 is called the "noncentral F-distribution." To keep our

_..1expressions simple we deal with to instead, and we set a 1/2fl, b f. Under the null
hypothesis (h =0) the related statistic x to/(to + 1) has the beta-distribution [10]

(1.4)
f(x)=[B(a, b)]-’xa-’(1-x) b-’,

r(a)r(b)
B(a,b)= 0<x<l.

F(a + b)

Tables of the percentage points of F and x for A 0 exist 10], 11], and Pearson 12]
has tabulated the associated cumulative probability.

The bilateral t-distribution with f degrees of freedom is a special case: f 1,
f =f, to t/f, where to is the decision level for the bilateral t-test with size

Here =/x/ s with

cr Pr (Itl > tol Ho) q(0, t/f; l,f).

f
s2=f-I x,

k=l

where x, x,..., xs, and /x are independent normal random variables with equal
variances rz. The f variables x, x2,’’ ", xs always have mean zero. Under the null
hypothesis /x has mean zero; under the alternative it has mean /2. The power of the
test is then

/3 Pr (It] > to] H,) q(A, t/f; 1,f)

and the noncentrality parameter is A =/22/2tr2.
Computation of the power function q(A, to; 2a, 2b) has been treated by a number

of writers [2-1, [4], [5], [8], [13]-[15], but only sparse tables exist [2], [4], [16]. When
b 1/2f2 is an integer, finite algorithms requiring the summation of b terms whose values
can be computed recursively are available [2], 13]-[15]. A general series representation
has been given by Robertson [8],

l_q(A, to;2a, 2b)=e_xa(l_x)b =F(b)F(a+l+n)X i=o -.’
Ai

(1.5)

to+l’

which holds for nonintegral values of a and b as well. The terms of this series can be
computed recursively,

where

q(A, to 2a, 2b) Y f,h,,,
n=0

1.7) ho do e-’ h, h,, + d,,, d,, =-A d,,_

x(1-x)b a+b+n-1
(1.6) fo f, Xfn_l,

aB(a, b) a + n

NONCENTRAL F-DISTRIBUTION BY CONTOUR INTEGRATION 507

By rearranging the order of summation we obtain an alternative algorithm

(1.8) q(A, to 2a, 2b) a +
n=l

with d. computed as in (1.7) and

(1.9) gl =fo, g,,+ g,, +f,.

the f,’s being computed as in (1.6). The value of the size a needed for (1.8) can be
determined from [8]

a q(0, to 2a, 2b) q(0, to-’, 2b, 2a)
(1.10)

Xa(x)b n F(a + b + n) to

o r(a)r(b + + n)
(1-x)", x-

to/l

For the sake of accuracy one should compute whichever probability q or 1-q is the
smaller.

Tang’s algorithm [2], which evaluates the probability 1-/3 for integral values of
b, sums b terms that are computed recursively; and when b >> l, round-off error may
introduce a large relative error into the value of/3 when /3 is near 0. Both Tang’s
algorithm and Robertson’s [8] may suffer from underflow or overflow when the
noncentrality parameter 3, is large because of the presence of the factor e-x. For
f =f2 7, for instance, and a l0-4 (to 30.477), the value of h for/3 0.999 equals
376.72; in cases such as this, special arrangements to handle e-x and the partial
exponential series Eihi/i! in (1.5) are necessary. Robertson [8] pointed out that for
the sake of accuracy one ought to compute the partial exponential series in (1.5) by
starting with its largest term and summing in both directions when n >> h >> l; this
precludes using the simple recursions in (1.6) and (1.7).

Because of these difficulties, we have investigated a method of computing the
central and noncentral F-distributions by numerical contour integration in the complex
plane; it is described in 2. Good accuracy over a broad range of parameters can be
attained with relatively few steps of numerical integration, and a bound can be set on
the truncation error that permits a simple rule for stopping the numerical integration.
The method resembles that used by Lugannani and Rice for computing the density
function of the ratio of quadratic forms in normal variates 17], of which the noncentral
F-distribution can be viewed as a special case. Their concern was focussed, however,
on quadratic forms built on nondiagonal and indefinite matrices, and they did not
treat computation of the cumulative distribution in any detail. In the final section we
show how the search for the value ofthe noncentrality parameter h yielding a prescribed
power /3, or for the value of to yielding a prescribed size a, can be facilitated by
beginning with a Laplace approximation to the contour integral.

2. The contour integration. The power /3 of the hypothesis test is equal to
Pr (X/r2>0), and we calculate it from a contour integral for the inverse Laplace
transform of the moment-generating function (m.g.f.) of sc Xo"2. This m.g.f, is easily
derived from those of the random variables 2 2x and y appearing in (1.1),

E[exp (-1/2zx)] (1 + o’z)-’/2 exp -2(1 + o-2z)
(2.1)

E[exp (-1/2zy2,,)] (1 + tr2z) -’/2,

508 CARL W. HELSTROM AND JAMES A. RITCEY

and because these random variables are independent,

(2.2) h(z)=E(e-e)=(l+z)-(1-wz)-bexp -l+z
with the noncentrality parameter A given as in (1.3). The probability density function
of X/o is then

c+ ix3

(2.3) fe(sc) h(z) ez
dz

-i 2i

by the inversion formula for Laplace transforms; the contour of integration runs parallel
to the imaginary axis and crosses the real axis between the singularities of h(z) at -1
and -. The power fl of the hypothesis test is then

q(, ; a, abl (a
(.4

Z-(l+z)-a(1--z)-b exp --l<c<0._
l+z 2i’

We take c=Re z<0 in order to integrate ee in (2.3) over 0<<. One uses (2.4)
for values of q < . For q > one calculates instead the complementary probability

q(a, ; a,b [(
2-1(l+2)-a(1--2)-b exp 0<c<

c-i 2i’

The magnitude of the integrand decreases along the contour of integration most
rapidly in each direction from the real axis if the contour passes through a saddlepoint
ofthe integrand. Saddlepoints exists for (2.4) and (2.5) at z u and z ug, respectively,
-1 < u< 0, 0 < ug < -1, which lie at minima of the phase"

(2.6) Cb(z)=ln[(+z)_lh(z)]=_aln(l+z)_bln(l_wz)_ln(+z)_ A___z
l+z

of the integrand as z moves along the real axis from -1 to fO -1. Here (+z) -z when
(2.4) is being integrated and the saddlepoint is at z=u<0; (+z)= z when (2.5)
is being integrated and the saddlepoint is at z u > 0. These saddlepoints are the
roots of

a cob
O’(u) A(1 + u)-2-- 0,

l+u 1-wu u
(2.7)

--1u U’o, -l<u<O, u ug, O < uo < OO

They can be expeditiously calculated by Newton’s method, a trial value of Uo being
replaced by

q"(Uo)
(2.8) Uo - Uo q"(Uo)’

where O"(u) is the second derivative of the phase in (2.6).
An alternative method for locating the saddlepoint sets v Im z equal to some

small positive number e and searches for the value of u Re z at which Im O(u + ie)

NONCENTRAL F-DISTRIBUTION BY CONTOUR INTEGRATION 509

f(u) 0. The secant method can be used, a trial value Uo being replaced by

f(Uo)AU
(2.9) Uo - Uo-f(Uo+ AU)-f(Uo)
with Au an increment of the order of 0.1 of the width of the interval on the Re z-axis
where the saddlepoint lies (1 on the left, to- on the right). We found e 10-4 a suitable
value. The position Uo of the saddlepoint is not needed to high accuracy. This method
utilizes the same routine as is needed to compute the values of the integrand exp (z)
along the path of integration and thereby economizes on memory occupancy, a
consideration when the computations are being carried out on a hand-held program-
mable calculator.

Evaluation of cumulative probabilities by numerical integration along a contour
in the complex plane was demonstrated by Rice [18], who used contours passing
through the saddlepoint not of z-h(z), but of h(z), and limited the applicability of
the method to the far tails of the probability density function; see 19]. As in 18], we
carried out the numerical integration by the trapezoidal rule, whose advantage for
numerical integration of infinite integrals of analytic functions has been described by
Rice [20]. As in 18] the initial step size was taken as

Av ["(u0)]-/,
and the step size was halved until the result stabilized to the number of significant
figures desired. When the alternative method (2.9) for locating the saddlepoint is used,
the value of the second derivative "(Uo) can be estimated with sufficient accuracy from

(2.10) "(Uo) 2 Re [(Uo)-(Uo+ iv)]/v2

by taking v of the order of the interval A v anticipated.
Because of the symmetry of the integrand and of the path of integration, the

integral to be evaluated numerically can be expressed as

(2.11)

q(A, to 2a, 2b) -or-1 Re z-(1 + z)-a(1 toz) -b exp +
dv

1, Uo> 0,+ Z=Uo+ iv.
0, Uo < 0,

It is shown in the appendix that when the integration is stopped at a point z Uo+ ivy,
the resulting truncation error is bounded by

(2.12) g_-< I1 + Zllll toZll
2tov,t(a i)---i)] ’/ 111’

where 1I is the absolute value of the integrand at the point z. Because the factor
multiplying III is usually rather less than for a >> 1, b >> 1, the simple rule that the
numerical integration be halted when the magnitude III of the integrand itself falls
below a prescribed fraction of the accumulated sum times h v is adequate in most
instances. A program utilizing this rule was written for a hand-held calculator.

Table lists some results of the numerical contour integration forfl 15, a 0.01,
and f2 15 and 45. The integration was stopped when the ratio of the absolute value

II of the integrand to Av times the accumulated sum fell below 10-7. The column
marked "bound factor" lists the values of the factor multiplying II1 in (2.12) and
indicates that the relative truncation error is of the order of 10-8 or less. The column
labeled "series" gives the results of summing (1.8) or (1.5) by the simple recursion

510 CARL W. HELSTROM AND JAMES A. RITCEY

TABLE
fl: Noncentral F-distribution f 15, a 0.01.

f2 15, to F 3.52219

Numerical
integration

Number Bound Series
of steps factor (1.8) or (1.5)

Number
of terms

20

40

60

80

0.442289617 14 0.104
0.442226950 28 0.104
0.442226946 55 0.103

6.14287653 (-2) 12 0.101
6.14278071 (-2) 23 0.100
6.14278071 (-2) 46 0.100

4.42491611 (-3) 12 0.0999
4.42480089 (-3) 23 0.0996
4.42480089 (-3) 45 0.0994

2.16901762 (-4) 12 0.0993
2.16894276 (-4) 24 0.0993
2.16894276 (-4) 47 0.0992

0.442226930

6.14278044 (-2)

4.42480072 (-3)

2.16894267 (-3)

123

132

145

159

fz =45, to =0.82139, F 2.46418

10 0.572418264 11 0.0938
0.572486848 22 0.0938 0.572486853 34
0.572486853 43 0.0938

20 0.122785853 9 0.0938
0.122781876 17 0.0939 0.122781875 62
0.122781876 33 0.0941

30 1.27422435 (-2) 8 0.0943
1.27422097 (-2) 16 0.0943 1.27422096(-2) 66
1.27422097 (-2) 31 0.0946

40 8.06069499 (-4) 8 0.0945
8.06069144 (-4) 15 0.0954 8.06069135 (-4) 71
8.06069143 (-4) 30 0.0954

method represented by (1.6), (1.7), and (1.9); summation was stopped when the ratio
of the last included term to the accumulated sum fell below 10-8. Because all the terms
are positive, the relative error of the series must be at least of this size. The number
of steps of numerical integration and the number of terms in the series are also listed.

3. The inverse F-distribution. When searching for the value of to =fl F/f2 yielding
a prescribed size or false-alarm probability a, or for the value of the noncentrality
parameter A yielding a preassigned power/3 q(A, to ;fl, f2), it is most efficient to begin
with a crude, but quickly calculated approximation to q(A, to ;f, f2) or its complement.
Such an approximation is obtained by applying Laplace’s method [21], [22] to the
integrals in (2.4) or (2.5), as the case may be,

(3.1)
-1 < Uo < 0: q(A, to 2a, 2b) [27r,,(Uo)]_/2 exp (Uo)

0< Uo< to -" 1-q(A, to; 2a, 2b)J

in which the saddlepoint Uo u or u is calculated by Newton’s method as in
(2.7)-(2.8). The second derivative "(Uo) needed in (3.1) is generated in the course of
this computation, and the phase (Uo) is obtained from (2.6). Alternatively "(Uo) can

NONCENTRAL F-DISTRIBUTION BY CONTOUR INTEGRATION 511

be calculated as in (2.10). One can then apply the secant method to (3.1) until the
value of to or h stops changing by more than, say, one percent, whereupon one switches
to the computation of values of q(h, to;2a, 2b) or its complement by numerical
integration of (2.11), continuing until a sufficiently precise value of to or h is reached.

The starting value of in this procedure can be obtained from the normal
approximation to the statistic : X/tr2, whose mean and variance are obtained by
expanding In h(z) in the neighborhood of z 0,

(3.2)

(3.3)

so that

E()= a-tob+ A,

Var a + to2b + 2A,

(3.4) q(A, to; 2a, 2b) Q(r/) (2r)-1/2 e-’2/2 dt,

(3.5) r/= (a + to2b+ 2a)-l/2(tob- a A).

Thus with r/ the normal variate defined in (3.4), it is only necessary to solve the
quadratic equation resulting from (3.5) for A. Table 2 shows values of A obtained by
successively applying the normal and saddlepoint approximations, along with the final
values of A in typical cases. At most three iterations of the saddlepoint approximation
and two of the numerical integration provided values of A yielding the preassigned
values of the power/3 to six significant figures.

TABLE 2
Percentage points, noncentral F-distribution.

f 15,f2 15, a 10-4, tO F 8.22898

Power Normal Saddlepoint Numerical

q Approx. Approx. Integration

0.1 23.8095 26.1428 25.8389
0.5 54.2174 53.7850 52.1010
0.9 87.9100 87.6929 88.6118
0.99 117.9838 126.3875 126.6475
0.999 141.5369 159.3143 159.4327

fl 15,f2 31, a 10-4, tO 2.35053, F =4.85777

0.1 14.7421 15.3036 15.1008
0.5 28.9333 30.0508 28.7027
0.9 46.4093 45.9502 46.3452
0.99 63.4400 63.6918 63.8256
0.999 77.6389 78.3439 78.4184

To obtain a starting value for to for fixed size a one can similarly try solving the
normal approximation

tob- a rlo(a + to2b)/2
with the normal variate r/o such that Q(r/o) a, but no real solution exists when b >
We found that the initial value of to can be adequately taken as

to (a + al/Zrlo)/ b

512 CARL W. HELSTROM AND JAMES A. RITCEY

when this is less than or of the order of 1. When this turns out to be rather larger than
1, the approximation

o =[bB(a, b)a]-’/b-1,

resulting from taking only the first term of the series in (1.10), can be used instead.

Appendix. The integral in (2.11) is to be evaluated by numerical integration along
a vertical contour on which z Uo + iv. The error incurred by cutting off the integration
at the point z Uo+ iv has absolute value

(A. 1) =Tr- z-(1 + z)-’(1 wz)-’ exp dv,, +

and to this we seek an upper bound.
Applying the Schwarz inequality, we write

(A.2)

2 <= ,rr-2 z-/2(1 + z) exp
2(+ z)

i (X z-l/2(1 WZ)-b exp 2(i z)

2

2

On the contour z Uo+ iv, for v >- v,

(A.3)

exp -2(1 +z) exp -A + Re

=exp -1+(l+uo)+v
A(1 -[<-- exp -A +

(1 +:’v_] l+z]

provided that Uo>- 1, as is the case when Uo is a saddlepoint. Thus the second factor
in (A.2) is bounded as

(A.4)
v,

Izl-lll-zl-2 exp -Re
+z

/’Z! z]-l]l ooz1-2b dv.-<_ exp -l+zJ ,

Calling the integral in (A.4) Jb, we find

(A.5)

zl-lll ozl-2b dv

(Ug+V2)-I/[(1--OOUo)+O2V2]-bdv
DI

<= V- (Uo+vZ)-’/z[1-2oouo+oZ(u+V2)]-bvdv.

NONCENTRAL F-DISTRIBUTION BY CONTOUR INTEGRATION 513

Putting y2= U+ V2, y dy v dr, we get

Jb -< V-1 2tOUo + to2y2)-b dy

(A.6) =< vTl[zl1-1 (1 2toUo + to2y2)-by dy

[2to=(b)v,lz,I I-,oz,l=(-’q-’, b > 1.

The other integral in (A.2) is similarly handled, except that to -1. Hence the squared
error is bounded by

lexp (-Az,/(1 + z,))lq2 a> 1, b>
47r-to2(a 1)(b-1)t,lz,l-I + Zll"-’)l]- oz,I =-’’

and

(A.7)

where

lexp (-Az,/(1 + Zl))l
27rto[(a 1)(b- 1)]’/:v,lz,I]1 + z, l1 b-1

2tov,[(a- 1)(b- 1)]
III,

(A.8) III= r-’ zTl(1 + z)-’(1 toZI) -b exp + Zl/

is the absolute value of the integrand at the cutoff point. In this analysis it is unnecessary
for Uo to be the saddlepoint of the integrand, provided that for A > 0, Uo>-1; for
A 0 there is no such condition.

REFERENCES

1] S. KOLODZIEJCZYK, On an important class ofstatistical hypotheses, Biometrika, 27 (1935), pp. 161-190.
[2] P. C. TANG, The powerfunction of the analysis of variance tests with tables and illustrations of their use,

Statistical Research Memoirs, 2 (1938), pp. 126-149+8 tables.
[3] A. WALD, On thepowerfunction ofthe analysis ofvariance test, Ann. Math. Statist., 13 (1942), pp. 434-439.
[4] P. I. PATNAIK, The non-central X and F-distributions and their applications, Biometrika, 36 (1949), pp.

202-232.
[5] R. L. MITCHELL AND J. F. WALKER, Recursive methods for computing detection probabilities, Trans.

IEEE, AES-7 (1971), pp. 671-676.
[6] A. E. GIBSON, Adaptive detection probabilitiesforfluctuating target models in nonhomogeneous Gaussian

noise, Trans. IEEE, AES-9 (1973), pp. ll3-115.
[7] G. M. DILLARD, Mean level detection ofnonfluctuating signals, Trans. IEEE, AES- 10 (1974), pp. 795-799.
[8] G. H. ROBERTSON, Computation of the noncentral F distribution (CFAR) detection, Trans. IEEE,

AES-12 (1976), pp. 568-571.
[9] R. NITZBERG, Analysis of the arithmetic mean CFAR normalizer for fluctuating targets, Trans. IEEE,

AES- 14 (1978), pp. 44-47.
[10] M. MERRINGTON AND C. M. THOMPSON, Tables of percentage points of the inverted beta (F)

distribution, Biometrika, 33 (1943), pp. 73-88.
I11] E. S. PEARSON AND H. C. HARTLEY, Biometrika Tables for Statisticians, vol. l, Cambridge Univ.

Press, Cambridge, 1962. See Table 16, pp. 142-155, and Table 18, pp. 157-163.
12] K. PEARSON, Tables ofthe Incomplete Beta Function, 2nd ed., Cambridge Univ. Press, Cambridge, 1968.

[13] J. WISHART, A note on the distribution of the correlation ratio, Biometrika, 24 (1932), pp. 441-456.
14] W. L. NICHOLSON, A computing formula for the power of the analysis of variance test, Ann. Math.

Statist., 25 (1954), pp. 607-610.

514 CARL W. HELSTROM AND JAMES A. RITCEY

[15] J. L. HODGES, JR., On the noncentral beta-distribution, Ann. Math. Statist., 26 (1955), pp. 648-653.
[16] E. LEHMER, Inverse tables ofprobabilities of errors of the second kind, Ann. Math. Statist., 15 (1944),

pp. 388-398.
17] R. LUGANNANI AND S. O. RICE, Distribution of the ratio of quadratic forms in normal variates--

numerical methods, this Journal, 5 (1984), pp. 476-488.
[18] S. O. RICE, Distribution of quadratic forms in normal random variablesmevaluation by numerical

integration, this Journal, (1981), pp. 438-448.
[19] C. W. HELSTROM, Comment: Distribution of quadratic forms in normal random variables--evaluation

by numerical integration, this Journal, 3 (1983), pp. 353-356.
[20] S. O. RICE, Efficient evaluation of integrals of analytic functions by the trapezoidal rule, Bell System

Tech. J., 52 (1973), pp. 707-722.
[21] F. W. J. OLVER, Asymptotics and Special Functions, Academic Press, New York, 1974. See pp. 80-82.
[22] C. W. HELSTROM, Approximate evaluation ofdetection probabilities in radar and optical communications,

Trans. IEEE, AES-14 (1978), pp. 630-640.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 3, July 1985

1985 Society for Industrial and Applied Mathematics

002

A TWO-DIMENSIONAL MESH REFINEMENT METHOD FOR PROBLEMS
WITH ONE-DIMENSIONAL SINGULARITIES*

DAVID L. BROWNer AND LUIS GUILLERMO M. REYNA

Abstract. This paper introduces a method for resolving internal layers that can occur in the solutions
of time-dependent differential equations in two space dimensions. Singular features in these solutions that
are essentially one-dimensional in nature but are not oriented with the computational mesh are resolved
using one-dimensional mesh refinement techniques with a procedure that is similar to an ADI method. A
careful interpolation procedure assures that the resolution obtained in each ADI step is not lost in the
succeeding ADI step.

Key words, two-dimensional mesh refinement, internal layers, shock resolution, alternating direction
implicit method

1. Introduction. In this paper we discuss a numerical method developed to resolve
internal layers which can occur in the solutions of time-dependent problems. As an
example, the two-dimensional Burgers’ equation exhibits behavior of the type we wish
to discuss: We consider

1.1 Ut + (1/2 U2)x + (1/2 U2)y s U,, + Uy
on -oo _<_ x, y _--< oo, _--> 0 with initial values U(x, y, 0) given. Here U U(x, y, t) is the
dependent variable, 0 < s << is a small parameter and subscripts denote partial differ-
entiation. Depending on the initial conditions given, the solutions of (1.1) can exhibit
either boundary layer or internal layer behavior, i.e., regions of rapid change in the
solution can occur in locally one-dimensional regions of width O(s), while the solution
everywhere else varies on a length scale which is O(1). The internal layers which occur
in the solutions of (1.1) are typically referred to as viscous shock profiles with s being
the viscosity coefficient.

In some problems, such as compressible fluid flow, it is often the case that the
accurate resolution of the viscous shock profiles is unimportant; only the size of the
jump at the shock (and hence its speed) has any significant effect on the smooth part
of the solution. Methods that give an accurate representation of the solutions to these
types of problems without resolving the details of the shock structure can be found
in, for example, Engquist and Osher [4], Osher and Solomon [12], Harten and Lax
[6], and Chorin [3]. The purpose of this paper, however, is to present a method which
can be applied to problems in which the detailed structure of the internal transition
layers is important. Such problems arise, for example, in the study of chemically
reacting fluids, where the details of the transitions can influence the speed of propaga-
tion of the reaction fronts. Methods for one-dimensional problems of this type have
been considered by Brown], and Miller, Doss and Miller 11]. Brown uses adaptively
determined local nonuniform moving mesh segments to resolve the moving features
with rapid variation. This moving mesh is embedded within a much coarser mesh with
meshwidths that are appropriate for accurately representing the smooth parts of the

* Received by the editors July 14, 1983, and in revised form January 23, 1984. This research was partially
supported by the Office of Naval Research under contract N00014-80-CO076. Computer time was provided
by the Stanford Exploration Project (Stanford University Department of Geophysics), the National Center
for Atmospheric Research, and on the California Institute of Technology Applied Mathematics Department
Fluid Dynamics VAX.

" Department of Applied Mathematics, California Institute of Technology, Pasadena, California 91125.

* Courant Institute of Mathematical Sciences, New York University, New York, New York 10012.

515

516 D.L. BROWN AND L. G. M. REYNA

solution. It is essentially this method that will be extended in this paper to the two
space-dimensional case. We will restrict our consideration to problems whose solutions
exhibit rapid transitions that are essentially one-dimensional in nature, such as viscous
shock profiles. For brevity, we will often refer to such a feature as a "shock", but with
the understanding that for the reasons discussed above, we are always interested in
its viscous profile.

The method for two-dimensional mesh refinement that we will discuss in the
following sections was originally suggested to us by H. O. Kreiss [10]. It uses the
one-dimensional finite difference approximation and mesh refinement procedure dis-
cussed by Brown [1] within a "splitting" or ADI procedure to solve problems in two
space dimensions. The feature of this algorithm that makes it unique among mesh
refinement procedures is that one-dimensional mesh refinement techniques are applied
directly to two-dimensional problems. A careful interpolation procedure is used to
transfer information from the grid lines in one direction to those in the other direction
in the calculation without degrading the resolution of the solution obtained on each
set of one-dimensional meshes. This method is explained and discussed in more detail
in 2 through 4. Numerical examples illustrating the method are included in 5.

2. The mesh refinement procedure. For a problem in two space dimensions in
which the shock line is very nearly linear and oriented so as to be parallel to one set
of coordinate lines, it is clear how to implement a mesh refinement in order to resolve
its viscous profile. If, for example, the shock lies essentially parallel to a line x--Xo,
a refinement in the direction normal to the shock (the x-direction) could be made (see
Fig. 1). No refinement would probably be necessary in the y-direction in this case. It

[tshock line

FIG.

is clear, however, that this will not always be true. We will not always have the freedom
to choose the orientation of the computational mesh in such a way as to have
"one-dimensional" rapid transitions oriented with the mesh. If the singular domain
associated with the shock was not oriented with the mesh, then adding lines to refine
the mesh would result in lines being added in both the x and y directions. In particular,
we would also be refining the mesh in regions where the solution is smooth (see Fig.
2). This large number of added points in the mesh can clearly be reduced if we truncate
the added lines so that they do not extend into smooth parts of the solution (see Fig.
3). The reduction in the number of meshpoints will, however, be at the expense of
programming complexity.

TWO-DIMENSIONAL MESH REFINEMENT 517

#shock line

mesh refinement
not needed here

mesh refinement
needed here

FIG. 2

11-

FIG. 3. Truncated mesh lines.

A more rational approach to local mesh refinement is that of composite meshes.
In this technique, local oriented meshes are embedded in the coarse mesh and interpola-
tion is used to couple the solutions on the different meshes when solving the differential
equations. Berger and Oliger [2], and Gropp [5] have used local oriented rectangular
moving grids to accomplish this. Figure 4 illustrates the basic idea. With a simple

FIG. 4. Method of Berger, Oliger and Gropp.

extension of the grid generation approach of B. Kreiss [8], curvilinear grids could also
be embedded in the coarse rectangular grid in such a way as to resolve a shock (see
Fig. 5). Again interpolation would be used to connect the solutions on the two grids
together.

Let us now consider the numerical solution of Burgers’ equation in two space
dimensions (1.1). We approximate the time derivative in (1.1) using the "implicit

518 D.L. BROWN AND L. G. M. REYNA

FIG. 5

Euler" approximation, giving

euxx(x, y, t)+ eUyy(X, y, t)+f(u(x, y, t)))c+f(u(x, y, t))y- U(x, y, t)
(.l)

k
u(x, y, t- k)

where u(.,., is an approximation to U(.,.,), k is the time step and for convenience
we have defined f(u):=-1/2u -. For numerical purposes it will also be necessary to
restrict the domain of integration to be finite; we choose -1 =< x, y-< l, 0_-< t_-< T for
some finite T. In addition to the initial conditions u(x, y, O)= U(x, y, 0) we therefore
must also specify boundary conditions: u(x, :el, t) given for -1 -<x_-< and u(+/-l, y, t)
given for _-< y _-< 1.

A convenient way to implement an implicit difference scheme such as (2.1) is
through operator splitting. This reduces the computational problem to a sequence of
one-dimenSional problems" We introduce an "underlying" coarse mesh {xi, Yj}o.orV4 and
solve by difference approximation the equations

(2.2a) eaxx(X, yj)+f((x, yj))-- (x, yj)= -- u(x, y, t- k)

and

for j=0, 1,. .,M

(2.2b) eUyy(X,, y, t)+f(u(x, y, t))y-- u(x,, y, t)= - t(x, y) for i=0, 1,. ., N
with initial conditions u(x, y, O)= Uo(X, y). (This in general introduces an additional
error into the solution which is O(k).)

Note that with the obvious notation, each of equations (2.2) is of the form

d2w d
(2.3) e--;--5-+--7-[g(w)]+ bw r(z), w w(z),

az- az

on _-< z _-< with w(-), w(given. This is a singularly perturbed two-point boundary
value problem. An extensive analytic theory exists for equations of the form (2.1) and
(2.3) (see for example Kevorkian and Cole [7]). Numerical techniques for accurately
resolving the features of solutions of problems of the type (2.3) have been developed
by B. Kreiss and H. O. Kreiss [9]. We will use a modification of this method due to
Brown [1, Chap. 3]. Briefly, each of the nonlinear problems (2.3) is solved by a
functional Newton iteration. The linear problems which arise in the iteration are solved
using a weighted one-sided difference approximation together with solution-adaptive
mesh refinement. The details can be found in Brown [1].

TWO-DIMENSIONAL MESH REFINEMENT 519

Let us suppose that in the initial conditions Uo(X, y) there is a region of rapid
transition oriented obliquely to the mesh. We should begin by solving (2.2a) on each
of the lines y yj, j 1, 2, , M- 1. Because of the rapid transition region, automatic
refinement will occur so that the solution of each of those one-dimensional problems
would be resolved. We then solve equation (2.2b) on each of the lines x xi, i=
1, 2,..., N-1. Again automatic mesh refinement will occur in the region near the
rapid transition. Note, however, that the right-hand side of the equation for u(xi, y, t)
depends on values of the computed solution t(xi, y) at the previous step. If points are
added to the one-dimensional mesh between the coarse mesh lines y yj, this means
that we will need values of at points where they have not been computed (see Fig.
6). Simple linear interpolation parallel to the coordinate lines will not work well in
general because the function being interpolated is not sufficiently smooth. This can be
made clear by the following example (refer to Fig. 7): Consider the function f(x, y)
defined by

f,
f(x, y)=

f2
if x < 2(y yl) + X2,

otherwise,

where fl #f2, for Yl <Y<Y2. We are interested in determining values f(,y) for
Y, < Y < Y2 when we only know the functions f(x, Yl) and f(x, y2), where x, < < x2.
(This corresponds to the situation in Fig. 6 as well.) Linear interpolation along the
line x will clearly give an inappropriate answer if If,-f21 is large. Using simple

tlsho k Iine

-_.-

values of a only computed these lines

FIG. 6

rfinement

j the shock;
values of
needed at these

ined points.

Y Y2

Y Yl

f (x,y) f f(x,y) f2

FiG. 7

_x

520 D.L. BROWN AND L. G. M. REYNA

linear interpolation along x ; we will always get a value between f and f2, while
the correct value should be either f or f2. To remedy this problem, we can eliminate
the restriction that interpolation always be made along lines of constant x. We can get
a reasonable value for f at the point P if, for example, we interpolate linearly along
the straight line between (xa, Yl) and (Xb, y2). The interpolation procedure we have
implemented is not much different from this simple explanation. However the condi-
tions under which it will give accurate results and the technique for its practical
implementation must be considered carefully. This is done in the next section.

3. The interpolation procedure. In this section we consider the problem of how to
accurately reconstruct a function defined on only a finite number of appropriately
chosen parallel lines, or cross-sections. The function is assumed to consist of large
smooth regions separated by one or more nearly one-dimensional regions of singular
behavior such as a shock profile. On each cross-section the function has been fully
resolved by a sufficiently refined mesh. The method we describe is a completely local
procedure. It is second order accurate in terms of the characteristic scale of the smooth
parts of the solution (i.e., O(h2)). The shape of any front is approximated by piecewise
straight lines and the smooth parts of the solution by piecewise linear functions. Thus
in order to interpolate Uo at the point (Xo, Yo) we only use the values Uo(X, y,/) and
Uo(X, y,), where y,, <=yo<=y,,+. It is clear that the localness of the procedure is a
particularly useful feature when the singular domain is topologically complex, for
example when there are two or more possibly intersecting shocks.

Consider now the function Uo(X, y) defined on the strip (-o% oo) x[0,]. Then we
wish to determine I(uo)(Xo, Yo), the interpolant of the function Uo(X, y) at (Xo, Yo), from
the function values of Uo for any x and for values of y that belong to the sequence
0=yt <’" "< yN 1.

Our aim is to interpolate using function values obtained from points which can
be joined by a smooth curve lying entirely on the same smooth part of the solution.
One should note that the points cannot lie at too great a distance from each other.
From a practical point of view this means that the shock lines cannot be oriented too
nearly parallel to the lines y yj. This is not a serious restriction, however, because it
corresponds to the situation illustrated previously in Fig. and can be taken care of
using conventional mesh refinement. In the context of our mesh refinement procedure
we would handle this case by simply adding one or more lines to the "underlying
coarse mesh" y yj.

The method depends on the following assumptions about Uo(X, y):
(i) The function should be smooth at distances greater than e away from a nearly

one-dimensional region where there is singular behavior. Here, e is a positive number
much smaller than the natural scale corresponding to changes of Uo(X, y) outside of
this region. (Note that this e is not necessarily the same one as appears in the differential
equation (1.1), although if the function being interpolated is a solution of (1.1) then
the two are certainly related. In this section we use e to denote the scale of the region
of singular behavior.) If the function Uo is only known at discrete values, we then
assume that away from this singular region a mesh of size h completely resolves the
function, where h >> e.

(ii) We assume that the singular region is the union of a finite number of smooth
curves. In this way the curves can be isolated from each other, and if they intersect,
the number of possible intersections is finite.

(iii) We assume that the singular behavior is of the shock type, i.e., a rapid but
essentially monotone transition (and not a high frequency oscillation) matching two

TWO-DIMENSIONAL MESH REFINEMENT 521

different smooth states. We will use this assumption in the method in order to define
the local orientation of the shock.

Referring to Fig. 8, the procedure for obtaining an interpolated value of Uo at
(Xo, Yo) is as follows: Denote Pm =(Xo, y.) and P+, =(Xo, Y.+l) and introduce the
jump in function values from top (y y./,) to bottom (y y) lines and the horizontal
curvatures:

(3.1a) 6Uo(., m)= Io(’, Ym+l)- Uo(;,

O2Uo0210 (’, Ym+l)-- (’, Y.,)(3.1b) :(., m)=
Ox2 Ox2

We also introduce the test function

(3.!c) T(Y, m) max (6Uo(Y, m), ()?, m)).

slope s

Pm+l xol % 1Xm+l xI
Y Ym+l

Yt’ --// / Nslope s

X X
0

FIG. 8

We have two general cases:
Case I. T(xo, m)<-_ flh, where/3 is some positive constant defined by the require-

ment that away from the singular region, the magnitude of the gradients of Uo(X, y)
are strictly bounded by /3. In this case we assume that there is no shock structure
nearby and we perform linear interpolation:

(3.2) I(uo)(Xo, Yo)=
Yo-Y, Uo(Xo, y,+l)+ Y"+-Y Uo(Xo, y,).

Y,+ Y, Y,+ Y,

Remarks.
l) Usually there is no need to interpolate in this case: there would be no need

to know interpolated values of the right-hand sides of (2.2a) or (2.2b) if there is no
shock structure nearby.

2) In a higher order approximation we should look at the T(), r), for) Xo- h, Xo
and Xo+ h, as well as for n3 m l, m and m + l, to determine the existence of a shock
in the vicinity of the points where we are interpolating.

3) Note that, by definition, T(., measures both the size ofjumps in the solution
and the curvature of the solution near the jumps. Practical experience has indicated
that it is important to monitor not only the function values but also the curvature so
that the top and bottom of the shock profile are not deformed by the interpolation
procedure.

Case II. T(xo, m) > h (i.e., there is a singular structure in the vicinity). We have
two different cases according to size of the jump 6Uo(Xo, m).

Case II.a. (See Fig. 8) If 6Uo(Xo, m) > flh, then the shock line crosses the segment
P,, P/]. The aim now is to isolate the region ofsingular behavior. Practical experience

522 D.L. BROWN AND L. G. M. REYNA

has shown that it is best to define this region with two curves. In Fig. 8 these are the
lines defined by [(x, Ym), (X, Ym+)] and [(Xo, Ym), (Xll, Ym+)]- For convenience we
assume that

(3.3) 8 Uo(Xo, Ym+)- Uo(Xo, Ym) > O.

for T--O, byWe now determine xv,
(3.4a) Uo(X,, Ym+) Uo(Xo, Ym+l)- 161,

o bywhere we arbitrarily choose lo and Ii . In a similar way we determine xv

o(3.4b) Uo(Xv, Ym) yo(Xo, Ym) + I,61.

(The slope of the function Uo in the shock region is of O(e-) and so a change in the
constants lv will only produce an O(e) change in the determination of the points x
which themselves determine the direction of the shock.)

We now make sure that the points obtained are close enough to each other, that
is, we compute

(3.5a) (d,)2 (Ym+, Ym)2 + (xO X)2,

(3.5b) (db)2 (Ym+, Ym)2 + (X2o XI)2-

If either d, or d is greater than 2h, or if it is not possible to determine any of the
points xv, for y =0, and o-=0, 1, then there is not enough information to perform
an accurate interpolation. In this case, we need to obtain the values of Uo(X, fi), where
37 1/2(Ym + Ym+) and -oo < x < oo. In the shock problem this is done by going back to
the last half time step computation. (See Figs. 9 and 10 for some possible situations
in which this procedure asks for more information.)

Y Ym+l

/
Y Ym

X X0

FG. 9

shock line

Y Ym+l

Y Ym
X X

0

FG. 10

TWO-DIMENSIONAL MESH REFINEMENT 523

We must still consider the possibility illustrated in Fig. 11, that is, when two or
more singular regions come together at one point. In order for the method to recognize
this situation we must also make sure that

lUo(X + h, Ym+l)- U0(X0, Ym)l h,

and similarly that

]Uo(X h, Ym)- tto(Xo, Y,,+l)[-</3h.

(The example in Fig. 11 would fail the second test because of the presence of shock
2.) If either of these tests fail, we must again ask for more information.

FiG.

Having ruled out the anomalous cases we now determine the slope of the segments
joining the points that lie on the same part of the smooth solution

Ym+ Ym(3.6a) s, xO_x

Ym+ Ym(3.6b) sb xl-x
and the intersections of the segments with the vertical line through P,, and Pm+
(3.7a) y,=s,(x--x)+y,,,,

(3.7b) Yb Sb (X xO0) + Ym.

Defining s in the following way

for Y,,+l >- Yo >= Yt,St

Yo Yb Yt Yo(3.8) S St + Sb for y, >-- Yo >- Yb,
Yt Yb Yt Yb

s for y

we compute the intersection of a straight line through the point (Xo, Yo) with slope s

with the top and bottom lines y y., and y Ym+

(3.9a))rn+l Xo-’-Ym+ Yo

(3.9b) ,, Xo--

524 D.L. BROWN AND L. G. M. REYNA

Finally the required interpolated value I(uo)(Xo, Yo) is determined by linear interpola-
tion using the function values of Uo at the points (:.. y.) and (./, y,/):

(3.10) I(uo)(Xo, Yo)=
Yo-Y, Uo(:,,,+, y,,,+)+ Y,+l-Yo Uo(.. y,).

Y,.+ y,. Y,,+

Case II.b. If 6Uo(Xo, m) <- h, we then have a shock close to either point (or close
to both points). Introduce

g(Y, m, n)= max (I Uo()?, Ym)- UO(Y + h, y,)l, lUo(Y, y,,)- Uo(Y- h, Y,)I);

and define 6=max (6(Xo, m, m+ 1), 6(Xo, m+ 1, m)). If 62<_-/3h then we need more
information (see the discussion following equations (3.5)). Otherwise we proceed as
in Case II.a looking for either a vertical or an oblique or curved shock, as in Fig. 4.
If it is not possible to find any such structure we again need extra information.

Notice that the interpolation procedure does not produce a continuous function
of (Xo, Yo); this is because a different interpolation method is used in regions near the
shock than in regions away from the shock. Recall that near the shock, linear interpola-
tion along lines essentially parallel to the shock is used while away from the shock,
linear interpolation parallel to the underlying coarse grid lines is used. The interpolation
method chosen changes discontinuously as a function of the distance from the region
of singularity. This is of no practical importance, however, because the interpolant is
needed and computed at only a discrete set of x values.

In the cases corresponding to Figs. 9 and 10 the interpolation method will fail
and will ask for extra lines y const, to be added until 6y, the distance between two
consecutive horizontal lines, is O(e), the width of the shock. Note that this failure is
not due to the fact that we are representing the front with straight line segments. If
we were to use a higher order fitting method to represent the front and even if we
assume that its shape is known exactly, we would still need to add these extra horizontal
lines. This is explained as follows: In order to find the value of the interpolant at
Po=(Xo, Yo) (Fig. 10), we perform some interpolation along a curve parallel to the
front. The interpolation formula will link values of the functions at points such as P
and P2, and possibly points on other horizontal lines. The distance between these
points is O(6y/2) in the cases of Figs. 9 and 10. This implies that if we only restrict
ourselves to interpolate using points that are O(h) apart from each other then we must
restrict 6y to be O(h). Hence, a higher order fitting method will reduce the number
of operations when compared to the second order fitting method we have described,
but there will be no saving in the number of coarse mesh lines needed.

4. The interpolation error. In order to understand the interpolation error, we
consider the problem corresponding to e 0 (that is, an actual discontinuity) and to
only one shock. In this case x x Xb, X X X, and s, Sb S where Xb corresponds
to the intersection of the shock line with the line y--Ym and similarly for x, (see Fig.
8). Without any loss of generality we can consider Xb < X,. In this case the interpolant
evaluated at (Xo, Yo) (for y,, <= yo<-y,,+) is defined by equation (3.2) when Xo>-X, or
Xo<-Xb, and by equation (3.10) when Xb <Xo <X,.

It is not possible to obtain an error formula in the maximum norm. The existence
of such an error formula would imply that it is possible to determine the shape of an
arbitrary curve on the plane from a finite number of its points. Nevertheless we have
the following obvious local error estimates (see Fig. 12)" the error is O(y2) away from
the shock (region I), O(6y/1 +s-) near the shock region (region II), and O(1)
between the shock and the chord [(Xb, y,,), (X,, y,,,+)] (region III). The area of this last

TWO-DIMENSIONAL MESH REFINEMENT 525

Y Ym+l

region I

/l //W -region III

Xm// Xb NN
shock curve

FIG. 12

region is A=1/2K-2(O-sin(O))(l+O(6y)) where K is a value characteristic of the
curvature of the shock front when the front lies between the lines y Ym and y y,,+,,
and 0 is the change in the angle of the tangents of the shock front as the shock moves
from y=y,,, to Y =Y,,+l. The angle 0 is determined by sin (1/20)=1/2 6y/1 +s-2.

In order to have an accurate interpolation, the shape ofthe front has to be resolved.
We can assume that this has been achieved when A, the total area of regions of type
III, is O(h2). Now, when 0 is small and Isl> 6y we have that A K(/1-I-S-2 6y)3.
Thus in order to resolve the shock we need A 6y/s O(h2). In this way when s O(1)
and when the shock is a smooth curve (i.e., when we have an upper bound for), the
condition on the area amounts to 6y! s being O(h). This relation between the orientation
of the shock and the distance between two consecutive horizontal lines was enforced
by making d, and db smaller than 2h. On the other hand when Is] < 6y, we have that
A y; hence, in this case we need 6y= O(h). This implies that we should stop
adding extra horizontal lines when 6y is O(h2).

5. Numerical examples. In this section we present some numerical examples
designed to test the interpolation procedure discussed in the last two sections. In
particular we include some examples where the interpolation procedure has been used
in conjunction with operator splitting to solve (1.1) for two sets of initial data.

Example 1. To test the performance of the interpolation procedure, we first used
it to interpolate two known functions containing a region of rapid transition and
compared the results of the interpolation with the original function. The functions
considered were

Uo(X, y) tanh ((y -1/2x--1/2x)/e)

and

(5.2) Uo(X, y)= tanh ((y-x)/e)-1/4sin (rr(x+ y))

on 0=< x-< with e .02. The function (5.1) models the case where the shock line is
curved; (5.2) models the case where the smooth part of the function is not constant.
We began by calculating the function Uo at specified points X=X(kj)[0, 1], k=
1, 2,""", nj along uniformly spaced parallel lines y yj, j 0, 1,..., N, N 20. We
also calculated the function along the additional boundary lines of 0 <-x, y_-< i.e.,
x 0, x 1. The interpolation points were specified in such a way that the function
was "resolved" on each cross-section.

In the first step of the interpolation, the function Uo(X, y) was interpolated onto
N- uniformly spaced cross-sections x Xl, 1, 2, , N- (perpendicular to the

526 D. L. BROWN AND L. G. M. REYNA

original cross-sections). Again this was done at points along these cross-sections that
were chosen so that the function would be well-resolved. We denoted the resulting
function by u(x, y).

This process was then repeated, interpolating the function u(x, y) back onto the
original cross-sections y yj, obtaining a function u2(x, y) defined at points x Xkj) as
above.

Let e(x, y)= u2(x, y)-Uo(X, y); then we introduce the maximum norm, the L-
norm and L2-norm of the error by

lie(x, y)ll max e(x), Y)I,

(5.3) lie(x, y)ll (e(xk), y))2hzk/N
j,k

where

lie(x, y)lll E le(x(, y)[h,l N,
j,k

)-x(o) if k=0,
(5.4) h,k Xk)_ Xkj)_, if k 0,

is the "meshwidth" associated with the kth interval on the jth line y y. The errors
observed for the functions (5.1) and (5.2) were

(5.5) Ile11o--.056, Ile112--.0084, Ile11,=.0032,

and

(5.6) 11e11=.024, Ile11=.0047, Ile11,=.0022,

respectively.
Figures 13 and 14 show the results ofthis interpolation graphically for the functions

(5.1) and (5.2), respectively. Figures a show the original function, Figs. b the interpolant
and Figs. c the interpolation error for each of these examples. The scale has been
magnified somewhat in the error plots. We see that the function and its interpolant

FIG 13a. Function to be interpolated. FIG. 13b. The interpolated function.

TWO-DIMENSIONAL MESH REFINEMENT 527

FIG. 13c. The interpolation error.

are difficult to distinguish; in particular, the transition region in the functions is quite
well resolved even after being interpolated twice. As we would expect, the error is
confined to the region of singularity in the function.

Example 2. We used our interpolation procedure in conjunction with operator
splitting to solve the two-dimensional Burgers’ equation with initial conditions that
result in stationary rapid transitions oriented obliquely to the mesh.

FIG. 14a. The function to be interpolated. FIG. 14b. The interpolated function.

FIG. 14c. The interpolation error.

528 D.L. BROWN AND L. G. M. REYNA

2D Burgers Equation
eps 0,00250 FIG. 15a0,00000

FIG. 15b

PO Burgers Equat ion
eps 0.00250

1.ooooo FG. 15c

TWO-DIMENSIONAL MESH REFINEMENT 529

2D Burgers EquoLion eps 0.002500 0.000000

FIG. 16a

FIG. 16b

2D Burgers Equation 0.002500 0.200000

FG. 16c

530 D.L. BROWN AND L. G. M. REYNA

2D Burgers Equotion 8.882588 1.00@800

FIG. 16d

2D Burgers Equation @.@02S@@ 1.08@@8@

FIG. 16e

Figures 15 show the initial data and solution at time for a computation using
this method. The initial data (Fig. 15a) is a ramp oriented obliquely with respect to
the mesh connecting the constant values u + 1. Fig. 15b shows the solution after the
last sweep in x and Fig. 15c shows the solution after the last sweep in y. The plus
signs "+" indicate the locations of the mesh points in the final refined mesh. Lines
are also drawn in the direction perpendicular to the sweep direction (e.g., in the
y-direction in Fig. 15a) to indicate the location of the underlying coarse mesh. (Note
that Fig. 15c is reversed in orientation from the other two plots in this series.)

Figures 16 show the initial data and computed solutions at time 0.2 and time
for another example using this method. The coarse mesh in this case was not a

uniform one, but was finer near the center of the domain where the corner of the
"wedge" occurs. This was done in an attempt to resolve that corner. The initial data
also consist of ramps connecting the two constant states u + 1. The two ramps are
oriented in such a way that the one on the left evolves into a shock while the one on
the right forms a contact discontinuity. Because of the dissipative terms in Burgers’

TWO-DIMENSIONAL MESH REFINEMENT 531

equation, of course, the shock has finite width, and the contact discontinuity becomes
wider with time. In this series of plots, the orientation is the same for all sweeps shown.
The meshpoints are indicated with small squares and plus signs. The squares denote
meshpoints that lie on the underlying coarse mesh. Figures 16b and 16d are the solutions
after the x-sweep at 0.2 and 1.0, respectively; Figs. 16c and 16e show the solutions
after the corresponding y-sweeps. In all the computations presented in this section,
e-1/400, and the time step was k-1/20. Note that, in particular, the intended
objective of this method, to resolve steady two dimensional rapid transitions, has been
realized.

Acknowledgment. We would like to thank Michael Naughton for carefully reading
the manuscript and making several helpful comments.

REFERENCES

1] D. L. BROWN, Solution adaptive mesh procedures for the numerical solution of singular perturbation
problems, Ph.D. thesis, Dept. Applied Mathematics, California Institute of Technology, Pasadena.

[2] M. BERGER AND J. OLIGER, Adaptive mesh refinement for hyperbolic partial differential equation, J.
Comp. Phys. to appear.

[3] A. J. CHORIN, Random choice solution of hyperbolic systems, J. Comp. Phys., 22 (1976), pp. 517-533.
[4] B. ENGQUIST AND S. OSHER, One-sided difference approximations for nonlinear conservation laws,

Math. Comp., 36 (1981) pp. 321-352.
[5] W. D. GROPP, A test of moving mesh refinement for 2-D scalar hyperbolic equations, this Journal,

(1980), pp. 191-197.
[6] A. HARTEN AND P. D. LAX, A random choice finite difference scheme for hyperbolic conservation laws,

SIAM J. Numer. Anal., 18 (1981), pp. 289-315.
[7] J. KEVORKIAN AND J. COLE, Perturbation Methods in Applied Mathematics, Springer-Verlag, New

York, 198 I.
[8] B. KREISS, Construction of curvilinear grids, this Journal, 4 (1983), pp. 270-279.
[9] B. KREISS AND H. O. KREISS, Numerical methodsfor singular perturbation problems, SIAM J. Numer.

Anal., 18 (1981), pp. 262-276.
[10] H. O. KREISS, personal communication, 1980.
[| 1] R. J. MILLER, S. K. Doss AND K. MILLER, The moving finite element method: applications to general

partial differential equations with multiple large gradients, J. Comp. Phys., 40 (1981), pp. 202-249.
12] S. OSHER AND F. SOLOMON, Upwind difference schemes for hyperbolic systems of conservation laws,

Math. Comp., 38 (1982), pp. 339-374.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 3, July 1985

1985 Society for Industrial and Applied Mathematics
003

FAST NUMERICAL SOLUTION OF NONLINEAR VOLTERRA
CONVOLUTION EQUATIONS*

E. HAIRERf, CH. LUBICHt AND M. SCHLICHTE’

Abstract. Numerical methods for general Volterra integral equations of the second kind need O(n2)
kernel evaluations and O(n2) additions and multiplications. Here it is shown how the effort can be reduced
for nonlinear convolution equations. Exploiting the convolution structure, most numerical methods need
only O(n) kernel evaluations. With the use of Fast Fourier Transform techniques only O(n(log n)2) additions
and multiplications are necessary. The paper closes with numerical examples and comparisons.

Key words. Volterra integral equation, convolution, fast Fourier transform, Runge-Kutta method

1. Introduction. We consider nonlinear second kind Volterra integral equations
of convolution type

(1) y(x)=f(x)+ k(x-s)g(s, y(s)) ds, Xo<-_x<-.

The kernel k and the functions f, g are assumed to be sufficiently smooth on [Xo,],
so that the solution y(x) is smooth, too. Problems of this type appear in biology, e.g.
neurophysiology (an der Heiden [7]), epidemiology (Hethcote-Tudor [9]), and in the
treatment of special hyperbolic differential equations (Friedlander 5]). Further applica-
tions are given in Corduneanu [3].

Usually the starting point for numerical methods is the more general equation

(2) y(x)=f(x)+ K(x,s,y(s)) ds, Xo<-X<-g.

If the integration interval is discretized with n gridpoints, then algorithms for (2) need
O(t2) evaluations of K. For the special equation (1), which appears most often in
applications, the number of function evaluations can be reduced to O(n) k- and g-
evaluations for suitably chosen methods, e.g. extended Runge-Kutta methods and
linear multistep methods.

In 2 we describe the extended classical Runge-Kutta method. If this method is
implemented straightforwardly, it requires still O(n2) additions and multiplications.
It is shown in 3, the central part of this paper, that this overhead can be reduced to
O(n(log n)2). In 4 the asymptotic expansion of the global error is used for improving
the accuracy of the numerical solution and estimating the global error. Some numerical
results are given in 5. Comparisons of our code VOLCON with existing codes are
presented.

The ideas of this article are not restricted to Runge-Kutta methods, they are also
applicable to multistep methods. Although we present the theory only for the scalar
equation), it also pertains to systems of equations), to integrodifferential equations
and to weakly singular integral equations of convolution type.

* Received by the editors June 7, 1983, and in final form January 15, 1984.

" Institut fiir Angewandte Mathematik, Universit/it Heidelberg, Im Neuenheimer Feld 293, D-6900
Heidelberg 1, Germany.

Institut fiir Mathematik und Geometrie, Universitit Innsbruck, Technikerstr. 13, A-6020 Innsbruck,
Austria.

532

NONLINEAR VOLTERRA CONVOLUTION EQUATIONS 533

2. The extended classical Runge--Kutta method. Extended Runge-Kutta methods
have been introduced by Pouzet 11]. The classical 4th order method, applied to (2),
is given by

y,,=F,,(x,,),

F(xl=f(xl+-d=o (x,x, +2: r
+ x, x +-, + (x, x + h,

YJ) g xj + + K xj +, x, YJ)
(3)

()h(h h)v’= x+ + +i,+i,W’

Y=(x+ h)+ hK x + h, x +,
Here h denotes the stepsize, and y, approximates the solution at x, Xo+ nh. This
method is convergent with a global error of O(h). For a proof see Pouzet [1 l] or
Hairer-Lubich-Nrsett [6]. The positions, where the kernel K (x, s, y) has to be evalu-
ated, lie very regularly in the (x, s)-plane. They are indicated with crosses in Fig. 1.

Since these points lie on lines parallel to the diagonal and the x-axis, the number
of function evaluations can be reduced for the convolution equation (1). Here the
method (3) reads (o(x)=f(x))
(4a) y, , (x,),

(x)=f(x)+ k(x-xo)g(xo,
6

+=o k x-x- g x+,
(4b)

h
+- 2 k(x-x)[g(x, Y]-’))+g(xj, Y]J))]
6=
h

+- k(x x.)g(x., Y"-’),
6

Y=),
h

(4c)

() h (h)W= x+ +k0)g x+,Y,

Y4J)=(xj+h)+hk()g(xj+, Yt3J)).
It is seen that for the computation of y, only 2n/l k- and f-evaluations and 4n

534 E. HAIRER, CH. LUBICH AND M. SCHLICHTE

FIG.

g-evaluations are necessary. If the formulas (4) are implemented straightforwardly,
O(n2) additions and multiplications still are needed.

3. Fast computation of the lag-terms. We describe in this section, how the overhead
for method (4) can be reduced using FFT-techniques.

Assume that YJ) for i= 1,...,4 and j=0,..., r-1 are computed directly by
(4) (step I of the algorithm). With the notation

j=0,...,r-l,

h Y-) (x, Y{)2’2 [g(xj,)+ g)],

h
(6) ’Y2r =g g(x,, y0r-l)),

y 0 for j 2r + 1, , 4r- 1,

the lag-term Fr(X) becomes

(7)

j- 1,. , r- 1,

_,(x)=f(x)+(r * Y)2,+ for X--Xr+(j+ 1)h/2 andj=O, 1,---,2r-1.

Here the convolution of the two 4r-dimensional sequences K (K) and y (y) is
given by

4r--I

(*’)m E -,,.
i=0

This convolution can be computed efficiently using the fast Fourier transform (FFT).
For a description see Henrici [8] and the references given there. These computations
are illustrated in Fig. 2.

NONLINEAR VOLTERRA CONVOLUTION EQUATIONS 535

Xr X2r

FIG. 2

Each vertical line in the square of Fig. 2 represents the lag-term /r(x) as given
by (4b) at the corresponding x-value. Formula (7) permits to compute the lag-terms
of this square simultaneously with FFT. We have thus obtained step II in Fig. 3.

s

FIG. 3

x

For the computation of step III we observe that method (4) applied to

(8) y(x)= F,(x)+ k(x-s)g(s, y(s)) as, x>- x,

(with n r) yields the same numerical solution for x => xr as when app.lied to (1). This
permits us to compute YJ) for j =r,..., 2r-1 since the required F(x)-values are
known by (7).

In step IV we employ the same arguments as in step 11 with r replaced by 2r and

compute

2(x) forx=x2+(j+l)h/2, j=0,1,’",4r-1

simultaneously by FFT.
The steps V, VI and VII are now performed by applying the steps I, II and III

to the integral equation (8) with n 2r.
Proceeding by induction, we arrive at Fig. 4, where each square symbolizes the

computation of one convolution by FFT.

536 E. HAIRER, CH. LUBICH AND M. SCHLICHTE

Xr X2r X4r XSr Xl6r

FIG. 4

Since the computation of the convolution of two n-vectors requires O(n log n)
additions and multiplications, our algorithm needs only

O(n logn+2(log)+4(log)+..-)+O(n)= O(n(log n)2)

additions and multiplications.
In Fig. 5 we compare the straightforward computation of (4) with our algorithm.

time

5 6 7 8 9 10 11 log (number of steps)

FIG. 5

NONLINEAR VOLTERRA CONVOLUTION EQUATIONS 537

Here we have chosen r 25, which turned out to be optimal in numerical experi-
ments. The difference in computer time is independent of the integral equation to be
solved.

Although both algorithms are mathematically equivalent, that one, which uses the
FFT, causes in general less rounding errors, since it needs fewer additions and
multiplications. This is confirmed by numerical computations.

4. Global error estimation. Consider the method (4) and denote its numerical
solution by y(x, h) Yn if x Xo+ nh, in order to indicate its dependence on the stepsize.
It has been shown in [6] that the global error has an asymptotic expansion of the form

y(x)-y(x, h)=e4(x)h4+es(x)hS+ +eN(x)h N +O(hN+t).

The numerical solution at x is computed for the stepsizes h, h/2, h/4, h/8,.., and
is denoted by To y(x, h/2i). Then the extrapolation tableau (cf. [4])

TII

is calculated according to the formula (Aitken-Neville algorithm)

T/-l,k-i
Tik Ti’k-I + 2k+3

>_- k _>- 1.

Since by this procedure the leading term in the asymptotic expansion of T/,k_ is
cancelled, we have

(9) y(x) T, "yikek+4(x)hk+4 + O(hk+5).

Observe that the leading term in (9) equals that of Ti,k+ Tik which is a numerically
available estimation of (9).

This motivates the following strategy" For a prescribed tolerance TOL, calculate
the extrapolation tableau until we have for some indices i, k

(10) T,k+, TI <_- TOL.

By the above considerations this difference estimates the error of T. The more accurate
value T,+ is then accepted as a numerical approximation to y(x).

Observe that the k- and f- values, which are needed for the computation of y(x, h),
can be used again for the computation ofy(x, hi2). Furthermore, the Fourier transforms
of the kernel-values, which were computed before, can be used to reduce the effort
for the computation of the kernel Fourier transforms for the stepsize hi2.

$. Nmeriel eperimets ml eomlmrisos. Based on the theoretical consider-
ations of 2-4 the authors have written a FORTRAN subroutine VOLCON for the
numerical solution of a scalar equation (1). This program can be obtained on request
from the authors.

In this section we give some numerical results and compare them to those of the
codes VE1 (due to Bownds [2]) and ORION (due to Bader-Kunkel [1]). We omit
comparisons with the codes VOLTEX (due to Hock [10]) and INTSOL (due to
Williams-McKee [12]), since ORION turned out to be competitive or even superior
to these codes in extensive numerical tests (see [1]).

538 E. HAIRER, CH. LUBICH AND M. SCHLICHTE

Our numerical experiments have been run on the IBM 370/168 of the University
of Heidelberg in FORTRAN double precision (with about 16 decimal digits). The
numerical examples to be presented are documented in terms of the quantities

TOL-prescribed absolute precision
TIME-execution time of the subroutine on the IBM 370/168
NFEV-number of f-evaluations
NKEV-number of kernel evaluations
NGEV-number of g-evaluations
ERRACT-actual absolute error
Problem 1. As a first test example we have taken the equation

y(x)=cos x-2 (x-s+2)-Z(y(s)+ y3(s)) ds

on the intervals [0, 10] and [0, 40]. The exact solution at the endpoints is y(10)-
-0.4718905296 and y(40)--0.6501311013. These values have been obtained numeri-
cally using different codes with very stringent tolerances.

A linear version of this equation is formula (8b) in Friedlander [4]. We have
introduced a nonlinearity, since for linear convolution equations the FFT can be used
directly without applying the techniques of 3.

In Tables and 2 the numerical results of VOLCON are presented. ERREST
denotes the difference of the best to the second-best approximation in the extrapolation
tableau (cf. 4 formula (10)).

TABLE
Results of VOLCON for Problem (XEND= 10).

TOL TIME NFEV NKEV NGEV ERREST ERRACT

10-2 0.016 70 70 204 0.159 10-4 0.440 10-5

10-4 0.017 74 74 220 0.159 10-4 0.440 10-5

10-6 0.049 146 146 508 0.138 10-6 0.493 10-8

10-8 0.144 322 322 1,208 0.770 10-1 0.127 10-9

TABLE 2
Results of VOLCON for Problem (XEND=40).

TOL TIME NFEV NKEV NGEV ERREST ERRACT

10-2 0.121 262 262 780 0.902 10-4 0.212 10-5

10-4 0.122 266 266 796 0.902 10-4 0.212 10-5

10-6 0.334 530 530 1,852 0.733 10-7 0.230 10-6

10-8 0.860 1,090 1,090 4,088 0.361 10-8 0.153 10-8

In Tables 3 and 4 the results of the code VE1 are presented. This code approximates
the kernel k by a degenerate one and solves the resulting system of differential equations
by an ODE-solver. The parameter DIM, which has to be specified by the user, denotes
the dimension of the ODE. It has been chosen as the minimal number such that
ERREST, which represents the error caused by approximating the kernel is less than
TOL.

NONLINEAR VOLTERRA CONVOLUTION EQUATIONS 539

TABLE 3
Results of VE1 for Problem (XEND= 10).

TOL TIME NFEV NKEV NGEV DIM ERREST ERRACT

10-2 0.13 104 58 408 8 0.331 10-2

10-4 0.34 204 112 808 11 0.856 X 10-4

l0-6 0.92 387 242 1,540 16 0.377 10-6

l0-8 1.96 646 382 2,576 20 0.896 l0-8

0.359 10-3

0.128 10-4

0.335 10-6

0.418 10-8

TABLE 4
Results of VE1 for Problem (XEND=40).

TOL TIME NFEV NKEV NGEV DIM ERREST ERRACT

10-2 0.49 320 112 1,272
10-4 1.45 615 242 2,452
10-6 fail
10-8 fail

11 0.835 10-2 0.256 10-1

16 0.735 10-4 0.427 10-2

We observe that for small integration intervals VE1 gives correct results, but the
computer time is significantly higher than for VOLCON. For large intervals the kernel
cannot be easily approximated by polynomials, so that VE1 produces incorrect results
for TOL 10-2 and 10-4. NO value DIM (-<25) could be found such that ERREST is
smaller than TOL for TOL-< 10-6.

In order to demonstrate that it is worthwhile to exploit the convolution structure
in (1), we give in Tables 5 and 6 the results of ORION. This code is written to solve
general Volterra integral equations (2).

TABLE 5
Results of ORION for Problem (XEND= 10).

TOL TIME NFEV NKEV ERRACT

10-2 0.17 37 1,562 0.156 10-3

10-4 0.46 61 4,277 0.142 10-6

10-6 1.25 100 11,012 0.261 10-7

10-8 2.92 142 23,904 0.533 10-9

TABLE 6
Results of ORION for Problem (XEND=40).

TOL TIME NFEV NKEV ERRACT

10-2 1.09 128 12,593 0.383 10-3

10-4 4.25 242 45,813 0.128 10-4

10-6 11.03 345 107,017 0.616 10-7

10-8 29.04 503 270,117 0.221 10-8

ORION gives the correct results. The number of K-evaluations, and therefore
also the computer time, is very high, since no use of the convolution structure is made.

Problem 2. Equations of the following type arise in the analysis of neural networks
with post-inhibitory rebound. The equation below has been modelled after a qualitative

540 E. HAIRER, CH. LUBICH AND M. SCHLICHTE

description in an der Heiden [7] on pages 4, 9 and 10.

y(x) + (x S)3(4 X d- S) e-x+s
Y4(S)

ds.
l+2y2(s)+2y’(s)

The exact solution at x= 10 is y(10)= 1.25995582337. This value has again been
obtained numerically using different codes with very stringent tolerances. Table 7 gives
the results of VOLCON.

TABLE 7
Results of VOLCON for Problem 2 (XEND= 10).

TOL TIME NFEV NKEV NGEV ERREST ERRACT

10-2 0.017 70 70 204 0.341 x 10-4 0.203 x 10-4

10-4 0.018 74 74 220 0.341 10-4 0.203 10-4

10-6 0.052 162 162 504 0.949 10-6 0.134 10-5

l0-8 0.368 578 578 2,168 0.252 l0-9 0.476 x l0-
The kernel of Problem 2 is exactly decomposable. Problem 2 is therefore equivalent

to a 5-dimensional system of ordinary differential equations (cf. [2]). Solving this ODE
with the efficient code DIFEX1 (due to Deuflhard [4]), we obtain the results of Table 8.

TABLE 8
Results of DIFEX1 for Problem 2 (XEND 10).

TOL TIME NGEV ERRACT

10-2 0.014 67 0.776 10-2

10-4 0.039 203 0.611 10-3

10-6 0.048 256 0.408 10-5

10-8 0.070 380 0.116 10-7

It is seen that VOLCON and DIFEX1 are competitive for TOL>= 10-6. For integral
equations with degenerate kernel, whose corresponding differential equation has a

dimension greater than 5, VOLCON becomes superior. This is due to the fact that the
dimension is significant for the overhead of the ODE-solver. For lower dimensions or
for TOL< 10-6 an ODE-solver like DIFEX1 is to be preferred.

REFERENCES

[1] G. BADER AND P. KUNKEL, An adaptive multistep method for the solution of second kind Volterra

integral equations, in preparation.
[2] J.M. BOWNDS, Theory andperformance ofa subroutinefor solving Volterra integral equations, Computing,

28, (1982), pp. 317-332.
[3] C. CORDUNEANU, Integral Equations and Stability of Feedback Systems, Academic Press, New York,

1973.
[4] P. DEUFLHARD, Order and stepsize control in extrapolation methods, Numer. Math., 41 (1983), pp. 399-

422.
[5] F. G. FRIEDLANDER, The reflexion of sound pulses by convex parabolic reflectors, Proc. Cambr. Philos.

Soc., 37 (1941), pp. 134-149.
[6] E. HAIRER, CH. LUBICH AND S. P. NRSE’VF, Order of convergence of one-step methods for Volterra

integral equations of the second kind, SIAM J. Numer. Anal., 20 (1983), pp. 569-579.

NONLINEAR VOLTERRA CONVOLUTION EQUATIONS 541

[7] U. AN DER HEIDEN, Analysis of Neutral Networks, Lecture Notes in Biomathematics 35, Springer-
Verlag, Berlin-Heidelberg-New York, 1980.

[8] P. HENRICI, Fast Fourier methods in computational complex analysis, SIAM Rev., 21 (1979), pp. 481-527.
[9] n. W. HETHCOTE AND D. W. TUDOR, Integral equation modelsfor endemic infectious diseases, J. Math.

Biol., 9 (1980) pp. 37-47.
10] W. HOCK, An extrapolation method with step size controlfor nonlinear Volterra integral equations, Numer.

Math., 38 (1981), pp. 155-178.
I1 l] P. POUZET, Etude en rue de leur traitement numdrique des dquations intdgrales de type Volterra, Rev.

Franais Traitement Information (Chittres) 6 (1963), pp. 79-112.
12] H. M. WILLIAMS AND S. MCKEE, Variable step-size predictor-corrector schemesfor second kind Volterra

integral equations, Math. Comp., to appear.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 3, July 1985

1985 Society for Industrial and Applied Mathematics

0O4

THE PENETRATION OF A FINGER INTO A
VISCOUS FLUID IN A CHANNEL AND TUBE*

D. A. REINELTf AND P. G. SAFFMAN"

Abstract. The steady-state shape of a finger penetrating into a region filled with a viscous fluid is
examined. The two-dimensional and axisymmetric problems are solved using Stokes equations for low
Reynolds number flow. To solve the equations, an assumption for the shape of the finger is made and the
normal-stress boundary condition is dropped. The remaining equations are solved numerically by covering
the domain with a composite mesh composed of a curvilinear grid which follows the curved interface, and
a rectilinear grid parallel to the straight boundaries. The shape of the finger is then altered to satisfy the
normal-stress boundary condition by using a nonlinear least squares iteration method. The results are
compared with the singular perturbation solution of Bretherton (J. Fluid Mech., 10 (1961), pp. 166-188).
When the axisymmetric finger moves through a tube, a fraction m of the viscous fluid is left behind on the
walls of the tube. The fraction m was measured experimentally by Taylor (J. Fluid Mech., 10 (1961), pp.
161-165) as a function of the dimensionless parameter IU/T. The numerical results are compared with the
experimental results of Taylor.

Key words, viscous fluid, fingering, singular perturbation, composite mesh

1. Introduction. We consider the penetration of a finger into a region which is
initially filled with a viscous fluid. It is assumed that the viscosity of the fluid inside
the finger is negligible when compared with the viscosity of the fluid exterior to the
finger. The more general case, where the viscosity of the fluid inside is not neglected,
can also be solved with the methods described below but is left for further study. The
free boundary value problem for the steady-state shape of the finger is examined with
two different geometries: the two-dimensional case of a finger between parallel plates
and the axisymmetric case of a finger in a tube. It will be supposed that the gravitational
and inertial forces are small in comparison with the viscous forces, and can be neglected.
There is, in principle, no difficulty in incorporating their effect into the fingering
problem with the present method.

The two-dimensional case is important in the study of fingering in a Hele-Shaw
cell composed of two closely spaced parallel plates separated by a distance 2b. The
sides of the cell connecting the two plates are a distance 21 apart, where >> b. A finger,
shaped like a tongue, moves through the Hele-Shaw cell with constant velocity U. The
thickness of the tongue is 2fib and its width is 2AI, where the parameter fl is equal to
(thickness of finger)/ (distance between plates) and the parameter A is equal to (width
of finger)/ (width of cell). The determination of the value of A has been a subject of
much interest. Experiments examining the shape of a finger in a Hele-Shaw cell have
been performed by Saffman and Taylor (1958) and Pitts (1980). Since the full three-
dimensional problem is difficult to calculate, the problem of finding the shape of the
finger in the plane parallel to the plates was approximated by averaging the velocity
field across the gap between the two plates. This leads to two-dimensional equations
in which the components of the mean velocity in the plane parallel to the plates are
given by

b20p b20p
(1) u w=

3la, Ox’ 3la, Oz’

Received by the editors September 13, 1983, and in revised form January 13, 1984. This work was
supported by the U.S. Department of Energy, Office of Basic Energy Sciences, and the Office of Naval
Research.

f Department of Applied Mathematics, California Institute of Technology, Pasadena, California 91125.

542

PENETRATION OF A FINGER INTO A VISCOUS FLUID 543

where/z is the viscosity of the fluid and p is the pressure in the fluid which is to this
approximation a function only of x and z. The plates are taken parallel to the
(x, z)-plane, and the y-axis is normal to the plates with origin in the mid plane. The
continuity equation

Ou Ow
(2) --+--=o

Ox Oz

must also be satisfied. These equations hold in the region of the (x, z)-plane that is
not occupied by the finger.

In the region of the (x, z)-plane where the finger is found, the approximate
equations were given by Sattman (1982). In this region, there is on the surface of each
plate a film of viscous fluid of total thickness rob, where m + -/3 away from the edge
of the finger, in which the pressure is Pi and the components of mean velocity are

m2b20pi m2b20pi
(3) u, w,

3tx Ox’ 3tx Oz

The continuity equation for the viscous fluid is

(4)
am O(mu,) O(mw,)-+ + O.
Ot Ox Oz

The remaining equation is

(5) p + bTV2m Po

where T is the surface tension and Po is the constant pressure inside the finger, i.e. for
lyl<(1-m)b.

The two-dimensional solutions in the two regions are joined by boundary condi-
tions at the edge of the finger. First, there is the kinematic condition as the boundary
of the finger is approached;

(6) (U-u)" n m(U-u,).n

where U (U, 0) is the velocity of the finger, u= (u, w), and n= (nx, nz) is the normal
to the edge of the finger. Second, there is a dynamic condition relating the limits of
the pressure on the two sides,

(7) p-pi=Ap.

Here, the limits are to be understood as outer limits in which the distance from the
edge of the finger is small compared with l, but large compared with b. The limiting
values of rn and the pressure jump Ap are so far unknown, but under the postulated
conditions, we expect them to have the form

and

(9) Ap =-f T

where R is the radius of curvature in the plane parallel to the plates. The functions F
and f are to be determined by local (inner) solutions of the equations in the vicinity
of the finger edge which take into account the y-dependence of the flow field and

544 D. A. REINELT AND P. G. SAFFMAN

shape of the interface. As such solutions have not been available, it has been the
practice to approximate them by the relations

b
(10) F= Fo, f fo+f,-
where Fo, fo, and fl are constants.

Saffman and Taylor (1958) assumed further that the surface tension T could be
neglected (f 0) and were able to derive a closed form solution. They also found that
the difference between the shape of the finger determined from their closed form
solution and the shape observed from the experimental results was considerable unless
A is close to 1/2, but the parameter A was not determined by their analysis. McLean and
Saffman (1981) have taken into account the effect of the surface tension T by setting
fl -1 in their examination of the fingering problem. This removed the indeterminancy
associated with T 0 and gave A as a function of/x U/T. The shape of the finger with
a given value of A was found to be in close agreement with the shape given by
experimental results with the same value of A. However, a comparison between a plot
of A versus/xU/T using these results and the same plot using the experimental results
showed significant disagreement. Rough agreement would be obtained for f approxi-
mately equal to -.

In this paper, we calculate

(11) F(-,0) and f(-,0)
for finite la, U/T. To determine these functions, it is necessary to solve the Stokes
equations in the plane perpendicular to the plates. Bretherton (1961) has determined
F and f for t.tU/T<< l(b/R=O) by perturbation methods, and recently Park and
Homsy (1983) have determined the b/R correction for p,U/T<< and O<b/R<< 1.
The use of boundary conditions incorporating finite IzU/T effects and the b/R
dependence can possibly be used to bring the plot of h versus IU/T into closer
agreement with experiments, and also explain the observed stability of the fingers. The
results of Romero (1982) who explored the dependence of solutions on an assumed
dependence of F and f on iU/T showed that the b/R term is essential to remove
the degeneracy of the T-0 closed form solution.

Besides the two-dimensional problem, we also solve the penetration of an axisym-
metric finger into a viscous fluid in a tube. The diameter of the tube is 2b and the
diameter of the finger moving through the tube with constant velocity U is 2fib. The
parameter /3 is equal to (diameter of finger)/ (diameter of tube). This problem has
been investigated experimentally by Taylor (1961) and Cox (1962). The numerical
results are compared with the experimental results and the agreement is found to be
remarkably good.

In order to determine the solution to the two-dimensional and axisymmetric
problems for tzU/T equal to O(1), the free boundary value problem is solved in two
stages. First, we begin with an initial guess for the shape of the finger. This can be
found by starting with a small value for the parameter pU/T and using Bretherton’s
solution. Since we have assumed a shape for the finger, we are forced to drop one of
the boundary conditions applied on the curved interface; the normal-stress boundary
condition is dropped. A system of equations equivalent to the biharmonic equation

1But as later found by Romero (1982) and Vanden-Broeck (1983), there are in fact more than one
value of h for each I,U/T.

PENETRATION OF A FINGER INTO A VISCOUS FLUID 545

must now be solved on a fixed domain. It is important to use a numerical method that
not only gives accurate results in the interior of the domain but also gives accurate
results on the curved interface. To accomplish this, we cover the domain with a
composite mesh composed of a curvilinear grid which follows the curved interface,
and a rectilinear grid which is parallel to the straight boundaries. These overlapping
grids are stretched so that the number of grid points is greatest in regions where they
are needed most. Interpolation equations are used to connect the two grids. Finite
difference methods are used to calculate the numerical solution.

In the second stage, the shape of the finger is altered to satisfy the normal-stress
boundary condition. The curved interface is expanded in terms of Chebyshev poly-
nomials and the known asymptotic behavior of the finger as x - -. Using the solution
calculated on the fixed domain, the expansion of the interface, and the normal-stress
boundary condition, a new shape for the interface is determined by a nonlinear least
squares iteration method. After several iterations, the normal-stress boundary condition
is satisfied and we have a solution.

The use of a composite mesh to cover the domain was suggested by Prof. H. O.
Kreiss. We considered the employment ofboundary integral methods and finite element
techniques, but found them less convenient and they did not appear to offer improved
accuracy or cheaper computations. The finite element method would have required
using higher order elements with one curved side to conform to the interface. Both
the composite mesh discussed above and a finite element mesh must be altered each
time the interface changes. This was accomplished easily and with a small amount of
computation time using the composite mesh technique. Also, the present method allows
easy incorporation of inertial and nonuniform fluid effects; this is not the case for the
boundary integral method.

2. Formulation of the two-dimensional problem. We examine the penetration of a
finger of fluid into the narrow region between two closely spaced parallel plates. As
mentioned earlier, it is assumed that the viscosity of the fluid inside the finger is
negligible when compared with the viscosity of the fluid exterior to the finger. This
allows us to solve the equations only in the region exterior to the finger. The steady
state problem is examined where the finger is moving with constant velocity U and is
symmetrical about the center line of the channel. The plates are separated by a distance
2b and the finger has asymptotic width 2/3b.

The Stokes equations for incompressible two-dimensional low Reynolds number
flow are

(12a) + 3; O,

(12b) /3 =/x(+

(12c) /3; =/x(3, + 3;;),

where/ is the pressure and/x is the viscosity of the fluid. The velocities t and 3 of
the fluid are in the ; and 9 direction respectively. The 33-axis is taken normal to the
plates with origin in the mid plane. The tip of the finger moves along the ;-axis.

Boundary conditions are applied on the plates 33--+/-b and on the interface between
the two fluids.

We now change to a reference frame moving with the finger. The tip of the finger
is fixed at the origin. In this new reference frame, the velocities are independent of

546 D. A. REINELT AND P. G. SAFFMAN

time. Dimensionless variables are introduced by

,- Ut
x=

b Y -, R=-,
a-u

u-
U v=--, p-T/b,

where R is the radius of curvature and T is the surface tension. In the perturbation
analysis of the fingering problem, it becomes clear that the appropriate scaling for/3
is T! b and not la.U/b. The use of the second scaling results in p-c as tzU/T0.
We substitute these new variables into (12) to get

(13a) u,,+Vy =0,

(13b) p,, Ca (uxx + llyy),

(13c) py Ca (Vx, + Vyy),

where Ca tzU/T. The capillary number Ca is the ratio of the viscous force to the
force of surface tension.

In solving the fingering problem numerically, it is convenient to express the
equations in terms of the stream function and the vorticity. We substitute the stream
function defined by

u ,. v ,x.
and the vorticity w defined by

w v,,- Uy

into (13). If the pressure is eliminated from the equations, we obtain

(14a) ,,, + .lyy -o),

(14b) oxx + Wyy 0.

On the interface, it is convenient to use an arc-length coordinate s equal to zero
at the origin and increasing along the curved interface. Using the arc-length coordinate,
the tangent vector t is equal to (xs, y,), and the normal vector n, pointing into the
finger, is equal to (-y, x). The interface conditions are

(15a)

(15b)

(15c)

where

x.O.. + y@y 0.
(y x2)(Ityy I//xx + 4Xsy@xy O,

p 2 Ca [(y- x)@xy XsYs(Oyy xx)] Po --,

R
xys y,x.

Since the pressure can only be determined up to a constant, we are free to set the
constant pressure Po inside the finger equal to zero. These three interface conditions
can be rewritten as

(16a) =0,

(16b) to 2xsd/ 2yqy O,

(16c) p 2 Ca [(y- x2)@,y- xy.(d/yy O,)]+xy yxs =0.

PENETRATION OF A FINGER INTO A VISCOUS FLUID 547

The boundary condition (16b) is found by differentiating (15a) with respect to s and
using this equation to eliminate the Oxy term in (15b).

It is assumed that the shape of the finger is symmetric in the y direction; it is
then only necessary to solve (14) for y-> 0. The symmetry conditions for x _>-0 are

17a, b) q(x, 0) 0, w(x, 0) 0.

In the new reference frame, the no-slip condition on the wall becomes

(18a, b) q(x, 1) =-(1-fl), qy(X, 1) =-1.

As x-c, the width of the finger approaches a constant; thus, we get a constant
velocity between the finger and the solid boundary. Poiseuille flow develops as x .
The asymptotic behaviors are

--y+fl and w0 asx---c,

d/--fl y-y y and to - 313y as x.

3. Asymptotic properties of the solution. The shape of a finger penetrating into a
viscous fluid can be determined by using singular perturbation methods for small Ca.
This work is described in Reinelt (1983). It is an extension of the work of Bretherton
(1961) and his analysis of the motion of long bubbles in tubes. The work differs from
Bretherton’s work in that it outlines a procedure to develop a complete asymptotic
expansion in terms of Ca. It also constructs the equations in the boundary layer region
in terms of scaled coordinates of order unity. The method of matched asymptotic
expansions is used to connect the inner and outer solutions.

From Bretherton’s solution or the solution using singular perturbation methods,
/3 is given by

(19) /3 1.0- 1.337Ca2/3.

This expression, valid for small values of Ca, holds for both the two-dimensional and
axisymmetric problems. It will be compared with the numerical results.

The asymptotic behavior of the solution as x--o can be expanded in powers
of exp (kx) for finite values of Ca. This leads to a relationship between Ca,/3, and k,
the decay rate as x--. The relationship will also be used to check the numerical
results.

For the two-dimensional solution, the stream function takes the form

O(x, y) -y + fl + ekXg(y) + O(eEkX).
We substitute this expression into (14) to get an equation for g(y),

gyyyy + 2kEgyy + k4g O.

The solution to this equation is a combination of the functions sin ky, cos ky, y sin ky,
and y cos ky. Ifwe satisfy the boundary conditions on the wall (18), we get the following
expressions for the stream function, vorticity, pressure, and the shape of the interface"

tp(x, y)--- -y/ fl + ek[A[k(y l) cos k(y- 1)- sin k(y- 1)]+ Bk(y- l) sin k(y- 1)],

w(x, y) 2k ek[A sin k(y 1) B cos k(y 1)],

p(x, y)----2 Ca k- ek[A cos k(y- 1)+ B sin k(y- 1)],

y(x),----Dez’,

548 D. A. REINELT AND P. G. SAFFMAN

where A, B, and D are unknown constants. The above expressions are substituted into
the three interface conditions (16a, b, c). If we keep only terms of O(exp k.x), then the
three equations for A, B, and D are given by the matrix equation

I__ -qcOsq+sinqqsinq qsinqcosq i1 I)] I!]=2Ca(cosq+qsinq) -2 Caqcosq

where q k(1-/3). The determinant of the matrix must be set equal to zero for a

solution other than the trivial solution. This leads to an equation for q in terms of Ca,

(20) 2q-sin 2q+Ca (4q-- 4 cos2 q) =0.

The leading order expansion of (20) as Ca 0 gives

(21) q--- (3 Ca) /3

which agrees with the singular perturbation solution. The relationships (20) and (21)
between k(1-/3) and Ca will be compared with the numerical results.

A similar procedure was applied to the axisymmetric problem by Cox (1962)
which led to an equation involving the three parameters Ca,/3, and k. In the experiments,
the value of k was determined by fitting the finger profile with an exponential curve.
In the numerical treatment of the problem, k is one of the parameters used to describe
the interface; its value will be determined by satisfying the equations and boundary
conditions.

4. Numerical solution on a fixed domain. To solve the fingering problem numeri-
cally, we begin with an initial guess for the shape of the finger. The initial guess is
found by starting with a small value for Ca and using the perturbation solution. Since
we have assumed a shape for the finger, we are forced to drop one of the three interface
conditions (16a, b, c); the normal-stress boundary condition (16c) is dropped. The
shape of the finger will be altered to satisfy this condition.

It is important to develop numerical methods that not only give accurate results
in the interior of the region, but also give accurate results at the boundaries. To satisfy
the normal-stress boundary condition, it is necessary to compute the pressure and the
stresses accurately on the boundary. To accomplish this, we cover the domain with a
composite mesh composed of a curvilinear grid which follows the curved interface,
and a rectilinear grid which is parallel to the straight boundaries. Kreiss (1983) has
developed a numerical code that constructs a curvilinear grid using spline interpolation
that follows the smooth boundary of a simply connected domain. The rest of the
domain is covered with a uniformly spaced rectilinear grid. The overlapping grids are
used to solve a system of hyperbolic differential equations. We have modified these
methods to treat the elliptic problem in this paper.

In the numerical treatment of the fingering problem, we restrict the infinite domain
given by -c<x < and 0 --< y-< to a finite domain given by XminX Xma and
0<=y_<--1. If the values of Xmin and Xma have been chosen properly, the difference
between the numerical solution calculated on this domain and the solution calculated
on an even larger domain will be small. As mentioned in 2, the domain is further
restricted to the region exterior to the finger.

In the fingering problem, stretching is used in the curvilinear grid to place more
grid points at the tip of the finger and fewer grid points where the width of the finger
approaches a constant. To construct the curvilinear grid, we begin with a square grid

PENETRATION OF A FINGER INTO A VISCOUS FLUID 549

with uniformly distributed grid points given by

(s,)=(i-I/N-l,j-1/M-1), where i=l,2,...,Nandj=l,2,...,M.

There are N grid points in the direction and M grid points in the ? direction. The
curvilinear grid is defined by mapping this square grid onto a region which follows
the curved interface using a transformation To. To simplify the interface conditions, it
is convenient to use the arclength parameter s along the interface. Stretching is
introduced by the transformations

= F(s), = G(r),

where F and G are functions that produce a one-to-one mapping between the two
sets of variables. The functions F and G are given in the appendix.

To construct the transformation To, cubic spline interpolation is used to approxi-
mate the shape of the curved interface through the N grid points on the interface of
the finger. The boundary 0 of the square grid is mapped onto the interface curve
C1 by

x(s, O)= Xl(s), y(s, O)= Y,(s),

where XI and Y are cubic spline functions. Another set of N points is chosen on a
curve that lies in the interior of the domain under consideration. The interior curve
used is a modified version of the Saffman-Taylor solution

where kl, XI, and [1 are chosen constants. The transformation of the boundary =
onto the interior curve C is also done by cubic spline interpolation and given by

x(s, 1)= XM(s), y(s, 1)= YM(s).

The curves, C and C, form the two curved boundaries of the curvilinear grid. The
corresponding grid points on these two curves are connected by straight lines. The
complete transformation T is

x(s, r) (1 r)X(s) + rX(s),
(22)

y(s, r) (1 r) Y,(s)+ rYt(s),

with

(23) s F-I(R), r G-().

The function G is chosen such that G(1)= 1. This transformation is one-to-one and
its Jacobian is never singular. A typical curvilinear grid is shown in Fig. 1.

Stretching is also used in the rectilinear grid to place a smaller mesh size near
y where the fluid moves into the narrow region between the finger and the wall.
In the x direction, we place fewer grid points near the boundaries at Xmi and Xma
TO construct the transformation Tr, we begin with another square grid with uniformly
distributed grid points given by

(i-1 j-1)wherei=l 2,... N,, and j= 2,... Ny.(x,,)= N-’ N-I
The number of grid points in and)3 directions are N,, and Ny respectively. The

550 D. A. REINELT AND P. G. SAFFMAN

1.0

FIG. 1. Typical curvilinear grid.

transformation Tr given by

(24) : =f(x), = g(y),

maps the square grid onto the rectilinear grid. The functions f and g are given in the
appendix.

Many of the grid points in the rectilinear grid are in the interior of the finger.
These points are not used in the computation of the solution. Figure 2 gives an example
of a rectilinear grid that shows only the grid points actually used. It is important that
the grids overlap so that all grid points on CM lie in the interior of the rectilinear grid.
Also, the grid points on the jagged boundary of the rectilinear grid must lie in the
interior of the curvilinear grid.

1.0

0.0
-5.0 1.5

FIG. 2. Typical rectilinear grid.

In solving the equations on a composite mesh, the grid points can be divided into

three categories. At interior points of each grid, difference equations that approximate
the partial differential equations are applied. At grid points that lie on the boundary
of the domain, boundary conditions are applied. The third type of grid points are

those that lie on the interior curve CM of the curvilinear grid and those that lie on the
jagged boundary of the rectilinear grid. It is at these grid points that interpolation
equations are used to connect the solutions on the two grids.

At interior points of each grid, the system of equations (14) is replaced by difference
equations at the uniformly distributed grid points of the two square grids. These grids
are related to the rectilinear and curvilinear grids through the transformations Tr and

To. For example, the stream function equation (14a) is written in terms of ; and)3
coordinates by using (24),

(25) f’(x) f’(x) + g’(Y)-2-Z__ g’(Y) -to

PENETRATION OF A FINGER INTO A VISCOUS FLUID 551

where

X ---fl(;), y g--l()3).

Using the notation q’ia ’(i, 93j), a difference equation for (25) is given by

f_j_’i q + ,, iO f- 2hx f+l/2 hx

+gJ[gj+l/Z(@id+l--Oi’J) (I/ti’/-- I/t id-1)] toi,y -g.-,/2 hy

where the mesh sizes h, and hy are

hX-Nx_ 1, hy-Ny_
The expression f+l/2 is defined by

f+,/2 2-’(x,) "-f(Xi+l)].

This second order accurate difference equation is used at all interior grid points of the
(,)3) square grid. A similar procedure is used to find the difference equations to be
applied at the uniformly distributed grid points of the (s, ?) square grid.

The computational boundary conditions for the fingering problem must be chosen
carefully. One method of applying the boundary conditions at y is to construct the
grid with the boundary y centered between the top two grid lines. This allows us
to give the value of on the top two grid lines. However, this approach leads to an
O(1) error in the vorticity near the corner x Xma and y 1. To avoid these problems,
we construct the rectilinear grid with the top grid line coincident with y 1. A second
order accurate equation for the vorticity on the boundary y can now be written
using q on the top three grid lines and qy given on the boundary. A more complete
discussion of the boundary conditions can be found in Reinelt (1983).

On the interface, the curvilinear grid is constructed with the grid line (=0)
coincident with the shape of the interface curve. The boundary conditions applied on
the interface are written in terms of s and r coordinates by

to 2(xrx + Ysry)r O.

The value of qr is calculated to second order by using the first three grid lines in the
r direction.

The values of q and to at the third type of grid point are determined by interpolating
between the two grids. A nine point formula and a four point formula were examined
for this interpolation. The nine point formula was chosen because a test of calculating
an exact solution with inhomogeneous boundary conditions showed that a four point
formula was not accurate enough. The interpolation equations are discussed in terms
of a smooth function u. To simplify the interpolation formulas, we use formulas based
on the uniformly distributed grid points of the two square grids. Each grid point on
the curve CM, given by (si, 1), can be located in the interior of the (:, 33) square grid
by using (22) and (24). If (o, 930) is the location of one of these grid points, then the
approximate value of u at this grid point can be found by using the nine point

552 D.A. REINELT AND P. G. SAFFMAN

interpolation formula given by

(26) U(Ro,)3o)= Y Y d,(a) d(y)u(R,+,_, ,+_),
=j=

d,(a)=-1/2a(1-a), d2(a)=(1-a)(l+a), d3=1/2a(l+a),

where (;,, .) is the grid point closest to the point (;o,)30).
To find the approximate value of u at each (x, y) grid point on the jagged boundary,

we locate each of these grid points in the interior of the (,) square grid. These values
are found by using Newton’s method and (22) and (23). Once these points are located,
the interpolation formulas are identical with (26) where R and j are replaced by g
and P.

5. Iteration method. To determine the degree to which the normal-stress boundary
condition is satisfied, it is necessary to find the pressure and the stresses on the interface.
The pressure is calculated from the vorticity solution by integrating along the interface.
The pressure is given in terms of the vorticity by

p,, =-Ca to, p Ca Wx.

Using the. transformation T and these relationships between the pressure and the
vorticity, the derivative of the pressure with respect to arc length is

Ps -Ca Xsry yr,]wr Ca XsSy ysx]w.

The stresses g’x,,, g%, and Syy are calculated at each grid point on the curved interface
from the stream function and vorticity solutions. We substitute the initial guess for the
shape of the interface and the values of the pressure and stresses at each grid point
on the interface into the normal-stress boundary condition (16c). If this boundary
condition is satisfied, we have determined the shape of the finger. Normally, the
right-hand side of the normal-stress boundary condition is not equal to zero at each
grid point, but a residual Ri is present. These residuals Ri, i= l, 2,.-., N give the
error in the boundary condition (16c) at each of the N grid points along the interface
of the finger. In our calculations the value of N is seventy-six. The shape of the
interface must now be changed until all the residuals are smaller than a chosen error
tolerance.

To change the shape of the interface, it is convenient to expand the interface in
terms of a set of functions and unknown parameters. The shape of the finger is
determined by the numerical values of these parameters. The form of the expansion
greatly affects the amount of computing time needed to converge to the interface shape
that satisfies the normal-stress boundary condition. In fact, if the expansion is not
chosen properly, the problem may never converge.

The interface is expanded as a function of y. The expansion for the shape of the
finger is given by

where/3, k, co, c,. ., c, are the parameters that determine the shape of the interface.
The expansion is constructed so that the tip of the finger is located at the origin and
x(-y) is equal to x(y). The functions T are the even Chebyshev polynomials. If the

PENETRATION OF A FINGER INTO A VISCOUS FLUID 553

grid points on the interface are projected onto the y-axis, there are many more points
near the ends of the interval, -fl <-y =</3, than near the center of the interval. This is
characteristic of the so-called Chebyshev abscissae. The Chebyshev polynomials are
chosen because it is expected that they will converge rapidly given the distribution of
grid points used in the fingering problem. This is indeed found to be the case.

The asymptotic behavior of the shape of the finger as x- is

y--/3 D exp (kx).

This relationship is inverted to give

..1 _y

as y ft. The expansion is constructed so that this asymptotic behavior is included. If
this is a good expansion, the value of c will decrease as j increases. This allows us to
use the finite series from j to m as a good approximation to the infinite series.

The problem is now reduced to finding the parameters fl, k, co, c,..., Cm that
satisfy the equations

(28a) R,(fl, k, Co, Cl, Cm)=O, i= 1,2,’’’, N.

This is an overdetermined nonlinear system of equations because the number of grid
points (N) is larger than the number of parameters (rn + 3). These equations are solved
by determining the parameters that minimize the function

q(/3, k, Co, c,,..., Cm) RI+R2+’’’+R.
To do this, we linearize the equations (28a) about an initial set of parameters

Co C1 fro.

OR ,,)(28b) R,(", k ’, CO, Cl, Cn)’qt----(j-- "-" "’4"--(Cm--Cn)’O.ocm
This leads to a matrix equation containing the N x (m + 3) Jacobian of (28a). The new
values of the parameters are now determined by the method of least squares. The
process is repeated until the values of R, i= 1, 2,. ., N are smaller than x 10-3.

In the above calculations there is not a simple functional relationship between R
and the unknown parameters because the values of the pressure p and the stresses q,,,, and % depend on the parameters in some unknown way. In order to calculate
the Jacobian of (28a), a small step size h is added to each parameter independently
and the new values of R are determined. For example, we calculate

Ri(fl" + h, k", Co, c, ", Cm)

which is used to determine the entries of the Jacobian

OR, R,(fl + h, .)- Ri(, .)
0/3 h

R is calculated m + 3 times, once for each of the parameters. Each time the interface
changes a new curvilinear grid is constructed. The calculations needed to determine
the new grid and the transformation T are a very small portion of the total computing
time. The major portion of the computing time is needed to determine the numerical
values of , and to on each of the fixed domains. In calculating the entries of the
Jacobian, we can greatly reduce this time by not solving the entire system of equations
directly each time.

554 D. A. REINELT AND P. G. SAFFMAN

On each of the fixed domains a large sparse system of linear equations for the
values of ff and to at the grid ponts of the rectilinear and curvilinear grids must be
solved. If v is the vector that contains , and to, then the system of linear equations
can be written

Av=b.

To solve this system of linear equations, we determine the LU decomposition of the
matrix A, where L is a lower triangular matrix and U is an upper triangular matrix.
This linear system of equations now decomposes into two triangular systems that are
solved by forward substitution and back-substitution. This decomposition ofA involves
a major portion of the computation time and is done using a sparse matrix solver
(odrv, ndrv) developed at Yale University.

In order to calculate the values of Ri(/3 + h, k, c), , c,) and the values of the
Ri’s found by perturbing the other parameters, it is necessary to solve a new system
of linear equations

A=b.

Since this new system of equations is a perturbation of the original system of equations,
it can be rewritten as

(A+A) (b+bl)

where A and b are the matrices in the original system. The matrices Al and b contain
the small perturbations to the original system for small values of h. If we set

then the solution to the new system of equations can be determined by solving the
following equations"

AVl b Av,

Av2 -AlVi,

Av3 -AIV2.

Since the LU decomposition of A is known and the right-hand side of each of these
equations is known from the previous step, these equations are easily solved by forward
substitution and back-substitution. In practice, the value of is determined to six
places by solving only two or three of these equations. Using this method, the computa-
tion time necessary to compute the Jacobian is essentially equivalent to the time needed
to solve the original system.

6. Numerical results for the two-dimensional problem. The numerical results are
calculated by beginning with /U/T 0.01 and using the shape of the perturbation
solution. Several iterations are needed to satisfy the normal-stress boundary condition.
The value of t-U/T is then increased by small increments. The size of the increments
varied from 0.02 for/xU T< 0.10 to 0.20 for zU T> 1.00. The shape of the interface
at the previous value of txU/T is used as the basis for determining the new interface
shape at the subsequent value of/U/T. Three or four iterations are needed for the
normal-stress boundary condition to be satisfied at each value of tzU/T which corre-
sponds to about 25 minutes of CPU on a VAX 11/750.

PENETRATION OF A FINGER INTO A VISCOUS FLUID 555

The typical number of grid points used in each direction of the curvilinear and
rectilinear grids is

N=76, M=7, Nx 55, Ny 34.

The value of Xmin is determined by the choice of Sma /’min is approximately equal to
-5.0. The value of Xma is equal to 2.0. The shape of the finger is determined by using
nine parameters (rn 6) for the expansion of the interface given in (27). The magnitude
of the final coefficient c6 is O(10-4). The inclusion of a greater number of parameters
has very little effect on the shape of the finger.

Figure 3 is a plot of q=k(1-/3) versus tzU/T. The solid line is a plot of (20)
which was determined by expanding the solution in terms of eigenfunctions as x --> -.

0.2-

0.0
0.0

/zU/T
1.5 2

FIG. 3. The relationship k(l-,fl) versus txU/T, o, numerical results"
perturbation result (21).

plot of equation (20)"

The dots shown on the plot are the values of k(1- fl) calculated from the numerical
results. The numerical results are in close agreement with the analytical result. The
dashed line is a plot of the perturbation solution (21). As mentioned in 3, it is
equivalent to the leading order behaviour of (20). The perturbation solution (21) is in
error by no more than 10% provided txU/T < 2 10-2. In Fig. 4, the solid line is a

plot of/3 versus tzU/T calculated from the numerical solutions and the dashed line
is a plot of (19) determined from the perturbation solution. The function F discussed

0.6

0.2

0.0
0

\\

\
\
\

\
\
\
\

i’\
,0 0.5

ffU/T

FIG. 4. The finger width fl versus tzU/ Tfor the two-dimensional problem.
perturbation result (19).

numerical results"

556 D.A. REINELT AND P. G. SAFFMAN

in the introduction is given by

As x- oo, the pressure is given by

p---3 Cax+ G,

where G, is a constant. It is this constant that gives the pressure jump that is needed
in the two-dimensional approximation of the flow in the Hele-Shaw cell,

The dotted line in Fig. 5 is a plot of cp versus IU/T and the solid line is the actual
pressure drop Ap across the tip of the finger. The dashed line is the pressure drop
calculated by Bretherton (1961) for Ca- 0 and is given by

Ap 1.0 3.8 Ca2/3.

0.0

-I.0

-2.0

Ap,Cp
-:5.0

-4.0

-5.0
0.0

FIG. 5. Pressure drop Ap across tip of the finger versus tzU/ Tfor the two-dimensional problem.
numerical results" -, perturbation result Cp versus IU/ T.

This perturbation solution is equal to Cp up to the order calculated. Both Cp and Ap
have been normalized by T/b.

As x o, the velocity in the x-direction is

When the value of fl is greater than 32-, the fluid near the x-axis moves with a velocity
greater than that of the finger. In this case, two additional stagnation points are present
on the interface. For all values of/3, there is a stagnation point at the tip of the finger.
Figure 6 gives examples of the streamlines in the two cases.

7. Numerical solution of the axisymmetric problem. We consider the penetration
of a finger into a tube. As in the two-dimensional case, the steady state problem is
examined and the finger moves parallel to the x-axis with constant velocity U. The
diameter of the tube is 2b and the diameter of the finger is 2fib. The parameter fl is
equal to (diameter of finger)/ (diameter of tube).

PENETRATION OF A FINGER INTO A VISCOUS FLUID 557

(a)

(b)

FIG. 6. Typical shape of streamlines relative to the finger. (a) fl>, two-dimensional case" fl> 1/u/,
axisymmetric case. (b) /3>, two-dimensional case; /3> 1//-, axisymmetric case.

The same dimensionless variables used in the two-dimensional case are used here.
We write the equations in terms of the stream function q, defined by

U I/y, /.)

Y Y

and the vorticity to defined by

to vx- Uy.

The equations for 0 and to in axisymmetric Stokes flow are

(29a) toxx h- yy --;d/y -yto,

(29b) to "Jr" toyy W -y toy - to O

The variable y is used for the radial coordinate to avoid confusion with the r coordinate
used in the curvilinear grid.

The interface is described by (x(s),y(s)) where s is the arclength along the
interface curve. In the axisymmetric case, the boundary conditions on the interface
are given by

(30a)

(30b)

(30c)

where

yto 2xssOx 2yss,y 0,

p-2 Ca[y2sUx-Xsy(Vx+Uy)+Xsty]+ + =0,

Ux bXy,y uy),), - ,,
vx ,XX,y Vy=--,xy+- qx.

558 D.A. REINELT AND P. G. SAFFMAN

The principal curvatures for the axisymetric problem are

xs
R

xsy yxs,
RE Y

The pressure Po is the constant pressure inside the finger and is set equal to zero. The
boundary conditions on the wall of the tube are

(31a, b) (x, 1)=-(1 _f12), y(x, l) =-l,

and the symmetry conditions on the centerline are

(32a, b) O(x, 0)= 0, to(x, 0)= 0.

The asymptotic behaviours of and w are

__1/2(y2_2) and to. 1/2f12(2y2_ y4) _1/2y2 and to 4f12y as x- o0.

As in the two-dimensional case, the normal-stress boundary condition is dropped, and
the numerical solution is computed on a fixed domain. The normal-stress boundary
condition is used to find the shape of the finger.

The results for the axisymmetric problem are very similar to the two-dimensional
results. In Fig. 7, the solid line is a plot of/3 versus/zU/T calculated from the numerical

0.6-

0.4

0.2

0.0_

0.0 1.0 1.5 2.0
p.U/T

FIG. 7. The finger width fl versus iU/Tfor the axisymmetric problem. , numerical results;
perturbation result (19).

solutions and the dashed line is the perturbation result (19). As x- c, the pressure is
given by

p.-.-8fl2 Ca x + cp

where Cp is a constant. The solid line in Fig. 8 shows Ap, the pressure drop across the
tip of the finger, and the dotted line gives Cp. Both Ap and Cp have been normalized
by T/b.

As x c, the velocity in the x-direction is

u 2/32(1 y2) 1.

For/3 greater than 1/x/, the fluid near the x-axis moves faster than the finger. Taylor
(1961) discusses the two simplest types of flows that might occur: a stagnation point

PENETRATION OF A FINGER INTO A VISCOUS FLUID 559

FIG. 8.

Cp versus IU/ T.

0.0

-2.0

-4.0-
/%p, Cp

-10.0
0.0 O. 5 1.0 1.5 2.0

ffU/T
pressure drop Zp across tip of the finger versus U/ Tfor the axisymmetric proble

at the origin with a stagnation ring on the interface of the finger or two stagnation
points on the x-axis, one of which is at the origin. y examining Fig. 6, it is clear that
a stagnation ring is present for/3 greater than l/x/2.

When the axisymmetric finger moves through the tube, a fraction rn of the viscous
fluid is left behind on the walls ofthe tube. The fraction m was measured experimentally
by Taylor as a function of tzU/T. Figure 9 compares the numerical results with the
experimental results where m is equal to 1-/32. The numerical results are in excellent
agreement with the experimental results.

0.0
0o0 0.5 1.0 1.5 2.0

frUIT
FIG. 9. Fraction m of viscous fluid left behind on the walls of the tube versus I.tU/ T.

result; o, Taylor experimental results.
numerical

8. Conclusion. In solving the fingering problem, we have used a composite mesh
to cover the domain. The resulting numerical solution is not only accurate in the
interior of the region but also on the boundaries of the domain. The amount of
computing time necessary to construct the grids is a very small percentage of the time
necessary to compute the solution to the fingering problem.

The employment of a composite mesh creates enough flexibility that it can be
used to treat problems with many different types of geometries. It can also be used in
determining solutions that exhibit singular behavior. The composite mesh can be
composed of as many grids as necessary to solve a given problem. The grids are easily
constructed to include stretching which places grid points where they are needed most.

560 D. A. REINELT AND P. G. SAFFMAN

The numerical methods employed work very well in the treatment of this free
surface problem. Many other free surface problems could be examined by extending
the methods to include the effects of the inertia terms. The effects of gravity on the
shape of the finger for the two-dimensional and axisymmetric geometries can also be
calculated. The methods could also be extended to handle time-dependent free surface
problems. In these problems, the curvilinear grid would move with the interface at
each time step of the calculation.

Appendix. As discussed earlier, stretching functions are introduced to place grid
points where they are needed most. In the x direction, fewer grid points are needed
near Xmi and Xmax where the solution tends to a function of y only. The x dependence
is a decaying exponential. The function f takes the form

=f(x)=ax+B+C. Dtanh(XDx)
and the first derivative is

-x=f’(x)=a+Csech2(X).
A and C are chosen such that there is a larger mesh size near the boundaries and a
smaller mesh size in an interior region centered about the point x0. The constant D is
the decay rate from the smaller mesh size to the larger one. B is chosen such that
f(Xmin) --0.

In the perturbation problem, it was found that for small Ca the finger nearly fills
the channel. To numerically solve the fingering problem for this case, it is necessary
to have a small mesh size near y 1. The stretching in the y direction takes the form

=g(y)=ay+C. D[exp(-(1-Y))-exp(-(I+Y))]D D

where the first derivative is given by

d- g’(y) A + C exp
dy 0

+exp (-(1 +Y))]D

The constants A and C are chosen to produce a small mesh size near y and a
larger one away from y 1. D is the decay rate between the two mesh sizes.

In the s direction, we use a stretching transformation that produces more grid
points in the region near the tip of the finger and fewer in the region where the width
approaches a constant. The transformation is given by

where the derivative is

=F(s)=As+C. D tanh ()

d----=F’(s)=A+C sech2 ()ds

Again, A and C are chosen to produce the appropriate mesh sizes and D is the decay
rate. In the fingering problem it is not necessary to stretch in the r direction, so we
simply set k’ G(r)= r.

PENETRATION OF A FINGER INTO A VISCOUS FLUID 561

Acknowledgments. We wish to thank Prof. H. O. Kreiss for suggesting the com-
posite mesh method and B. Kreiss for help with the initial implementation.

REFERENCES

G. K. BATCHELOR (1967), An Introduction to Fluid Mechanics, Cambridge Univ. Press, London.
F. P. BRETHERTON (1961), The motion of long bubbles in tubes, J. Fluid Mech., 10, pp. 166-188.
B. G. Cox (1962), On driving a viscous fluid out of a tube, J. Fluid Mech., 14, pp. 81-96.
G. DAHLQUIST AND A. BJORCK (1974), Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ.
B. KREISS (1983), Construction of a curvilinear grid, this Journal, 4, pp. 270-279.
H. LAMB (1932), Hydrodynamics, Sixth Edition, Dover, New York.
J. W. MCLEAN AND P. G. SAFFMAN (1980), The effect of surface tension on the shape of fingers in a

Hele-Shaw cell, J. Fluid Mech., 102, pp. 455-469.
C. W. PARK AND G. M. HOMSY (1983), Two-phase displacement in Hele-Shaw cells, submitted for publication.
E. PITTS (1980), Penetration offluid into a Hele-Shaw cell: the Saffman-Taylor experiment, J. Fluid Mech.,

97, pp. 53-64.
O. A. REINELT (1983), Ph.D. dissertation, California Institute of Technology, Pasadena.
P. J. ROACHE (1976), Computational Fluid Dynamics, Hermosa, Albuquerque, NM.
L. A. ROMERO (1982), Ph.D. dissertation, California Institute of Technology, Pasadena.
P. G. SAFFMAN (1982), Fingering in porous media, Lecture Notes in Physics, 154, Burridge et al., eds.,

Springer-Verlag, pp. 208-214.
P. G. SAFFMAN AND G. I. TAYLOR (1958), The penetration of a fluid into a porous medium or Hele-Shaw

cell containing a more viscous liquid, Proc. Roy. Soc. A, 245, pp. 312-329.
G. I. TAYLOR (1961), Deposition ofa viscous fluid on the wall of a tube, J. Fluid Mech., 10, pp. 161-165.
J.-M. VANDEN-BROECK (1983), Fingers in a Hele-Shaw cell with surface tension, Phys. Fluids, 26 (8), pp.

2033-2034.

SIAM J. Sclo STAT. COMPUT.
Vol. 6, No. 3, July 1985

1985 Society for Industrial and Applied Mathematics
005

ON THE MINRES METHOD OF FACTOR ANALYSIS*

FRANKLIN T. LUKe

Abstract. The minres method is an effective means for estimating factor loadings under the condition
that the sum of squares of the off-diagonal residuals be minimized. This paper concerns the efficient
implementation and the convergence properties of the method.

Key words, minres method, factor analysis, least squares, communality

1. Introduction. A basic problem in factor analysis (Harman [8, Chap. 5]) is the
resolution of n observed variables zj linearly in terms of a smaller number m ofcommon
factors fp. We choose the classical model"

z.= , ajpfp+Uj for j= 1,2,.-., n,
p=l

where ajp are unknown parameters called common-factor loadings and u represent
the errors. In matrix form we have

z= Af+u,
where A R"". Under the assumption of uncorrelated factors, the fundamental
theorem of factor analysis (Thurstone [15, p. 70]) states that a matrix t R"" of
reproduced correlations is given by

=aa.
Our problem is to determine A so that the reproduced matrix (7 is a good approximation
to the observed correlation matrix C (c0) R"", which is a symmetric and positive
semi-definite (psd) matrix with ones down the principal diagonal. The fit of C to C
naturally improves with increasing value of m. The problem of choosing a proper
number of common factors is discussed in [8, pp. 183-186]. We assume a fixed m for
this paper.

Suppose we desire a psd matrix such that

[If- [[min,

where 11.11 denotes the Frobenius matrix norm. We compute an eigenvalue decompo-
sition:

C QDQr,
where Q-(ql,’", q,) is orthogonal, D-diag (dl,"’, d) and dl-’"-> d,_->O. The
solution is given by

=Q,D,Q,
where Q (ql, ", q,.) R and D =diag (dl." ", dm)G R"’. It follows that

A=QDI/2.

Received by the editors August 25, 1981, and in revised form October 10, 1983. This research was

supported in part by the U.S. Army Research Office under grant DAAG 29-79-C0124 and by the National

Science Foundation under grant MCS-8213718.
Department of Computer Science, Cornell University, Ithaca, New York 14853.

562

MINRES METHOD OF FACTOR ANALYSIS 563

This procedure is known as the principal-component method [8, Chap. 8] and it
optimally reproduces the total variance of the variables. However, a major objective
of factor analysis is to best reproduce the observed correlations; Thurstone 16, p. 61]
states, "The object of a factor problem is to account for the tests, or their intercorrela-
tions, in terms of a small number of derived variables, the smallest possible number
that is consistent with acceptable residual errors." Consequently, Harman and Jones
10] propose that one approximates only the off-diagonal elements of C. That is, they
want to choose A to minimize the objective function

1.1 f(A) =- .,._, f.,._, Cjk Z ajpakp
j--I k=l p--I

kj

Several optimization procedures are compared in [10] and the conclusion is drawn
that a simple Gauss-Seidel approach by the name of the minres method ("minimum
residuals") is most efficient. However, in order that the factor solution be acceptable,
the diagonal elements (the communalities) of must be bounded by unity in value

[8, pp. 116-117], i.e.,

Z ajp=2<1 for j= 1,2,... n.
p=l

Harman and Fukuda [9] present a modified minres method for the constrained problem

<1 forj=l 2,-.. n(1.2) min A)" a-

and remark that the new method is just as ecient as the original approach.
This paper concerns the efficient implementation and the convergence properties

of the minres method.. Mes efld. Harman and Jones [10] adopt the idea of the block Gauss-
Seidel technique for linear equations. The minres method is an iterative procedure in
which changes are made to a row of the factor matrix A at a time. With the notation

A= [af}-- (a0),

\a’;/
let us examine the effects of replacing af by the vector

x’=-(x,x, ,Xm).

The new reproduced correlations of variable j with any other variable k is

c,, Z a,,,x,,,
p=l

and the sum of squares of residual correlations of variable j with all other variables
becomes

(. f(x 2 x
k=l
kj

564 FRANKLIN T. LUK

Harman and Jones want to minimize f(x), i.e., they are interested in the least squares
problem

(2.2) min (11 b A_jx 2},

where

and

They solve the normal equations"

b cj cm cm+ c, r

TA_A_x Ar_jb,
implicitly assuming that the matrix A_ has full column rank. Since the objective
function can be rewritten as

(2.3) f(A(x)) C,k Y a,pakp + 2f(x),
i=1 k=l p---I
ij ki,j

we see that minimizing f(x) is equivalent to minimizing f(A(x)). From here on we
shall let I1" II--I1" I1,- denote the Euclidean vector norm.

As mentioned in the Introduction, Harman and Fukuda [9] replace (2.2) by the
inequality-constrained least squares problem:

(2.4) min { b a_x x <- 1 }.

They use the method of Lagrange multipliers, i.e., an a >-0 is to be found such that if

(2.5) r(A_jA_ + AI)x Ar_b,
then either h 0 and Ilxll-<-1, or x > 0 and Ilxll- 1. Let an eigenvalue decomposition
of Ar_A_j be

T TA_A_ pap

where P is orthogonal, A diag (8,. ., 8,.) and 8 ->- >- 8,. > 0. With h prAr_b
(h, h,.) r and y= Aprx=(y, y,.)r, (2.5) becomes

(I+aa-)y=h.

So

ai(hi--Yi)

for 1,. ., m. Given y, the unknowns yp are computed from

(2.6) YP (tp 8,)y, + hm,’

MINRES METHOD OF FACTOR ANALYSIS 565

for p 2, , m- 1, and Ym from

(2.7) Yl+...+Ym= 1.
8 8,,,

Under the assumption, all hp > 0 and 0 < y < rain {h, /-}, it is proved in [9] that

:=>yXy,

where 3) denotes the true solution for y. The value of y can therefore be determined
to any specified accuracy. However, no explicit updating formula for Yl is given in [9].

The key step of the minres method is the replacement of the jth row of A by the
solution to the inequality-constrained problem (2.4), for j 1, 2,- ., n. This sequence
of n problems constitutes a major iteration cycle. The initial matrix is composed of
the first m principal components of C. Since c, for all i, the jth row aJ)r of the
starting matrix satisfies

a}ll-< 1,

for j 1, 2,. ., n. The convergence criterion in [9], [10] is that the factor matrices
A (a) and A- -= (a-) at the end of the current and the previous cycle, respectively,
satisfy the condition"

(2.8) max [aj.k- a2k < r,

where r is some prechosen tolerance. Harman [8, p. 188] states that r .001 is satisfac-
tory for most problems. We may summarize the minres method as follows.

ALGORITHM MINRES

Initialization phase.
Compute an eigenvalue decomposition of C"

C QDOr,
where Q=(q,-..,%),D=diag(d,...,d) and d>_- ...>_-d>_-O;
Set

A Q DI/2,
where Ql-(q,"" ", q,,) and D =diag (dl,..., dm);

Iterative phase.
repeat until convergence
forj-1,...,n do

begin
Solve A_jA_x Ar_ bj
if IIx > then

begin
Determine an eigenvalue decomposition:

TA_A_ PAPr"

T TLet h P A_jb;
hSet y

[y,p= (hEp/8)]l/2,

566 FRANKLIN T. LUK

repeat until convergence {find Yl s.t. [(1 hl/Yl) 8m(1 hm/Ym)[is small}
begin
Update y; {unnecessary when loop is first entered}
Use (2.6) to compute yp, for p 2, , m- 1;
Use (2.7) to compute Ym
end;

Set x PA-y
end;

Replace the jth row of A by xr

end.

3. Implementation. We consider the matrix equation (2.5), assuming that A_ has
full column rank. Numerical examples ([8], [9], [10] and 5) indicate it is likely that
h 0 at the solution. The equivalent least squares problem (2.2) is best solved via an
orthogonal triangularization of A_ (Golub [6] and LINPACK [3]):

(3.1) A_ QR,

where Q R("-)’ has orthonormal columns and R R is upper triangular. For
j_-> 2, the two matrices A_ and A_(_) differ only in their (j-1)st row:

A_ A_(i_,)+ ej_l(a]’_ af),
where e_ denotes the (j-1)st unit coordinatb vector. For j note that

A_l II[A_. + e,(ar. af)],

where H is the permutation matrix of order n- 1:

H--(en-l, e,, e,. ., e,_).

The updating procedure of Daniel et al. [2] may be applied to compute a QR-
factorization of A_ (respectively A_) from that of A_(_l) (respectively A_), using
approximately 2(+3)nm + 3m operations (multiplications and additions), where s
is the number of orthogonalization steps (:- reorthogonalizations). We may use the
special structure of the rank matrix and save nm operations. The solution x is given
by

A better (though more expensive) numerical strategy is to compute the change u x a.
That is, we solve

Ru QT bj A_jaj),

and set

(3.2)

x=aj+u.

If h > 0 we recognize (2.5) as the normal equations for the problem:

or, equivalently,.

(3.3)

MINRES METHOD OF FACTOR ANALYSIS 567

tO which we may apply the algorithms of Elden [4], Golub [7] or Mor6 [12] (Gander
[5] contains a detailed discussion). All three procedures involve a preliminary reduction
of R to some simple form:

R WJY7",

where W and Y are orthogonal and J is upper bidiagonal in [4], W and Y are
orthogonal and J is nonnegative diagonal in [7], and W is orthogonal, J is upper
triangular and Y is a permutation matrix in [12]. That is, Elden [4] bidiagonalizes R,
Golub [7] determines its singular value decomposition (SVD), and Mor6 12] computes
its QR-factorization with column pivoting. Since no advantage can be taken of the
zeros in R ([1], [4]), the bidiagonalization procedure requires 4m3/3 operations. The
SVD costs 20m3/3 operations because the right transformations must be accumulated.
Interestingly enough, a straightforward SVD (i.e., not trying to preserve the zeros of
R) requires only 6m operations]. The technique of Mor6 requires 2m3/3 operations,
but is free if we forgo the column pivoting.

Hence (3.3) simplifies to

(3.4) min { I1(/ I)Y (/) I])0

where y YT"x and/ WT"QT"bj. An orthogonal matrix Qa is determined such that

Q2,/ 0 0 ,
where Ja has the same form as J. The solution y is given by

Jay zt.

This procedure requires 16m operations and 2m square roots (respectively m
operations) if J is bidiagonal (respectively diagonal) [4]. For an upper triangular J a
sequence of m(m+ 1)/2 Givens rotations would be required, costing about 2m3/3
operations and m:Z/2 square roots [12].

Our remaining task is to determine A > 0 such that the solution to (3.4) satisfies

Ily()ll- 1.

Elden [4] discusses numerical methods for finding the positive zero of the function

th(A)-- y(A)ry(A)- 1.

Reinsch 14] suggests the function

(X)-- -1y(A)y(A)

which may have better convergence properties. The most effective algorithm for finding, is given by Mor6 [12], who adopts a rational approximation approach [11]. He
considers

and accepts a > 0 if

(3.5) [()[-<_ ,

568 FRANKLIN T. LUK

where r is some error bound. His iterative scheme is

(3.6)

where

Ok+ Ogk--((l}(Ol.k)-[- 1) (/}(Okx,’}
,’(

T(Y(2.b’(a)=-lly(a)ll J: \ily(ail
The algorithm is safeguarded by the use of upper and lower bounds Uk and Ik. The
procedure (3.6) is modified whenever ak+ is outside of (/k+l, Uk+). The initial values
are

Uo JT/II, lo
6(0)
6’(0)’ ao max {0.001Uo, (/01/0) 1/2};

the updating formulas are given in [12]. Mor6 remarks that his algorithm always
converges, the rate is ultimately quadratic and less than two iterations (on the average)
are required to find an a when r 10-1. A computer program is available in MINPACK
13]. Our numerical experience, reported in 5, confirmed the claims in 12]; an average
of at most 5 iterations is required when r-l0-8. Suppose iterations are required.
Then the operation count for the bidiagonalization scheme [4] is

4m3/3 +[20m + 2m square roots](6 + 1),

for the SVD scheme [7] it is

6m3+4m(@+ 1),

and for the QR-factorization scheme [12] it is

[2m3/3 + m2/2 square roots](+).

It is clear that for if=> 1, we should choose the bidiagonalization procedure (cf.
LINPACK [31).

We propose the following procedure:

ALGORITHM NEW MINRES

Initialization phase.
Compute an initial matrix A using the same technique as in Algorithm minres;
Determine a QRofactorization of

Iterative phase.
repeat until convergence
forj=l,...,ndo

begin
Use the updating technique [2] to get a QRofactorization of

A_j QR; {skip this step when loop is entered for the first time}
Solve Ru Qr(bj A_jaj);
if aj + u -<- then
Add u 7- to the jth row of A

else
begin
Bidiagonalize R" R WJYT-"

MINRES METHOD OF FACTOR ANALYSIS 569

Let/= WrQrbj
repeat until convergence {find

begin
Use the procedure of Mor6 [12] to determine and its bounds;
Find an ohogonal matrix Q such that

QI()=(J00 zZ’) and J is bidiagonal;

Solve Jy(a z
end;

Set x Yy;
Replace the jth row of A by xr

end
end.

4. Convergence. Let us discuss the convergence propeies of the minres method.
Denote the current factor matrix by A(t) (a 0 and suppose we are at the jth step of
a major iteration cycle. Recall the objective function

(2.3) f(A<l)(x)) Cik alp akp
i=l k=l =1
i#j k#id

We determine a new jth row (=xr) of A so as to minimize the term 2(x) (the first
term is not affected). Let u= x-a). We can show that

f(A<t) -f(A+’) 2 a<’) u</)=.__+4A <’)(x rx a<’) rx),
where A <) is the Lagrange parameter of (2.5). Since either A <)=0, or A<t)>0 and
xx (also, Ila)’)ll), we get

f(a’)) f(a’+)) 211a)u’>ll
-) is positive bywhere Omn--<t) denotes the smallest singular value of A). Note that Omi

the assumption in 2 and 3 that A) has full column rank. Suppose there exists a
constant p > 0 such that -<) > for all L Since

A<t+) A<t) + eju
<t)r

we have

(4.1) f(A(’))-f(A(’+’)) < ellA(’) A(’+’)II <
2p2’

f(A)<f(A(’)) /=0, 1,...

There exists a row index j and a subsequence {A(5)} of the convergent subsequence
above so that each term, say M, of {A(9} solves

(2.4)

It follows that satisfies

min {11 bj M_jx I1"11 x <).

(4.2) tr. .+.jI) ^rA_.ibj,-j _j

for any given e > 0.
Now, the sequence {f(A(l))} is nonincreasing and thus has a limit. As A() is

contained in the compact set {A: IIAII-< n}, there is a matrix , R"" that is the limit

of a convergent subsequence of {A(/)}, and

570 FRANKLIN T. LUK

where ,j >-0 and df denotes the jth row of ,. We want to prove that/ satisfies (4.2)
for j= 1,2,..., n. Consider the subsequence {A(/l)}. A subsequence of this sub-
sequence will converge to a limit, say A. However, A will satisfy

(4.3) (A_j_ _j_ + j+ I)tj+ 1-- "T-j-lbj+l,
-Twhere j+-> 0 and a+ denotes the (j+ 1)st row of g. Note that, to be precise, we

should have written (j+ 1)mod n instead of (j+ 1). Since f(A)=f(A) we get from
(4.1) that , g. Hence (4.3) is also valid for A and the proof is complete.

Yet the matrix A need not minimize the function (1.1). Let

-.01 .01)C -.01 .01

.0t .01

and m 1. Then , can be any one of the three vectors:

or

.01

but only the last two minimize (1.1). The minres method would converge to either the
second or the third choice if the initial matrix were computed using principal com-
ponents (C has a multiple eigenvalue at 1.01).

It is well known [8, pp. 27-28] that the common-factor loadings are not unique.
For example,

for any m m orthogonal matrix Q. A canonical form is usually selected for the
accepted factor matrix, say A, so that successive factors will account for the maximum
possible variance [8, pp. 164-166]: let, UE Vr

be an SVD; The canonical form for A equals UE.

5. Numerical results. The following examples have been chosen:
1. Five hypothetical variables [9],
2. Five socio-economic variables [8],
3. Eight physical variables [10],
4. Eight emotional traits [8],
5. Twelve naval recruits temperament scales [8],
6. Twenty box measurements [8], and
7. Twenty-four psychological tests [8].
We have extended the convergence test (2.8) of Harman et al. to include function

values. At the end of an iteration cycle the current factor matrix Ac would be accepted
if either

IIA--ACI[%< ’a * max {1, IIAII}
or

f(A-) f(Ac) < "ry * max {1, f(AC)},

where A- denotes the matrix at the end of the previous iteration cycle.

MINRES METHOD OF FACTOR ANALYSIS 571

A computer program implementing the minres method was written in FORTRAN.
The preceding examples were run on a VAX-11/780 at Cornell University using double
floating data types: each number is binary normalized, with an 8-bit signed exponent
and a 57-bit signed fraction whose most significant bit is not represented. This is
equivalent to a precision of approximately 17 decimal digits. The tolerances were set
at TA --Tf-- 10-8. We observed that

IIA-- Ac I1 f(A-) f(Ac)
when Ac approached . The parameter NC stands for the number of major cycles
required for convergence, NZ for the number of least squares solutions with A 0 and
NP for the number of solutions with A > 0. Note that

n NC NZ+ NP.

The parameter NM represents the number of iterations required by the algorithm of
Mot6. The criterion r in (3.5) was chosen as 10-s, i.e., equal to rA and . The
root-mean-square deviation [8, p. 177]

rms=[f(fi)]/n(n- 1)

measures how well the model fits the observed data. The results are shown in Table 1.
The rate of convergence was linear. We used larger tolerances for Problem 4*: za
10-6, but r still equaled 10-8.

TABLE

Problem n m NC NZ NP (NM) rms

5 6 25 5(0) .0210
2 5 2 7 30 5 (3) .0098
3 8 2 7 56 0 .0207
3 8 3 35 278 2 (5) .0127
4 8 2 10 80 0 .0515
4 8 3 15 94 26 (4.96) .0305
4 8 4 > 100
4* 8 4 20 114 46 (4.22) .0222
5 12 4 36 432 0 .0271
6 20 3 4 71 9 (4.22) .0061
7 24 4 7 168 0 .0408
7 24 5 27 644 4 (4.75) .0370
7 24 6 39 933 3 (5) .0318

Acknowledgments. The author owes J. J. Mor6 his sincerest gratitude for the expert
advice and uncommon patience. He also would like to thank M. J. Todd and the two

referees for their many valuable suggestions.

REFERENCES

T. F. CHAN, An improved algorithm for computing the singular value decomposition, ACM Trans. Math.
Software, 8 (1982), pp. 72-83.

[2] J. W. DANIEL, W. B. GRAGG, L. KAUFMAN AND G. W. STEWART, Reorthogonalization and stable
algorithmsfor updating the Gram-Schmidt QRfactorization, Math. Comput., 30 (1976), pp. 772-795.

[3] J. J. DONGARRA, J. R. BUNCH, C. B. MOLER AND G. W. STEWART, LINPACK Users’ Guide, Society
for Industrial and Applied Mathematics, Philadelphia, 1979.

572 FRANKLIN T. LUK

[4] L. ELDEN, Algorithms for the regularization of ill-conditioned least squares problems, BIT, 17 (1977),
pp. 134-145.

[5] W. GANDER, On the linear least squares problem with a quadratic constraint, Report STAN-CS-78-697,
Computer Science Dept., Stanford Univ., Stanford, CA, 1978.

[6] G. H. GOLUa, Numerical methods for solving linear least squares problems, Numer. Math., 7 (1965),
pp. 206-216.

[7], Some modified matrix eigenvalue problems, SIAM Rev., 15 (1973), pp. 318-334.
[8] H. H. HARMAN, Modern Factor Analysis, 3rd ed., Univ. Chicago Press, Chicago, 1976.
[9] H. H. HARMAN AND Y. FUKUDA, Resolution ofthe Heywood case in the minres solution, Psychometrika,

31 (1966), pp. 563-571.
[10] n. H. HARMAN AND W. n. JONES, Factor analysis by minimizing residuals (minres), Psychometrika,

31 (1966), pp. 351-368.
11 M. D. HEBDEN, An algorithm for minimization using exact second derivatives, Atomic Energy Research

Establishment report R6799, Harwell, England, 1973.
[12] J. J. MOR, The Levenberg-Marquardt algorithm: implementation and theory, in Lecture Notes in

Mathematics 630: Numerical Analysis, Springer-Verlag, Berlin, 1978, pp. 105-116.
[13] J. J. MOR, B. S. GARBOW AND K. E. HILLSTROM, User Guidefor MINPACK-1, Report ANL-80-74,

Argonne National Laboratory, Argonne, IL, 1980.
[14] C. H. REINSCH, Smoothing by spline functions. II, Numer. Math., 16 (1971), pp. 451-454.
[15] L. L. THURSTONE, The Vectors of Mind, Univ. Chicago Press, Chicago, 1935.
16], Multiple Factor Analysis, Univ. Chicago Press, Chicago, 1947.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 3, July 1985

1985 Society for Industrial and Applied Mathematics
006

A BRANCH AND BOUND PROCEDURE FOR SELECTION OF
VARIABLES IN MINIMAX REGRESSION*

SUBHASH C. NARULA’ AND JOHN F. WELLINGTON*

Abstract. An efficient branch and bound algorithm is proposed for the selection of variables in a multiple
linear regression model using the minimization of the maximum weighted absolute error criterion. Besides
using a special preoptimality test, fathoming test and choice rule, the proposed algorithm takes advantage
of the special features of the new linear programming formulation of the problem. A few suggestions are
also given to accelerate the proposed algorithm. The steps of the algorithm are illustrated with an example.

Key words, absolute error, implicit enumeration, L-norm, subset selection

1. Introduction. The least squares (or equivalently, the minimization of the sum
of squared errors, MSSE) regression has dominated the statistical literature for a long
time. This dominance and popularity of the least squares regression can be ascribed,
at least partially, to the fact that the theory is simple, well developed and well
documented. The computer packages for least squares regression are easily available.
The least squares regression is optimal and results in the maximum likelihood estimators
of the unknown parameters of the model if the errors are independent and follow a
normal distribution with mean zero and a common (though unknown) variance 0"2.
However, the least squares regression is far from optimal in many non-Gaussian
situations.

In many practical problems, the errors may not follow a normal distribution, as
pointed out by Box (1967) and Cox (1967) in the discussion ofAnscombe’s (1967) paper.

G. E. P. Box (1967) stated, "I feel certain that platykurtic (short-tailed) distributions
do occur in practice for one reason because of deliberate or unconscious truncations
and these ought not to be ruled out."

On examining several sets of data, D. R. Cox (1967) observed that,."the surprising
conclusion was that while there were frequent departures from normality these were
about equally often towards long-tailed and towards short-tailed distributions."

The results of Monte Carlo studies of Bourdon (1974) and Forth (1974) on the
relative performance of the minimum sum of absolute errors, MSAE, the MSSE and
the minimization ofthe maximum absolute error, MMAE, criteria for various symmetric
(error) distributions indicate that if the error distribution is known to be long-tailed,
medium-tailed or short-tailed, the MSAE, the MSSE or the MMAE regression, respec-
tively, performs best. In this paper we shall discuss the MMAE criterion, which is also
known as the minimax criterion, Chebyshev criterion and the L-norm. We refer the
reader to Daniel and Wood (1980), Draper and Smith (1981) and Montgomery and
Peck (1982) for the MSSE regression and Narula and Wellington (1982) for the MSAE
regression.

The MMAE estimators are maximum likelihood estimators of the parameters if
the random errors are independent and follow a uniform distribution with a wide
range. Rice and White (1964) have recommended the MMAE criterion in experimental
situations where the observed response is subject to errors that can be described by
probability distributions having sharply defined extremes with high probability. An

* Received by the editors June 2, 1982, and in revised form February 13, 1984.

" Virginia Commonwealth University, Richmond, Virginia 23284.
Gannon University, Erie, Pennsylvania 16541.

573

574 SUBHASH C. NARULA AND JOHN F. WELLINGTON

example of such a situation occurs when the observed values are truncated to some
specified number of decimal places. Stiefel (1960) and Barrodale and Young (1966)
used the criterion for the computation of polynomial approximations to functions.
Barrodale and Phillips (1974) found the criterion useful when the response variable
contains only small inherent errors. It may be pointed out that the MMAE criterion
is very sensitive to outliers and as such should be used only when the underlying
assumptions are satisfied. For example, Appa and Smith (1973) caution against the
use of the MMAE criterion in certain econometric studies (especially those where
error variance may be nonfinite).

No matter what criterion is used to estimate the parameters of a multiple linear
regression model, many times the initial model contains a large number of predictor
(regressor) variables. These variables, one hopes, include all the relevant variables and
their appropriate functions, but at times also include some extraneous variables and
their functions. Thus it is possible that a model with only a few variables may adequately
explain the data or predict the response. A model with only a few variables may also
be desirable for economic and practical reasons since it is less expensive to collect
data and thus maintain a model (with fewer variables). It has also been shown, Narula
and Ramberg (1972) and Walls and Weeks (1969), that a model with fewer variables
may have more desirable statistical properties. Further, models with fewer variables
may also alleviate certain computational difficulties.

Our objective in this paper is to propose an efficient algorithm for selection of
variables in a multiple linear regression model using the minimization of the maximum
weighted absolute error, MMWAE, criterion. Note that the MMWAE criterion sub-
sumes the MMAE criterion. Recently Armstrong and Beck (1983) proposed a procedure
for subset selection using the MMAE criterion. However, the algorithm proposed in
this paper differs from their procedure in a number of minor and major aspects. The
most significant differences which make the proposed algorithm more attractive are
that the proposed algorithm uses (a) a new formulation (see formulation F or F’ in
2) for the MMAE regression which is more suitable for the selection of variable

problems than the original formulation of Wagner (1959); (b) a biologically constructed
tree (see 3.2) that requires less bookkeeping and makes it easier to understand the
branch and bound procedure; and (c) any bounded variable algorithm may be used
to solve individual problems. However, to improve the efficiency of the algorithm, it
is recommended that one use a modified bounded variable algorithm that incorporates
various features of the Barrodale and Phillips (1974) algorithm, which takes advantage
of the special structure of the problem formulation. It may be pointed out that the
Armstrong and Beck (1983) algorithm can be easily modified to select variables using
the MMWAE criterion. For selection of variables using the MSSE and the MSAE
criteria, the reader may refer to Hocking (1976) and Narula and Wellington (1979),
respectively.

The rest of the paper is organized as follows: In 2, we give a new linear
programming formulation of the problem for estimation of the unknown parameters
in a multiple linear regression model using the MMWAE criterion. We also state the
problem of selecting variables using the MMWAE criterion. In 3, we state several
features of the problem and describe a branch and bound algorithm to find the "best"
models with fewer variables. We illustrate the proposed algorithm in 4 and conclude
the paper with a few remarks in 5.

2. Problem formulation. Let y be a n vector of a response variable correspond-
ing to X, a n k matrix of predictor variables. Then, the multiple linear regression

SELECTION OF VARIABLES IN MINIMAX REGRESSION 575

model can be stated as

y=X[+e,

where [$ is a k x vector of unknown parameters and e a n vector of random errors.
For wi > 0, the MMWAE estimate b of [

minimizes maximum lyi-xlblwi,
b i=l,...,n

where x’ is the ith row of X. For wi I, I, n, b is an MMAE estimator of [$.
Let e =maximum lyi-x[blw. Then the preceding formulation can be written as"

i=l,...,n

minimize e,

subject to -e I _<- W(y Xb) -< e I, b unrestricted in sign,

where I is an n vector of ones and W is an n n diagonal matrix of (w, w2, , w,).
However, by defining e*= I/e, we can restate the problem as:

maximize e*,
(F)

subject to W[y Xb]e* + S I, 0 _-< S _-< 2 I,

where S is an n vector of slack variables and 0 an n x vector of zeros.
The selection of variables in relation to the MMWAE criterion can now be stated

as: for each p, p I,. , k- I, (i) find the subset of variables, from among (pk) possible
subsets, associated with the smallest maximum weighted absolute error; and (ii) for
the set of p variables found in (i), compute the estimates of the corresponding fl’s.
Thus, the problem of the selection of variables can be viewed as a solution to a series
of problems of the form (F). More specifically, let Jp {i, i2,..., ip} be a set of p
indices from I { I, 2, , k}, and J, be the complement of J Further, let

X UX., Xy,], {., fly,.}’ b [b., by,]’.

Then for a given Jp, the problem is:

maximize e*
(F’)

subject to W[y- X,b]e* + S 1, 0 _-< S <- 21.

We have chosen this formulation rather than the modification of the primal and
the dual formulation of the MMAE criterion as given by Wagner (1959) for the
following reasons. When solving the MMWAE problem for the model with k variables
only, the dual formulation of Wagner (1959) can be solved efficiently by an algorithm
of Barrodale and Phillips (1974); however, we need to solve a series of problems. This
can be accomplished more efficiently and easily by the deletion (addition) of columns
rather than rows. Further, we can use modified bounded variable algorithms that
incorporate special features of the Barrodale and Phillips (1974) algorithm.

3. Solution procedure.
3.1. Some observations. Branch and bound algorithms achieve computational

efficiency by (i) reducing the computations required to examine a given subset of
variables, and (ii) selecting the best subset of a given size without examining all the
subsets. To achieve these objectives, we make the following observations.

1. Let ep be the least maximum weighted absolute error associated with the "best"
set of p variables, p 1,2,. ., k. Then

ek <- ek-! < < e2 < el.

576 SUBHASH C. NARULA AND JOHN F. WELLINGTON

2. The least maximum weighted absolute error for a set of p variables is less than
or equal to the least maximum weighted absolute error for a set of t(<=p) variables
that can be obtained by deleting variable(s) from the p variables. Thus a fathoming
rule can be stated as:

If the least maximum weighted absolute error associated with a set of p
variables currently under investigation exceeds the least maximum weighted
absolute error for the best set of t(-<p), then models that can be obtained from
the set of p variables need not be examined.

3. Since formulation F (or F’) is a maximization problem, the objective function
value e* is nondecreasing. Thus we can state" a pre-optimality test as"

If the objective function value (at any iteration) for the set of p variables
under investigation exceeds the "best" objective function value associated with a
set of p variables found so far, we need not investigate the set of p variables under
investigation any further.

4. The feasibility of F’ is lost (maintained) when one or more variables are added
(deleted) to (from) a set of variables. When the problem is dual feasible, the pre-
optimality test and the fathoming test can be applied before each iteration.

5. Since the problem for a given Jp can be obtained by adding or deleting columns
in F’, we can start the solution procedure from a previously solved problem. Computa-
tional savings can be achieved by generating the problem in certain sequences.

6. In branch and bound procedures it is advantageous to find strong bounds early
in the solution process since it helps in fathoming. Thus, given a choice of variables
for deletion, it may help to select the variable that results in the smallest increase in
the maximum (weighted) absolute error (or equivalently, the largest increase in e*).
Thus a choice rule may be stated as

When a choice exists for removing a variable from a model, choose the variable
that results in the maximum increase in e*.

3.2. A tree. We describe the construction of a tree and movement through the
tree that takes advantage of the preceding observations. However, before doing so, we
establish the following terminology. If a set of p-1 variables is obtained from a set
of p variables by deleting one variable, then the set of p variables is called the father
(mother), and the set of p-1 variables, a son (daughter). All the subsets of p-1
variables obtained from the same set of p variables are called brothers (sisters).

The root of the tree represents the model with all k variables, and the interior
nodes represent models with fewer variables. The interior nodes are constructed in a
"biologically feasible" order, that is, with the restriction that "a parent be born before
a child." Such a tree can be constructed by obtaining the interior nodes by deleting
from the left (or right) one predictor variable at a time. One such tree for a four
variable problem is given in Fig. 1. The indices of the variables included in the model,
at each node, are also shown in Fig. 1.

The movement through the tree that takes advantage of the special features of the
problem can be stated as follows.

Start at the root of the tree and move from a parent to a child. At a terminal node
(a node with no children), move to the next younger brother (sister), or if there is no
brother (sister), to the father’s (mother’s) next younger brother (sister), or if there is

SELECTION OF VARIABLES IN MINIMAX REGRESSION 577

FIG. 1. A complete tree for a four variable problem.

no remaining uncle (aunt), to the grandfather’s (grandmother’s) next younger brother
(sister), and so on. For the tree in Fig. 1, one possible movement is 1234, 234, 34, 4,
3, 24, 2, 23, 134, 14, 1, 13, 124, 12 and 123.

Any labelling procedure can be used for movement through the tree. However,
for such problems, an efficient labelling procedure appears in Narula and Wellington
(1979).

3.3. Algorithm. An algorithm for selecting the best model with p variables, p
1, 2,..., k, using the MMWAE criterion, can be described as follows. Let p denote
the number of variables included in the model under investigation.

oStep O. Obtain initial bounds ep, p 1,. ., k. Go to Step 1.
Step 1. Set up the linear programming problem of the form F’ for the model

under investigation. If the current solution is dual feasible, go to Step 3;
if it is primal feasible, go to Step 4; if it is neither primal nor dual feasible,
go to Step 2.

Step 2. Obtain dual feasibility. Go to Step 3.
Step 3. Use the dual simplex method for bounded variables to solve the problem.

Solve the problem to optimality. Apply the fathoming test. If successful
go to Step 7; otherwise go to Step 5.

Step 4. Use the primal simplex method for bounded variables to solve the problem.
Proceed as follows:
(a) Before each iteration, apply the fathoming test. If successful go to

Step 7; otherwise apply the preoptimality test. If successful go to Step
6; otherwise go to (b).

(b) Perform the simplex iteration. If solution is optimal go to Step 5;
otherwise go to (a).

Step 5. If the current objective function value is smaller than the "best" found
so far for a model with p variables, store the current solution as the best
model of p variables. Go to Step 6.

Step 6. If possible, take a forward step and go to Step 1; otherwise go to Step 7.
Step 7. if possible take a backward step and go to Step 6; otherwise problem is

solved and Stop.

3.4. Some improvements. The proposed algorithm can be made more efficient by
including one or more of the following features in the procedure.

578 SUBHASH C. NARULA AND JOHN F. WELLINGTON

(i) Set a lower limit or an upper limit or both on the number of variables to be
included in the models to be searched.

(ii) Find a model with m(1, 2,..., k-1) variables that does not differ in its
minimax value from the best model with rn variables by more than 100 percent, _-> 0.

(iii) Find only those models which do not differ in their minimax value from the
model with k variables (i.e., the full model) by more than 100 A percent, A --> 0.

The way to implement any of these features in the branch and bound procedures
is described in detail by Narula and Wellington (1983). However, it should be clearly
understood that if (ii) or (iii) or both are included in the procedure, the algorithm
does not have to find the best model with rn (= 1,. ., k) variables.

4. An illustrative example. We illustrate the proposed algorithm with a data set
from Wood (1973). It consists of 82 observations on a response variable and four
predictor variables. To demonstrate the features of the proposed algorithm, the MMAE
values associated with all possible models are given in Fig. 2.

1.7016 0410 3780
755716 2.0056

!49

FIG 2. The MMAE value associated with all possible models for Wood (1973) data.

To obtain the initial bounds, the least squares models of sizes 1, 2 and 3 were
found by forward selection procedure. The maximum absolute error corresponding to

these models provides the initial bounds (Step 0). These bounds are given in Table 1.
Formulation F is solved for all the four variables in the model. The least maximum

absolute error for the model is .9149. A forward step results in a model with variables
234. The problem is dual feasible and the fathoming test is successful. Thus, we need
not investigate models that can be obtained from the model.

Next, a backward step followed by a forward step results in a model with variables
134 with least maximum absolute error of .9539. This value now becomes the new
bound for a model with three variables. However, at this stage the branch cannot be

TABLE
Initial boundsfor models ofvarious sizes for Wood (1973) data.

No. of variables Predictor Max. absolute
in the model variables value

1.7016
2 12 1.5716
3 123 1.1975
4 1234 0.9149

SELECTION OF VARIABLES IN MINIMAX REGRESSION 579

fathomed. A model with variables 14 is obtained on a forward step by deleting variable
3, and the problem remains dual feasible. The problem had to be solved to optimality,
resulting in a least maximum absolute error of .9575, which becomes the bound for a
model with two variables. A model with variable is obtained on the next forward
step by deleting variable 4. The least maximum absolute error for the model is 1.7016,
a new bound for models with one variable. We reach a model with variables 13 by
taking two backward steps followed by a forward step. However, at this stage fathoming
is successful prior to solving the problem to optimality.

Next we take two backward steps followed by a forward step to arrive at a model
with variables 124. We examine this model by deleting variable 3 from the optimal
tableau for the full model. We refer to this as restarting the procedure. The problem
is dual feasible and results in a least maximum absolute error of .9178. Thus this value
becomes a new bound for models with three variables. On the next forward step we
reach a model with variables 12 that has a least maximum absolute error of 1.5716.

Now we take a backward step followed by a forward step arriving at the model
with variables 123. The fathoming test is successfully applied prior to solving the
problem to optimality. On the next backward step we reach the root of the tree. The
algorithm stops.

These steps for the example appear in Fig. 3 and Table 2. Table 3 gives the best
MMAE models and their corresponding MMAE values for p l, 2, 3, 4.

FIG. 3. The solution tree for the problem.

5. Some remarks. The MMAE criterion for the estimation of parameters in a
multiple linear regression model should be used with care as it is very sensitive to
outliers. However, if all the underlying assumptions are satisfied and it is considered
appropriate to use the criterion, then one may use the algorithm proposed in this paper
for the selection of variables in the multiple linear regression model using the MMWAE
criterion. The use of the new formulation affords the maximum exploitation of the
special structure of the problem in the variable selection algorithm. Special algorithms
(in Steps 3 and 4 of the algorithm) will reduce the computational effort. However, if
such algorithms are not available, the proposed procedure can be used with any
algorithm to solve a linear programming problem. No restriction, such as that every
submatrix of X be of full rank, are placed on the problem. A suggestion of Narula
and Wellington (1983) to accelerate the variable selection algorithms can be used with
the proposed procedure. One such program has been developed by Wellington and
Narula (1981b).

The working array required to solve F is of the order n k. Our limited computa-
tional experience with the proposed procedure has been similar to the results reported

580 SUBHASH C. NARULA AND JOHN F. WELLINGTON

TABLE 2
Summary of solution procedure for Wood (1973) data.

Variables in MMAE
the model value Remarks

1234 .9149
234 1.1884
134 .9539

14 .9575

1.7016

13
124 .9187

12 1.5716

123

FTS
Store results as the current "best" model with

three variables.
Store results as the current "best" model with
two variables.

Store results as the current "best" model with
one variable.

FTS prior to optimality.
Store results as the current "best" model with

three variables.
This is an inferior model with two variables com-

pared to the current "best."
FTS prior to optimality. Search terminated.

FTS: fathoming test successful

TABLE 3
Best models of various sizes for Wood (1973) data.

No. of variables Predictor
in the model variables MMAE value

1.7016
2 14 0.9575
3 124 0.9187
4 1234 0.9149

by Wellington and Narula (1981a) for the minimum sum of weighted absolute errors
criterion.

Acknowledgment. We thank Dr. J. H. Friedman for his suggestions which have
improved the presentation of the paper.

REFERENCES

F. J. ANSCOMBE (1967) Topics in the investigation of linear relations fitted by the method of least squares, J.
Royal Statist. Soc. Set. B29, pp. 1-52.

G. APPA AND C. SMITH (1973), On L and Chebyshev estimation, Math. Programming, 5, pp. 73-87.
R. D. ARMSTRONG AND P. O. BECK (1983), The best parameter subset using the Chebyshev curve fitting

criterion, Math. Programming, 27, pp. 64-74.
I. BARRODALE AND C. PHILLIPS (1974), An improved algorithmfor discrete Chebyshev linear approximation,

Proc. 4th Manitoba Conference on Numerical Mathematics, Univ. Manitoba, Winnipeg, Manitoba,
pp. 177-190.

I. BARRODALE AND A. YOUNG (1966), Algorithm for best L andL linear approximation on a discrete set,
Numer. Math., 8, pp. 295-306.

G. A. BOURDON (1974), A Monte Carlo sampling studyforfurther testing of the robust regression procedures
based upon the kurtosis of the least squares residuals, unpublished M.S. thesis, Air Force Institute
of Technology, Wright-Patterson AFB, Ohio.

G. E. P. Box (1967), Discussion, J. Royal Statist..Soc. Ser. B29, pp. 42-43.
D. R. Cox (1967), Discussion, J. Royal Statist. Soc. Set. B29, p. 29.

SELECTION OF VARIABLES IN MINIMAX REGRESSION 581

C. DANIEL AND F. S. WOOD (1980), Fitting Equations to Data, 2nd edition, John Wiley, New York.
N. R. DRAPER AND H. SMITH (1981), Applied Regression Analysis, 2nd edition, John Wiley, New York.
C. R. FORTH (1974), Robust estimation techniques for population parameters and regression coefficients,

unpublished M.S. thesis, Air Force Institute of Technology, Wright-Patterson AFB, Ohio.
R. R. HOCKING (1976), The analysis and selection of variables in linear regression, Biometrics, 32, pp. 1-49.
D. C. MONTGOMERY AND E. A. PECK (1982), Introduction to Linear Regression Analysis, John Wiley, New

York.
S. C. NARULA AND J. S. RAMBERG (1972), Letter to the Editor, Amer. Statist., 26, pp. 42.
S. C. NARULA AND J. F. WELLINGTON (1979), Selection of variables in linear regression using the minimum

sum of absolute error criterion, Technometrics, 21, pp. 299-306.
(1982), The minimum sum of absolute regression: a state of the art survey, Internat. Statist. Rev., 50,
pp. 317-326.

(1983), Selection of variables in linear regression: a pragmatic approach, J. Statist. Comput. Simul.,
17, pp. 159-172.

J. R. RICE AND J. S. WHITE (1964), Norms for smoothing and estimation, SIAM Rev., 6, pp. 243-256.
E. STIEFEL (1960), Note on Jordan elimination, linear programming and Tchebycheff approximation, Numer.

Math., 2, pp. 1-17.
H. M. WAGNER (1959), Linear programming techniques for regression analysis, J. Amer. Statist. Assoc., 54,

pp. 206-212.
R. E. WALLS AND D. L. WEEKS (1969), A note on the variance of a predicted response in regression, Amer.

Statist., 23, pp. 24-26.
J. F. WELLINGTON AND S. C. NARULA (1981a), Variable selection in multiple linear regression using the

minimum sum of weighted absolute errors criterion, Comm. Statist.: Part B, 10, pp. 641-648.
(1981 b), Variable selection in multiple linear regression using the minimization ofthe weighted maximum
absolute error criterion, Research Report No. 37-8 l-P7, School of Management, Rensselaer Polytech-
nic Institute, Troy, NY.

F. S. WOOD (1973), The use of individual effects and residuals in fitting equations to data, Technometrics,
15, pp. 677-695.

SIAM J. STAT. COMPUT.
Vol. 6, No. 3, July 1985

() 1985 Society for Industrial and Applied Mathematics
OO7

A NUMERICAL MODEL OF TWO-DIMENSIONAL, TWO-COMPONENT,
SINGLE PHASE MISCIBLE DISPLACEMENT IN A POROUS MEDIUM*

THOM POTEMPAf

Abstract. A new numerical procedure for modeling single phase miscible diplacement in a porous
medium is presented. This model is based upon a material balance that is similar to that which is used to

derive the differential equations that govern single phase miscible displacement. Since the procedure is

defined in terms of a material balance, the data structures arising in a computational implementation are

compatible with those that are present in finite difference models of miscible displacement. This procedure
obeys a maximum principle due to the upstream weighting of the convective transport terms. This new

procedure does not exhibit the grid orientation effect present in the five-point finite difference models of
this process.

Key words, numerical modeling, reservoir engineering, material balance

1. Introduction. Due to the growth in the computational power of the digital
computer in recent years, numerical models of physical phenomena which cannot be
described analytically have proved increasingly useful in engineering process design.
In the field of petroleum reservoir engineering, numerical simulations of complex
enhanced recovery mechanisms such as steamflooding [1], in situ combustion [2],
chemical flooding [3], and miscible displacement by carbon dioxide [4] have been
undertaken. These simulation efforts have the potential of determining the economic
viability of a particular recovery mechanism without the need for an expensive and
time-consuming pilot study.

A phenomenon which limits the usefulness of current reservoir simulators in field
level simulations is the grid orientation effect. A numerical discretization procedure
that is used in a physical simulator is said to exhibit the grid orientation effect if the
approximate solution is sensitive to the spatial orientation of the grid. In the reservoir
engineering literature, a spatial discretization that forms channels that are parallel to
the streamlines connecting the injection and production wells is known as a parallel
grid [5]. Similarly, a partition of the domain which forms channels that are diagonal
to the streamlines connecting the injection and production wells is called a diagonal
grid. Not only do the approximate solutions generated by the parallel and diagonal
grids differ at discretization sizes practical for field simulation work, but the asymptotic
solutions that are generated by the two grids differ considerably. Grid effects were first
reported for a model problem by Hirasaki, O’Dell and Todd [5], and were later observed
in the simulation of steamflooding by Chu, Coats, George, and Marcum 1]. Since the
qualitative aspects of grid orientation effect are similar for both the model problems
and problems of practical significance, the test problem generally used to determine
the sensitivity of a numerical discretization procedure to the orientation of the grid is
a variant of the single phase miscible displacement problem.

Many numerical discretization procedures have been proposed to deal with the
grid effects. These procedures include finite difference techniques, finite element tech-
niques, and procedures based upon the method of characteristics. Each class of
procedures is discussed in greater detail below.

Five-point finite difference procedures are widely used in production reservoir
simulators today. Procedures which utilize either an expanded or a modified differen-

* Received by the editors January 25, 1983, and in revised form March 5, 1984.
f Department of Mathematical Sciences, Rice University, Houston, Texas 77251.

582

SINGLE PHASE MISCIBLE DISPLACEMENT 583

cing operator can be implemented in existing reservoir models with very little additional
effort. Hirasaki, O’Dell and Todd [5] propose a two-point upstream weighting tech-
nique. As is shown by McCracken and Yanosik [6], the two-point upwinding procedure
exhibits significant grid effects at moderate mobility ratios. McCracken and Yanosik
[6] propose a nine-point finite difference technique that eliminates grid effects at
moderate mobility ratios, but exhibits unrealistic phenomena at a mobility ratio of
fifty. Coats and Ramesh [7] report that the McCracken and Yanosik procedure exhibits
a significant grid effect when simulating a steamflood in an inverted seven-spot pattern.
Robertson and Woo [8] propose a scheme that utilizes a curvilinear grid. Although
this procedure eliminates a substantial portion of the grid effects present in a steamflood
model, the method has two drawbacks. First, an a priori estimate of the fluid stream-
lines is required to define the coordinate system. Fluid streamlines in a realistic pro-
cess can vary rapidly as a function of time. Secondly, a considerable amount of user
interaction is required for a transmiscibility modifications associated with this
method.

Finite element methods have the potential of eliminating the grid effects in the
simulation of the miscible displacement problem. Finite element procedures which do
not exhibit grid effects generally add diffusion in some manner. Dupont, Price, and
Settari [9] report that grid orientation is present in a finite element procedure employing
a CO approximating space and is not present when a C approximating space is
employed. Approximating spaces having continuous first derivatives add diffusion to
the calculated solution. Douglas [10] reports that the grid orientation present in finite
element methods which employ a CO space can be eliminated if a term which penalizes
jumps in the derivative of the approximate solution is added to the discretization
procedure. A penalty term on the jumps of the approximate solution adds diffusion.
Young [11] adds diffusion through a rotationally invariant physical dispersion term.
He reports no grid orientation in finite element procedures employing approximating
spaces with continuous first derivatives. The grid effects disappear as the norm of the
mesh approaches zero when using a procedure based upon a CO approximating space.
There is, however, a significant grid effect in the procedure which uses a CO approximat-
ing space at discretization sizes practical for field simulation work.

The need to add diffusion to finite element procedures is further demonstrated
by the linear immiscible displacement problem. A finite element procedure can converge
to a false solution if diffusion is not present. Price, Settari, and Spivak 12] demonstrate
that finite element procedures employing approximating spaces with continuous first
derivatives converge to the correct solution of the Buckley-Leveret problem and that
similar procedures employing CO approximating spaces do not converge unless
diffusion is added to the differential equation by a capillary pressure term. Darlow,
Douglas, Kendall, and Wheeler [13] show that the addition of a mesh dependent
diffusion term forces a finite element method based upon a CO approximating space
to converge to the correct solution of the linear immiscible displacement problem.
Furthermore, they relate single-point upstream weighting to this mesh dependent
diffusion term. Douglas [10] notes significant overshoot in the computed solution for
the miscible displacement problem unless diffusion is added to the approximate
solution.

These studies indicate that a certain amount of numerical or physical diffusion
must be present in a numerical model of fluid displacement to eliminate both grid
effects and formation of false fronts. Although five-point finite difference procedures
add mesh dependent dispersion to the numerical model [13], the added dispersion is
not rotationally invariant in more than one space variable. The physical dispersion

584 THOM POTEMPA

proposed by Young 11 is rotationally invariant, which permits the asymptotic conver-
gence of a finite element method that employs a CO approximating space.

Finite difference procedures employing an extended differencing operator can be
implemented in existing five-point finite difference reservoir models with little addi-
tional effort. The major drawback with applying finite element procedures to reservoir
engineering models is that it is not possible to easily implement the numerical discretiz-
ation procedure in existing models of complex physical phenomena. For example,
often associated with finite element procedures are penalty terms [10], logarithmic
approximations to the sources and sinks [14], a need for the pointwise evaluation of
the Darcy velocity [9], [10], I11], [14], and capacity matrices that do not allow the
implementation of an IMPES 15] solution technique. Young 11 directly or indirectly
addresses several of these points, especially noting that a technique which employs
reduced numerical quadrature allows the efficient implementation of an IMPES sol-
ution technique. Indeed, the procedure he describes that employs a CO linear
approximating space reduces to a five-point finite difference formulation. Regulariz-
ation of the computed solution is achieved through a rotationally invariant physical
dispersion term instead of by upwinding. As is noted earlier, the grid effects present
in the CO procedure are significant at practical discretization sizes.

Procedures based upon a modification of the method of characteristics eliminate
grid orientation in the miscible displacement model problem. Furthermore, these
procedures do not add numerical diffusion to the computed solutions. Examples of
such work include Glimm, Isaacson, Marchesin, and McBryan 16], Russell 17], and
Ewing, Russell, and Wheeler 18]. The major difficulty in applying these techniques
in a general setting is twofold. Computational experience with these methods is limited
for compressible problems, and the data structures arising in an implementation are
inconsistent with those found in existing reservoir engineering models.

A new numerical model of single phase miscible displacement in a porous media
is developed below. Instead of defining this procedure using the differential equations
governing the physical process, this procedure is developed directly from material
balance considerations. Hence this procedure is readily implemented in any existing
code which views the numerical model as a material balance on the computational
molecules associated with the spatial discretization. All finite difference procedures
are compatible with this material balance framework. Upstream weighting is used to
add dispersion to the numerical procedure. Although no attempt is made to prove
either consistency with the differential equations governing single phase miscible
displacement or convergence to the true solution of these equations, the theoretical
results of Bell, Shubin, and Wheeler concerning this procedure are mentioned briefly.
Lastly, computational results are presented which demonstrate the lack of grid effects
in this procedure.

2. Definition of the model. The two-dimensional, two-component, single phase
miscible displacement problem is a simple and unrealistic model problem. Nonetheless,
the qualitative aspects of this model adequately represent some features encountered
in the displacement of oil in a petroleum reservoir. A fluid that is known as the resident
fluid is assumed to be originally present in the reservoir. A second fluid known as the
invading fluid is injected at wells that are known as injection wells in an attempt to
produce the resident fluid at other wells that are known as production wells. The
process is assumed to be independent of the vertical coordinate, and is modeled in a
two-dimensional domain. The height of the reservoir is assumed to be unity for
convenience.

SINGLE PHASE MISCIBLE DISPLACEMENT 585

Over the domain 1"1 entities that are known as computational molecules are defined.
The computational molecules are denoted by 1"/,. Denote the number of computational
molecules by m. A precise definition of the computational molecules is not necessary
at this point. However, the computational molecules formed by a five-point finite
difference approximating technique are rectangles formed by the spatial discretization.

A modification of the standard analysis of fluid mechanics [20] that is ultimately
employed to derive the differential equations governing a physical process is used
below. For every computational molecule f/p, the law of conservation of mass is
expressed as a material balance given by

(1) {accumulation ofmass in f/p} {mass flux into p}+ {source terms acting on f/p}.

Consider first the total flow of fluid into a computational molecule f/p, irrespective as
to whether the fluid is resident fluid or invading fluid. Let Vp denote the pore volume
of the computational molecule f/p. Under the assumption of single phase flow, the
average density of the fluid in the computational molecule f/p is represented by a
single quantity pp. The accumulation of mass in tip between time tn and t,+l is given
by

(2) accumulation Vp[pp(tn+l) pp(tn)].

Assume that the number of sources and sinks present in the domain f/is denoted
by s. Let Qpk denote the strength ofthe kth source term with respect to the computational
molecule f/p. For a sink, this quantity is negative. The source term has units expressed
in terms of mass injected per unit time. Letting Qkp(tn+l/2) denote the average value
of the injection rate between time t, and t,+l, the contribution of the source terms is
given by

(3) Sources=At Qkp(t,+/2).
k=l

Fluid flowing into the computational molecule f/p that is not covered by the source
terms must flow out of another computational molecule flq by convective flow. Denote
the mass transfer rate between the computational molecule p and , as Fp. Since
the amount of fluid flowing into f/q that flows out of f/p must be the negative of the
amount of fluid flowing into p that flows out of /q, the mass transfer rates satisfy
the property that Fpq =-F.

Assume that the system satisfies zero flux boundary conditions, i.e., that no fluid
flow occurs across the boundary Of/ of the domain f/. The total mass flux into a
computational molecule
where q can range from to m. Let F(tn+l/2) denote the average of the mass transfer
rate F between time t, and time t,+. The total mass flux into a computational molecule
f/p between time t and time t,+ due to convection is given by

(4) Mass flux=At I,(tn+l/2).
q=l

Given (2), (3), and (4), the material balance for the computational molecule
is rearranged to yield

(5)
q=l k=l

Let c denote the concentration of the invading fluid. A material balance that can be
derived in a fashion similar to the derivation of (5) governing the concentration of the

586 THOM POTEMPA

invading component Cp in a computational molecule tip. This is given by

Vp[pp(t.+,)Cp(t,,+ l) pp(t.)Cp(t,,)]
(6)

At Z Fp(t,+l/z)c(t-+l/2)+ At Qp(tn+l/2)p(t,+l/2).
q=l k=l

The quantity Cp represents the average concentration of the invading fluid in the
computational molecule Ip. The quantity Cp

q appearing in (6) represents an average
concentration of the invading fluid with respect to the computational molecules ’q
and f/p. The average concentration is written with a tilde for the source terms to indicate
that the invading fluid concentration is by definition unity at the injection wells and
that it depends upon the local fluid composition at the production wells. Precisely, let

if Q>0,(7) p(t,+l/)
Cp(t,+l/z) if Qp <0.

The pressure distribution P and the distribution of the concentration of the
invading fluid c are assumed to be a set of primary unknowns from which the values
of all quantities appearing in the material balances (5) and (6) are determined. Average
values Pp and % of the primary variables are defined for every computational molecule
lp. The density of the fluid is assumed to be a function of the pressure and the
concentration of the invading fluid. In this investigation, the density is related to the
primary variables by

(8) p(P, c)=p[l+aP]c+p,.[l+aP][1-c].

The quantities p and p represent the densities of uncontaminated invading fluid and
resident fluid, respectively. The quantities a and a represent the compressibilities of
each fluid. The average density pp of the fluid in a computational molecule fp is
related by (8) to the average pressure Pe and the average concentration of the invading
fluid %. Let

(9) pp= p(Pp, cp).

Assume that the domain is a rectangular region of the form (0, x) (0, y). A
partition 7rx {Xo, Xl,"" ", x.} of the x coordinate axis is formed from the rule

(10) 0=Xo<X <x<’’’<x,x=xL.

In a similar manner, a partition Try of the y coordinate axis is formed from the rule

(11) 0 Yo < Y < Y2 <" < Y,y YL.

The partitions defined by (10) and (11) are extended by reflection to included additional
points on the x or y coordinate axis. For example, the point x_l is obtained by reflection
of the point x through the point Xo.

Functions of a single space variable are associated with the partitions 7rx and Try.
Functions denoted as Xi that are associated with the partition rx are defined by

(12)

X Xi_

Xi Xi-

Xi(x xi+l x

xi+ xi

O,

X X Xi+l,

X Xi_ or x xi+ 1.

SINGLE PHASE MISCIBLE DISPLACEMENT 587

In a similar fashion, functions Y that are associated with the partition Try are defined
by

(13)

Yj-I<Y<Yj,
Yj --Yj-I

gj(y) Yj+I Y
Yj+I -Yj’ YJ < y < YJ+’

O, y < yj_ or y > yj+.

Define a node nij to be an element of the Cartesian product rx x Try. Associated with
each node nij is a function W that is generated by the functions X and Y. Let

(14) W(x, y)= X,(x) Y(y).

Associated with each node n is a computational molecule ll. Although the
computational molecule f0 escapes a precise geometrical interpretation, it is in some
sense related to the area under the cue formed by the function [21]. Let denote
the porosity of the formation. Consistent with the interpretation of the computational
molecule as the area under cue of , the pore volume E is defined as

(15) = %(x, y) dydx.
Yj-1

For the purpose of discussion, a grid block is defined to be a spatial region of
the form (x, x+)x(y, Y+l). The computational molecule can be thought of as
existing over the four grid blocks (x,x+)x(y, y+), (x, X_l)x(y, y+), (x, x+)x
(Y, Y-l), and (x, x_) x (y, y_), since the associated function is nonvanishing, i.e.
supposed, only over these grid blocks. For the purposes of discussion, a quantity x
is associated with every element x of the paition by

(16)

A quantity y is defined for every element of y in a similar fashion.
Let u denote the mass flux distribution in the domain having directional

components denoted by u and Uy. The average value between time t, and t,+ of the
mass transfer rate Fh(tn+/) between any two computational molecules and
is defined in terms ofthe average in value ofthe components ofthe mass flux distribution
u(t+/) and u(t+/) and the functions X, Yh, and . Let

(17)
0 Y)+ lj blur(x, y, X (x) dy dx.

Oy

A mass transfer rate Fh between two computational molecules and Oh calculated
from (17) is nonzero only if the node n is one of the eight nodes surrounding the
node n. The mass transfer rates calculated from (17) are, as desired, antisymmetric,
i.e., F -F. Mass transfer rates from (17) can be calculated from any approximation
to the mass flux distribution, including the exact distribution. A geometric interpretation
of (17) is given by Potempa [21].

The material balance on total mass represented by (5) is rewritten as

g=-I h=-I k=l

588 THOM POTEMPA

In a similar manner, the material balance (6) on the invading component is rewritten
as

(19)
Vij[pij(t.+,)cij(t.+,) Pij(t.)qj(t.)] At Y’. Fh(t.+,/2)C’h(t.+,/2)

g=-I h=-I

+ At q(t.+,/=).#(t.+,/).
k=l

Upstream weighting based upon the sign of the appropriate mass transfer rate is
applied to the average concentration ch(tn+l/2) appearing in (19). Following the IMPES
technique, this term is approximated explicitly in time. Let

ghc(t.) o ifr o (tn+l/2)<O,
(20) ch(t"+’/2)= C(t,)h ifFh(t,+,/2)>0.
Also following the IMPES analysis, the concentration at the source terms is evaluated
explicitly in time. Let

(21) t’(tn+’/2) c(tn)

(22)

ifQ>O,
if Qpk < O.

Define the total mass mobility : as

kp(P, c)
so(P, c)=

(c)

The coefficient k appearing in (22) is known as the permeability of the rock. Although
the permeability is in general both a spatially dependent function and a directional
quantity, assume that it is an isotropic constant for the sake of brevity. Following
Darlow, Ewing, and Wheeler [14], the viscosity/z is assumed to be a function of the
concentration of the invading component of the form

(23) 1/4 r.(C)-- {#i --+ lr/4[1--C]}4.

The mobility ratio M of the flood is defined to be the ratio of the viscosity/zr of the
resident fluid to the viscosity/i of the invading fluid. Let

(24) M =/z___.

The mass flux distribution is related to the primary unknowns by Darcy’s law and by
the definition of the mass mobility. Let

(25) u(x, y, t.+l/2)= -(P(x, y, t,+,/2), c(x, y, t.+,/2))VP(x, y, t,+,/2).
The distribution of the mass flux at each point in the domain f required by (17)

is determined from a pointwise approximation to the primary unknowns and (25). A
pointwise approximation P to the pressure distribution is obtained from a linear
combination of the functions Wj and the average values of the pressure pj in the
computation molecules fo. Let

iy

(26) P(x, y, t,)= E Po(t,) (x, y).
i=Oj=O

In a similar fashion, an approximation to the concentration of the invading fluid is
given by

(27) 5(x, y, t,)= Z Z c,(t.) Wo(x, y).
i=0j=0

SINGLE PHASE MISCIBLE DISPLACEMENT 589

The approximation to the mass flux distribution used in the implementation of
this procedure is further simplified to permit an efficient calculation of the mass transfer
rates. The total mass mobility : is evaluated explicitly in time and as a piecewise
constant over each grid block. Let

(28)
(P(x, y, t.+/2), c(x, y, in+l --Sj(P(xi+/2, Y+/2, t.), ?.(xi+/2, Y2+/., t.)),

(x, y) (x,, X,+l) x (yj, yj+).

Using (25) and (28), the mass flux distribution is approximated as

(29) (x, y, tn+l/2):-(P(x, y, tn+/2), c(x, y, tn+l/2))VP(x, y, t,+).

The vector a calculated by (29) is used computationally as an approximation to the
mass flux distribution in (17).

Although the evaluation of (17) appears formidable, only the functions Xi, Y,
and W remain under the integral sign if it is expanded through the definitions given
above. These integrations are performed separately on each grid block. Recall that the
total mass mobility is approximated as a constant over each grid block and is thus
removed from under the integral sign. The remaining functions appearing in (17) are
constant with respect to time and are polynomials in space. The integrals are evaluated
exactly for every grid block only once by using an appropriate master grid block and
a mapping. The mass transfer rates between adjacent computational molecules are
thus written as easy to compute linear combinations of either four or six nodal values
of the pressure. The zero flux boundary conditions are imposed by reflection.

In finite difference procedures, the approximate mass transfer rates are directly
proportional to the pressure difference. In contrast, the procedure described above
determines approximate mass transfer rates by the integration of a mass flux vector
which is the weighted gradient of a piecewise ditterentiable representation of the
pressure distribution. By using an appropriate numerical quadrature scheme, these
integrals are evaluated as a linear combination of nodal values of the pressure.

Other approximations to the mass transfer rates can be obtained by using different
quadrature rules. If the mass flux vector is assumed constant over each individual grid
block and every grid block is a square, the formula of Yanosik and McCracken [6]
can be obtained from (17). Evaluation of (17) using the Lobatto points, as in Young
11], results in a five point finite difference formulation. If the components of the mass

flux u, and uy are known exactly, these values can be used in (17). Numerical
experiments of Potempa [21] indicate that use of a higher order approximation to the
mass flux in (17) further reduces the amount of grid orientation.

Injection rates are assumed to be specified at the injection wells. A well model is
used for calculating the injection rates at the production wells. The form of the well
model is that used by Peaceman [22]. Assume that uniform, square grid blocks are
used, i.e., that Axi Ay A for all pairs of indices and j. Let the kth well be located
at (Xk, Yk), the bottom hole pressure of the kth well be denoted by Ph, and the wellbore
radii of the kth well be represented by rk. The injection rate Qk at the kth production
well is calculated from

Pbh P(Xk, Yk, tn+l)
(30) Qk(t,+,/2) 2r(P(Xk, Yk, t,)C(Xk, Yk, t,))

In (.1168ZX)-ln (r)"
The constant .1168 is calculated directly from the simulator in the manner described
by Peaceman [22] and Coats and Ramesh [7]. All coefficients appearing in (30), except
the local reservoir pressure, are evaluated explicitly in time. This definition is modified
in the manner described by Peaceman [22] if the grid is not uniform.

590 THOM POTEMPA

Given the approximation to the injection rates, the injection rate into a computa-
tional molecule f0 due to a source of strength Qk is given by

(31) Q(t,+l/2) Qk(t,+/2) Wj(Xk, Yk).

The wells are not restricted to lie at the nodes of the discretization. This is an
improvement over finite difference formulations, where the uncertainty in the location
of a well is the size of the grid block in which it is located. Included in the computational
results is a simulation of an inverted seven spot pattern in which some of the wells do
not lie at the nodes of the discretization.

3. Theoretical results. In this section, the fluid is assumed to be incompressible,
i.e., that/9 pi pr and ai at=0 in (8). Given Darcy’s law for the mass flux (25),
the following system of partial differential equations govern the incompressible miscible
displacement process. An equation known in the literature as the pressure equation is
given by

(32) V. u Qk(X- Xk)(y-- Yk).
k=l

Let D denote a molecular diitusivity. The distribution of the invading fluid is governed
by the concentration equation given by

OC+ v cu-V DVc- Qk(X--Xk)6(y-- yk).(33) 4P 0-’- k=l

Let N denote the outward pointing normal on the boundary 01I of the region f. The
following boundary conditions are imposed. Let

(34) u.N=0 on01I.

Bell, Shubin, and Wheeler [18] present a detailed proof for the procedure detailed
above of convergence to the true solution of (32)-(34) under the assumptions of both
smoothly distributed sources and sinks and a positive molecular dittusivity D. The rate
convergence is shown to be of order of the norm of the mesh A. They also prove that
the procedure outlined above is consistent with (32)-(34) if D is equal to zero. The
numerical dispersion tensor that is added by the procedure is demonstrated to be
nearly rotationally invariant.

Although it is a nontrivial matter to demonstrate the consistency of this procedure
with the concentration equation, it is relatively straightforward to show consistency
with the pressure equation. In the incompressible case, the injection rates at the
production wells are specified by the condition of incompressibility. Dropping the
indexing denoting time, substitution of (17) and (31) into (18) yields

(35) u(x, y) V Wj(x, y) dy dx QW(Xk, Yk).
Xi_ Yj--I k=

This equation is weak formulation of the pressure equation (32) subject to the zero
flux boundary conditions (34).

4. The discretized system of nonlinear equations. A symbolic form of the total
material balance which is enforced for each computational molecule fu is

(36) d(cu(t+), P(t,+)) =0.

The vector P indicates that a material balance depends upon the value of the pressure

SINGLE PHASE MISCIBLE DISPLACEMENT 591

at the new time level in not only the computational molecule flij but also in the ten
surrounding molecules. In a similar manner, the material balance governing the
approximate distribution of the concentration of the invading component is

(37) ij(cij(t+), P(t+)):0.

The material balances represented by (36) and (37) are solved simultaneously for the
composition and the pressure with respect to every computational molecule.

The resulting system of nonlinear equations is solved in the following fashion.
The initial guess for the average pressure values P(t,+) at the new time level are the
average pressure values Po(t,) computed at the old time level. A sequence {P,(tn+l),
P,(tn+), .} is computed until convergence as follows. Given the kth pressure iterate
at time t,+, the material balance on the invading component represented by (37) is
readily solved for the kth iterate of the concentration c(t+l). The kth residual q of
the total material balance is computed from (36). The norm of (I)k is computed in unitsij

of density. If the norm of the residual is less than a specified tolerance, P0(t+l) and
cj(t,+) are set equal to P(tn+l) and c(t,+l), respectively. Otherwise, a new pressure
iterate is obtained using Newton’s method.

The Newton step is calculated by requiring that the differential of the total material
balance with respect to the finite pressure distribution for all computational molecules
l’l 0 be equal to the negative of the residual in the total material balance. The elements
jjh of the associated Jacobian matrix are determined from

-l

(38) Jgijh
OPgh

q-
Ocij Oc OPgh

The Newton step satisfies

(39)
r/x fly, jh(pkg- pkgh)

_
k
ij.

g=O h=O

Application of (39) to every computational molecule generates a banded system of
linear equations, which is then solved exactly using a banded matrix routine.

5. Computational results. The numerical simulations using this new procedure as
a model of single phase miscible displacement are presented. Both the recovery curves
and contour plots showing the computed distribution of the concentration of the
invading fluid are presented. The contours correspond to the locations where the
concentration of the invading fluid is .1, .3, .5, .7, and .9, respectively. The injection
wells are labeled by the symbol ’, the production wells are labeled as C), and the
wells that have been shut in are labeled as . For the purpose of comparison,
simulations employing a parallel grid are pictorially represented on a diagonal grid.

The measure of time used in presenting these results is in terms of the number of
pore volumes of fluid injected. For compressible problems, a pore volume of fluid is
defined to be the amount of the fluid that occupies the amount of pore space available
in the simulated pattern at standard conditions. The number of pore volumes of the
fluid injected into a reservoir is abbreviated as PVI.

The physical parameters utilized in this study are listed in Table 1. A large fluid
compressibility is used to study the sensitivity of the model to the compression effects.
Injection rates are given in terms of the total injection rate in the repeated pattern as
opposed to the alternative specification of total injection rate into the simulated pattern.
No limiting rate is specified at the production wells.

592 THOM POTEMPA

TABLE
Reservoir and fluid properties.

Patterns 4,000,000 sq ft five-spot
10,392,000 sq ft seven-spot

Permeability 10 md
Fluid viscosity

Resident fluid cp
Invading fluid .01 cp

Density
Resident fluid 60 lbs/cu ft
Invading fluid 60 lbs/cu ft

Compressibility
Resident fluid .00001 1/psi
Invading fluid .00002 l/psi

Porosity .1
Injection rate 200 cu ft/day
Well bore radius .5 ft
Bottom hole pressure 100 psi
Initial pressure 100 psi
Time steps 2.5 days

The basic model problem considered is displacement at an unfavorable mobility
ratio of 100. Figure exhibits the compositional profiles generated by this procedure
at .5 pore volumes injected for a 12 x 12 diagonal grid and a 17 17 parallel grid. The
recovery curves for both grids until 1.5 pore volumes of fluid are injected are presented
in Fig. 2. This procedure exhibits very little grid orientation at unfavorable mobility
ratios in both the recovery curves and the compositional profiles.

Recall that the mass transfer rates between two computational molecules generated
by (17) are evaluated inexactly in this implementation of this procedure. The mass
mobility is a spatially dependent function which depends upon the local fluid composi-
tion. This procedure evaluates the mass mobility at only a single point within each

a. Diagonal grid 12 x 12.

Injector 0 Producer

b. Parallel grid 17 x 17.

FIG. 1. Compositional profiles at .5 PVI for M 100.

SINGLE PHASE MISCIBLE DISPLACEMENT 593

% Recovery

ioo

75

50

.5o 1.o 1.5

Pore ’Volumes Injected

12 12 Diagonal Grid
2 17 17 Parallel Grid

FIG. 2. Recovery curves for the model at M- 100.

grid block. This integration scheme does not provide enough accuracy to completely
control the amount of grid orientation present in the model. The amount of this error
can be reduced by using very accurate numerical quadratures. If a two-point Gauss
quadrature rule is employed within each grid block to evaluate the integrals governing
mass transfer rates, the amount of grid orientation present in this procedure is decreased
by about 66% [21].

This procedure is utilized to model an inverted seven-spot pattern. The pattern
and a discretization which preserves zero flux boundary conditions are illustrated in
Fig. 3. The compositional profiles generated by this procedure for this model problem
at .5 and .625 pore volumes injected for an unfavorable mobility ratio displacement

o

O G 0

Simulated Pattern

Injector o Producer

FIG. 3. Inverted seven-spot pattern.

594 THOM POTEMPA

of 100 are illustrated in Fig. 4. The radial flow at early time is evident in Fig. 4. An
inverted seven-spot pattern helps prevent the formation of a viscous finger, which
allows a higher percentage of the resident fluid to be recovered. The wells located at
(0,1732) and at (2,000, 1,732) do not lie at nodes of the discretization. This substantiates
the claim that this procedure accurately models the exact location of injection and
production wells, unlike finite difference models.

a..5 PVI, 15 x 17 b..625PVI, 15x17

Injector Producer

FIG. 4. Compositional profiles for the inverted seven-spot pattern.

a. Original Pattern b. Expanded Pattern

0 0 0

c. Reduced Pattern d. New Pattern

Injector o Producer Shut In

FIG. 5. Crossflooding patterns.

SINGLE PHASE MISCIBLE DISPLACEMENT 595

The computational results presented thus far demonstrate the insensitivity of this
procedure to the orientation of the grid. This is an important consideration when
modeling processes where the physical streamlines do not follow the artificial stream-
lines induced by the discretization. A physical displacement process where complex
stream functions arise is the process of crossflooding a reservoir. Crossflooding is a
proven technique for increasing the pattern efficiency of water flooding [23]. There are
two methods of crossflooding a reservoir. The old well configuration is expanded to
change the streamlines of the fluid flow. This process is an expanded pattern crossflood.
Infill drilling is done to produce the blind spot of the old pattern. This process is a
reduced pattern crossflood. The original pattern, the expanded pattern, the reduced
pattern, and a fourth pattern are illustrated in Fig. 5. The new pattern for crossflooding
is a result of considering the simulated compositional profiles for the reduced pattern
crossflood using this numerical model.

iO

a. No crossflood b. Expanded pattern

c.. Reduced pattern d. New pattern

lnjector o Producer Shut In

FIG. 6. Crossflooding profiles at PVI.

596 THOM POTEMPA

The original five-spot pattern is produced until .5 pore volumes of fluid are injected.
Crossflooding is initiated at this time, and crossflooding continues until 1.5 pore
volumes of fluid are injected. The compositional profiles of the various crossflooding
processes are exhibited for pore volume of fluid injected for an unfavorable mobility
ratio of 100 in Fig. 6. The recovery curves for crossflooding until 1.5 pore volumes of
fluid are injected are illustrated in Fig. 7.

% Recovery

100

// ...-"21%""I
I ..-"’" ,,"" t+

,..""
...." .,,,

,-d.:"....71
."""".

/’

0.0 .50 1.0 1.5

Pore Volumes Injected

New pattern
2 Reduced pattern
3 Expanded pattern
4 Base case

FIG. 7. Recovery curves for crossflooding at unfavorable mobility.

The blind spot to the original pattern is clearly illustrated in Fig. 6. The invading
fluid follows the path of least resistance in the expanded pattern crossflood. This path
does not displace the agglomeration of resident fluid in the blind spot. Instead, the
invading fluid circumvents the blind spot and quickly reaches the production wells.
The invading fluid from the original injection wells does not displace any of the resident
fluid in the reduced pattern crossflood. Instead, the invading fluid injected into the
old injection wells flows directly toward the production wells. By shutting in the old
injection wells in the reduced pattern crossflood, the displacement efficiency of the
invading fluid is significantly increased. The blind spot in the new pattern crossflood
is extremely small compared to the other crossflooding alternatives. The efficient use
of the invading fluid in a crossflood is important when the invading fluid is either
produced from hydrocarbons, such as polymers or surfactants, or is generated by the
combustion of hydrocarbons, such as steam.

6. Conclusions. A numerical procedure for modeling two-dimensional, two-
component, single phase miscible displacement in a porous media is presented above.

SINGLE PHASE MISCIBLE DISPLACEMENT 597

Since this procedure is formulated directly from material balance considerations, it is
compatible with many of the finite difference models of miscible displacement. The
computational results demonstrate that this procedure adequately models single phase
compressible miscible displacement problems. The method shows little grid orientation.
The technique produces qualitatively correct results for problems in which the fluid
flow does not follow the artificial channels formed by the discretization. Some useful
results applicable to the enhanced recovery technique of crossflooding are presented.

Acknowledgments. I would like to thank Mary Wheeler, Trond Steihaug, and John
Dennis of Rice University for their invaluable suggestions and criticisms regarding
this work. I would also like to thank LCSE of Rice for providing the computer time
necessary for the numerical experiments and the documentation of this work.

Nomenclature.
c Concentration of the invading component.
k Absolute permeability in .006336 md.
n A node.

Time, days.
u Mass flux, lb/sq ft/day.
x X coordinate, ft.
y Y coordinate, ft.
D Dittusivity, lb/ft/day.
M Mobility ratio.
N Outward normal to a region
P Pressure, psi.
Q Mass injection rate at a source, Ib/day.
V Volume, cu ft.
W Basis function over the domain A.

X
Y

A

F

Basis function over the partition rx.
Basis function over the partition try.
Compressibility, psi- 1.
Viscosity, cp.
Partition of a coordinate axis.
Density, lb/cu ft.
Porosity.
Mass mobility, .006336 md lb/cp/cu ft.
Distance operator on the partions ,r, and Try.
Mass transfer rate, lb/day.
Material balance on the total mass.
Material balance on the invading component.
A domain.
Boundary operator.

REFERENCES

[1] C. CHU, K. H. COATS, W. D. GEORGE AND B. E. MARCUM, Three dimensional simulation of
steamflooding, Soc. Pet. Eng. J. Trans. AIME, 14 (1974), pp. 573-592.

[2] G. K. YOUNGREN, Development and application of an in situ combustion reservoir simulator, Soc. Pet.
Eng. J., Trans. AIME, 20 (1980), pp. 39-51.

[3] R. C. NELSON AND G. A. POPE, A chemicalflooding compositional simulator, Soc. Pet. Eng. J., Trans.
AIME, 18 (1978), pp. 339-354.

[4] K. Azlz, D. K. FONG AND L. X. NGHIEN, Compositional modeling with an equation ofstate, Soc. Pet.
Eng. J., Trans. AIME, 21 (1981), pp. 687-698.

[5] M. R. TODD, P. M. O’DELL AND G. J. HIRASAKI, Methodsfor increased accuracy in numerical simulation,
Soc. Pet. Eng. J., Trans. AIME, 12 (1972), pp. 515-530.

[6] T. MCCRACKEN AND J. YANOSIK, A nine-point, finite difference reservoir simulation for realistic

prediction of adverse mobility ratio displacements, Soc. Pet. Eng. J., Trans. AIME, 19 (1979), pp.
253-262.

[7] K. n. COATS AND A. B. RAMESH, Effect of grid type and difference scheme on pattern steamflood
simulation results, SPE paper 11079, 6th SPE Symposium on Reservoir Simulation, New Orleans,

LA, January 31-February 3, 1982.

[8] G. E. ROBERTSON AND P. T. Woo, Grid orientation effects and the use of orthogonal curvilinear

coordinates in reservoir simulation, Soc. Pet. Eng. J., Trans. AIME, 18 (1978), pp. 13-19.

[9] T. DUPONT, H. S. PRICE AND A. SETTARI, Description and analysis of variational methodsfor solution

of miscible displacement problems in porous media, Soc. Pet. Eng. J., Trans. AIME, 17 (1977), pp.
228-246.

[10] J. DOUGLAS, Jr., The numerical simulation of miscible displacement in porous media, Computation
Methods in Nonlinear Mechanics, North-Holland, Amsterdam, 1980, pp. 225-238.

11 L. YOUNG, A finite element methodfor reservoir simulation, Soc. Pet. Eng. J., Trans. AIME, 21 1981),
pp. 115-128.

598 THOM POTEMPA

[12] H. S. PRICE, A. SETTARI AND A. SPIVAK, Solution of equations for multi-dimensional, two-phase,
immiscibleflow by variational methods, SPE paper 5723, 4th Symposium on Numerical Simulations
of Reservoir Performance, Los Angeles, CA, February 19-20, 1976.

[13] B. D. DARLOW, J. DOUGLAS, Jr., R. P. KENDALL AND M. F. WHEELER, Selfadaptivefinite elements
andfinite difference methodsfor one-dimensional, two-phase, immiscibleflow, this Journal, to appear.

14] B. D. DARLOW, R. EWING AND M. F. WHEELER, Mixedfinite element methodsfor miscible displacement
problems in porous media, SPE paper 10501, 6th SPE Symposium on Reservoir Simulation, New
Orleans, LA, January 31-February 3, 1982.

15] D. BAVLY, C. D. HARRIS AND J. W. SHELDON, A methodfor general reservoir behavior simulation on
digital computers, SPE paper 1521-G, 35th SPE Annual Fall Meeting, Denver, CO, October 2-5, 1960.

[16] J. GLIMM, E. ISAACSON, D. MARCHESIN AND O. MCBRYAN, A shock tracking methodfor hyperbolic
systems, presented at the 1980 Army Numerical Analysis and Computers Conference, Moitet Field,
CA, February 20-21, 1980.

17] T. F. RUSSELL, Finite elements with characteristicsfor two component incompressible miscible displacement,
SPE paper 10500, 6th SPE Symposium on Reservoir Simulation, New Orleans, LA, January
31-February 3, 1982.

18] R. EWlNG, T. F. RUSSELL AND M. F. WHEELER, Modified method of characteristics and mixed finite
element methods for miscible displacement problems in porous media, in preparation.

[19] J. BELL, G. SHUBIN AND M. F. WHEELER, Analysis ofa new methodfor computing theflow of miscible
fluids in a porous media, to appear.

[20] R. B. BIRD, W. E. LIGHTFOOT AMD E. N. STEWART, Transport Phenomena, John Wiley, New York,
1960.

[21] T. C. POTEMPA, Finite element methodsfor convection dominated transport problems, Ph.D. Thesis, Rice
Univ., Houston, 1982.

[22] D. W. PEACEMAN, Interpretation ofwell-block pressures in numerical reservoir simulation with nonsquare
grid blocks and anisotropic permeability, SPE paper 10528, 6th SPE Symposium on Reservoir
Simulation, New Orleans, LA, January 31-February 3, 1982.

[23] U. N. VADGAMA AND B. B. HINKLE, Crossflooding to improve waterflooding efficiency in Big Sinking
Field, Kentucky, J. Petrol. Tech., Trans. AIME, 25 (1973), pp. 1021-1024.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 3, July 1985

1985 Society for Industrial and Applied Mathematics
008

PRECONDITIONING OF TRUNCATED-NEWTON METHODS*

STEPHEN G. NASHI"

Abstract. In this paper we discuss the use of truncated-Newton methods, a flexible class of iterative
methods, in the solution of large-scale unconstrained minimization problems. At each major iteration, the
Newton equations are approximately solved by an inner iterative algorithm. The performance of the inner
algorithm, and in addition the total method, can be greatly improved by the addition of preconditioning
and scaling strategies. Preconditionings can be developed using either the outer nonlinear algorithm or using
information computed during the inner iteration. Several preconditioning schemes are derived and tested.

Numerical tests show that a carefully chosen truncated-Newton method can perform well in comparison
with nonlinear conjugate-gradient-type algorithms. This is significant, since the two classes of methods have
comparable storage and operation counts, and they are the only practical methods for solving many large-scale
problems. In addition, with the Hessian matrix available, the truncated-Newton algorithm performs like
Newton’s method, usually considered the best general method for this problem.

Key words, unconstrained optimization, truncated-Newton algorithm, preconditioning strategies, linear
conjugate-gradient algorithm

1. Introduction. The problem of minimizing a real-valued function of n variables

(1) min F(x)

arises in many contexts and applications. For the purposes of this paper, we assume
that F is bounded and twice continuously differentiable. In particular, we are interested
in solving problems for which the number of variables is large, but where the gradient
of F is available.

The most effective general method for solving (1) is Newton’s method, which
takes full advantage of first- and second-derivative information about the function F.
In its modern, safe-guarded implementations, it provides a standard for measuring the
effectiveness of other algorithms. In Newton’s method, the direction of search p is
computed from the "Newton equations"

(2) G(k)p _g(k),

where g(k) and G(k) are, respectively, the gradient vector and Hessian matrix of second
derivatives of F evaluated at the current iterate xk). When the number of variables n
is large, solving (2) can be expensive and can require the storage of an n by n matrix,
which may be infeasible. Also, it is necessary to compute G(k) at every iteration. Even
for many small problems, this may be very costly. A large-scale problem will often
have a sparse Hessian matrix, i.e. the Hessian matrix will have few nonzero entries.
This allows Newton’s method to be extended to large-scale problems through the use
of finite-differencing and sparse-matrix techniques (Powell and Toint (1979)). However,
in many contexts (constrained optimization, probability density estimation, etc.) this
may not be possible.

Because the Newton equations are based on a Taylor series expansion near the
solution x* of the minimization problem (1), there is no guarantee that the search
direction they compute will be as crucial far away from x*. At the beginning of the
solution process, a reasonable approximation to the Newton direction may be almost

* Received by the editors November 30, 1982, and in final revised form March 9, 1984. This research
was supported by the National Science Foundation under grants MCS-7926009 and ENG77-06761, and by
a postgraduate scholarship from the Natural Sciences and Engineering Research Council of Canada.

" Mathematical Sciences Department, Johns Hopkins University, Baltimore, Maryland 21218.

599

600 STEPHEN G. NASH

as effective as the Newton direction itself. It is only gradually, as the solution is
approached, that the Newton direction takes on more and more meaning.

These comments suggest that, for large-scale problems, it is sensible to use an
iterative method to approximately solve the Newton equations (2). Moreover, it should
be an iterative method with a variable tolerance, so that far away from the solution,
(2) is not solved to undue accuracy. Only when the solution is approached should we
consider expending enough effort to compute something like the exact Newton direc-
tion. As we approach the solution, the Hessian G(k) will converge to G(x*). Con-
sequently, by exploiting information from previous iterations, it is possible that a closer
approximation to the exact solution can be determined with no increase in effort.

We will refer to any method which uses an iterative algorithm to approximately
solve the Newton equations as a truncated-Newton method. Sherman (1978) suggested
using Successive-Over-Relaxation (SOR). This is the simplest of a whole class of
methods which have been found to be effective for solving linear systems which arise
in partial differential equations. However, it can be difficult to get SOR methods to
perform well on general problems. Also, they appear to be prohibitively expensive to
use in the context of truncated-Newton methods. The number of linear subiterations
required to achieve superlinear convergence increases exponentially at each nonlinear
iteration. (Notice that a truncated-Newton method is doubly iterative" there is an outer
"nonlinear" iteration to minimize the function F(x), and an inner "linear" iteration
to compute a search direction from the Newton equations (2).)

Various authors (Dembo and Steihaug (1983), Garg and Tapia (1980), O’Leary
(1982) have suggested using variants ofthe linear conjugate-gradient method. Although
it is ideal for problems where the coefficient matrix has only a few distinct eigenvalues,
it is guaranteed to converge (in exact arithmetic) in at most n iterations for any
positive-definite symmetric matrix. Thus, the type of exponential growth mentioned
above for SOR-type methods is impossible, at least theoretically.

A requirement ofthe linear conjugate-gradient method is that the coefficient matrix
must be positive definite. Unfortunately, the Hessian matrix is only guaranteed to be
positive semidefinite at the solution and may be indefinite elsewhere. Thus, whatever
iterative method is chosen to solve (2), it must be able to detect and cope with indefinite
systems. This is very closely related to the situation with Newton’s method.

The definition of the search direction given by (2) is only satisfactory if G(k) is
positive definite. An indefinite G(k) allows the possibility of p not being a descent
direction and this may result in convergence to a nonoptimal point. In the context of
minimization, it is preferable not to solve the system (2) if G(k) is indefinite. In this
case it is better to define p as the solution of a neighbouring positive definite system

((k)p _g(k), _I(k)’- G(k) + E.

A method for computing ((k) when matrix factorizations are feasible is to compute
the modified Cholesky factorization of G(k) (Gill and Murray (1974)). The idea of the
Gill-Murray algorithm is to increase the diagonal elements of G(k) during the factoriz-
ation so that the diagonal elements of the factorization are positive and the subdiagonal
elements are bounded. An important feature of the Gill-Murray algorithm is the ability
to detect that G(k) is not sufficiently positive definite and to compute a satisfactory
descent direction nevertheless.

A straightforward application of the linear conjugate-gradient method would not
have this property. Moreover, the linear conjugate-gradient algorithm is numerically
unstable when applied to an indefinite system. To overcome these difficulties, Nash
(1984) has derived a modified linear conjugate-gradient algorithm via the Lanczos

PRECONDITIONING OF TRUNCATED-NEVCI’ON METHODS 601

algorithm (hereafter referred to as the modified-Lanczos algorithm) which has many
of the properties of the Gill-Murray algorithm described above. If the matrix Gk) is
sufficiently positive definite, it is identical to the standard linear conjugate-gradient
algorithm. A brief description of the modified-Lanczos algorithm appears in 2.

Our main interestin this paper is the choice of a preconditioning strategy for a
truncated-Newton method. In such a method, we solve a sequence of linear systems
of the form (2), whose coefficient matrices Gk will converge to G(x*) as the solution
to the minimization problem is approached. Because of this convergence, it is possible
to take advantage of earlier computations to make subsequent linear systems easier to
solve, and hence to improve the efficiency of the overall algorithm. In large problems
where it is expensive to compute information, it is especially important to make as
much use as possible of every computed quantity. This is generally accomplished by
using current information to precondition future iterations.

Preconditioning is such a powerful and general idea that there exist preconditioned
versions of almost every known numerical algorithm, both direct and iterative. Direct
algorithms often use preconditioning to reduce the error in the computed solution.
One common example of this is the use of column scaling in Gaussian elimination
(see, for example, Wilkinson (1965, Chap. IV)). Iterative methods generally use
preconditioning to accelerate convergence, although they may also be concerned with
the condition of the problem. One of the best known and best understood examples
of this is the generalized (i.e. preconditioned) linear conjugate-gradient algorithm of
Concus, Golub and O’Leary (1976).

To conclude this section, we give here a description of a truncated-Newton method
in algorithmic form. The details of the methods used to iteratively solve the Newton
equations and to precondition the algorithm will be given later.

TRUNCATED-NEWTON ALGORITHM.
TN0. Given x), some initial approximation to x*. Set k 0.
TN1. If xk) is a sufficiently accurate approximation to the minimizer of F,

terminate the algorithm.
TN2. Approximately solve the Newton equations (2) using some iterative

algorithm with preconditioning M(k)= G(k). (See 2 and 3.)
TN3. With the search direction p computed in step TN2, find a > 0 such that

F(x(k) + ap) < F(x(k)). (Line search; see below.)
TN4. Set x(k+l)---x(k)-l-otp, k=k+ 1. Go to step TN1.

For the purposes of this paper, we will assume that a modified-Lanczos algorithm
(see below) will be used in Step TN2 to approximately solve the Newton equations.
In step TN3, the line search, F(x) must be "sufficiently decreased" in order to guarantee
convergence to a local minimum. One approach is to ensure that the search direction
p is a descent direction (pTg(k)<o), that [g(x(k)+ap)’p[<----rtpT"g(k) with 0--<_r/< 1,
and that F(x(k)) F(x(k)q otp) >-- --tzpTg(k) where 0</x _--<1/2,/z < r/. By choosing/z small
(say 10-4), almost any a that satisfies the first condition will also satisfy the second.
The step-length a can be computed using safeguarded polynomial interpolation (Gill
and Murray (1979)).

2. The modified-Lanczos method. The general form of the modified-Lanczos
algorithm is outlined below. If the Hessian matrix G is positive definite, this method
is equivalent to the linear conjugate-gradient algorithm of Hestenes and Stiefel (1952).
For more complete details, refer to Nash (1984).

602 STEPHEN G. NASH

Assume temporarily that G is positive definite. Recall that we are iteratively solving

(3) Gp -g.

We use the Lanczos algorithm (Lanczos (1950)) to compute a tridiagonal matrix that
is an orthogonal projection of G. At stage q of the algorithm"

T(4) Vq GVq- Tq, Vq Vq I,

where Vq is an n by q orthogonal matrix, and Tq is a q by q tridiagonal matrix. The
tridiagonal matrix To is factored into its Cholesky factors"

Tq LDqL,
where Dq is diagonal with positive diagonal entries, and Lq is lower bidiagonal with
ones on the main diagonal (this factorization is only possible if Tq is positive definite).
This factorization is then used to compute pq (the qth approximation to the solution
of (3)).

Tqyq LqDqL yq -(- Vg), pq Vqyq.

(Paige and Saunders (1975) have derived iterative formulas for pq based on this
derivation.) At each inner iteration q, the direction pq is tested to see if it "adequately"
solves the Newton equations (3); if so, the inner iteration is truncated, and the search
direction p is defined as pq (see 4 for details). The sequence of iterates pq is the same
as that generated by the linear conjugate-gradient algorithm, ifwe choose Vt (g/[[gi[2)-

The linear conjugate-gradient algorithm can only be safely used when G is positive
definite, whereas the Lanczos algorithm only requires that G be symmetric. The above
derivation will enable us to adapt the linear conjugate-gradient algorithm to indefinite
systems, as we now indicate.

If g contains a component of the negative eigenspace of G, then indefiniteness
in G will ultimately show up in Tq (for q n, (4) defines an orthogonal similarity
transformation). In fact, due to the properties of the Lanczos algorithm, it will show
up fairly early (Parlett (1980)). O’Leary (1982) has suggested applying the modified-
Cholesky factorization of Gill and Murray (1974) to Tq in this case. However, this
factorization requires information about the complete matrix T, in order to ensure
stability, information not available to this iterative algorithm.

Because Tq is iteratively generated, and Tq_t is a principal submatrix of Tq, it is
possible to determine exactly the stage q at which Tq becomes indefinite. If this occurs,
Nash (1984) suggests boosting the diagonal elements of the lower 2 x 2 diagonal block
so that the resulting matrix Tq is positive definite. Because only this 2 x 2 is modified,
the iterative nature and the low storage requirements are unchanged. In addition, the
size of any diagonal modification is bounded by 3(6 + ,)tq -[- q) where yq and q are the
largest (in absolute value) diagonal and off-diagonal elements of To, and 6 is a tolerance
for zero (used to bound Tq away from singularity).

2.1. Properties of the search direction. Even ifthe Hessian is indefinite, the approxi-
mate solutions pq of the Newton equations will be descent directions for the minimiz-
ation algorithm, i.e. pg < 0 for q > 0. If lPq denotes the (possibly modified) tridiagonal
matrix computed above, then

gTpq -grVq, Vrq g < 0

if Vrqg # O, since q is positive definite by construction. Since)1, the first column of
Vq, will be chosen as a nonzero multiple of M-lg for some positive definite matrix
M, Vg will be nonzero, and hence pq will be a descent direction as desired.

PRECONDITIONING OF TRUNCATED-NEW’FON METHODS 603

Although necessary to guarantee the convergence of the algorithm, the fact that
p is a descent direction is not enough to ensure that it is an effective search direction.
It should also be well-scaled, i.e. a unit step along p should approximate the minimum
of the function in that direction. Near x*, this will be true for Newton’s method, but
cannot be guaranteed for nonlinear conjugate-gradient methods. However, regardless
of how many modified-Lanczos iterations are used to compute the search direction p,
a truncated-Newton method will generally give a well-scaled search direction, in the
sense described below.

If the line-search procedure described in is used, the primary test (for an
approximate minimum along the direction p) is Ig(x + ap)Tpl <= _qgrp, where 0<_-- r/< 1.
Assuming that VGV, is positive definite, setting a (in the hope of a well-scaled
direction), and using a Taylor series expansion, we obtain

pg(x +pq) -gTVq(VTq GVq)-1 VTq g
/ gTV(VqGV)-’(VrGV) VffGVq)-’ Vg/ O(llg)

o(llgll’).
This final expression, representing the cubic remainder term in the Taylor series, will
be small when x(k is near to x*, or when F(x) is approximated well by a quadratic
function. In these cases, we can expect that the search direction from the truncated-
Newton method will be well-scaled, even after only one inner iteration. (See also
Dembo and Steihaug (1983).)

2.2. Preconditioning. If a matrix M is available such that M -G, then the
modified-Lanczos algorithm can take advantage of this information. The algorithm is
applied (implicitly) to the equivalent system of linear equations

M-/2GM-/2)M1/2p M-/2g.

The number of iterations required to solve this transformed system is equal to the
number of distinct eigenvalues of M- G. In addition, ignoring this finite-termination
property, the algorithm converges linearly with rate (K1/2--1)/(K/2+ 1), where K is
the condition number of M-G in the 2-norm. We aim to choose M so that K(M- G)
is small, and so that M-G has fewer distinct eigenvalues than G, thus making the
system of equations easier to solve. In practice, the matrix M-/2 is not formed; all
that is required is that a system of equations of the form

My c

be solved at each step. For details of these results, see Concus, Golub and O’Leary
(1976).

2.3. Matrix/vector products. At each iteration, the Lanczos algorithm requires the
computation of a matrix/vector product Gv involving the Hessian matrix G. However,
the matrix G is not required explicitly. If G is explicitly available, these matrix/vector
products can be formed directly. If G is sparse, a finite-difference approximation to
G could be formed and used to compute them (see Thapa (1980)). Otherwise, Gv
could be approximated by finite-differencing along the gradient g"

g(x+hv)-g(x)
O(x)v

h

for some suitably chosen small value of h (see, for example, Gill and Murray (1974),
O’Leary (1982)).

604 STEPHEN G. NASH

3. Preconditioning strategies. With truncated-Newton methods, there are two prin-
cipal ways in which a preconditioning strategy can be selected. A basic preconditioning
might be chosen using the formulas for some low-memory nonlinear algorithm; this
is the subject of 3.1. Secondly, this nonlinear algorithm might be further precondi-
tioned by some scaling of the variables. This is the subject of 3.2. In either case, our
goal is to develop a preconditioning operator dynamically, as the problem is being
solved, and not to rely on a priori information.

3.1. Preconditioning based on a nonlinear algorithm. A truncated-Newton
algorithm operates by using some iterative algorithm to approximately solve a sequence
of equations of the form

G(k)p _g(k).

As the solution is approached, it might be hoped that information gained solving
equation (k) might assist in solving equation (k+ 1). This information is generally
used by forming, either explicitly or implicitly, a matrix M-G(k/). The better M
approximates G(k+l), the better the preconditioning strategy will be (see 2.2). In
order to use M within the modified-Lanczos algorithm, M must be positive definite,
and linear systems involving M should be "easy" to solve. For example, the matrix
M might be diagonal or in factored form.

It is possible to design preconditioning strategies by exploiting ideas from other
minimization methods. Most nonlinear optimization algorithms can be viewed as
computing a search direction by solving, possibly implicitly, a system of linear equations

np-- -g
with some operator B, where B is an approximation to the Hessian G. By applying
the formulas for the nonlinear method to any vector (instead of -g), we implicitly
define a preconditioning matrix M.

The optimal choice would be M Gk/) (Newton’s method) since the inner
iteration would then converge instantly; however, the costs in storage and computation
would be prohibitive. Setting M =/, i.e. using an unpreconditioned algorithm, corre-
sponds to preconditioning with the steepest-descent operator; this is simple to use,
but not particularly effective. As a compromise, Nash (1984) has suggested using the
operator from a limited-memory quasi-Newton method, which is inexpensive to use,
and yet still effective at improving the performance of the inner algorithm.

The class of limited-money quasi-Newton methods (see Gill and Murray (1979))
define the search direction as a linear combination of the gradient vector and a subset
of the previous search directions. They generalize nonlinear conjugate-gradient
algorithms, and are suitable for problems in which the Hessian cannot be stored.

These methods derive their name from the class of quasi-Newton methods for
unconstrained optimization. The direction of search for a quasi-Newton method can
be defined as

p --Hkgk,
where Hk is an n n matrix which is stored explicitly and is an approximation to the
inverse Hessian matrix. After computing the change in x, Sk xk/)--Xk) and the
corresponding change in the gradient vector, Yk gCk+l)_ gk), the approximate Hessian
is updated to include the new curvature information obtained during the k-th iteration.
For example, the BFGS formula for Hk/l is given by

Sk HkYk)S + Sk Sk HkYk) 7"
Sk HkYk) rYk r(5) Hk+l Hk + ySk (ySk)2 SkSk

PRECONDITIONING OF TRUNCATED-NEVCTON METHODS 605

(see Dennis and Mor6 (1977)). If exact linear searches are made and F is a positive-
definite quadratic function, the matrix Hk+ satisfies the so-called quasi-Newton condi-
tion for k pairs of vectors {sj, yj}, i.e.,

s Hk+ y, j 1, 2,’’’, k.

In this case, if the Hessian of F is G, then Gs =y and consequently

Sj= HGs,

and the matrix HG has k unit eigenvalues with eigenvectors {s}.
Limited-memory quasi-Newton methods define the direction of search as --Hgk);

the matrix H is never stored explicitly; rather, only the vectors {s, y} that define the
rank-one corrections are retained (see Shanno (1978), Gill and Murray (1979), and
Nocedal (1980)).

Different methods can be developed by varying the number of vectors {sj, y}
stored and the choice of quasi-Newton updating formula. For example, if we define
the matrix H to be the identity matrix updated by one iteration of the BFGS formula
(5), and if exact line searches are performed, the algorithm will be equivalent to the
Fletcher-Reeves nonlinear conjugate-gradient method.

When no preconditioning is used, the first linear iterate will be a multiple of the
steepest-descent direction, which is often a poor approximation to the Newton direction.
Preconditioning with an effective nonlinear algorithm offers the hope that the first
iterate will approximate the Newton direction quite well, and that an adequate search
direction can be computed using only a few inner iterations.

3.2. Diagonal scaling of the variables. Nonlinear minimization algorithms have
been found to work more efficiently if the variables are properly scaled. In part, this
means that a unit step along the search direction will approximate the minimizer of
the function in that direction. It also implies that the tolerances for the algorithm have
the correct scaling; this is a factor even for the more scale-invariant algorithms such
as Newton’s method. One way of achieving this is through a diagonal scaling matrix.
In this context, the inverse of this diagonal matrix will be used as the initial approxima-
tion to the matrix H of 3.1.

There is some theoretical evidence to indicate that, among diagonal scalings, the
most effective strategy will be to approximate the diagonal of the Hessian. Forsythe
and Straus (1955) have shown that if the Hessian matrix G is two-cyclic, then the
diagonal of G is the optimal diagonal preconditioning. This assumption is valid for
many problems arising in partial differential equations. Also, in the general case, van
der Sluis (1969) has proven that preconditioning with the diagonal of G will be nearly
optimal, in the sense that the condition number (in the 2-norm) of G preconditioned
by its diagonal will be at most n times as large as the condition number of the optimally
diagonally preconditioned G. Thus, estimating the diagonal of G should be effective
for all problems.

The sample scaling strategies derived here will be based on quasi-Newton approxi-
mations to the diagonal of the Hessian matrix. It is possible to use the direct form of
the BFGS formula (5) to approximate the diagonal of G. Here we approximate G by
a sequence of matrices Bq, rather than approximating G- by matrices H.

Because the linear conjugate-gradient algorithm is equivalent to the BFGS
algorithm (when applied to the same quadratic objective function with Bo I), it is
possible to show that B,- G, if G is positive definite and if the iteration does not
terminate prematurely (see Nazareth (1979)). Thus, if we were able to update only the

606 STEPHEN G. NASH

diagonals of B, at the end of n steps we would have the exact values for the diagonal
elements of G.

To develop this diagonal update, we will ignore the nonlinear algorithm for the
moment, and concentrate our attention on one instance of the linear conjugate-gradient
method. We are attempting to minimize the quadratic function

dp(p)=1/2pGp+prc

and hence

g(p) Vb(p)= Gp+ c= -r(p),

where r(p) is the residual at p. The linear conjugate-gradient algorithm is initialized
with Po O, and at the qth iteration, the next estimate of the solution is computed as

pq+ pq + aqUq,

where u. is the search direction and a. is the step-length.
The BFGS algorithm computes the (same) search direction using the formula

(6) nqUq --gq,

where gq =- g(pq). Ifan exact line-search is used, the step-length for the BFGS algorithm
is that same as that for the linear conjugate-gradient algorithm. Under the assumptions
that Po 0, Bo- I, and that the new approximate Hessian Bq/ is computed using the
direct form of the BFGS formula (5)

(7) Bq+,-- Bq sTBqsq(Bqsq)(Bqsq) +_’-f-TYoY,
yqSq

both algorithms compute the same estimates of the solution at every stage.
It is possible to adapt (7) so that only the diagonal ofthe update need be computed.

Using (6) and

we can conclude that

(8)

The other important fact is

(9)

sq pq+ pq OlqUq,

Ol.qgq.

Yq gq+l--g aqGuo.

If we incorporate (8) and (9) in (7), we obtain

(10) Bq+,- Bq-uVqrq rqrq +(Guq)(Guq)u(Gu.)

(These quantities are all computed within the conjugate-gradient, algorithm.) Using
(10), any individual element of B, can be individually updated. However, when used
to compute a scaling matrix, only the diagonal of Bq will be formed.

When the linear conjugate-gradient algorithm is used in its standard form, (10)
is quite adequate. However, using instead the preconditioned modified-Lanczos
algorithm (see 2) creates two further problems. First, in practice, a new scaling matrix
will be generated using an iteration preconditioned by some operator M. In this case,
the BFGS algorithm should be initialized with Bo M. To see this, replace G by
M-I/2GM-I/2 in the above derivation.

PRECONDITIONING OF TRUNCATED-NEWTON METHODS 607

A second problem arises because the linear conjugate-gradient algorithm is
implicitly implemented using the modified-Lanczos algorithm" only constant multiples
of the search direction Uq and the residual rq are computed. These multiplicative factors
do not affect the final term in (10), since the factors enter equally into the numerator
and the denominator. The other rank-one matrix is affected. However, the true residual
can be computed using rq Olqq, where q is the unnormalized current Lanczos vector

7-rq. Using the recurrence relation(Parlett (1980)). This leaves only the inner product Uq
for the search direction Uq, and the fact that the residuals are M-orthogonal, it can be
shown that

7" rM-i 2 "T --1
U q rq rq a q vq M Vq.

Note that M-q is computed within the modified-Lanczos algorithm.
Because the Hessian matrix is not always positive definite, the modified-Lanczos

algorithm alters the subproblem it is solving when it runs across evidence of indefinite-
ness. The preconditioning scheme is trying to approximate the diagonal of the actual
Hessian matrix, and the preconditioning algorithm described above has the property
of hereditary positive definiteness, so there is some question as to what should be done
when the Hessian matrix is modified. We have chosen to omit the diagonal update
whenever the matrix goes indefinite, in order to ensure that Bq remains positive definite.

Using (10) it is possible to compute any number of subdiagonals in addition to
the main diagonal. Because this extension is so straightforward, the details will be
omitted here.

An additional possibility is to use exact information about the diagonal of the
Hessian either to precondition the linear algorithm or to initialize the linear precon-
ditioning. Note, however, that even if matrix-vector products of the form Gv can be
found, it may be inconvenient to compute G,. Also, away from the solution of the
minimization problem, the matrix G may be indefinite, so that the diagonal of the
Hessian may not define a positive definite preconditioning matrix. In that case, some
rule for modifying negative diagonal elements would have to be derived.

4. Numerical results. In this section we compare the numerical behavior of threee
truncated-Newton algorithms with that of other methods. The methods tested are:

1. Algorithm PLMA--A two-step BFGS limited-memory quasi-Newton method
with a simple diagonal scaling. PLMA is the most successful nonlinear conju-
gate-gradient-type method tested in the survey of Gill and Murray (1979).

2. Algorithm MNA--A modified Newton method using first and second deriva-
tives (Gill and Murray (1974)).

3. Algorithm QNMmA quasi-Newton method using the full n by n BFGS update
of the approximate Hessian matrix (Gill and Murray (1972)).

4. Algorithm TNmA truncated-Newton algorithm, implemented via the modified-
Lanczos algorithm, and preconditioned with PLMA with the simple diagonal
scaling replaced by the diagonal of (10).

5. Algorithm BTN--A (basic) truncated-Newton algorithm, implemented via the
linear conjugate-gradient algorithm, and with no preconditioning strategy.

6. Algorithm PBTNnAlgorithm BTN, but preconditioned using the diagonal of
(10).

Eighteen problems are considered. Of these, 11 problems are of dimension 50 or

less, and 7 problems are of dimension 100. The test examples may be separated into
two classes. The first class contains problems whose Hessian matrix at the solution
has clustered eigenvalues; the second contains problems whose Hessian matrix has an

arbitrary eigenvalue distribution.

608 STEPHEN G. NASH

Example 1. Pen (Gill, Murray and Pitfield (1972)).

F(x) a (xi 1): + b x,
i=1 i=1

The solution varies with n, but xi xi+, 1,. , n- 1. All the runs were made with
a 1, b 10-3. With these values, the Hessian matrix at the solution has n- eigen-
values O(1) and one eigenvalue O(10-3). The Hessian matrix is full and consequently,
for large values of n, conjugate-gradient type methods are the only techniques available.

Example 2. Pen 2 (Gill, Murray and Pitfield (1972)).

F(x) a ((eX,/+ e’,-,/’-ci):Z+(e’,/-e-/l)2)
i=2

+b (n-i+l)x-I + x-
i=1

where c e/+ e-)/1 for 2, , n. The solution varies with n, but x x+ for
i= 1,. ., n- 1. This example was also run With a and b 10-3. For these values
the Hessian matrix at the solution has n-2 eigenvalues O(1) and two eigenvalues
O(10-3). The Hessian matrix is full.

Example 3. Pen 3 (Gill, Murray and Pitfield (1972)).

F(x)=a l+e 2 (x+2x++lOx+-l)
i=1

+ (x+2xi++lOxi+-l) (2xi + xi+ 3
i=1 i=1

+ e-, (x +x+- 3)
il

+ (x- n + 2 (x-.
i=1 i=1

At the minimum, this function has n/2 eigenvalues O(1) and n/2 eigenvalues O(10-).
The Hessian matrix is full.

The remaining examples have arbitrary distributions of eigenvalues at the solution.
xample 4. Chebyquad (Fletcher (1965)).

F(x)= f,(x),
i=l

where

f(x) T* (x) dx-- T* (x;), i= 1,..., n,
nj=l

and T*(x) is the ith-order shifted Chebyshev polynomial. The Hessian matrix is full.
Example 5. GenRose. This function is a generalization of the well-known two-

dimensional Rosenbrock function (Rosenbrock (1960)). For n > 2,

F(x) 1+ . (100(x, 2 2-x,_,) +(+x,)).
i=2

Our implementation of this function differs from most others in that F(x) is unity at
the solution rather than zero. This modification ensures that the function cannot be

PRECONDITIONING OF TRUNCATED-NEWTON METHODS 609

computed with unusually high accuracy at the solution and is therefore more typical
of practical problems.

The next three examples arise from the discretization of problems in the calculus
of variations. Similar problems arise in the numerical solution of optimal control
problems. The general continuous problem is to find the minimum of the functional

J(x(t)) f(t, x(t), x’(t)) dt,

over the set of piecewise ditterentiable curves with the boundary conditions x(0) a,
x(1) b. If x(t) is expressed as a linear sum of functions that span the space of
piecewise cubic polynomials then minimization of J becomes a finite-dimensional
problem with a block tridiagonal Hessian matrix. The piecewise polynomials are
assumed to be in C , and equally spaced knots are used.

Example 6. Cal (Gill and Murray (1973)).

Io’J(x(t))= {x(t +x’(t)tan-x’(t)-log(l+x’(t))/}dt,

with the boundary conditions x(0)= 1, x(1)= 2.
Example 7. Cal 2 (Gill and Murray (1973)).

J(x(= {00(x(-x l+(-x’(la,

with the boundary conditions x(0)= x(1)= 0.
xample 8. Cal 3 (Gill and Murray (1973)).

J(x(t)) {e-(’(x’(t 1)} dr,

with the boundary conditions x(0)= l, x(1)= 0.
Nxample 9. QOR (Toint (1978)).

50 33((x=2,x+2 a- 2 x+ 2 x
i=1 jeA(i) jeB(i)

where the constants , , d and sets A(i) and B(i) are described in Toint’s paper.
This function is convex with a sparse Hessian matrix.

Example 10. GOR (Toint (1978)).
50 33

(x= 2 c,(x,+ b(yl,
i=1 i=1

where

and

aixi 1Oge (1 + Xi),
c(x)

-ax log (1 + x),

y,=di- xj+ xj
jA(i) jB(i)

xi >-_0,

Xi <0,

fl,y2 Ioge y,), y, --> 0,
b,(y,) [fl,y, y, < O.

The constants a, fl, d and sets A(i) and B(i) are defined as in Example 9. This
function is convex but there are discontinuities in the second derivatives.

610 STEPHEN G. NASH

Example 11. ChnRose (Toint (1978)).
25

F(x) + (4ai(Xi-l- x,2")2 + (1 x,)2),
i=2

where the constants ai are those used in Example 9. The value of F(x) at the solution
has been modified as in Example 5. The Hessian matrix is tridiagonal.

The starting points used were the following:
Start x)=(0,0,...,0).
Start2 x()=(2 n)

r

n+l’n+l’ ’n+l
Start3 x)= (1, -1,1, -1, .)r
Start4 x)=(-1,-1,...,-1)r

4.1. Details of the algorithms. All the routines are coded in double precision
FORTRAN IV. The run were made on an IBM 370/168, for which the relative machine
precision e is approximately l0-15.

The truncated-Newton routines require the computation of matrix/vector products
of the form G(k)t. For routine TN with Examples 5-11, sparse finite-differencing
techniques (Thapa (1980)) were used to approximate G(k) at the beginning of each
major iteration, and this approximation was used to compute the matrix/vector prod-
ucts. The difference parameter used here was el/2, where e is the machine precision.
Elsewhere, the matrix/vector products were computed by differencing the gradient
along the vector v (2.3). Because our interest is in methods that do not require second
derivatives, tests were not made using exact second-derivative information.

For all truncated-Newton algorithms, a fairly stringent criterion was used to
terminate the modified-Lanczos iterations. Following Dembo and Steihaug (1983), the
modified Lanczos iterations are terminated after n/2 iterations, or if

where rq is the qth residual of the linear system This criterion forces the algorithm to
behave like a conjugate-gradient algorithm near the beginning of the iteration and like
Newton’s method near the solution. We stress, however, that when second derivatives
are not available, or the cost of the matrix/vector product G(k)v is high, a criterion
must be used that always leads to a small number of linear iterations. Because the
computation of the search direction can be degraded by loss of orthogonality, at most
n/2 modified Lanczos iterations were allowed at each major step.

Each problem was solved using three values of r/, the step-length accuracy (see
1); these values were 0.25, 0.1, and 0.001. Each algorithm requires two additional

user-specified parameters. The first (A) limits the change in x at each iteration (the
quantity [IX(k+l)- x(k)[[2). The value of A was set at 10 for all problems to avoid overflow
during the computation of the objective function. The second parameter is an estimate
of the value of the objective function at the solution and is used to compute the initial
step for the step-length algorithm. In each case, this parameter was set to the value of
F(x) at the solution.

The results are contained in Tables 1-3. Each table entry refers to the iteration
at which

where x* is the solution
Fk)-F(x*)< 10-5(1 +IF(x*)]),

PRECONDITIONING OF TRUNCATED-NEWTON METHODS 611

612 STEPHEN G. NASH

PRECONDITIONING OF TRUNCATED-NEWTON METHODS 613

<
Z

614 STEPHEN G. NASH

4.2. Discussion of results. With the exception of the results for TN, each entry is
a pair of numbers" the first is the number of major iterations; the second is the number
of function/gradient evaluations required to solve the problem (for BTN and PBTN,
this reflects both the line search and the matrix/vector products). For TN, more detailed
results are given. The first pair of numbers gives the total number of iterations, and
the number of function/gradient evaluations used in the line search. The finite-
difference column records the number of gradient evaluations used to compute the
matrix/vector products. The next column is the total number of modified Lanczos
iterations (each iteration will normally be dominated by the cost of the matrix/vector
product, comparable to a gradient evaluation). The final column combines the line-
search cost with the inner-iteration cost to give a measure of the total cost of the
minimization; two totals are given" the first combines the line-search costs with
finite-differencing costs, and the second with the inner-iteration costs.

We first compare the truncated-Newton algorithms among themselves. It is clear
that Algorithm TN is superior to the other two. This is not surprising due to the more
elaborate preconditioning strategies that it uses. Based on the total number of iterations
required, TN is only marginally better than the other two routines. But based on the
number of function/gradient evaluations, there is a clear difference. Even without
taking advantage of sparsity, PBTN is 36% slower than TN, and BTN is over three
times as slow. A comparison of PBTN with BTN indicates the improvement even
simple preconditioning strategies can make to a truncated-Newton algorithm. The two
routines are identical, except that PBTN has a diagonal scaling as a preconditioner.
This addition is inexpensive (three extra vectors are needed), but offers a better than
50% improvement in performance (based on the total number of function/gradient
evaluations).

To compare truncated-Newton algorithms with other methods, we will use the
results for Algorithm TN. In the following, results for the Newton algorithm MNA
and the quasi-Newton method QNM are only available for the smaller functions
(n-_< 50). Tests with the larger functions (n- 100) were not made due to the storage
and computational costs. The total number of function/gradient evaluations (Table 3)
will be the primary factor for comparison.

A comparison of TN with the limited-memory quasi-Newton algorithm PLMA
shows that TN is 50% better if sparsity of the Hessian is taken into account, and 20%
better otherwise (i.e., if each Lanczos iteration requires a gradient evaluation to
approximate the matrix/vector product). This comparison is important, since these
two classes of methods have comparable storage and operation counts, and they are
the only practical methods for solving many large-scale problems.

A comparison of TN with the quasi-Newton method QNM on the smaller test
functions indicates that TN is 50% better if sparsity is exploited, and 30% better
otherwise. QNM, unlike TN, requires matrix manipulation, and hence has higher
storage and operation counts than TN. Both algorithms only require first derivative
information.

A comparison of TN with the modified Newton method MNA, again on the
smaller test functions, shows that MNA is 30%-50% better than TN, depending on
whether sparsity is exploited. However, MNA computes, stores and factors the Hessian
matrix, and this is not reflected in the scores for MNA. For this reason, a further
comparison is suggested, using the "TN" rather than the "totals" column in Table 3.
The "TN" column does not reflect the cost of the matrix/vector products, i.e., the
"second-derivative costs" of the truncated-Newton algorithm. From this point of view,
TN is twice as efficient as MNA. This is surprising, since the truncated-Newton method

PRECONDITIONING OF TRUNCATED-NEWTON METHODS 615

is a compromise on Newton’s method designed to enable the solution of large-scale
problems.

The results of comparisons for individual functions are not always so remarkable.
For many of the functions in Table 2, the Hessian has clustered eigenvalues. All of
these problems tend to be easy to solve, and there are few striking differences in
performance. The remaining problems (Table 1) have more arbitrary eigenvalue distri-
butions, and are considerably harder to solve. Here, the simple truncated-Newton
Algorithm BTN has particular difficulties (Cal 1, n 50, 100). Even Newton’s method
(MNA) appears to struggle with some functions (GenRose, n 50); and performs
worse that any other routine in one case (Chebyquad, n 20). For these two functions,
the Hessian is frequently indefinite, suggesting that complete modified factorizations
are not always an effective treatment for nonconvex functions.

Acknowledgments. The author would like to thank his thesis advisors Philip Gill,
Gene Golub, and Walter Murray for their many helpful suggestions. Also, thanks to
Mukund Thapa for kindly providing the subroutines for computing the sparse Hessian
matrices of the test examples.

BIBLIOGRAPHY

1] P. CONCUS, G. GOLUB AND D. P. O’LEARY, A generalized conjugate-gradient methodfor the numerical
solution of elliptic partial differential equations, in Sparse Matrix Computations, J. Bunch and
D. Rose, eds., Academic Press, New York, 1976, pp. 309-332.

[2] R. S. DEMaO AND T. STEIHAUG, Truncated-Newton algorithms for large-scale unconstrained optimiz-
ation, Math. Prog., 26 (1983), pp. 190-212.

[3] J. E. DENNIS AND J. J. MORI, Quasi-Newton methods, motivation and theory, SIAM Rev., 19 (1977),
pp. 46-89.

[4] R. FLETCHER, Function minimization without evaluating derivativesma review, Comput. J., 8 (1965),
pp. 33-41.

[5] G. E. FORSYTHE AND E. G. STRAUS, On best conditioned matrices, Proc. Amer. Math. Soc., 6 (1965),
pp. 340-345.

[6] N. K. GARG AND R. A. TAPIA, QDN: A variable storage algorithm for unconstrained optimization,
Department of Mathematical Sciences Report, Rice Univ., Houston, 1980.

[7] P. E. GILL AND W. MURRAY, Quasi-Newton methods for unconstrained optimization, J. Inst. Maths.

Applics., 9 (1972), pp. 91 108.
[8], The numerical solution of a problem in the calculus of variations, in Recent Mathematical

Developments in Control, D. J. Bell, ed., Academic Press, New York, 1973, pp. 97-122.

[9], Newton-type methods of unconstrained and linearly constrained optimization, Math. Prog., 17
(1974), pp. 311-350.

0], Conjugate-gradient methodsfor large-scale nonlinear optimization, Report SOL 79-15, Operations
Research Dept., Stanford Univ., Stanford, CA, 1979.

[l l] P. E. GILL, W. MURRAY AND R. A. PITFIELD, The implementation of two revised quasi-Newton
algorithmsfor unconstrained optimization, Report NAC l, National Physical Laboratory, England,
1972.

12] M. HESTENES AND E. STIEFEL, Methods ofconjugate-gradients for solving linear systems, J. Res. NBS,
49 (1952), pp. 409-436.

[13] C. LANCZOS, An iteration method for the solution of the eigenvalue problem of linear differential and
integral operators, J. Res. NBS, 45 (1950), pp. 255-282.

[14] S. G. NASH, Newton-type minimization via the Lanczos algorithm, SIAM J. Numer. Anal., 21 (1984),
pp. 770-778.

[15] L. NAZARETH, A relationship between the BFGS and conjugate-gradient algorithms and its implications

for new algorithms, SIAM J. Numer. Anal., 16 (1979), pp. 794-800.
16] D. P. O’LEARY, A discrete Newton algorithm for minimizing a function of many variables, Math. Prog.,

23 (1983), pp. 20-33.
17] C. C. PAIGE AND M. A. SAUNDERS, Solution of sparse indefinite systems of linear equations, SIAM J.

Numer. Anal., 12 (1975), pp. 617-629.
[18] B. N. PARLETT, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980.

616 STEPHEN G. NASH

[19] M.J.D. POWELL AND P. L. TOINT, On the estimation ofsparse Hessian matrices, SIAM J. Numer.
Anal., 16 (1979), pp. 1060-1074.

[20] H. H. ROSENBROCK, An automatic methodforfinding the greatest or least value ofa function, Comput.
J., 3 (1960), pp. 175-184.

[21] D. F. SHANNO, Conjugate gradient methods with inexact searches, Math. Oper. Res., 3 (1978), pp.
244-256.

[22] A. H. SHERMAN, On Newton-iterative methods for the solution ofsystems of nonlinear equations, SIAM
J. Numer. Anal., 15 (1978), pp. 755-771.

[23] M. THAPA, Optimization of unconstrained functions with sparse Hessian matrices, Ph.D. thesis, Dept.
Operations Research, Stanford Univ., Stanford, CA, 1980.

[24] P. U TOINT, Some numerical results using a sparse matrix updatingformula in unconstrained optimization,
Math. Comp., 32 (1978), pp. 839-851.

[25] A. VAN DER SLUIS, Condition numbers and equilibration ofmatrices, Numer. Math., 14 (1979), pp. 14-23.
[26] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford Univ. Press, London, 1965.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 3, July 1985

1985 Society for Industrial and Applied Mathematics
009

THE SOLUTION OF NONLINEAR ELLIPTIC DIRICHLET
PROBLEMS ON RECTANGLES BY ALMOST GLOBALLY

CONVERGENT INTERVAL METHODS*

HARTMUT SCHWANDTf

Abstract. The use of interval arithmetic offers the possibility to develop methods for the solution of
systems of nonlinear equations that converge to the solution under relatively weak conditions, provided an

initial inclusion is known. In the present paper we describe methods for discretizations of nonlinear elliptic
equations, in particular for Dirichlet problems of the type (attx)x+(buy)y =f(x, y, u) where a a(x) and
b b(y) or a =--a(x, y), b b(x, y). The interval arithmetic enables us to combine a Newton-like interval
method with the concept of fast direct solvers. The convergence to the solution can be ensured by auxiliary
methods or by monotonicity arguments. We compare some of the possible variants with the generalized CG
method and the nonlinear block SOR method.

Key words, nonlinear Dirichlet problems, fast direct solvers, interval arithmetics, Newton-like methods

1. Introduction. In the last years a number of very efficient methods have been
developed for the solution of large linear systems resulting from discretizations of
partial differential equations. Their principles of construction can often be carried over
to the nonlinear case. But the methods developed in this context are mostly only locally
convergent. There are only a few papers describing efficient globally convergent
methods. The following two seem to be the most interesting ones. In 1975 Hageman
and Porsching developed a numerical strategy to guarantee global convergence for the
nonlinear block SOR method [5]. In 1978 Concus, Golub and O’Leary combined the
concept of fast direct solvers with a generalized CG method [4]. Global convergence
can be ensured by special convergence safeguards.

The possibilities of interval arithmetic lead to another approach for obtaining
methods of practical relevance.

In !-8] we introduced an interval arithmetic method to solve systems of nonlinear
equations resulting from discretizations of the Poisson equation Au =f(u) on the unit
square or rectangles. The use of interval arithmetic enabled us to guarantee convergence
to the solution provided an initial inclusion is known and to develop a reduction
method that reduces the arithmetic work per step. We combined the ideas of Newton-
like interval methods and fast Poisson solvers to define a rapidly converging method.
In [2] the following interval Newton method was introduced:

k/l k:=0(1)(1.1) := {. k IGA (/. ’(xk), r(mk))} f"l x.k

to solve a system ((.x)=e where .:"--)R", .x" and e (0)"=1" ((xk) denotes an
interval extension of the Jacobi matrix/’(.) of r, i.e. /’(xk) is an n n matrix with
interval coefficients. Starting with an interval vctor o including a solution of the
above system, the method yields a sequence of interval vectors x, k o, with n interval
components. The vectors .r

k" are chosen such that .,k k. We abbreviate the
interval arithmetic Gauss algorithm by IGA. See 2 and [2], [8] for the notation. In
[8] we introduced the interval arithmetic reduction method IBU (see (2.6) ofthe present
paper) which is suitable for a class of block tridiagonal interval matrices related to
the numerical solution of the problems discussed in [8] and this paper. For some
particular point matrices (i.e. matrices with real numbers as components) IBU

* Received by the editors August 18, 1983, and in revised form February 21, 1984.
Technische UniversitSt Berlin, Fachbereich 3-Mathematik, Berlin 12, West Germany.

617

618 HARTMUT SCHWANDT

degenerates into the Buneman algorithm. With the exception of some particular cases,
the method IBU cannot be applied to "(:vk). We therefore included ’(:vk) by an
interval matrix (:vk) which has the fc;rm required by IBU by enlarging suitable
coefficients of r’(:vk). We then defined the

(1.2) Newton-like method with reduction method IBU (INB).
k+l IBU (;(:vk), .(.k))} :v with E k,:v := {.k k k k := 0(1)o.

In the present paper we extend the results of [8] in two directions. First of all, we
"split" the matrix (:vk) respectively (’(vk) such that we obtain a matrix suitable for
the application of IBU when solving problems that do not permit the direct use of
INB. The second extension is a consequence of the convergence problem. In [8] we
used an auxiliary method to force convergence if necessary. Here we test two similar
possibilities. We also propose an alternative approach to guarantee convergence by
using monotonicity arguments and particular choices of the k.. In this case an auxiliary
method is not necessary. Monotone convergence has been discussed by many authors,
see I11], [7] e.g. By using interval arithmetic we obtain methods that converge under
relatively weak conditions (e.g. no convexity conditions are required) and that produce
iterates with easily computable matrices.

In this paper we use the notation introduced in [8]. Section 2 explains notation
and some auxiliary results. In 3 we introduce a matrix "splitting" suitable for the
above mentioned applications and we formulate the iteration method. A convergence
analysis for the version with an auxiliary method and the monotone versions follows.
In 4 we describe the iterative improvement of a given initial inclusion to be used as
a starting vector. In 5 we formulate our method for five-point discretizations of
Dirichlet problems of the form (a(s)U)s+(b(t)ut)t=f(u) or (a(s,t)u)+
(b(s, t)u),=f(u) on rectangles. The method can be modified for other classes of
equations by introducing appropriate matrix splittings and other methods to compute
inclusions of the set of solutions of the "linear" systems in each iterative step. This
will be the subject of a forthcoming paper.

The last section reports the results of some numerical experiments. We compared
our method with the nonlinear generalized CG method as described in [4] and the
nonlinear block SOR method as described in [5].

2. Notation and auxiliary results. Our notation follows closely that of [2]. Further
details have been given in [8]. Instead of repeating them all, we refer to of [8] by
adding an "A", e.g. (A1.4). We denote again by a,..., z real numbers, by A,..., Z
elements of the set I() of real compact intervals, by ., , . N-dimensional vectors,
by a,..., vectors with N interval components, by .M,..., . real matrices and by
s,..., r interval matrices. For the upper and lower bounds of intervals A, interval
vectors (Ai) and interval matrices M (A0) k

"=l,j=l we introduce the notation
A=[_A,], a=[_ Y], (A,) =i=1, z (Ai)/N-I 6---[6,6], 6 (Aij) N k

i=l,j=l,

i=l,j=l"

We write block tridiagonal matrices with m blocks of the size as

(2.1)(,,i,Ck)m, ,j, CCkEMu(I()), l<--_i<--_m-1, l<--_j<--_m, l<=k<-m-1,

where i are the lower subdiagonal blocks,
(k the upper subdiagonal block,

the diagonal blocks.

A matrix . MUN() with a-< 0 for j and a, > 0 is called an L-matrix, a matrix
with a-<_0 for i#j and .M->= . an M-matrix. An M-matrix is an L-matrix (see [12,

NONLINEAR ELLIPTIC DIRICHLET PROBLEMS ON RECTANGLES 619

3.5]. An interval matrix M MNN(I(R)) is called an interval M-(L-)matrix if all. M are M-(L-)matrices.

(2.2) .2/, .W M-matrices, -<_ 4y’=:> .6-< .dV-1 --< .2/-1 ([12, 3.5]).

(2.3) A matrix that is created by setting off-diagonal entries of an M-matrix to 0, is
also an M-matrix ([12, Thm. 3.12]).

(2.4) If MNu(I(R)) is an interval L-matrix and if there is an M-matrix if-<_ ,
then is an interval M-matrix (A1.2).

(2.5) If is an interval M-matrix and @=(6ijDj) with Dj>0 for all ji,j=l

{1,’.., N}, then + is an interval M-matrix (follows from (2.4)).

In [8.] (resp. [10]) we introduced the interval arithmetic reduction method IBU.
Algorithm (2.6) is used for IBU in the present paper (see also 5). By IGA we denote
the interval Gauss algorithm, by IGA-EL the application of its elimination part to a

matrix, by IGA-BACKS the execution of all operations concerning the "right-hand
side" in the elimination part and the backsolving of the resulting triangular system.
As our applications in 5 only require to apply IGA to symmetric tridiagonal systems,
its elimination part produces a transformed diagonal z/and a transformed subdiagonal
’. We assume that we want to compute a vector c VN(I()) with

where

,/-- (.oq;, 6, .)q, . p x p-identity matrix,

S ai_l, Di, ai)p,

=(’l,’’’,gq), ,=(Yl,,’’’,Ypi), <- <-_ q, N pq, q 2k/l 1.

(2.6) ALGORITHM FOR IBU.
(0) (do, o) := IGA-EL ()
(1) j := 2(2)2k-l + 2" #!:= IGA-BACKS (do, o,)

(2) r:=2(1)k:

i:= 1(1)2-1" (d,/’)--IGA-EL +2cos
2

r .
j := 2(2)2+1 2:

2 z,r--I r--I r--1

’ := IGA-BACKS (d-,/’-,
_

+#+-1-j
/:= 2-- 1(-1)1" , := IGA-BACKS (d,/’, .+)

(3) 2’:=IGA M+2cos\-Ti-rr .,
/:=2-1(-1)1", :=IGA M+2cos 2+l’.’rr N,

620 HARTMUT SCHWANDT

(4) r:= k-l(-1)l"

ifr<k-1 then i:=1(1)2r" (,/i, /’i) := IGA-EL M+2cos\ r .#

j:=2r(2r+l)2k+l--2r.

2 := IGA-BACKS (d2,/2, 2-(_2+2+2))
/:= 2 (-1)" := IGA-BACKS (,/, +)
:=-

(5) j:= l()+’- := IGa-afS (Zo, o, -(_, ++,))
We need criteria for the applicability of IBU.
TzOM 2.1. Let the matrix Mpp(N) defined by

A+ 2{cos ((2-(+))}t,, i=j,

-max max A+2cos + h ij,
lNrNk ININ2

be an M-matrix. en IBU can be applied to (,
M(N), e M(I(N)) if V e . No pivoting is necessary to carry out the
interval Gauss algorithm (IGA) in IBU [8, Thin. 3.1].

THEOREM 2.2. Let the interval M-matrix

(, a,)
satisfy the conditions of eorem 2.1 and let

(D,)= l, D >0,= < i<p.

en IBU is applicable to = (, + ,)q if = Ve . is an interval
M-matrix.

Proof From (2.5) it follows that is an inteal M-matrix. The off-diagonal
entries of and are identical.

Let ’ the matrix defined in Theorem 2.1 for , @ that for ; then

=b, iej,b
b’. A. + , + 2{cos ((1 2-+’))tt.,

eA,+2{cos((1-2-(+l))}t,=b,, i=j.

Hence N’ is an interval L-matrix with ’. Therefore ’ is an M-matrix by (2.4).
From Theorem 2.1 we deduce the applicability of IBU to

An impoant propey of IBU is given by
LEMMA 2.3. Let IBU be applicable to the M-matrix . en
(a) IBU (,)=[-’,N-’]for.;
(b) IU (,)=[N-l, -’]for ee;
(c) IBU (,)=[-, -1] for e e .
Proof [10, Thm. 2.2.3].
From the continuity of the inteal operations (+, -,.,/), it follows that IGA

and IBU are continuous.
LEMMA 2.4. If

(()oe m(I()), * e m(I()),

()o v(()), *e v(I()) (),

NONLINEAR ELLIPTIC DIRICHLET PROBLEMS ON RECTANGLES 621

then

IBU ((k),/ok) _.> IBU (*,

IGA ((k), k)._> IGA (*, g*)

provided IBU and IGA can be carried out with all matrices.

Proof. See [8, Remarks 3.3, 4.3]. E]

Abbreviations.
GCG generalized CG method 6, (4) and [4]
GCG+ S GCG with "shifted" diagonal 6, (4)
GCG+ R5 GCG with restarts every 5 steps 6, (5)
GCG+ RI0 GCG with restarts every 10 steps 6, (5)
IBU reduction method for interval matrices (2.6)
IGA interval Gauss algorithm [8, 2], [2, 15]
IMNAB modified interval Newton-like method

with IBU
IMNAB with modification of IGS as

auxiliary method (A5.14)
IMNABM monotone variants of IMNAB after (3.8)
IMNAB+ IGS IMNAB with auxiliary method (3.8) (a)
IMNAB+ IS2 IMNAB with auxiliary method (3.8) (b)
NBSOR nonlinear block SOR method [5]

IMNABHIN
(3.3)

3. An iterative method for systems of nonlinear equations. We assume the following
general situation:

(3.1) Given /: Vv (), VN (), / continuously ditterentiable in and an
intervai vector v V(I()) contained in and including exactly one zero g.
of ./:

we try to determine .g.

In order to extend the applicability to classes of equations other than the Poisson
equation we split the Jacobi matrix:

./’(.) (.)-(.).

Assuming that .M(.) is invertible for all .v we obtain

(3.2) V_V.m ml.m .g=.- .(.)-’{(.)(.z-.g)+.(.)}.
We further require the existence of interval extensions of .M(.) and .(. in s. Now
we construct interval matrices (v) for vc__ s such that .M(v)c__ () and such that

oIBU can be carried out. The subset property (A1.3) enables us to write for all v v

with .g and all . . .- IBU ((), (v)(.- v) + ./(.)).
We then define the

(3.3) modified interval Newton-like method with IBU (IMNAB)

k := 0(1)oo:

k vk vk+, := {k IBU(A (vk), (vk) (k _vk) + f(k))} Fl v k.

The method INB described in [8] is a special case of IMNAB with .(. ..

622 HARTMUT SCHWANDT

Before we discuss the properties of IMNAB, we define (x) and .(x) for a class
of problems suitable for our applications. We assume that ./can be written as follows"

(3.4) .q)(.x)=(bi(xi))=, N=pq, q=2k+l--1, hence
N+

Let

(3.5)

with an appropriate choice of .M and .3-. At least we require

(3.6) 4.3-= .3-4.
The "right-hand side" of IBU in IMNAB then reduces to

(3.7) . (xk)(. k xk) +/.(.k) _. x
k +k+ . (. k).

We now discuss the properties of (3.3). By applying the subset property (A1.3)
we can show by induction"

LEMMA 3.1. If IMNAB as given by (3.3) can be carried out, all components of the
sequence (xk)kNo computed by IMNAB include .’. E x

k Yk E No.
Due to the intersection in each step there exists x*E VN(I(R)) such that

* lim xk f’i 32, k.
k--) keNo

In order to generate d(x*)= .o, i.e. *= .y, additional precautions have to be taken.
We propose two ways:

1. We combine IMNAB with an auxiliary method. By IMNABHIN we denote
the variant described in [8] (resp. [10]) where a certain number of auxiliary steps is
carried out to "restart" the iteration, but only if the latter is likely to stop on a
nondegenerate interval vector.

In the present paper we test two other variants where exactly one auxiliary step
is carried out in each step of IMNAB. A similar method has been proposed in [2,

19], for the interval Newton method. Here we propose a modification of the interval
Newton-Gauss-Seidel type method (denoted by IGS)--see [2, 22, (4)I--and a modifi-
cation of the symmetric method IS2 presented in [9]. We present these methods in a
form suitable for systems (3.4). A more general formulation is naturally possible.
(3.8) IMNAB with auxiliary methods

k := 0()co:
k :27k k+l k k k. E :={. -IBU(.+(ak),-.xk+. +.(.k))}nx
(a) variant IMNAB+ IGS
i:= I(1)N:

,-(k+ 1).mk+l) E

NONLINEAR ELLIPTIC DIRICHLET PROBLEMS ON RECTANGLES 623

.(k+l) h (,-(k+x+’) := ,,,, ,-- 2
j=l j=i+l

or (b) variant IMNAB+ IS2

i:= I(1)N:
i--1

b (k+l) -I- bumk+l)
ij" j

+ ,(mk+) (bii+dPimodp(xk))

An auxiliary step of variant (a) results in larger intervals than a step of variant (b).
On the other hand a step of variant (b) requires less arithmetic work and less storage
as only those extensions of partial derivatives have to be stored that are needed by
IMNAB, i.e. the m intervals needed for c instead of the whole diagonal of cI)’ of size
N. We assume that the information about the b, can be easily recovered without storing
them (variant (a)). This will be explained in detail when discussing the applications
in5.

2. We restrict the choice of the k. such that monotonicity arguments ensure the
convergence to .. This version will be denoted by IMNABM.

First of all we reformulate the convergence [8, Thm. 5.3] for IMNABHIN. Due
to the more general character of the method and (3.4) we need additional conditions.

THEOREM 3.2. Given (. e where [. is defined by (3.4), let
l) . be an M-matrix,
2) .’(v) ->

3) IBU be applicable to .t(v).
Then the sequence (V)ko computed by IMNABHIN converges to .

Proof From condition 1) we deduce b, > 0 for all e { 1, , N} and together
with condition 2) we know

D,,(:v) b,, + b(X])) > 0, i.e. 0 D,,(v),
where .(v) denotes the diagonal part of t’(v). Splitting into . .-.-.o// we
have ., ., .o//_> .8, hence p(.-(.+ .o//)) < i. Now the proof can be continued exactly
like that of [8, Thm. 5.3]. l-1

The convergence of IMNAB+IGS and IMNAB+IS2 to .y can be proved
analogously to that of IGS and IS2 (see [2, Chapter 22], respectively [9]) because of

+_+__ - oc c c c__ " "a

and the subset pro^perty. For IMNAB+ IGS we further need the relation +
.1)< 1, where (v)= (6j/(b,+ ,modp(V)))= and ., represent the off-diagonal
entries of .

We now analys__e the convergence of IMNABM. By choosing mk := vk or k := vk
and assuming ./(v)=> e or ./()--<e, we can operate with known signs of
interval bounds in important steps of the convergence analysis. It is then possible to
apply monotonicity arguments by which the convergence to . can be proved without

624 HARTMUT SCHWANDT

any auxiliary step. In addition we give estimates for the asymptotic convergence rate
when discussing the "monotone" versions.

THEOREM 3.3. If
(1) (x) is an interval M-matrix,
(2) .,(x) -> .,
(3) (A(=)- .(o))-’ >__ .,
(4) IBU can be carried out with Jl (a),
(5) . k :___= k for all k No,
(6) l() -> e,

then
(1) the sequence (lY,k)kelNo computed by IMNABM converges to .

+ t()-’(2) :v =:v ./(:vk)_-<- for all keNo.

Proof Since -=[e, d()] we conclude from the conditions (2) and (5) that

(3.9) (o)(o_o) [e, ()d(o)].
We then obtain

’=1-IBU ((o), (o)(_o)+(())} o-IBU ((o), &(o)(_o) +
(0)

= _[o),o)-,(o)_o+g))]
[_ o) -,(o)o) +()),

_
(o) -

In te tir line we ave applie Lemma 3.3(a) in view or (3.9) an condition (5).
Because or condition (1), we also know that

(.) /(o) o
an tererore

(3.12) = ,thus =.

This enables ustogeter wit te conditions (1), (2) an (6)to conclude

()+(’(u)(-

(.) {4_ (,()(o) }((o)

{(o) 4() +(u)}(o-g(o)
wit a veetor [o]. Note that z zo, tus u zo an tererore () (o) =
(zo), thus 4(u) (zo). Analogously we sow by inuetion for all ko

(.4) () Z+’ =-() =<,

Te intersection in eae step yields a neste sequence wit
o < <+<+< <o for all k o.(.)

NONLINEAR ELLIPTIC DIRICHLET PROBLEMS ON RECTANGLES 625

Therefore there is a vector .* V() such that

x*= lim x

Since ((xk+l) .0, X
k C__ X (thus J(xk) c_ (x) and also e. < (xO) - N(Xk) --i) we

now get
-1

(3.16) o<A()-l(()<A((() +l).= = - e .k
This means/() e, hence (k m) as is the only zero of in o. Now we
can show that . We have fo all k e No

k+l k+l(+1)= - --I(3 17)
((1-’-())(()+()_l(x)d(x).

Due to the intersection there exists

kX* [-] X
k-- lim x

kel%l

Applying continuity arguments to (3.17) we get with xk-> .
(3.18) d(*) <- t(,*)-. (*)d(*).

0With :v* :v, hence (x*) d//(x), .ag’(x*)_ (x), and the conditions (1) and (2)
we note

(3.19) . J(x*)-I.J(X:g) J(xO)- Id(xO),
and therefore with the conditions (1)-(3) and [12, Thms. 2.8, 3.13]

(3.20) p(u///(x,)-.(x,)) _<_ p((o)-,(o)) < 1.

We rearrange (3.18)"

(3.21) (M(*)-’(*))d(*) e-

Multiplying (3.20) with the positive inverse of that matrix (see 12, Thm. 3.8] together
with (3.20)), we obtain d(*)e, i.e. *T*=y.

A similar theorem is valid for

{(x)e and k:=x forallko.
Then we have

+ A l(=.
For the method IMNABHIN we can estimate the asymptotic convergence speed as in
[8, (5.24)]. The monotone version leads to a more satisfactory estimate.

TnzOZM 3.4. Under the conditions of eorem 3.3 thefollowing estimate is valid"

,(IMYAM,) 0(()-’{#() + a(4())}).
Proof From (3.17) we know

(3.22) d(k+’)(kl-(k)d(k)+((k)-’--(k)-’)(().
We fuher note that for all k o, k., hence

[, k]: ((k) (,()(k) and

(’() (’() () ();

626 HARTMUT SCHWANDT

hence (’(.u)(v--fi- .) -< ((vk) .(vk))(v--fi- .).
We examine the second term of the right-hand side of (3.22).

(()-l ()-’

(3.23) (()-’ () -’)()()
--1

()-,a(()))

(3.22) and (3.23) yield the asseion together with (see also [10, Lemma 1.9]).
For the sequence () of upper bounds we can proe an even better estimate

for R(IMNABM,)" for all k e No there exists an e e [,] such that

e = -- (()

=--()
{- ()-’ (#’(e) ())}(-)
(){() 4’() +()}()
() {d(())+4()}(-?).

Remember now conditions (2), (3) of Theorem 3.3. Therefore

() (d(()) + 4()) () ()+() 4()
() 4()

is a regular splitting. It can be shown therefore that

(3.24) R,((),o) p(() -’{a((")) + #(")}) < .
The above results are also valid for INB with (. , (.) (.). A simple criterion
to decide if the right-hand side of the inequality in Theorem 3.4 remains less than
follows.
Lua 3.5. If o(()-’) < /max {#(0())1 i,j N} where (o) is an

interval M-matrix, then p(($)-a(()))< 1.
Proof

o(()-1(())) o(()-I(()))
p((o)-, max {d(0())[i,j N}4)

=max {d(fiy()[i,j N}p(())-’. D

4. Computation of a starting interval vector. If (has the properties required in
Theorem 3.2 we can compute an initial inclusion of the solution . with [7, Thm. 13.4.6]
as

0 --1 --1(4.1) :v :-- [-. I.(.o)l, . I.(.o)l].
If the direct solution of (4.1) is too expensive or not possible because of storage
restrictions, we can at least define an iterative procedure including IBU applied to ..

NONLINEAR ELLIPTIC DIRICHLET PROBLEMS ON RECTANGLES 627

This procedure yields an improved starting vector when started with an initial inclusion
of ..

As is an M-matrix, . is also an M-matrix if .W=> .: . . + .=> . is still an
invertible L-matrix with .-1=< .-1 (2.2). If we further know (e.g. Theorem 2.1) that
IBU is applicable to ., we use the splitting for the nonlinear system to be solved to
define the method

k+ k(4.2) g := IBU (@, .gk _}_ [_l .((.)l .()(.O)l]) D g k := 0(1)oo.

The vector go can be a perhaps only poor inclusion of g. If we start with a symmetric
vector go= [_go, g0], we only deal with symmetric vectc;rs when carrying out (4.2). In
fact the computation of (4.2) reduces to

+’ --+l.(e)l),], := -(4.3) g := min[(.)- {.gk gk+l k/l

Hence all interval operations necessary for (4.3) can be carried out with special
procedures for symmetric intervals computing the correctly rounded upper bounds
and setting the lower bounds to the negative value of the upper bounds. In particular
we use a version of IBU for symmetric vectors. Compared to the more general interval
operations we save the major part of the computation time" we only need half of the
number of floating-point operations and do not have to consider different cases. The
convergence properties of (4.2) and related methods will be discussed in a subsequent
paper;, For t.he special case (4.3) a convergence proof is easy to accomplish:

is an M-matrix, .dr’=> ., gk and [-I.(e)l, .(e)l] are symmetric vectors (a vector
x is symmetric if = -x), hence .dV’g k +[-I.(e)l, .(e)l] is also symmetric.

Because of the intersection in each step there exists g*= f-lko and
[-I.(e)l, .(e)l] is also symmetric as the interval operations are continuous. From
Lemma 2.3 it follows that

g*= IBU (., .g* /[-I.(e)l, .(e)l] n*
.)-(.* + [-I.(e)l, .(e)] n *

hence

or
* -<_(.)-’ .w* + .(e)l), g* -g*

* -< (. .)-’.)-’1.(e)l,

0The inverse matrix exists and is nonnegative as - is an M-matrix. Ifo
then we also have o,, and analogously if E oDo then E *.

5. Applications. For the method under consideration in this paper we use the
concept of matrix splitting to create matrices suitable for the application of IBU. We
consider the elliptic PDE

(a(s)u)+(b(t)ut)t=f(s,t,u(s,t)) onI=[0,1]x[0,1],

u(s, t)= g(s, t) on the boundary of L
(5.1)

g continuous, a, b continuously differentiable on [0, 1],

a(s),b(t)>O for s, t[0, 1], 0f0.
3u

628 HARTMUT SCHWANDT

It can be shown that this problem has a unique solution ([3, 7, Chap. II]). The five
point discretization with central differential quotients with a mesh size h 1/(rn + 1),
m , in both directions produces a nonlinear system (3.4) with

4,(x,)=h2f(jh, kh, x,)-r,, i=(k-1)m+j, l<-j,k<-_m,

j --Jj+l/2.’, .j (--i--I/2, i--1/2 + i+1/2 + j--’/2 + j+l/2, --i+l/2)m,
fl,/2=b((j 1/2)h) > O, al/2=a((j 1/2)h) > O,

contains the boundary values @()=((x)),, @’()R.

With [7, Thm. 4.4.1] it can be shown that there is a unique solution of this system, too.
We now define . according to (3.5).
Let

/3 := min {/3+,/211 <-j <-- m 1},

{max := max {j-l/2.4-/3j+l/2l <j < m},

.-;-- --[. . :-- (--Oli_l/2, [max"- Oli_l/2 " OI.i+l/2, --Oli+l/2)m,

.(a) ------ .:= ((flj_/-fl)., (flmax-flj-l/-fl+/2)4, (/3+1/-fl)4),.

The relation (3.6) is obviously true.
We can even use the version of IBU matrices of the form (., .M, .)m by computing

m
k + IBU (--l(azk)/fl, (.g’(azk)(m.k--vk)+.(m.k)))/fl(5.3)
=.mk + IBU (_(k)/, (, M. .gT-),,,. m.

k +. (m. k)--, azk)/.

@, hence . are M-matrices. Then (v) is an interval M-matrix (see (2.5)). We
further note g" => 6. In addition we state that

(o) (o) (o) .= . + .,(o).

The latter matrix being an M-matrix (see (2.5)), condition (3) of Theorem 3.3 is
satisfied. The matrix with

Jmax q- ti(:zO) -- 0i-1/2 + Oi+1/2 2/3,
0i--1/2,go
--ti+l/2

0,

j-" i,
j=i-1,
j=i+l,
otherwise

<-i<=n,

is an irreducibly diagonally dominant L-matrix, hence an M-matrix ([12, Cor. to
Thm. 3.11]). From Theorem 2.1 we obtain the applicability of IBU to (0).

We have verified all conditions ofthe Theorems 3.2 and 3.3 concerning the matrices
related to the problem to be solved. A straightforward generalization of (5.1) is given
by

(5.4)
(a(s, t)us)s+(b(s, t)ut),=f(u),

a(s,t),b(s,t)>O.

NONLINEAR ELLIPTIC DIRICHLET PROBLEMS ON RECTANGLES 629

In (5.2) we have to write

(5.5)
,.+l/2=b(ih,(j+l/2)h), l<-i<=m, O<=j<=m,

Oli+l/2.j-’- a((i+ ll2)h, jh), O=<i__<m-1, <__j<--_m.

(5.3) has to be changed by replacing the corresponding definitions"

(5.6)

/3 := min {/3,.+/211 =< < m, 0-<j =< m 1},

fl,:=max{fli.+/2+fl,,j_/2ll<=j<=m}, l<=i<=m,

:= max {a_/_,. + a+/2,[_--<j _<-- m}, _--< _--< m,

a+/2:=min{ot+/2,ll <--_j<=m}, <=i<=m-1,

.y:= -/3.y, . := (-c,_,/,/3, + ,,, --C,+,/)m,

6. Numerical experiments. The numerical experiments were carried out on the
CYBER 170-835 (48-bit mantissa) of the ZRZ (Zentraleinrichtung Rechenzentrum) of
the Technical University of Berlin with the PASCAL compiler of the ETH Ziirich/Uni-
versity of Minnesota.

The interval arithmetic and the interval operations had to be simulated by PASCAL
procedures. For the representation of intervals we defined a data type INTERVAL
Grecord u, o: real end. The computation time can be reduced by a factor of at least
four or five if interval operations and a corresponding arithmetic are implemented on
the machine or microprogram level (e.g., like the arithmetic developed and implemented
together with the PASCAL-SC compiler at the University of Karlsruhe--see [6]). We
therefore divided the computation times measured for interval methods by four in
order to compare them at least roughly with "ordinary" floating point methods. We
described the details concerning our implementation of the interval operations in [8]
and [10]. For our numerical experiments we chose some examples for (5.1):

(1) f(u)=a.eu,
(2) f(u)= a u3,

(3) f(u)= a u

a(s)= s, b(t)= + t4/1024,

a(s) s/128, b(t) + t/1024,

l+t2

/1---s, a(s)= e, b(t) 10+ e-(’/(’+’)),

(4) f(u)= a u3, a(s) s, b(t) 1000004- t4/8192,

(5) f(u)= a

g(s, t) s + 2t for (1)-(4)

sin (s=u/10)+ 2 sin2 (S2U3/20)
exp (lO-5{exp (((u + 1)/(lO0(u’+ 7))) exp (u2 + 1)) u/4})’

b(t) 1000+ e-5t2/5000, a(s)= (sin (s) + cos (3s))/r2,

g(s,t)=s-2t.

These examples are intended to give an idea of the behavior of our test methods
depending on a, b, f and the shape of f varied by different a.

630 HARTMUT SCHWANDT

The examples were discretized with h 1/31, 1/63, 1/127 and computed with
a-10, 10, 102 l03, 104

For the variants of IMNAB without auxiliary steps we chose the convergence
criterion

(6.1) q(k+’, < e 10-6

and for IMNAB+ IGS and IMNAB+ IS2

(6.2) IId(’+’)ll < l0-6.

For "ordinary" floating-point methods we stopped any iteration when
k+l k(6.3) q(.k+l,)11, I1, . < 10-6.

We compared some versions of the method IMNAB with the generalized conjugate
gradient method (GCG) as described in [4]. We also add some results for the nonlinear
block SOR method (NBSOR) as described in [5]. In view of the great number of
possible variants of GCG and IMNAB we restricted our attention to the following:

1. IMNAB without auxiliary steps as defined by (3.3), IMNAB+IGS and
IMNAB+ IS2 as defined by (3.8). We chose k. :_. m(ck) for all k e No. The
starting vector was improved by the procedure described in 4.

k k2. IMNABM with . :=__ for all kNo (version U) and with .k :___ g/Tk for all
k No (version O) with improved starting vector.

k3. IMNAB with given, not improved starting vector and . := m(k) for all k
(denoted by IMNAB [a, b] if o= ([a, b])).

All these variants use the algorithm (2.6) for IBU. Storage restrictions prevented us
to compute all the elimination parts of IGA already in step (1)" in this case we would
have to store m vectors d of size [1.. m] INTERVAL and m vectors of size

I1 m l] INTERVAL occupying about 4N memory locations. By computing the
vectors z/ and separately for each r, the additional storage reduces to (m-1)/2
vectors d and (m- 1)/2 vectors re, i.e. approximately 2N locations. On the other hand
the recomputation of vectors d, in step (4) requires only approximately 3N/2
arithmetic operations which is not serious in view of a total number of operations of
order (Sk+7)N of IBU (remember that k-5, 6). Further details concerning the
programming of IBU can be found in [10]. For the present applications we only have
to replace the special variant of IGA for tridiagonal matrices of the form (-l, Di, -1)
by a version for matrices of the form (Ai_, D, Ai). The iteration to improve the starting
vector was stopped, when Ilq(k+, ’k) I1 < 10-3. This criterion led to the most satisfying
results with respect to the minimization ofthe total computation time in several previous
experiments.

The diagonal elements b, needed by IGS are recomputed in each auxiliary step
as bii:=ajd-Ck, where aj=aj_/2/oO+/2, Ck:--k_l/2"-k+l/2, i=(k-1)m+j, l<-j,
k_-< m. The [0.. m] x INTERVAL vectors e and are computed only once before
starting IMNAB.

We tested the following variants of GCG:
4. GCG without convergence safeguards where ../(k) .__(__., ., __..), .__

(--Oi-1/2, 0li-1/2 + Oi+1/2 / max, --Oi+!/2)/ (variant GCG) respectively
(_., .<k, _.) with .<k . +(hE/3)(rk(x)+ dPV+l>/2(xN+l>/2)+ rk’(xN)).
(variant GCG+ S).

5. GCG with the first .M in 4. and convergence safeguards as described in [4]:
with restarts after 5 steps (variant GCG/R5) respectively l0 steps (variant

NONLINEAR ELLIPTIC DIRICHLET PROBLEMS ON RECTANGLES 631

GCG+ R10) and a line search at each restart to determine the stepsize ak. We
stopped the Newton iteration when la(kl+l- a(kl < 10-6.

All GCG variants solve the "defect" equation by a variant of the Buneman
algorithm constructed similarly to the interval reduction method given by (2.6). We
further always used the parameters (a, b) (see [4]). The other three possibilities lead
to a higher computation time in most cases in a number of tests.

As initial inclusion for the solution . dedicated to start the iteration to improve
the starting vector (variants mentioned in and 2) respectively to start immediately
IMNAB (3) we chose the vectors ([-4, 4]) for the examples (2)-(5) and ([- 10, 10])
for example (1). A closer inspection of the examples would lead to even better
inclusions: we have .(_)<_-e<_-(() for a=([0,3])/N=l in the examples (2)-(5). For
example (1) we note the ./()-->e for aS:= (3)/N_-I A correct lowerbound with ./(_)--<e
is somewhat more complicated to determine"

We define for example _=(xi)l by xi+l:=x+a+l, l<-_i<=N-1, with
ai+fl, ao:=0, Xl:=-10+fl where, e.g., in the case m= 127 we set fl:= 10-9

All variants of GCG were started by .o:= (4) in all five examples. Some tests
with v s=.o or --(-4)1 gave similar results.

In the following tables we report the results of our numerical experiments for
m 63, 127 (Tables 1-5) and m 31 (Table 6). Each field contains in its left part the
number of iterations needed to satisfy (6.3) for the point methods and (6.1) for IMNAB,
IMNABM and IMNAB ,] respectively (6.2) for IMNAB+ IGS and IMNAB + IS2.
The right part contains the total computation time in seconds including the time for
the improvement of the starting vector for the corresponding variants of IMNAB. For
IMNAB + IGS we note the number of steps necessary to satisfy (6.2) and below that
to satisfy (6.1). The computation time refers to (6.2). Fields marked with an M (for
IMNAB+ IS2) indicate that storage restrictions prevented the computation.

In view of the great number of experiments and the necessary amount of computa-
tion time we did not compute all variants for all examples and all values of a. The
corresponding rows or fields remain empty. Fields marked by "-1" refer to examples
where IMNAB satisfied (6.1)while [[d(k+l)[[c0.1.

When comparing IMNAB without convergence safeguards with GCG and GCG+
S without convergence safeguards we state that in examples (1)-(3), (5) IMNAB is

superior for a_-> l0 or a_-> l02, in example (4) for a_-> l0 (m=63) and a= l0

(m 127). Due to the better approximation of the Jacobi matrix GCG+ S reduces the
number of steps in a sensible manner for increasing a. The number of steps needed
by IMNAB increases rather slowly. Thus the number of steps--and therefore also the
computation time--remains largely inferior even to that of GCG+ S for these values
of a.

When the improvement ofthe starting vector is omitted (IMNAB [.,]) the number
of steps does not change or increases only slightly in the present examples. On the
other hand this is largely compensated by the time needed for the improvement of the

starting vector in the other versions. It seems to be preferable to omit the iterative
improvement if the initial inclusions are not extremely poor.

There was, however, one test where an arithmetical overflow occurred when calling
the exponential function in the first step with =([-4, 4]) (example (5)). The
iterative improvement gave a better inclusion and therefore smaller (sufficiently small)
arguments for exp.

Up to now we only compared versions without convergence safeguards. But we
have to remember that the convergence of GCG and IMNAB--except the monotone

632 HARTMUT SCHWANDT

NONLINEAR ELLIPTIC DIRICHLET PROBLEMS ON RECTANGLES 633

634 HARTMUT SCHWANDT

NONLINEAR ELLIPTIC DIRICHLET PROBLEMS ON RECTANGLES 635

TABLE 6

Results.for the monotone versions IMNABM (m 31, version O: .k := zk, version U: .k := zk).

O

U

O
2

U

O
3

U

O
4

U

O
5

U

10

13 7

16 9

25

20 9

7 4

10 6

3 1.7

3 1.8

3 4.5

3 4.5

42

48

67

22

25

32

88 42

24 14

30 17

3 1.7

3 1.7

3 4.5

3 4.5

10

133 65

158 77

225 100

225 98

92 50

118 66

1.8 4

2.2 5

4.5 4

4.5 4

10

2.2

2.5

7 3.5

9 4.3

6 8.5

6 8.5

versions--has only been proved under the condition that convergence safeguards are
included.

The convergence preserving property of IGS or IS2 was needed for a 104 in
examples 2 and 3: there IMNAB stopped with q(:vk+l, :vk)lifo < 10-6, but
10-1. When testing (6.2) instead of (6.1) the iteration continued for some steps, but
without reducing the diameters noticeably. IMNABS+ IGS reduced the diameters at
least to 10-3 or 10-4 when (6.1) was true. But IMNAB + IGS and IMNAB+ IS2 converge
to the necessary precision when an appropriate criterion is set" we therefore computed
these two variants always until (6.1) and (6.2) were true.

In all examples except the one just mentioned we obtain at least IId(+’)ll < 10-5

with IMNAB, IMNAB [.,.], and IMNABM when (6.1) was satisfied. Remember that
d(cvk)o. (koe)C:q(:vk/,cck)-- e (koe) if .g:vk for all k (see [2, Appendix A]).

For the above mentioned examples we found a similar behavior when applying
GCG and GCG+ S: we found a number of components with only two or three correct
digits. In this context an advantage of interval methods becomes interesting: due to
the inclusion ofthe solution one can immediately determine the number of correct digits.

When IMNAB converges in a few steps without auxiliary steps, IMNAB+ IGS
or IMNAB + IS2 lead to an increase of computation time. On the other hand IMNAB+
IGS and IMNAB+ IS2 do not only guarantee the convergence up to a given precision
but can also reduce the total number of steps and therefore the computation time in
cases where IMNAB converges rather slowly (see example (2)), a 103 and a 104,
and example (3), a 104).

As we already mentioned the version IMNAB+ IGS was used in order to be able
to compute also the case m 127 in view of the limited storage available at the CYBER
170-835. The variant IMNAB+ IS2 contributes in a more sensible way to the reduction
of the diameter of the iterates due to the smaller inclusions of the partial derivatives

636 HARTMUT SCHWANDT

and the double-steps. A clear advantage of one of the two methods cannot be deduced
from the examples computed here.

Table 6 contains some results for the monotone versions of IMNAB. These variants
enabled us to a deeper theoretical analysis. With respect to the practical behaviour,
however, they gave no improvement over the variants using the midpoint vector, i.e.

.k :_ m(:vk). For those examples, for which IMNAB converged in a few steps, i.e. (4)
and (5), the computation time of the monotone versions remained in the same order.
In examples (1)-(3) where the number of steps needed by IMNAB was somewhat
higher, the number of steps needed by the monotone versions rapidly grew. Remember
in this context that the choice of the midpoint as .k has been shown to be optimal
for the one-dimensional interval Newton method (see [2, Chap. 7]).

The computation times for the variants of IMNAB with improved starting vector
are not always proportional to the number of steps as they include the time for the
improvement. The latter decreases for increasing a in example (1), e.g. This is due to
the fact that the starting vector ([-10, 10])/N_- for the iterative improvement includes

but not necessarily the vector v given by (4.1), i.e. the interval [-10, 10] or the
x") for some i. We illustrateinterval 10, 10] --ix’) is a better inclusion for yi than

this remark in Table 7.

TABLE 7
Computation time for the iterative improvement of the starting vector in

IMNAB (example (1), m 127).

a 10 a 10

40 515 31 422

27 116 26 111

a l02

30 362

13 56

a lO

28 305

4 18

a 104

31 335

3 14

Each field contains in the first line the number of steps and the total time needed
by IMNAB, in the second line the number of steps needed by the iterative improvement
and the computation time (included in the total time). In Table 8 we add some values
for the other examples. The given values are valid for all a.

TABLE 8
Number of steps and average computation time for the iterative

improvement of the starting vector.

example 2 3 8

m =63 II l0 2 2 2 2-3

m 127 26-27 l0 2 l0 3 18

In Table 8 we only note the number of steps and the computation time necessary for
the improvement.

The results for the method GCG with convergence safeguards suffer from the fact
that in a great number of cases an arithmetic overflow occurred or the method did not
converge in a given time. The reason is given by the Newton method used for the line
searches: while carrying out the second or third line search the function whose zero

NONLINEAR ELLIPTIC DIRICHLET PROBLEMS ON RECTANGLES 637

defines the next approximation for ak is already very flat. A typical quotient h h’ in
the iteration akt+)= ak)- h(ak))/h’(akt)), where h stands for the function defining the
Newton iteration, was given by 10-6/l0-l, i.e. lak+l)- a k)l O(l04) (machine precision
3.6. 10-15). This leads to a very slow convergence or divergence (examples (4) and
(5)) or an arithmetic overflow (all examples). We tried to control the Newton iteration
but the same phenomena occurred only some steps later. On the other hand the bisection
method is slow and costly, in particular when the starting interval is not easy to
determine. In the cases where the convergence safeguards worked well (example (3),
m 63 e.g.) we observed a behavior similar to that of the auxiliary steps for IMNAB:
the computation time was considerably reduced where the convergence ofGCG without
safeguards took place only after a large number of steps.

Compared to GCG and IMNAB, the nonlinear block SOR method (NBSOR)
converged extremely slowly. Table 9 illustrates this fact for m 31 and a 1.

TABLE 9
Resuits for NBSOR for a 10.

example

111 40

133 86

123 120

134 83

134 393

m =63

231 310

272 660

247 1002

276 648

Conclusion. The interval method IMNAB is certainly not an all-purpose method
and the generalized CG method is suitable for a greater variety of applications. But
IMNAB turned out to be an attractive alternative in particular in those cases in which
the approximation of the Jacobi matrix by a matrix suitable for a direct solver is rather
difficult. Keeping in mind the definition of IMNAB, we note that the "right-hand side"
of IBU in IMNAB depends on the function b. The convergence speed depends on the
diameters of this "right-hand side", i.e. we obtain the best convergence results for
"sufficiently" flat functions b. For suitable functions a it may be therefore interesting
to exchange a and b. On the other hand the quality of the approximation of the Jacobi
matrix for the present variants of GCG also diminishes when the variation of b grows.
We finally note that reliable software for IMNAB (as well as for GCG) should include
suitable measures to guarantee convergence, like in IMNAB+ IGS, IMNAB+ IS2 or
IMNABHIN, e.g.

A further development of the methods presented in [8] and this paper will include
for example algorithms replacing IBU by methods dedicated to the solution of more
general elliptic equations, 3D problems or other boundary conditions (Neumann,
periodical).

REFERENCES

1] G. ALEFELD, Ober die Durchfiihrbarkeit des Gauflschen Algorithmus bei Gleichungen mit Intervallen als
Koeffizienten, Computing, Suppl. (1977), pp. 15-19.

[2] G. ALEFELD AND J. HERZBERGER, Einfiihrung in die lntervallrechnung, Bibliographisches Institut,
Mannheim-Wien-Zfirich, 1974.

638 HARTMUT SCHWANDT

[3] L BERS, F. JOHN AND M. SCHECHTER, Partial Differential Equations, Wiley Interscience, New
York-London-Sydney, 1964.

[4] P. CONCUS, G. GOLUB AND D. O’LEARY, Numerical solution of nonlinear elliptical partial differential
equations by a generalized conjugate gradient method, Computing, 19 (1978), pp. 321-339.

[5] L. A. HAGEMAN AND T. A. PORSCHING, Aspects of nonlinear successive overrelaxation, SIAM J.
Numer. Anal., 12 (1975), pp. 316-335.

[6] U. KULISCH AND CH. ULLRICH, eds., Wissenschaftliches Rechnen und Programmiersprachen, German
chapter of the ACM/Berichte 10, Teubner-Verlag, Stuttgart 1982.

[7] J. M. ORTEGA AND W. C. RHEINBOLDT, lterative Solution ofNonlinear Equations in Several Variables,
Academic Press, New York and London, 1970.

[8] H. SCHWANDT, An interval arithmetic approach for the construction of an almost globally convergent
method for the solution of the nonlinear Poisson equation on the unit square, this Journal, 5 (1984),
pp. 427-452.

[9] .,A symmetric iterative interval methodfor the solution ofsystems ofnonlinear equations, Computing,
to appear.

10] ., Schnellefast global konvergente Verfahrenfiir die Fiinf-Punkt-Diskretisierung der Poissongleichung
mit Dirichletschen Randbedingungen aufRechteckgebieten, Doctoral dissertation, Technische Univer-
sit/it Berlin, 1981.

l] W. TORNIG, Monoton konvergente Iterationsverfahren zur Lisung nichtlinearer Differenzen-Randwert-
probleme, Beitrige Numer. Math., 4 (1975), pp. 245-257.

12] R. D. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 3, July 1985

1985 Society for Industrial and Applied Mathematics
010

ACCELERATING AN ITERATIVE PROCESS BY EXPLICIT ANNIHILATION*

DENNIS C. JESPERSEN" AND PIETER G. BUNING$

Abstract. A slowly convergent stationary iterative process can be accelerated by explicitly annihilating
(i.e., eliminating) the dominant eigenvector component of the error. The dominant eigenvalue or complex
pair of eigenvalues can be estimated from the solution during the iteration. The corresponding eigenvector
or complex pair of eigenvectors can then be annihilated by applying an explicit Richardson process over
the basic iterative method. This can be done entirely in real arithmetic by analytically combining the complex
conjugate annihilation steps. We illustrate by applying the technique to an implicit algorithm for the
calculation of two-dimensional steady transonic flow over a circular cylinder using the equations of
compressible inviscid gas dynamics. This demonstrates the use ofexplicit annihilation on a nonlinear problem.

Key words, convergence acceleration, nonstationary iteration, extrapolation to the limit

AMS (MOS)subject classifications, primary 65B05; secondary 65F10, 65H10, 65N20

1. Introduction. A great deal of work is being done to develop efficient algorithms
for steady-state problems in computational fluid dynamics. The most widely used class
of algorithms for steady problems consists of time-like methods that are marched to
a steady state. Our purpose here is to point out a simple and easily applied technique
from linear algebra which can in some cases produce a remarkable speedup in
algorithms that march to the steady state. The idea may be briefly summarized as
follows. In the later stages of the marching algorithm, the iteration may be behaving
linearly. If so, one can estimate the dominant eigenvalue of the underlying iteration
matrix and "annihilate" the eigenvector corresponding to this eigenvalue by a special
iteration step. Even when the eigenvalue and eigenvector are complex, all the computa-
tions can be performed in real arithmetic.

Some notation is developed and some facts from linear algebra are reviewed in
the next section. A particular algorithm for the Euler equations is presented in 4,
and an application of annihilation to steady transonic flow over a circular cylinder is
described in 5. We wish to emphasize that the application of annihilation is not
restricted to the particular marching algorithm that we use for illustrative purposes.

2. Review of linear algebra. In this section we establish our notation and review
some elementary facts from numerical linear algebra. To begin, consider the matrix
problem Ax b, where A is nonsingular. Let A M- N be a splitting of A, where M
is nonsingular, and consider the iteration

Mx"+l Nx + b, n >-O, x given,

(1) or MAx -Ax" + b,

and xn+l:=xn+Axn.

(The notation "a := b" is used here to mean that a is defined as b.)

* Received by the editors November 12, 1982, and in revised form September 15, 1983.
f NASA Ames Research Center, Moffett Field, California 94035. This work performed while this author

was a member of the Professional Staff, Informatics General Corporation, Palo Alto, California. The work
was supported by NASA Contract NAS2-9891.

t Research Scientist, Computational Fluid Dynamics Branch, NASA Ames Research Center, Moffett
Field, California 94035.

639

640 DENNIS C. JESPERSEN AND PIETER G. BUNING

Let x* satisfy Ax*= b, and denote the error by e" := x*-x". Then Me"+t= Ne",
and so the iteration converges if and only if the spectral radius of M-IN is less than
1, p(M-IN)<l.

Suppose now that M-N is diagonalizable with eigenvalues Ai and corresponding
eigenvectors vi. Take [/11 1/2["]/m[, and write e" i=1 aiv,. Then we clearly
have

(2)
i=! 2

Evidently the component of the error in the direction of vl is the slowest decreasing
component (if

The component of the error in any direction v can be annihilated as follows.
After computing Ax"+k, define x"+k+ := X"+k+ crAx+k, where cr is as yet arbitrary.
(We call this a Richardson step with parameter or.) Then we have

en+k+l en+k o.Axn+k

e"+k-crM-l(-Ax"+k + b)

e,,+k_o.M-1Ae,,+k

(3)
=[I_o.M_I(M_ N)]e,+k

[(1-- cr) I + o’M-I N] E

E 12,A k[(o’) + o’a,]v,.

Thus if we choose tr= 1/(1-), the component of e"/k/ in the direction of v is
zero. Any component v can in theory be annihilated, but in practice the important
component is the eigenvector v associated with the dominant eigenvalue

Of course we do not know A, but we can use the sequence Ax" to estimate it,
since AXn+l-- M-INAx". Estimating A from the sequence Ax" is simply using the
power method to find the dominant eigenvalue of a matrix. Thus we estimate a by
A (Zxn+k)r/(Axn+k-l)r for some appropriate rth component of the update Ax. (The
residual rn+k := -Axn+k + b could also be used for the estimation, since r"+k Aen+k.)
In summary, we plan to estimate a from the sequence Ax" and take a Richardson
step with parameter cr / (1 A).

The general condition for stability of the Richardson step with parameter cr is

I1- or(1- a)[=< for all eigenvalues a of M-N. This ensures that no component of
the error is amplified by the Richardson step. It may well happen that the Richardson
step we propose is "unstable" in the sense that some components of the error are
magnified. We note, however, that in the later stages of an iteration the subdominant
components of the error are liable to be so small that a certain amplification of them
is acceptable when accompanied by a large decrease in the dominant component of
the error. Also, further ordinary steps will rapidly reduce these subdominant com-
ponents again. To be more specific, suppose e n+k 121/) "+- e)i, # 1. Then we easily find

en+k+l en+k_ trM-IAen+k

(4) 121(l --{7+ 0"/ l)/J "- (1 --0" "{- 0"ti)I)

/i al v if o"-
1-h 1-h

ACCELERATING AN ITERATIVE PROCESS 641

Thus, the V error component is multiplied by a factor of (h ’1)/(1-h). We expect
[All to be close to 1, so this factor could be large, but the factor of e will compensate
if it is small enough.

We remark here that in our application, A is not constant, but A A(x"). Neverthe-
less, the assumption of linear behavior will be approximately satisfied in the later
stages of the iteration. We will not attempt annihilation unless the iteration seems to
be behaving linearly. An empirical criterion for determining this is described in 5.

We will now show how annihilation can proceed in real arithmetic even when the
dominant eigenvalue is complex. It is quite possible that the dominant eigenvalue
could be complex, and thus (since we will assume that A is real) that there is a dominant
pair of complex conjugate eigenvalues, say A2 ,, and [h[[h2[> 1/31 " lanai.
Then if we write Ax" Y= flv, we see

Axn+k-p / lk-Pl Vl-[-/ 2k-P2V2-[O(IX31-)
for p 0, 1, 2. Thus, for any real c and d,

(5) AXn+k -[- CAxn+k-l"} dAXn+k-2

k-2 2l-l(+ Cl + aVl+ (+C+lv+O(I*I-.
The coefficients of v and V2 will vanish if c=-2 Re ’1 and d =JAil2, for then
,+c, +d (,-,.)(,-,).

In practice, we can pick indices i#j and find c and d such that

(Ax"+),+ c(ax"+-’), + a(ax"/-), =0,
(6)

Ax"+) + c(Ax"+-’) + d(Ax"+-2) =0.

This is a linear system for c and d. Once c and d are known, X =-c/2+ i/d- c2/4,
and two Richardson steps can be performed by defining r := 1/(1- A) and putting

X
n+k+l :_._ Xn+k At- o-Axn+k,

(7)
n/k+2

X :-" X
n+k+l -[- ’Xn+k+l

where Ax is still given by one step of the original iterative scheme, namely, AXn+k :--
M-(-Axn+k + b) and Axn+k+ :- M-(-Axn+k+ + b). By the calculations done pre-
viously, this will eliminate the v and v2 components of the error. Furthermore, there
is no need for complex arithmetic, for the computation can be reorganized as follows"

M(x.+k+2 x.+k) M(#Ax"+k+ + crAx"+k)
6"(-Ax"+k+’+ b)+ o’(-Ax"+k + b)

(8) #[-A(x"+k + rAx’+k)]+ #b o’Ax"+k +
-(or +)Ax"+k + (cr +)b-[rI2AM-’(-Ax"+ + b)

2 Re r r"+k -[o-[2AM- r"+k.

Thus, two complex Richardson steps can be performed entirely in real arithmetric, at
a cost of 1) solving two linear systems with coefficient matrix M and 2) performing
one matrix-vector multiplication with coefficient matrix A. This is the same as the cost
of two steps of the basic iteration process. As for stability, a component of e"/k in
the direction of the vector vj, j > 2, is multiplied by the factor

(9) (hi- h,)(X;- X,)
(l-A,)(1 -,,)

642 DENNIS C. JESPERSEN AND PIETER G. BUNING

Again, this factor could be large, but we expect to apply the annihilation in the later
stage of the iteration when the coefficients of vj are very small and some amplification
would be tolerable.

It seems to be more robust to solve a linear least squares problem of the form

: cr_ 1
AX +k-l pAxn+k-2 PAxn+k- Cr-21 pAxn+k

Co /

for coefficients Co,’’-, Cr_l. Here P is a projection operator of modest rank. After
solving the least squares problem, one finds the roots of the polynomial x / c_x- +

+ Co and chooses the appropriate real root or complex pair of roots for annihilation.
We have found it convenient and useful in practice to reformulate the double

annihilation step as follows, where we introduce an arbitrary nonzero parameter a"

xn+k+l ..___ X n+k q_[ITI2M-l rn+k
(10)

r"++ := -Ax"+k+ + b,

x"++ x"+ + M-[(2 Re o--a)r"+ + ar"++].
This results in the same x"++2 as (8), but it may have an advantage in the nonlinear
case A A(x"). The reason for this is as follows. In the nonlinear case, if we choose
a Icrl2, then x"++ is given by one step of the usual algorithm, and since we expect
to be in the "linear" regime where IIxn+k+l --xn+kll is small, we expect that A(xn+k)
and A(x"+k/l) do not differ significantly. On the other hand, if we choose
then the first step of (10) can involve a large change in x, and this could invalidate
the linearity assumption.

For a general iteration

x"+ := x" + q(x"),

where a solution x* of (x*) := 0 is sought, the preceding remarks suggest that complex
annihilation be performed as follows:

x"+ := x" + q(x"),

x"+: x" +[(2 Re

This formulation has the nice feature that no linearizations are required; only d need
be evaluated. This is useful if the evaluation of q3 is done by a complicated algorithm
which may be difficult or impossible to linearize correctly. Of course, if (x)=
M-(-Ax + b), then we recover (8).

We might remark that the presence of a dominant complex conjugate pair of
eigenvalues can be signaled by oscillations in the norm of the residual. For example,
if r= aAv + a2Av2 2 Re (alA/)l) then, writing /1 =P e, we see that in any norm

-k rk ikOAv ikOA
(11)

P II--Ila, e +, e-

-112 Re (at

Thus, the vector w:= aAv is rotated through an angle kO and projected on the real
axis, which may give oscillations. The oscillations need not be visible in the 12 norm,
however, for the different components of w (which will oscillate) may oscillate out of

ACCELERATING AN ITERATIVE PROCESS 643

phase with one another, and the averaging of the 12 norm may obliterate the phase
information. For example, if w= (tr ei6,, tr, ei6m) , then

Re e ,kOW)II E r cos + kO)2;
j=l

so if m is large and the phases {bj} are independent random variables uniformly
distributed in the interval [0, 27r) then the expected value of IIRe (e’w)ll is (y])/2
and no oscillations will be visible. However, the projection of the residual rk onto a
"small"-dimensional subspace should give visible oscillations in the 12 norm; i.e., if P
is a low-rank projection operator, then Prk I1= should exhibit oscillations. Furthermore,
if 0 7rp/q in lowest terms, then the period of the oscillation will be q. Examples of
oscillatory decreasing residuals (which signal the presence of a dominant complex
conjugate eigenvalue pair) can be found in 1]-[3].

It is sometimes possible to use the oscillations in IIrll= (or IIPrll=)to estimate
the maximum eigenvalue/l-- p ei. If rk I1= has successive maxima at k kl and k k2,
then p is given by and 0 is given (approximately) by
O ’rr/ k2- kl).

We close this section with some remarks on the relation of annihilation to previous
work. It is easy to show that in the case of a scalar sequence (x, x, x"), our
"annihilation" step is, exactly, an Aitken 2-extrapolation step. Wilkinson [4] discusses
the application of the Aitken 12 technique to the power method for estimating eigen-
values and eigenvectors, where x" is a vector. The formulas there are different from
the ones we have used: in Wilkinson’s formulation the Aitken 12 acceleration step is
applied to each component of the vector separately (in effect, an "eigenvalue" is
assumed for each separate component of the sequence of vectors), whereas in our
formulation a single eigenvalue is estimated and used for all components of the vector.
We are unable to say which strategy is better. Furthermore, in Wilkinson’s formulation
it is unclear how to handle the case of a dominant complex conjugate pair of eigenvalues
(it is shown how to estimate the eigenvalues as roots of a quadratic equation, but the
acceleration ofthe convergence ofthe vectors is not discussed). The idea of annihilation
is elementary but appears to have been neglected. Lyusternik [5] considered a procedure
that amounts to annihilation in the case in which the eigenvalues are all real, but he
did not discuss the complex case. Hyman and Manteuttel [6] describe an algorithm
very similar to annihilation for accelerating slowly convergent iterative methods. They
use a Krylov sequence technique to obtain estimates of the eigenvalues of the iteration
matrix, then estimate an ellipse in the complex plane which contains these eigenvalues
and apply Chebyshev acceleration techniques in the complex plane.

Many authors have been concerned with the harder problem of optimizing relaxa-
tion schemes (getting all the eigenvalues of the iteration matrix as far inside the unit
circle as possible). An adaptive procedure for minimizing the norm of the iteration
matrix was presented by Manteuttel [7]; he estimated complex eigenvalues by the same
technique we use above. To reiterate our point ofview: we do not ask for the "optimum"
method in some class of methods, nor do we insist that our annihilation steps be stable.
We simply estimate eigenvalues and perform annihilation. Moreover, we are willing
to accept amplification of some error components in the annihilation step; these
components will be rapidly reduced anyway in subsequent normal iteration steps.

3. A test of annihilation. In this section we will test the application of annihilation
to accelerate convergence for a realistic nonlinear problem. The example problem is
nonlinear and small enough that the eigenvalues of any frozen coefficient problem can

644 DENNIS C. JESPERSEN AND PIETER G. BUNING

be computed by standard eigenvalue software. We study the steady quasi-one-
dimensional Euler equations

o,(,x)
+H(Q,x)=O, 0<x<l.

Ox

Here Q= Q(x) is the three-vector Q= a(p, ou, e) T, where O is the density, u the
velocity, e the total energy per unit volume, and a a(x) the cross-sectional area of
a channel or nozzle. These equations can be derived by averaging the two-dimensional
inviscid compressible ideal gas dynamics equations with respect to y in the channel
or nozzle. The nonlinear function E is given by E(Q, x) a(x)(pu, pu+p, u(e+p)) T,
and the forcing term H is given by H(Q, x)= (0, -a’(x)p, 0) T, where the pressure
p =p(Q) is given by p=(y-1)(e-pu2/2) and y is a constant. Appropriate boundary
values must be adjoined to complete the specification of the problem. We chose to
study the case of a diverging nozzle (a’(x)> 0) with supersonic inflow and subsonic
outflow conditions, with an inflow Mach number of 1.26; we took a(x)=
1.398 +0.347 tanh (0.8(x-5)). For this case the exact solution Q has a shock. We could
of course use the large body of work that has been done for one-dimensional boundary
value problems, but we are interested in this problem as a stepping-stone for multi-
dimensional problems, so we will treat it similarly to two-dimensional problems.

In order to better resolve the shock, an invertible mapping sO(x) is constructed
such that a uniform placement of grid points in s space gives a grid with clustering
near the shock in x space. Under this mapping the equations take the form

OE(Q)
+x’()H(Q, so)=0.

A standard implicit algorithm [9] begins with the time-dependent form of these
equations, uses the implicit Euler method for time discretization and then linearizes
the nonlinear equations of the implicit Euler method about the solution at the previous
time step (see [9] for details). The result is the algorithm

I + h.Be OE(Q"_____) + h.x’()
oQ

gH(Q")|AQ.\ -h.(,eE(Q)+ x’(s)H(Q")).
/

Q+=Q+AQ.
Here the superscript n denotes the time level, h, denotes the time step (which can
vary with n) and denotes a spatial difference operator approximating c9/9s. Here
we will consider central differencing, ,vj:=(vj/-vj_)/2As. With this choice of
differencing, "smoothing" operators are usually added to both sides of the equation,
giving the algorithm

I + h,,eOE(O") + h,,x’() OH(Q"._.__.) + h,e,AV)zQ"
-h.(,E(Q")+ x’(s)H(Q")+ e(AV)EQ"),

where A and V are first-order forward and backward difference operators, respectively,
and ei => 0 and ee =>0 are "smoothing coefficients." For a given CFL number u, the
time step hn is defined by hn= ,,x’()/(lu.l+cy), where lul+c’=max (lu71+c7), c
is the speed of sound (c2= "),p/p) and A: has been chosen equal to 1. We take the
initial condition Q0 to have each component a linear function of s. The case we will
show used 21 mesh points. The computations for this one-dimensional problem were
done on a VAX 11/780 in single precision (23 bit mantissa).

ACCELERATING AN ITERATIVE PROCESS 645

For the eigenvalue estimation, we used the least squares idea outlined above with
a further refinement (also used by Hyman and Manteuttel [6]). We compute a lambda
over each of a number of time steps, use a weighted average of these lambdas as a
proposed lambda for annihilation, and perform annihilation if each of the lambdas is
within a certain specified tolerance of the proposed lambda. For the results to follow,
a lambda was computed for each of 12 time steps.

Our first example had a CFL number of 10 and smoothing coefficients (ee, el)-
(0.5, 1.0). First we ran the implicit algorithm for 300 steps without any annihilation.
The resulting/2-norm of AQ is shown by the solid line in Fig. a. Next the annihilation
strategy was employed, with lambdas estimated over 12 time steps and averaged to
determine a proposed lambda for annihilation. The results are shown by the dotted
line in Fig. a. As shown in the figure, four annihilation steps were performed and the
single-precision roundott level was reached in about 200 iterations.

10

10-1

d: 10-2

10-3
O

O 10-4

10-5

10-6

10-7

10-8
0 50 100 150 200 250 300

ITERATION

FIG. a. Annihilation for steady one-dimensional Euler equations, free-stream Mach number 1.26, CFL
number= 10, smoothing coefficients (ee, e)= (0.5, 1.0).

For our next example, we used a CFL number of 2 and smoothing coefficients
(ee, ei)= (0.1, 0.2). The comparison of the algorithm without and with annihilation is
shown in Fig. lb. As can be seen, seven annihilation steps were performed, and the
norm of AQ after 1200 iterations is about a factor of 50 lower when annihilation was
applied. For this problem the dominant eigenvalues at step 600 were found by numerical
software to be .99497 + .05790i, .99429 + .02187 i, .96937 + .08277 i, and .95585 +/- .01409i.
This problem, with its eigenvalues very close to 1, is a severe test of annihilation.

4. An iterative method for the Euler equations. In this section we will consider a
two-dimensional problem. The governing equations are the steady two-dimensional
Euler equations of compressible inviscid gas dynamics, which express the conservation
of mass, momentum and energy. They can be written in the form

(12)
aE(Q) aF(Q)

=0,
Ox Oy

646 DENNIS C. JESPERSEN AND PIETER G. BUNING

10-1

0 10-2

o 10-3

o

10-4

10-5

10-6 0 200 400 600 800 1000 1200
ITERATION

FIG. lb. Annihilation for steady one-dimensional Euler equations, free-stream Mach number 1.26, CFL
number= 2, smoothing coefficients (ee, ei)= (0.1,0.2).

where Q is the four-vector Q (p, pu, pv, e). Here p is density, u and v are Cartesian
velocity components and e is total energy per unit volume. The functions E, F" D c R4-
R4 are nonlinear functions given by

E(Q)=(pu, pu2+p, puv, u(e+p)) r, F(Q)=(pv, puv, pv2+p, v(e+p)) r.
The pressure p is defined by p=(y-1)(e-1/2p(u-+v2)), where y is a constant.
Appropriate boundary conditions must be adjoined to the differential equation to
complete the specification of the problem. It is not important for our purposes what
these boundary conditions are, so we will not discuss them further. In order to handle
a curved geometry, we map from the physical (x, y) domain to a "computational"
(:, r/) domain; the computational domain is usually taken to be a rectangle, for ease
in differencing. In the (st, r/) coordinates, the transformed equations retain the strong
conservation law form of (2) [8], becoming

(13)
OE t) -t-

OF Q--) O.

Iterative procedures for solving the steady-state equations (13) often take as their
starting point the unsteady equations

(14) 0._+ 0/.. 0)+0/3(t)_ 0.
Ot O Or

If we choose Euler implicit differencing in time (hoping for good stability properties)
we get the iteration

(15) 0n+l= 0n- h((gn+l+ (,r/.’n+l),
where e, , are spatial difference operators, h := At, and n denotes a time level. To

ACCELERATING AN ITERATIVE PROCESS 647

avoid iteration on the nonlinear flux terms, /n+l and /+ on the right-hand side of
(15) are expanded about values at level n using a Taylor series

o 0+ _o.(16) gn+l n
___. A0n

The locally linearized form of (15) can then be written in "delta" form as

(17) [I + h(" +
where A" and " are the Jacobian matrices OE"/OQ" and OF"/OQ respectively.

Each step of (17) involves the inversion of a large block-banded matrix, with
half-bandwidth equal to the number of points in one direction of the mesh. The amount
of work required for this is unacceptably large; instead the matrix is approximately
factored [9]. For example, if e and 6n were three-point central difference operators,
the left-hand side of (16) might be factored via

(is) [I + h(,A" + ,")] (I + h")(I+ h,")+ O(h)
as the product of two block-tridiagonal matrices.

The calculations we will show come from an algorithm that uses flux vector
splitting ([10], 11]), which is based on separating positive and negative characteristic
directions to allow the use of one-sided spatial difference operators. The Euler equations
(14) are hyperbolic, and can be decomposed as

=AO=XAX-IO=X(A++A-)X-,O
(19)

=(A++A_)O= ++_,
where A is the diagonal matrix of eigenvlues of , and A+ and A- are the positive
and neativ pas of A, respectively. F can be similarly decomposed. Defining
+ := OE+/OQ, and similarly for -, + and -, the unfactored scheme is

+ + #++#-)I+h(,A + +{-)lAO"=-h(g +{ +,
where b and are backward and forward spatial difference operators. On the left-hand
side, the forward difference operators are separated from the backward, resulting in
an approximate factorization into lower and upper block-triangular matrices. First-
order spatial differences Ab and A are used on the left-hand side, and second-order
differences b and are used on the right-hand side, to give second-order accuracy
in the steady state. We have, for instance,

3L-4L_I+L_
(20) A,A, := A,- ,_,, ,, :=

2
The full scheme is thus

I + h(A++A+)"II+ h(A{- +A-)1AO
(21) _h(,++ ,{_+++{#_).
In the notation discussed in 1,

M [I+h("+ h(A{-+A-)],A,A + A,+)][I +
(22) ’+ ,{-)A

It is clear that A is not a constant matrix, but if we wait until the later stages of the
iteration, A will be changing very slowly, and we should be able to apply annihilation
with a fair degree of success.

648 DENNIS C. JESPERSEN AND PIETER G. BUNING

5. Application to steady transonic flow. The annihilation idea has been applied to
the numerical method given in 4 for the Euler equations. In this section we will
describe the physical problem, show how to apply annihilation, and give some results
showing the success of annihilation. We will also mention some questions and problem
areas that our experiences have identified.

We performed calculations for flow over a circular cylinder with symmetry imposed
between the top and bottom, so that only the top half of the region was calculated.
Fig. 2 shows the grid used, including the two points below the symmetry line in front
of and behind the cylinder used to impose the symmetry condition. At the far-field
boundary, 16 diameters away from the cylinder, all flow variables are fixed at their
free-stream values. Boundary conditions at the body consist of setting the normal
velocity to zero, taking surface density and tangential velocity from the point above,
and calculating pressure from a conservation of momentum relation.

y

0

-1
-2 -1 0 2

FIG. 2. Exponentially stretched 42 x 31 grid about a circular cylinder, showing points used for eigenvalue
estimation.

At a free-stream Mach number of 0.5, a shock forms on the cylinder. A steady
solution for this case is shown in Fig. 3. The shock has introduced rotationality into
the flow and caused inviscid flow separation on the back side of the cylinder.

The application of eigenvector annihilation to the iterative method (21) requires
some ad hoc decisions on how to estimate the dominant eigenvalue pair. The method
presented here is one of many strategies that could be envisioned. As described in 2,
one component of AQ is needed at two points in the field, corresponding to subscripts
and j in (6), for three consecutive iteration steps. We used the first component

(density) of AQ. Four grid points were chosen, each a third of the way in from a corner

2

y

0
-2 -1 0 2

FIG. 3. Steamlines and sonic line for steady flow about a circular cylinder at a free-stream Mach number

of 0.5.

ACCELERATING AN ITERATIVE PROCESS 649

of the computational domain (see Fig. 1). The two points closest to the cylinder form
one pair, the other two another pair. In this way we can obtain two estimates of the
dominant eigenvalue from different regions in the grid. The two points from each pair
are separated in an attempt to minimize any local coupling effects. During each iteration,
eigenvalue estimates are made from the two pairs of points. If the real and imaginary
components of the estimates differ by less than 5%, based on the modults of the first
estimate, the two estimates are averaged to produce a candidate A. Annihilation is
performed if this candidate A is within 5% of the candidate A from the previous
iteration. Thus, our criterion for linear behavior involves a consistent eigenvalue
estimate from widely separated points in the grid over four iterations.

The estimated eigenvalue is in general complex; hence, two Richardson steps are
required. An outline of the steps performed is given below, using the definitions of
the matrices M and A from (22).

1. Ate"= M((")-’A((")(".
2. Decide whether to annihilate. If yes,
3. 0n+l=
4. Ap.ply boundary conditions to
5. aOn+l M(On)-IA(0n)0n+l.
6. O"+2=
7. Apply boundary conditions to 0"+2.
The result of applying annihilation, using this strategy, to the cylinder problem

is shown in Fig. 4. In this figure we compare the result of no annihilation with the
result of staing the annihilation strategy at n 500. In Fig. 4 annihilation steps were
performed at n 504, 540, 577, 616, 670, 704, 869, 892 and 904. The convergence rate
over the last 300 iterations for the cue without annihilation was about 0.9958, whereas
for the cue with annihilation the convergence rate was about 0.9881. We remark that

10-1

0-2

10-3

10-4

10-5

10-6 WITHOUT ANNIHILATION

ANNIHILATION STARTING AT 500

ANNIHILATION STEPS

10-70 200 400 600 800 1000
ITERATION

FIG. 4. Comparison ofconvergence histories without annihilation and with annihilation starting at n 500.

650 DENNIS C. JESPERSEN AND PIETER G. BUNING

10

10-1

0-2

10-3

10-4

10-5

1(]-6

10-7

WITHOUT ANNIHI LATION

ANNIHILATION STARTING AT -,
ANNIHILATION STEPS

200 400 600 800 1000
ITERATION

FIG. 5. Convergence history with annihilation starting at n O.

if only one annihilation step is performed, the residual drops sharply but eventually
resumes converging at a rate of 0.9958. This may be due either to error in the estimation
of the eigenvalue (so that the dominant eigenvector component of the error was not
completely annihilated) or to nonlinear feedback effects stemming from the fact that
the iteration process is truly nonlinear.

We close by mentioning some questions and problem areas that have arisen during
this work. First, the choice of the strategy used to estimate the eigenvaluesuours was
heuristic--is important. Can better ones be devised? In this regard we would like to
mention the note by Jones [12], who gives a statistical criterion based on a serial
correlation coefficient for deciding when to employ the Aitken technique. The applica-
tion is to a real scalar sequence; it would be useful to have a similar statistical criterion
for a trigonometric sequence modulated by a geometrically decaying term, but we are
unaware of a serial correlation coefficient in this case.

Second, it is difficult to decide when annihilation should be started. In Fig. 5 we
show the result of starting the annihilation strategy at n 0. In this case there were
19 annihilation steps: at n 129, 168, 208, 235, 268, 310, 369, 476, 491,626, 648,656,
794, 896, 918, 927, 934, 951 and 984. Evidently this strategy was successful, but not
much more so than that of waiting until n 500 to start annihilating. This may be due
to an incorrect estimation of eigenvalues or to the nonlinearity of the process.

Third, stability questions arise when performing annihilation. We see in Fig. 5
some sharp increases in the residual at certain annihilation steps, and annihilation
strategies that do not allow these jumps might be preferred. Finally, the annihilation
procedure requires an extra (third) level of computer storage beyond that normally
needed for the iterative procedure; this may be a problem in cases where extra space
is scarce.

Acknowledgment. We extend our thanks to Harvard Lomax for introducing us to
the idea of eigenvector annihilation.

ACCELERATING AN ITERATIVE PROCESS 651

REFERENCES

[1] J. B. BELL, G. R. SHUBIN AND J. M. SOLOMON, Fully implicit shock tracking, J. Comp. Phys., 48
(1982), pp. 223-245.

[2] GARY M. JOHNSON, Multiple-grid acceleration of Lax-Wendroff algorithms, NASA TM-82843, 1982.
[3] m. JAMESON, W. SCHMIDT AND E. TURKEL, Numerical solutions ofthe Euler equations byfinite volume

methods using Runge-Kutta time stepping schemes, AIAA paper 81-1259, June 1981.
[4] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Cambridge Univ. Press, London, 1966, pp. 578 it.

[5] L. A. LYUSTERNIK, Remarks on the numerical solution ofboundary problemsfor Laplace’s equation and
the calculation of characteristic values by the method of networks, Trav. Inst. Math. Steklott, 20

(1947), pp. 49-64. (In Russian.)
[6] J. M. HYMAN AND T. A. MANTEUFFEL, Dynamic acceleration of nonlinear iterations, preprint, 1983.
[7] T. A. MANTEUFFEL, Adaptive procedure for estimating parameters for the nonsymmetric Tchebychev

iteration, Numer. Math., 31 (1978), pp. 183-208.
[8] H. VIVIAND, Conservative forms of gas dynamics equations, La Recherche Aerospatiale, (Jan.-Feb.

1974), p. 65.
[9] R. F. WARMING AND R. M. BEAM, On the construction and application of implicitfactored schemes for

conservation laws, Symposium on Computational Fluid Dynamics, SIAM-AMS Proceedings, 11,
1978.

[10] J. L. STEGER AND R. F. WARMING, Flux vector splitting of the inviscid gasdynamic equations with
application to finite-difference methods, J. Comp. Phys., 40 (1981), pp. 263-293.

11] P. G. BUNING AND J. L. STEGER, Solution of the two-dimensional Euler equations with generalized
coordinate transformation using flux vector splitting, AIAA paper 82-0971, June 1982.

[12] B. JONES, A note on Aitken’s 32 technique, SIGNUM Newsletter, June 1982, p. 23.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 3, July 1985

1985 Society for Industrial and Applied Mathematics

011

NUMERICAL AND ASYMPTOTIC STUDY OF
A SYSTEM OF COUPLED DIFFUSION AND REACTION EQUATIONS

ARISING IN ENZYME KINETICS*

FRANCIS CONRAD," AND CLAUDINE SCHMIDT-LAIN[:I:

Abstract. We consider in this paper a system of coupled equations modelling the steady states in
temperature and concentration of a substrate in an enzyme membrane. Two numerical methods are presented
for the approximation of the solutions: an optimal control method, and a continuation technique which
allows us to follow the solution paths when some parameter is modified. An asymptotic study completes
the numerical results.

Key words, reaction-diffusion system, enzyme kinetics, optimal control, continuation, asymptotic
analysis.

1. Introduction. The basic system. A plane enzymatic membrane of thickness e is
immersed in a solution where the substrate has fixed concentration So at a temperature
To. The substrate diffuses through the membrane and reacts. If S and T denote the
concentration and the temperature of the substrate in the membrane, respectively, mass
and heat balances lead to the following steady state equations [1], [2], [6], [16]:

(1.1)

VS-(DS,)+ O, O<x<e, S(O)=S(e)=So,
K+ISl

K/ISl
=0, 0<x< e, T(O) T(e)= To.

The parameters D, A, V,, Kin, AH are, respectively, the species and heat diffusion
coefficients, maximal rate of the reaction, kinetic constant and reaction enthalpy; AH
is positive for an exothermic reaction, negative otherwise.

Usually, these parameters are considered as constant. Thus (1.1) is in fact an
uncoupled model which has been extensively studied from a theoretical point of view
as well as from a numerical one Ill], [12].

However, in some cases, especially for highly exothermic reactions, the dependence
of some of these parameters on T cannot be neglected 1]. The functional dependencies
in T are the following:

(Arrh6nius law),

(V(T) Vo exp ---- (Arrh6nius law),

Km(T)=Koexp(----T- (Van’t Hoff law),

A(T) Ao(+ bT) (experimental curve [18]).

* Received by the editors December 22, 1983, and in revised form April 17, 1984.
f D6partement Informatique, Ecole des Mines de Saint Etienne, 158 Cours Fauriel, 42023 Saint-Etienne,

France.
$ D6partment Math6matiques Informatique Systmes, Ecole Centrale de Lyon, 36 Route de Dardilly,

69130 Ecully, France.
652

ENZYMATIC REACTION-DIFFUSION SYSTEMS 653

All the constants introduced are positive, E, E’ are activation energies, R is the gas
constant.

With these laws, (1.1) becomes a genuinely coupled system, whose study is the
goal of the present paper.

In 2 we briefly discuss an existence result for (1.1) and examine the behavior
of the system when some of the parameters become large. In 3 and 4 we describe
numerical methods used to solve (1.1), mainly when AH is considered a bifurcation
parameter: in 3 we use an optimal control technique, in 4 a continuation method.
The two methods are tested on a physical model which has been studied in [1], and
numerical results are given.

2. Theoretical study of system (1.1).
2.1. Existence results. Existence proofs for systems more general than (1.1) have

been established in [5]. In the special case of (1.1) we can proceed as follows:
By combining the two equations in (1.1) we obtain:

A(T) const.
(2.1) AHD(T)Sx + A(T) Tx const., i.e., Sx - AH D(T) Tx AHD(T)"
We set a(z)=T A(t)/D(t) dt and integrate (2.1)

a(T(x)) const. Io dy
S(x)-So+ A- AH D(T(y))"

For x=e, const. =0; therefore, setting S(x)= So-a(T(x))/AH leads to

(2.2) (A(T)T)+AH
vm(T)[So-a(T)/AH]

=0.
/(r)+lSo- (r)/AHI

We define also

/3(z) A(t) dt; then (2.2) is equivalent to
To

V,,,(T)[So-a(T)/AH]
(2.3) (fl(T)).+AH =0

K(T) + ISo- (T)/AHI
or, with u(x)= fl(T(x)) and

f(z)= AH
V,.(/3-’(z))[So a[/3-’(z)]/AH]
g,(/3-’(z)) + ISo a[/3-’(z)]/&HI’

the final equivalent formulation of (1.1) under the above transformations is"

(2.4) u,+f(u)=O, 0<x<e, u(O)=u(e)=O.

THEOREM 2.1. System (1.1) admits at least one solution (S, T) and in fact a
minimal-maximal solution (_S, T) and a maximal-minimal solution S, T).

Proof. We consider first (2.4); let Zl >0 be the unique root of AHSo= a[fl-(Zl)].
Since f(z) is positive for z < z, negative for z > zl, a standard calculation shows that
any solution u of (2.4) satisfies u _-< z a.e., and, since f(u) is then positive, also u _-> 0
by the maximum principle. Moreover, since f(0) _>- 0, f(z) 0, 0 is a subsolution and
z is a supersolution of (2.4). Therefore the existence of at least one solution of (2.4)
is standard [17]. We have in fact the existence of a minimal solution _u and a maximal
solution t, and every solution u of (2.4) satisfies"

0<_u<u<t < Z

654 FRANCIS CONRAD AND CLAUDINE SCHMIDT-LAINI

Using the transformations T -(u), S So- a(T)/AH and setting -1() (resp.
T -’(_u)), _S So- a()/AH (resp. = So- a(T)/AH)) gives the result.

Remark" Any solution (S,T) of (1.1) satisfies 0<_-S<_-So; T>=To. These
inequalities can be obtained by a direct calculation on the weak formulation equivalent
to (1.1) or else from (2.4): u>=O:=>T=-(u)>=-(O)=To and u<=ZlS
So-a(T)/AH>-_O.

Henceforth, we consider AH as a bifurcation parameter, and look for solution
branches S(AH), T(AH), when all the remaining parameters are kept fixed. First, let
us observe that f(z)= g(AH, fl-l(z)) where

Vm(T)[So- a(T)/AH]
g(AH, T)= AH

Ko exp (-AH/RT)+ISo-a(T)/AHI
so (2.4) is equivalent to the operating form"

(2.5) U,x+ g(AH, -l(u))=O, u(O)= u(e)=O.

THEOREM 2.2. Let T(AH) (resp. T(AH)) be the minimal (resp. maximal) solution

of (1.1). Then T (resp. T) considered as a mapping from [0, oo) to c[0, e] is increasing
and left (resp. right) continuous. For small AH, (1.1) admits a unique solution (S, T).

Proof We consider the equivalent formulation (2.5); let AH <AH2 and _u
_u(AH2) be the minimal solution of (2.5) for AH AH2. Since g is increasing with
respect to AH,

u_,,,, + g(AH, _u) <-_ U_xx + g(AH2, u_ O,

thus _u(AHz) is a supersolution of (2.5) for AH AH, so _u(AH)<=_u(AH2). In the
same way, t(AH) is a subsolution of (2.5) for AH AH2 and thus tT(AH) <- (AHz).
The one-sided continuity of the extremal solutions is then a classical fact, see [9]. In
order to prove uniqueness, we observe that

Ig(AH, /3-1(u))} <- AHVm(T) <= const. AH.
Consequently, lim u(AH)=0 in c[0, e] as AH-0, for any solution. Since

Of Og Ofl-’(z)
Oz-OT(AH’ fl-l(z))

Oz

lim Of=o and
AHOOZ

O

for small AH and any function sr such that _u _<-sr-< t, where h zr/e is the first
eigenvalue of the problem:

-Wxx hw, w(0)= w(e) 0.

This implies uniqueness and completes the proof.
Remark. 1) No monotonicity in AH can be proved for S or _S and in fact, the

numerical results in 3 and 4 show clearly that S is indeed not monotonic in AH.
2) For the general case of nonconstant V,,, i.e., V,, Vo e-E’/RT, with sufficiently

large E’ one can expect nonuniqueness, and so an S-shape response curve.

2.2. Asymptotic analysis for large So or AH. Numerical tests (see also 3 and
4) have suggested that there is some limit problem for suitable nondimensional functions
of S and T when So or AH become large. These facts will be established analytically
here for the problem tested numerically, which corresponds to V,, (T) const. (E’ 0).

ENZYMATIC REACTION-DIFFUSION SYSTEMS 655

We recall this special form of problem (1.1)"

VoS-(D(T)S)x + =0, S(O) S(e) So,
Km(T)+ISI

(1.1)
VoS-(A(T)T,)x-AH =0, T(0)= T(e)= To,

K(T)+ISI

D(T) Do exp (-El RT), K,,(T) Ko exp (-AH/RT),

A(T) Ao(1 / bT), Do, E, AH, Ao, b, g > 0.

First, we observe that in this case, (1.1) admits a unique solution. Indeed with the
notation of 2.1, (S, T) is a solution of (1.1) if[T satisfies"

(2.3) (fl(T))xx+g(T)=O, 0<x<e, T(0)=T(e)=To,

but

So-a(T)/AH
g(T) AHVoK(T)+ISo- (T)/AHI

is decreasing in T since a and K, are increasing in T. Since/3 is also increasing in
T, uniqueness in T, and hence in (S, T) is a consequence of the monotonicity of the
operator T -[/3(T)] g(T).

2.2.1. The limit system for large So. We set x ey, S(x)= Sou(y), T(y)= v(y)/b;
with these new variables (1.1) takes the nondimensional form"

Voe2 Uy
y

/ e
e e-AH/RT /]U]

0,

AHVo e b u
(2.6) ((l+v)Vy)y+

Ao ee-H/T+Iul =’
u(0) u(1) 1, v(0) v(1) bTo a,

where e=Ko/SoNO+. Let (u, v) be the solution of (2.6) for e>0.
THEOREM 2.3. As e N0/, lim u 1, lim v v in [0, 1] where v(y) is the unique

positive root of the equation

v(y) +-(y) +
2Ao

y(1 y).

Proof. We multiply the first equation by 1-u and integrate by parts

Io Io’2 U(1--U)
dy.

D(T) O(l_u)y dy= e -aI-I/RTVoe ee +u

Since T-> To we get

2 Vo e2
(1-u)ydy < e (1-u) dy,

o =D(To)Ko o

which implies 1-u 0 in Ho(0, 1), hence in c[0, 1].
Similarly, we multiply the second equation by v-a and integrate by parts:

fo’ AHV e2b f2 U
(1 +v)vy dy=

e e-a/+lu’(V-)l dy.

656 FRANCIS CONRAD AND CLAUDINE SCHMIDT-LAINI

Since T_-> To, v _-> a-> 0 and we get

f01 2 AHVoe2bfo’u, dy (u-) dy
Ao

which implies that v-a remains bounded in H(0, 1) as e 0.
Therefore, v-a v-a weakly in H(0, 1), hence in [0, 1]. In order to obtain

the limit problem concerning v, we now multiply the second equation by (0, l)
and obtain the weak formulation:

(1 + V)Dyy dy AHVo e2b

Since u uniformly, the limit as e N0 of the right-hand side is (HVo eb/Ao) o dy.
For the left-hand side, we have

fo(1 + v) vyy dy (1 +)Vyy dy + (1)Vyy dy.

lira v v)vdy 0
e0

since v- v 0 uniformly and v is bounded in L(0, 1).

lim (1 + v)v dy (1 + v)v, dy
e0

since v- v- weakly in H(0, 1). Thus the limit equation for v is"

HVo e b
((1 + vv,,

Ao
which gives the desired result.

Remark The above behavior appears numerically in Figs. 6 and 7.... Te IR sste fr lrge N. We set x ey, S(x)= Sou(y) as in 2.2.1,
but T(x)= To(1 + w(y)); with these new variables (1.1) is transformed into the non-

So RTo(+ w)
AHVo e2 U(2.7) -((l+bTo(l+w))Wy)y-
AoTo Ko AH

-0

exp
RTo(1 + w)

+ lul

u(0) u(1) 1, w(0) w(1) 0.

Finally, we set o- Vo e/DoSo, r Vo eR/Ao, a E/RTo, fl Ko/So, y bTo, all
these constants being nondimensional and positive, and I AH/RTo/oo; then (2.7)
is equivalent to

-(e-//u’)" +
e-//+ lul

o,
u

(2.8) -[(1 + y(1 + w))Wy]y ’A/3 e_,/(l+w) + lul
o,

u(o) u(1) 1, w(O) w(1) o.
Let us recall that 0 <_- S _-< So and T_-> To; therefore 0 _-< u -< and w _-> 0.

dimensional form:

ENZYMATIC REACTION-DIFFUSION SYSTEMS 657

THEOREM 2.4. Let us assume tre" <8. Then lim/ u-- u% limx, (w/x/-) v
in c[0, 1] where

u(y)=l-y(1-y) and (y)=-y(1-y).

Proof We multiply the first equation by 1-u and integrate by parts in order to
bound 1-u in H(0, 1) as A; hence, uu in H(0, 1) weakly and in [0, 1].

Next we prove that u (and consequently u) 1-e/8>0. We proceed as in
2 for the existence result; by combination of the two equations, we get

zhe-/(+W)uy+[l+y(l+w)]wy=C=O (as in 1),

zh[u(y) u(0)] + f [1 + y(1 + w)]Wy e/(l+w) dy O,

zh[u(y)] e + v(1 + w)]w dy e w + Vw +
o

From (2.8) we get

2 8

r[1-u(y)]Ne
8

=#u(y)_>--I -.
8

Now let us find a limit for v= w/x/-. If we set O(y)= w(y)+yw(y)+ywE(y)/2, the
second equation becomes"

e-/(’+W)+lu I’
therefore 0/A is bounded in W2’"(0, 1) for any p> 2, and has a limit z in cl’[0, 1]
for any/x (0, 1). Consequently

w -(+)/,/+,/(+)/

has a limit v= .,/2z/3’ at least in c[0, as h/.
The next step consists in giving a lower bound for w. We have

U U
>-- 7"A>-- 2A6,-q"-" e-/<l+w)/lul t /lul-

where

hence,

0 - A6y(1 -y) and

26=
7"(1- o" e’/8)

-(+ 3’) + 4(+ 3’)2 + 263"y(y)
w(x)>-

658 FRANCIS CONRAD AND CLAUDINE SCHMIDT-LAINI

This inequality implies w o a.e., since

w (l+y)//7+.,/(l+y)2/A+26yy(1-y)

Finally we have to pass to the limit in the equations as A/eo, in a weak sense. Let
(0, 1). Since w/ v uniformly, w/X 0 uniformly and

Io Io’alim # e_a/+w +lul 6
dy 6 dy O dy

because u is positive. Concerning the limit of the second equation of (2.8) we have

1/o’ 1/o
+r+r 6yydy v 6yydy.

Therefore, the limit equation in ’(0, 1) is the following:

:) +r=0,yy v(o) v() =o,

hence, v2(y)=(r/ y)y(1- y).
In the same manner, we write:

Io fo’e-’/(l+w) ttydpydy= (e-’/(l+W)-l)ttydpydy+ ttydpydy,

lim u dy uy y dy
Am 0

since u - u weakly in H(0, 1).
The first integral term goes to 0, as lim e-’/(+w)- =0 a.e. since w oo a.e. But

(e-"/(+w) Uy)y is bounded in L2(0, 1) which implies e-’/(l/w) Uy is bounded in Hi(0, 1),
hence in qg[0, 1], and Uy is also bounded in qg[0, 1]. Then

lim (e-"/(+w)- u,4)y dy 0
Ao 0

by the Lebesgue dominated convergence theorem, and the limit equation for u is

-(u)yy + r 0, u(0) u(1,

i.e., u(y) 1-(r/2)y(1-y). VI
Remark. The bound 8 for o’e is not optimal; see the numerical results shown

in Fig. 8 for So 5, which gives r e 32. However, Theorem 2.4 is certainly not true
for any value of r e" since if r> 8, the limit u is no longer positive! When r is
considered variable (with So) we conjecture the existence of a critical bound rc e
[8e-, 8] such that for r < rc, Theorem 2.4 is true and for r > r the limit problem is
a free boundary problem in u, i.e., u= 0 on a subset of (0, 1) of positive measure
(and w does not become infinite). Previous results [3] on similar problems have
motivated this conjecture.

In the remaining part of the paper, we discuss numerical techniques and give
some results concerning (1.1). From this point of view, the formulation (1.1) is more
convenient than (2.4) or (2.5).

ENZYMATIC REACTION-DIFFUSION SYSTEMS 659

We develop two methods which have been tested on (1.1). The crucial feature of
(1.1) is that the system is strongly nonlinear and strongly coupled, that is, nonlinear
amd coupled in the second order terms.

3. Numerical analysis: an optimal control method. We recall the classical method
of C6a and Geymonat [4] for a quasilinear second order problem of the form

(3.0) Au +f(x, u) 0

(with boundary conditions). First one has to replace (3.0) by the following control
formulation, for some norm in a suitable Hilbert space

Aux +f(x, A)= 0 (A is the control, ua is the state),
(3.1)

inf J(h), where J(h) 1/2 u h ,.
heV

Then (3.1) is solved using an optimization algorithm. The gradient is obtained via an
adjoint problem associated with the state equation (see [4]). This method has been
used, for instance, in [13]. However, the classical framework of this method is not
applicable to our system, in which the nonlinearity appears also in the second order
terms. Therefore, no natural "additive" splitting is available and we have to adapt the
method of C6a and Geymonat. First, we are going to present the extension of the
method in a general framework, then we apply it to our system, and give numerical
results.

3.1. Principle of the method. The notations used are the following: let V be a
Hilbert space with inner product ((.,.)) and associated norm I1" v, v’ its dual with
the norm [[. v,; the duality between V and V’ is denoted by the brackets (.,.).

We consider the problem

(3.2) Au f wheref V’.

A is a nonlinear operator from V to V’ of the form: A(u)= C(u, u)-B(u) where
C: V V- V’ and B: V V’ are continuous, C(., A) is linear and continuous from V
to V’.

We now explain the method formally, assuming enough regularity and coerciveness
so that the following equations or expressions make sense. For a rigorous statement
of the method, see [5].

For a fixed A V, let u be the (unique) solution of the state equation:

(3.3) C(u, A f+ B(A),

then we replace (3.2) by the following optimal control problem

inf J(A) whereJ(A)=1/2llua(3.4)

Under some assumptions, it is possible to give an equivalent optimality system charac-
terizing the solution of the control problem (3.4) [5]. In any case, the gradient of the
cost function J can be calculated by solving two successive linear equations [5]. First
define the adjoint state p V by

(3.5) (C(,A),p)=((u:,-A, ok)) Vd,b V.

Consider next the solution K V of

(3.6) ((K, ,/,)) ([C(u, ,)- n(,)]6, p > V6 e V,

660 FRANCIS CONRAD AND CLAUDINE SCHMIDT-LAINI

where CA and Bx are the Fr6chet derivatives of C(u,.) and B(.). Then VJ(A)--
-K-(u-A).

Therefore, the numerical method used to solve (1.1) is the following:
(1) Choose a control Ao (k 0).
(2) For a given control Ak, compute the state Uk

C(Uk, Ak)=f+ B(Ak).

(3) Determine the adjoint state Pk, the solution of

(C(tb, ak), pk) ((Uk-- Ak,)) Vb e V.

(4) Solve ((Kk,)) =([C,(Uk, Ak)-- Bx(Ak)], pk)V e V.
(5) vr(x) =-K-(u-X).
(6) If VJ(Ak)=0 then stop; otherwise determine Ak/ by some minimization

technique using VJ(Ak), set k k + and return to Step 2.
For a convergence result when a gradient algorithm with constant step is used, see [5].

3.2. Adaptation to the coupled equations. We set

S So+ u, T To+ v,

(v)=D(T), (v) A(T),

ff:(u, v)= V,,(T)S t(u, v)=-hHff:(u, v), lYI(u, v)=K,,(T)+ISI’
and rewrite the physical system (1.1) as

-(b(V)Ux)+ f:(u, v)=o,
-(A(v)v,,),+G(u,v)=O,

u(O) u(e) O, v(O) v(e) O.

K,.(T)+IS[

We set V H(0, e) H(0, e), V’= H-(0, e) H-(0, e) and consider the splitting

[-(. ()u)x+uFI(;,),C(u, v; x,)
[-(h(g)v),

v()So

(,).

The special feature of the first component of the splitting insures the positivity of the
state u. With this notation, our optimal control method is the following:

State equation. For (A,/z) e V solve

(b()Ux, Cx)+ (u/(,),)+ (So/(;,), 6)=0,
(3.7)

((/z)v,,,,,)+(0(A,/z),)=0, VCeH(0, e), (u,v)eV,

where (.,.) denotes the L2(0, e) inner product.
Adjoint problem. Given (A,) and the corresponding state (u, v)e V, solve

D(la,)ekx, px) + H(A, la,)dp, p) ((u A),,,
(3.8)

((/Z)x, qx)=((v-lx)x, 6,,), /e H(0, e), (p, q)e V.

ENZYMATIC REACTION-DIFFUSION SYSTEMS 661

Gradient of the cost function. With J(A,/z)=1/2 lux-xl= dx+ o I x-- = dx we

have VJ(A,/x) =-(K, K2)-(u-A, v-/z), where (Kl, K2) V is the solution of

(Klx, 6x)
0 (A,)u6, p +

0
H(A,)So$,p + (A,)6, q

(3.9) (K2x, x)=(()Ux,Px)+((A,)u,p)+((,),, q)
+ o(.l,p + (,,q e(0, e.

The numerical approximation of (3.7), (3.8), (3.9) uses Pl Lagrangian finite
elements on a regular paition of [0, el. The optimization method is the Polak-bire
conjugate gradient technique, see [13], [15]. We have tested the physical problem
studied in [1], which corresponds to the following values of the constants:

Do 1.726 1015 E 3.0 104

Ao 2.12 10-3, b 0.02,

Vo 448, E’= 0.0,

Ko 1.767 1017, AH 2.344 104,
e 0.004, R 2, To 294.

The boundary concentration So takes values between and 10.
For T To, D(To), A(To), V,,, Kin(To) are the coefficients of the usual uncoupled

model with fixed coefficients, studied in [11]:

vs AHVS-DSxx+=0, -ATx,- 0gm + S K., + S

S(O) S(e)= So, T(O) T(e)= To.
First we will compute the solutions ($, T) with So varying; then for fixed So we will
consider AH as a bifurcation parameter.

3.3. Numerical results and conclusions. First, the above method is applied to the
coupled system (1.1) and to the corresponding fixed coefficients system, in order to
compare their solutions. In the range of physical data, the two solutions are close to
each other. Figure shows separated solutions (in terms of temperature in the middle
of the membrane) as the coefficient of physical AH is increasing. In the following,
this coefficient is denoted by AH.

Various boundary concentrations So are tested to note the influence of thi
parameter upon the solution values.

For small AH(,--< 1), the larger So the faster the evolution of T =f(AH) (Fig. 2);
the result for the concentration is similar (Fig. 3).

For large values of AH(> 8), the temperature is independent of So (Fig. 4);
however, the concentration is dependent on So; for So- 5 the result is shown in Fig. 5.

Another class of interesting results deals with the asymptotic analysis of 2.
For a fixed AH, as So increases, S/So (Fig. 6), when T Too voo/b, for voo

the positive solution of the second order equation presented in Theorem 2.3. This
numerical result is shown in Figure 7.

For large AH, the results of Theorem 2.4 are partially illustrated by Figs. 8 and 9.

662 FRANCIS CONRAD AND CLAUDINE SCHMIDT-LAINI

20

40 -TMAX

/
/

0

COUPLED
UNCOUPLED

/
/

AH
0 4 8 12

FIG. 1. Temperature at the center of the membrane for the coupled and uncoupled models.

So=l
So=5

-TMAX e So I0

0.6 1.0 .4

AH

FIG. 2. Evolution of the temperature with respect to AHfor various values of So.

ENZYMATIC REACTION-DIFFUSION SYSTEMS 663

I0.0
SMIN9.5-

9.0
8.5
8.0
7.5
7.0
6.5

6.0-
5.5-
5.0-
4.5-
4.0-
:5.5-
:.5.0-
2.5-
2.0-

1.5-
1.0
0.5-
0
0 0.4 0.8 1.2

+no,,,’ AH
1.6 2.0

So=l
21o

FIG. 3. Evolution of the concentration with respect to AHfor various values of So.

150

I00

50

zx /So
-TMAX

0 I0 20 30 40 50

FIG. 4. Evolution of the temperature with respect to large AH for So 5. For So or 10, the curve is

unchanged.

664 FRANCIS CONRAD AND CLAUDINE SCHMIDT-LAINI

5.0

4.0

3.0

2.0

1.0

0
0

SMIN

+

llllll
3 6 9 12 15 18 21 24 27 30

FIG. 5. Evolution of the concentration with respect to large AH, for So 5.

FXG. 6. Normalized concentration profiles, for large So.

+ INITIAL
1So=

0

The above results, obtained by an optimal control algorithm, are confirmed by a
fixed point algorithm whose convergence implies the convergence ofthe optimal control
algorithm. Nevertheless there remains a critical range of values for AH, for which
solutions are not reached numerically (1.5 _-< AH -< 6). For these reasons it is interesting
to adapt a continuation process in order to obtain the whole solution arc with respect
to AH. This method is presented in the following section.

4. Numerical analysis: a continuation method.
4.1. Principle of the method. The previous section discussed a method for finding

solutions of the coupled system (1.1) for a fixed AH. In this section, we describe a
continuation method for solving nonlinear problems and an application to the computa-
tion of the solution branch {s (AH) for a fixed So.

ENZYMATIC REACTION-DIFFUSION SYSTEMS 665

ASYMPTOTIC (So oo)

CALCULATED (So !0)

150

I00

5O

X
0 0.5

FIG. 7. Temperature profiles for large SO (for So or 5, the curve is the same).

I.I S

1.0 o- n 0

": ::::’ Z

0.9

0.8
0 0.1 0.2 0.3 0.4

- AH=22
o AH=oo
AH=52
AH=82. AH= I02

n AH =502

iX

FIG. 8. Normalized concentration profiles as AH--> oo for So 5.

666 FRANCIS CONRAD AND CLAUDINE SCHMIDT-LAINI

12

-SMIN

So (ASYMPTOTIC)
So=l
So (ASYMPTOTIC)

=(ASYMPTOTIC), So=lO

FIG. 9. Evolution of the concentration at the center of the membrane as AH 00, for various values of So.

We shall consider a class of nonlinear problems depending on a real parameter

(4.1) G(u, A) =0,

where G: B xl-, and B is a Banach space. For the discrete form of (4.1), B is a
finite dimensional space.

DEFINITION 4.1. A regular branch of solutions is a family of solutions of (4.1),
depending twice continuously ditterentiably on a parameter s; we set

(4.2) Fab {(u(s), A (S)), sa <= S <= Sb}.

Our purpose is to compute the regular branches of solutions of problem (4.1).
The standard approach is almost invariably to use A, one of the naturally occurring

parameters of the problem, but this procedure may fail or encounter difficulties when
the Fr6chet derivative G,(u,A) is singular (then (u,A) is called a singular solution).

The basic idea to circumvent this is due to H.B. Keller [10] and consists in using
a normal parametrization

u=u(s),

which is defined using an auxiliary equation. We obtain the problem

(4.3) G(u(s), A(s))=0, N(u(s), A(s), s)=0,

where N: B x2 defines the normal parameter s, on the arc of solutions.
Introduce then the new unknown x X B x and the operator P:X x-X

defined by

(4.4) x(s) (u(s), A (s))

and

G(u(s), x(s)))(4.5) P(x(s), s)=
N(u(s), A(s), s)

The new problem is to find the solution x(s) of

(4.6) P(x(s),s)=O.

ENZYMATIC REACTION-DIFFUSION SYSTEMS 667

The main interest of this new formulation is that the ordinary limit points of (4.1)
become regular solutions of (4.6) (see H.B. Keller [10] for more details). Let us make
precise the concept of a limit point:

DEFINITION 4.2. Let {Uo, ho} B R be a solution of problem (4.1). We say that
{Uo, ho} is a normal limit point if

(4.7) dim N\--u Uo, Ao) codim R \---ffu Uo, Ao) 1,

OG (G()(4.8) -O--(Uo, o) R \-u Uo, Ao)

A standard normalization is the so-called arclength parametrization

(4.9) N(u(s),A(s),s)=llC,(s)ll/l’x-(s)l-1,
where ti(s), (s), are the derivatives with respect to s.

The main justification of arclength continuation follows from:
PROPOSITION 4.1. Any normal limit point ofproblem (4.1) is a regular solution of

(4.6).
For a proof, see Keller [10].
This new formulation enables us to solve problem (1.1) by a Newton method,

even in a neighborhood of a normal limit point.

4.2. Numerical solution of the system (1.1). We want to find the whole solution
arc of the coupled system (1.1) with respect to AH. Using a normal parametrization,
we transform the previous problem into the following:

Find {S, T, AH} in B B+ satisfying

(4.10)

such that

(4.11)

with

S=S(s), T=T(s), AH=AH(s), sR

and

f,(S, T, AH)=0, f(S, T, AH)=0, f(S, T, AH, s)=0

(S, T, AH)
:>(1.1)

f3(S, T, AH, s)= 2(s) + 2(s)+zH2(s)- N(S, T, AH, s).

The last equation is the arclength constraint. In practice, this equation is linearized as
follows:

T(s)-T2 T-Tf(s, T, +/-U, s)=
S(s) S S S, +
AsMM2 AsM2M, As1 As

(4.12)
AH(s)-AH AH_-

+ -1 =0,
ASMM AsMM

where M and M denote two solution points on the branch. For arclength approxima-
tions see [8], [14]. As shown in (4.12) a new point is computed by means of two
previous solutions on the branch. These two points provide the path As between two
consecutive solutions and an initialization point for the following solution. The coupled
system (1.1) is discretized as in 3. The numerical solution is approximated by a

668 FRANCIS CONRAD AND CLAUDINE SCHMIDT-LAINI

Newton method. Let us denote by

(4.13) F(S, T, AH, s)=0

the approximation of (4.11) with (4.12). The Newton algorithm may be written as
follows:

M(p+)= M(P)-(F’(M<’)))-" F(M<P)), i.e.,

where (u, v, w) is the solution of

M(p+1):M(P)/(i
of, f, f,) M<.)u+,+a/_/w =-f,(),

M(P)

oA of of)+o I-i w -A(

as U
aT

V+ w f3(

The computation of M(p+) entails the inversion of a sparse linear system of order
2n/ 1. the algorithm stops when both system and continuation constraint (i.e.,
f3(S, T, AH, s)=0) reach a value less than a given precision parameter.

Numerical results obtained by this process allow us to verify and complete the
partial results of the optimal control algorithm. (See Figs. l0 and l.) We note two
"steps" in temperature corresponding to a great sensitivity of T with respect to AH
for two ranges of this parameter. Correspondingly, for S, one can see a large domain
of free boundary type.

Remark. Figures l0 and 11 are obtained with AH increasing. Experiment with
decreasing AH provides a nonphysical extension (S < 0) of the quasi-linear part of
the temperature branch. The corresponding phenomenon is shown in Fig. 10.

x 35

I-.- 30

25

20

15

0

+ T MAX

,/

lllli
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 I0.0

AH
Fits. 10. Bifurcation diagram T, AH). Curve corresponds to a nonphysical solution (S <0).

ENZYMATIC REACTION-DIFFUSION SYSTEMS 669

Z_6.0

.5.0

4.0

:3.0

2.0

1.0

0.0

+ SMIN

f+

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 I0.0
AH

FIG. I. Bifurcation diagram (S, AH).

REFERENCES

[1] V. BILHOU-BOUGNOL, Cin.tique enzymatique d’une rdaction exothermique en phase h.#.rogne et sous
pression, Thse Doct. lng., Saint-Etienne, 1976.

[2] B. H. BRAMFORD AND C. F. TIPPER, Comprehensive Chemical Kinetics, vol. 6, Elsevier, Amsterdam,
1972.

[3] C. M. BRAUNER AND B. NICOLAENKO, On nonlinear eigenvalue problems which extend into free
boundary problems, Lecture Notes in Mathematics, 782, Springer-Verlag, New York, 1980, pp.
61-100.

[4] J. CIA AND G. GEYMONAT, Une m.thode de lin.arisation via l’optimisation, Symp. Math., Inst. Naz.
di Alta Matematica, X (1972), pp. 431-451.

[5] F. CONRAD, Perturbation de problmes aux valeurs propres non lindaires et problmes dt frontire libre,
Thse Univ. Lyon 1, 1983.

[6] M. DIXON AND E. C. WEaB, Enzymes, Longman, London, 1964.
[7] J. GUYOT, Etude mathdmatique et numd.rique d’un problme elliptique non lindaire avec points de

retournement, Thse Doct. Ing., Lyon, 1981.
[8] R. F. HEINEMANN, K. A. OVERHOLSER AD G. W. REDDIEN, Multiplicity and stability of premixed

laminarflames: an application of bifurcation theory, Chem. Eng. Sci., 34 (1979), pp. 833-840.
[9] H. B. KELLER, Some positone problems suggested by nonlinear heat generation, Bifurcation Theory and

Nonlinear Eigenvalue Problems, J.B. Keller and S. Antman, eds., Benjamin, New York, 1969, pp.
217-255.

10] H. B. KELLER, Numerical solution of bifurbation and nonlinear eigenvalue problems, Applications of
Bifurcation Theory, P. H. Rabinowitz, ed., Academic Press, New York, 1977, pp. 359-384.

11 J. P. KERNEVEZ, Evolution et contr61e des systmes bio-mathdmatiques, Thse Univ. Paris VI, 1972.
12] J. P. KERNEVEZ AND D. THOMAS, Numerical analysis and control ofsome biochemical systems, Appl.

Math. Optim., (1975), pp. 222-285.
[13] C. LAINE, Etude math.matique et numdrique de modules de turbulence en conduite plane, Thse Doct.

Ing., Lyon, 1980.
14] C. LMNE AND L. REINHART, Further numerical methods of the Falkner-Skan equation: Shooting and

continuation techniques, Tech. Rep. 177, INRIA, 1983.
15] E. POLAK, Computational Methods in Optimization, Academic Press, New York, 1971.

[16] J. RICARD, Cin.tique et mdcanismes d’actions des enzymes, Dion, Paris, 1973.
[17] D. H. SATTINGER, Topics in Stability and Bifurcation Theory, Lecture Notes in Mathematics, 309,

Springer-Verlag, New York, 1973.
18] Handbook of Chemistry and Physics, CRC, 1969.

SIAM J. Scl. STAT. COMPUT.
Vol. 6, No. 3, July 1985

1985 Society for Industrial and Applied Mathematics
012

CONSTRAINED LEAST SQUARES INTERVAL ESTIMATION*

JANE E. PIERCE’ AND BERT W. RUST:

Abstract. We extend the classical least squares method for estimating confidence intervals to the rank
deficient case, stabilizing the estimate by means of a priori side constraints. In order to avoid quadratic
programming, we develop a suboptimal method which is in some ways similar to ridge regression but is

quite different in that it provides an unambiguous criterion for tlie choice of the arbitrary parameter. We
develop a method for choosing that parameter value and illustrate the procedure by applying it to an example
problem.

Key words, confidence intervals, constrained least squares, deconvolution, first kind integral equations,
ill-conditioned linear systems, interval estimation, regularization, unfolding

1. Introduction. In this paper we shall be concerned with the problem of obtaining
confidence interval estimates from linear regression models with rank deficient or
nearly rank deficient matrices. We assume that the model has the standard form

(1.1) y=Kx+e

where K is the known m n matrix, x is the unknown solution vector, y is the vector
of observations, and e is a stochastic error vector satisfying

(1.2) E(e)-O, E(eer -S2,
where E denotes the expectation operator. We assume, without loss of generality, that
the covariance matrix S2 is diagonal. In most applications y is considered to be a
sample from a multivariate normal distribution with unknown mean which satisfies
Kx . We shall not be overly concerned here with the exact form of the y-distribution,
assuming only that the equi-probability contours are ellipsoidal and that for any
confidence level a < we can find a corresponding constant g so that the expression

(1.3) (y) rS-2(y) _-</x 2

defines an a-level confidence ellipsoid for the unknown .
The classical linear estimation problem is to find, for a given n-vector w, the best

linear, unbiased estimator for the linear function

(1.4) b(x)-" wrx.
Assuming that rank (K)= n, the solution is

where is the least squares solution vector defined by

(1.5) (KrS-2K)-KrS-2y.

An a-level confidence interval [tlo, /)up] for b is obtained from

(1.6) tb op wT d- 4"(jtL 2 ro)WT(KTS-2K)-Iw

* Received by the editors June 11, 1983, and in final form April 11, 1984. Most of this work was done
while the authors were at the Computer Sciences Division at Oak Ridge National Laboratory under contract

W-7405-eng-26 with the U.S. Department of Energy.
f E. G. & G., ORTEC, Oak Ridge, Tennessee 37830. Present address, SAS Institute, Box 8000, Cary,

North Carolina 27511-8000.
t Scientific Computing Division, National Bureau of Standards, Washington, DC 20234.

670

CONSTRAINED LEAST SQUARES INTERVAL ESTIMATION 671

where ro is the minimum of the sum of squared residuals, i.e.,

ro min {(y- Kx) rs-E(y- Kx)} (y-K)rS-2(y K).

Since (1.3) defines a confidence ellipsoid in y-space, it follows .that

(Kx y) rS-(Kx y) =< ft
2

or, equivalently,

(1.7) (x- i) rKrS-2K(x i) _-< ft2- ro,

defines a confidence ellipsoid in x-space. The confidence bounds o, bp are just the
values attained by b(x) on the two support planes of this latter confidence ellipsoid
which are orthogonal to the vector w (cf. [14, Appendix III]).

In the case rank (K)< n the ellipsoid (1.7) is unbounded in some directions and
the confidence intervals become (-oo, +c) for any vector w having a nonzero com-
ponent in the null space of K. In most applications it is not practical to pick w without
such a component, and in fact it is not even possible to unambiguously determine
rank (K). Therefore it is necessary to add some a priori side constraints to the problem
in order to obtain nontrivial interval estimates. In this paper we shall add side constraints
of the form

(1.8) p <-_ x <= cb, j= 1, ,.n,

where the p and q are known bounds obtained from external considerations.
The method that will be described here is basically a generalization and extension

of the FERDOR method of radiation spectrum unfolding which was developed at Oak
Ridge National Laboratory in the 1960’s by Walter R. Burrus and his colleagues. The
problem addressed by FERDOR is to give confidence interval estimates of quantities
of the form

d,

where x(g) is an unknown radiation energy spectrum which is related to a measured
pulse height spectrum yi by

(1.9) gi(g)x(;) d y + e, i= 1,. ., m.

The K(g’) are the response functions of the measuring instrument, and the e are
random measuring errors. The functions w(g’), which are designed to exhibit the
various desired aspects of the unknown spectrum, are called window functions, and
we shall often refer to the vector as a window vector.

The FERDOR method has enjoyed great success in spite of the lack, until rather
recently, of adequate, coherent documentation. A succinct description of the method
has been given by Burrus et al. [4] in a paper which also briefly outlines the history
of its development and gives references to earlier published descriptions. The method
assumes that K(g) -> 0, 1, , m and x(g) _-> 0 for all energies g. The basic discrete
problems that must be solved are

(1.10) bo min {wrx[(Kx- y) rS-2(Kx- y) -<_ ft2, x->_ 0},

(1.11) b ’p =max {wxl(Kx- y) S-2(Kx- y) _<- m, x_>-0}.

672 JANE E. PIERCE AND BERT W. RUST

In [13, Chapt. 5], it is shown that each of these problems can be solved by parametric
quadratic programming, but because of the excessive amount of computation required,
this is an expensive approach for most applications which require a large number of
window vectors. The FERDOR approach is suboptimal in that it gives interval estimates
that are wider than the optimally narrow intervals obtained from the quadratic program-
ming procedures. The suboptimal estimates are obtained by an augmented least squares
procedure which is similar in approach to ridge regression, and it is necessary to choose
the value of an arbitrary parameter. The main contribution of the present work is to
provide a procedure for the optimum choice of that parameter value. We also extend
the previous work to allow different types of a priori side constraints and by iterating
the procedure to obtain improved suboptimal bounds. In the next section we
develop the new procedure without considering the statistical details which are
described at length in [13, Chapt. 6].

2. Development of the method. Given an n-vector w and an m x n matrix K, we
wish to find bounds for b(x)=wrx, where

y=Kx+e
and y lies in the error ellipsoid

(2.1) (y- Kx) rS-U(y Kx) -</x,
with S-u a positive definite diagonal matrix, and ft any constant such that

Ix >= ro min (y- Kx)7S-(y- Kx).

The problems are then

(2.2) Find
max {wrxl(Kx- y) rS-2(Kx- y) < ft}rain

Often w is taken successively as (1, 0,..., 0)r, (0, 1,..., 0)7,..., (0,..., 1)r, so that
the quantities wrx are estimates of the components of x. If K is an ill-conditioned
matrix, the error ellipsoid (2.1), which we will call the S-ellipsoid, is greatly elongated
in the directions of the eigenvectors corresponding to the small eigenvalues of KTS-EK.
(See Fig. 2.1.) The principal axes have the same directions as the eigenvectors of
KrS--K, and their lengths are inversely proportional to the corresponding eigenvalues.

2

P2I xq

FIG. 2.1. The S-ellipsoid and the Q-box.

CONSTRAINED LEAST SQUARES INTERVAL ESTIMATION 673

If W has a component in the direction of one of the long axes of the S-ellipsoid,
the bounds on wTx will be very wide. We seek to improve these bounds by incorporating
into the problem a priori knowledge of bounds on the components of x, pj _-< xj <_-q;,
j- 1,. -, n as shown in Fig. 2.1. The problems may now be stated as follows:

maX(wrxl(Kx-y)rS-2(Kx-y)<=tx2, p<-x<=q,j=l n}.(2.3) Find bUoP
min

Geometrically, the constraint region is the intersection of the S-ellipsoid and an
interval in R", which we call the Q-box. Since the calculation of a solution cannot
easily be done using the intersection of an ellipsoid and a box, we replace the Q-box
by an ellipsoid which circumscribes it, namely,

where

d (P + q P2+ q2

2 2

1 (x-d)TQ-E(x-d) =< 1,

2
and Q=diag qt-2 p’’’’’ q"

We call this ellipsoid the Q-ellipsoid and remark here that, unless a mistake has been
made in the analysis of the problem, the S- and Q-ellipsoids have a nonempty
intersection.

The intersection of two ellipsoids is no easier to handle computationally than the
intersection of a box and an ellipsoid. One strategy is to find another ellipsoid which
contains the intersection of the S and Q ellipsoids. W. Kahan [9] has defined a "tight"
circumscribing ellipsoid about the intersection of two ellipsoids with common centers,
but there is no guarantee that the S- and Q-ellipsoids have that property. Consequently,
we make one more suboptimizing step and take a convex linear combination of the
S- and Q-ellipsoids. The problems now become:

max{ 12 }(2.4) q)lUop
rain

wrx r/. (Kx-y)rS-2(Kx-y) + (1 1).1 (x-d)rQ-a(x-d) _-<
/x n

0-< /_-< 1,

where r/ determines how much of each ellipsoid is taken. It can be shown that every
such convex combination of the S- and Q-ellipsoids is an ellipsoid which contains the
original constraint region, i.e., the intersection of the S-ellipsoid and the Q-box. The
constraint in (2.4) can be written

/-2 S-2 0

(Ax-p)r/P’ 0

(Ax-p) <_-

’i"/Q_2
n

where

Now define new parameters

and
S 2 0)V-2() .
0 _Q-2

n

674 JANE E. PIERCE AND BERT W. RUST

The constraint can then be rewritten as

(Ax p) rv-E(r)(Ax p) -_< r +/2,

with r chosen from the interval [0, /). Note that the matrix v-E(r) would be rank
deficient only if one or more of the xj were completely determined by a priori
information. We assume in the following that any such xj have been removed from
the problem. By conventional least squares,

(2.5) Po min (Ax- p) Tv-E(r)(Ax- p)

is attained at

or

[ArV-2(r)A]- ArV-2(r)p,

KrS-2K+Z Q-2 KrS_2y+-r Q_2d

Notice here the similarity to ridge regression (cf. [7], [8], [10]), where

x* [KrS-2K+ AI]-KTS-2y
would be the ridge estimate of x.

For a discussion of the technique of ridge regression, see Hoed and Kennard [7]
who point out that the variance of the estimate of x is reduced, at the cost of some
bias, the bias squared being a continuous monotonically increasing function of A.
Unfortunately, as Brown and Beattie show in [2], the bias produced by ridge regression
can be large, and since the expression for squared bias involves x, bias cannot be
accurately estimated. One advantage of the interval estimation technique is that for
any r[0,) the interval [blo, ch up] contains wTx with at least the same confidence
level as that associated with the original error ellipsoid. Also, there is no universally
accepted way to choose the A of ridge regression, but the interval estimation strategy
provides a criterion for choosing r. Since all values ofrproduce valid confidence intervals,
one should choose that value which yields the narrowest interval.

The problems now are: Find

max{wTxI(Ax-p)TV-2(Ax-p)<-r+I2}man
wrxl(x-)r(ArV-A)(x-)_-<+-po

mln

The solutions, using Lagrange multipliers, are

(2.6) 4’oP wT+/r +/d,2 p0 N/wT(ATV-2A)-Iw.
Note that , Po and V-2, and hence bUP and (lo are dependent on the choice of r. We
wish to choose a r (if one exists) giving the minimum interval width. Let

2= (r+/2- po)wT(ATV-EA)-w.
We take 02/0r and solve the equation

-0 fort.

CONSTRAINED LEAST SQUARES INTERVAL ESTIMATION 675

Recall that ATV-2A KTS-2K+ (7./n)Q-, so that when 7.=0, the problem reduces to
the one corresponding to the S-ellipsoid, while as 7. increases, the S-ellipsoid becomes
insignificant compared to the Q-ellipsoid. For a typical ill-conditioned problem, we
might expect graphs of versus 7. and 02/07. versus 7. to look somewhat like the
ones in Fig. 2.2. The shapes of the graphs have been verified by trial examples.

CHOICE OF

Q-BOX
VA U
OF L

FIG. 2.2. Choice of "r.

To solve O/Or =0, we need to invert A’rV-2A=KrS-2K+(’r’/n)Q-2. It is con-
venient to make the following change of variables. Let

x’ Q-Ix.
We then have

Ax Qx’ x,

and the least squares solution of (2.5) is

7. 7.
ld’= QKrS-2KQ+- i QKrS-2y+- Q

n n

As in (2.6), we have

(2.6’) ck’/oP=wr(Qi’)+x/7.+/x-po rQ QKrS-2KQ+- I Qw.
n

Now it can be seen how the change of variables helps in writing the inverse. Consider

676 JANE E. PIERCE AND BERT W. RUST

the singular value decomposition of S-IKQ,
S-KQ L:XRr,

where L is an rn x m orthogonal matrix, R is an n x n orthogonal matrix, and is the
m x n singular value matrix. Using the singular value decomposition,

QKrS-2KQ+-I =R I +-I

2Notice that X7X diag (o-, , o-,), where some of the % may be 0. Now the inverse
can easily be written:

QKrS-2KQ+- I
n

R diag nr+ 7.’ ntr2 +
It is now straightforward, but tedious, to calculate the partial derivative 00T2/07., where

oT2=(r+tx2-O0) wrQ QKrS-2KQ+-I Qw
n

The result is

07"

2

where

r=RrQ-ld, v=RrQw, z=XT"LrS-ly.
An equation solver may be used to seek values of 7" at which this derivative is

zero. We supply lower and upper bounds for 7" and use an adaptation of Brent’s ZERO
([1, Chapt. 4]). In conventional ridge regression, the columns ofK would be normalized
to have zero means and unit variances; we choose initial bounds for 7" in terms of the
norms of the columns of S-KQ. If the problem is a well-conditioned one, ZERO may
fail to find an axis crossing because 00’2/07"> 0 for all 7" (see Fig. 2.3a). In that case,
we set 7" 0 and solve the unconstrained problem. If the a priori bounds are the best
obtainable, ZERO also fails since 02/07"<0 for all % indicating that the Q-box
provides the best bounds. (See Fig. 2.3b.)

Notice that w does not enter into the singular value decomposition of S-KQ, so
that 7" can be found for any number of window vectors w without doing the SVD again.
In particular, w can successively be taken to be (1, 0,..., 0)T, (0, 1, 0,""", 0)T,...,
(0, 0, , 1) T to find new bounds on x, , x,. The bounds thus obtained define a
new interval in R" which is guaranteed to contain the intersection of the S-ellipsoid
with the original a priori constraint region. Hopefully the new bounds are all better
than the original ones. if they are not better for some of the xj, then the original bounds
are retained in those cases. The new vector interval can then be used to define a new
Q-matrix and d-vector and the whole process can be iterated to improve the bounds
further. At each step of the iteration the current Q-box is not necessarily a 100%
guaranteed vector interval for the solution x, but it is guaranteed to contain the
intersection of the original 100% a priori constraint box with the S-ellipsoid, so it
defines confidence intervals for the x; with confidence levels that are at least as great
as those of the S-ellipsoid. The idea in iterating this type of calculation was first

CONSTRAINED LEAST SQUARES INTERVAL ESTIMATION 677

Q-BOX
VALUE
OF L2

Q-BOX
VALUE
OF L2

0L

(a) (b)
FIG. 2.3. a. Well-conditioned problem, b. A priori bounds best obtainable.

suggested by W. R. Burrus [3, Chapt. 9] and was briefly discussed by M. T. Heath [6,
Chapt. 3]. The iteration process is expensive in our procedure because the singular
value decomposition must be repeated at each step. This is not a prohibitive disadvan-
tage, however, because the iteration converges very quickly. Two or three iterations
have been sufficient for every problem we have tried. A referee suggested reducing the
calculations by using a bidiagonalization of S-tKQ (cf. Elden [5]) rather than the full
singular value decomposition.

It is possible to use extra knowledge about the solution vector x to improve the
bounds even more. For example, suppose 0 <_-x-_<... _-< x,. Then x can be written

x Pu, u>_-0,

where

0 0

0

The initial bounds on the uj can be obtained from

p <- u <-_ q pj cb_ <= uj <- qi pj_ j 2, 3 n.

Now suppose that we want to find max,
rnin[Xl -1- X4). Then w" (1, 0, 0, 1, 0, ,0), and

wT"x=wTPu. The matrix P is essentially a "shape" matrix, incorporating a priori
knowledge of the shape of the solution. The vector w is a "window" vector determining
which linear combination of components of x we look at. The final problems are then"

find

max { (wrP)ul(KPu y) arS-2(KPu y) _</z2}min

We replace K by K’= KP, and the initial bounds on the u are used to form a matrix

678 JANE E. PIERCE AND BERT W. RUST

Q’ analogous to the Q in the original problem. The transformation of variables is then
u’ (Q,)-lu.

3. An example. We now present a well-known integral equation problem as an
example illustrating the method and the use of a priori constraints on the solution x.
The problem was originally given by Phillips [I I, and was discussed by Rust and
Burrus ([13, 1.5]). The problem is to solve

K(t, s)x(s) ds= y(t),
6

where

r(s-t)+cos Is-t[<3
K(t,s)= 3

O, [s-tl>-3, It[_-< 6,

and

y(t) (6-]t[) l+cos-- +--sin-, Itl-<6.
The solution is

We present a 60 x 41 discretization of the problem. Let

sj=-3+(j-1), j=1,...,41,

6 =-6+1/2(i--5), i= 1,.’’, 60,

0, otherwise,

where the % are the quadrature weights for the implied integration. Using Simpson’s
rule, those weights become

- k=l 2,... 19., k 1, 2,. , 20, + o,

The discretized right-hand side becomes

2cs ti +--sin 6
and the discretized solution is

Note that K,../ and N are always nonnegative and that is symmetric about s =0,
x<-x2N’"<-x2o<-x21>=...>--x41. Even if we did not know the true solution x(s),
we could deduce that it must be symmetric because y(t) is symmetric and the shape

CONSTRAINED LEAST SQUARES INTERVAL ESTIMATION 679

of the kernel, considered as a function of s, is the same for all values of t. In order to
derive the initial upper bounds for the xj, we can use the following technique which
works for any problem with all of the Kij and xj nonnegative (see 12, Chapt. 2]).

For all values j* of the subscript j and all i, we have

Dividing by Ko., we get

and hence

Ko.x;. <= , K,;x; Kx ,.
j---I

x. <
(Kx)

for all i,

(Kx),
(3.1) x _-< min .

--i<m Kij

We now need to find upper bounds for the (Kx)i. From the error ellipsoid (2.1), we have

(Kx y) S-2(Kx y) -</x 2,
where

S-2=diag (sl-)2

In this example, we let s .0001 . Equation (2.1) can be written in the form

[(Kx-y)]2< 2
2 =,

i=1 Si

hence

(Kx- Y) 2

<: for all i= 1,... m,
S
2

or

(Kx)i Yi +

Substituting in (3.1), we have

x < man {yi;s} j=l,...,n.
lim

In this way we obtain the initial upper bounds of 2, and we set p 0, j 1,. , n.
Note that the bounds [p,] in this case are not guaranteed to contain the x with
100% confidence but they are guaranteed to contain the intersection of the error
ellipsoid with the positive ohant, and that intersection is the basic constraint region
for this example. In practice, initial bounds computed by this method are always
extremely conseative and in fact do provide 100% confidence boxes. In addition to
using a priori constraints and initial bounds on x, we can try to improve the bounds
by solving a slightly less ambitious problem. Instead of solving for bounds on all of
the x, we find bounds for an average of the x’s. For example,

Xj-- sJ

ds.

680 JANE E. PIERCE AND BERT W. RUST

The integral may be approximated by using a 3-point Simpson’s rule, yielding

2j (x2j_ 4- 4x2j 4- x2+), j 1,. ., 20.

For a 60 x 41 example, we let the jth window vector w (0,. , 1, 4, 1,. 0), with
the 4 in the 2jth place, and estimate 2, 4," ", 4o. Figure 3.1 compares the pointwise
estimates with 3-point Simpson averaging for the 60 x 41 problem with a symmetric
hump constraint (see below). As can be seen from the graphs, averaging greatly
improves bounds in this case. Next, we obser4e the effect of a priori knowledge of x
by solving the 60 x 41 problem three ways with Simpson 3-point averaging.

5.0

4.5

4.0

3.5

(o) POINTWISE ESTIM/TES (b) 5-- POINT SIMPSON
AVERAGING

Fit3. 3.1. 60 x41, symmetric hump constraint.

We first solve the problem using no knowledge of x except the initial bounds.
Next, we incorporate the knowledge of a "hump" in x, 0< x _-<x2_<- _-< x2, x22-->

x23 >- >--Xil, but we do not assume symmetry. For this case the 41 x41 "shape"
matrix is the following:

where T and U are 21 x 21 and 20 x 20 triangular matrices, respectively, of the form

0 0 0

0 0 0

0 U= 0 0

0 0 0 0 0

CONSTRAINED LEAST SQUARES INTERVAL ESTIMATION 681

Finally, we use all we know about x, namely that 0_-< xl -< x2 X20 X21
X22 X41 with xj x42_j, j 1, 20. For this "symmetric hump" case, the shape
matrix has the form

with T as defined above, and is the 20 x21 matrix formed by adjoining a column
of zeros to U, i.e., (UI0). In this case we have effectively reduced the size of the
problem by half. Figure 3.2 compares the nonnegativity only and nonsymmetric hump
solutions. For the case of the symmetric hump, refer to Fig. 3.1. From this example,
the advantage of incorporating all possible knowledge of x is clear.

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

(a) NON-NEGATIVITY ONLY

-2.7 -1.8 -0.9 0 0.9

(b) NON-SYMMETRIC HUMP CONSTRAINT

FIG. 3.2. 60 X41, 3-point Simpson averaging.

It is reasonable to hope that the more information put into the problem, the better
will be the bounds on an x-vector of a given size. Accordingly, we compare 20 x41,
40 x41, and 60 41 examples of the problem with 3-point Simpson averaging and
symmetric hump constraint. The 20 x41 and 40 x 41 graphs are shown in Fig. 3.3. For
the 60 41 example, see Fig. 3.1. From this example, we see that the more information
that can be used, the better the result will be. This is true only up to a point, however.
If the integration is very crude (n small) compared to the amount of information (m
large) the problem becomes inconsistent, due to discretization error. For pointwise
estimates the 40 x 21 and 60 x 21 examples fail with the quantity z 4-].g

2
t90, one of the

factors of 2, becoming negative. There was a small discrepancy in all of the pointwise
estimates in that the bounds for the first four points did not include the true values,
which were all close to zero. We surmise that this was caused by the discretization
error in approximating the continuous problem with the quadrature rule.

In all cases, the method was allowed to iterate three times, and in all of the cases,
the bounds did not improve after the first iteration. However, the authors have
encountered problems where bounds kept improving slightly for several iterations.

The method has been applied to several radiation spectrum unfolding problems
using real, measured data. In all cases it has produced useful bounds for the unknown

682 JANE E. PIERCE AND BERT W. RUST

5.0

4.5

4.0

5.5

5.0

2.5

2.0

0.5

r._j ,---
-, r-il
-{7.,7

20 41
40 41
AVERAGED TRUE
SOLUTION

-1.8 -0.9 0 0.9 .8 2.7

FIG. 3.3. 3-point Simpson averaging, symmetric hump constraint.

spectrum, and in some of these cases the bounds were so sharp that the effect of
suboptimality was scarcely noticeable. In most cases, however, the intervals were
noticeably wider than those obtained from the quadratic programming solutions of
problems (1.10) and (1.11). In these cases the suboptimal intervals provide good starting
estimates for the parametric quadratic programming procedure and significantly reduce
the work required to obtain the optimal intervals.

Acknowledgments. The authors would like to thank Walter R. Burns, Michael T.
Heath and Dianne P. O’Leary for their advice and suggestions. We would also like to
thank several anonymous reviewers and referees for pointing out numerous corrections
and improvements.

REFERENCES

1] RICHARD P. BRENT, Algorithmsfor Minimization Without Derivatives, Prentice-Hall, Englewood Cliffs,
NJ, 1973.

[2] WILLIAM G. BROWN AND BRUCE R. BEATTIE, Improving estimates of economic parameters by use of
ridge regression with production function applications, Amer. J. Agr. Econ., 57 (1975), pp. 21-32.

[3] W. R. BURRUS, Utilization ofa priori information by means ofmathematicalprogramming in the statistical
interpretation of measured distributions, Tech. Rept. ORNL-3743, Oak Ridge National Laboratory,
Oak Ridge, TN, June 1965.

[4] W. R. BURRUS, I. W. RUST AND J. E. COPE, Constrained interval estimation for linear models with
ill-conditioned equations, in Information Linkage Between Applied Mathematics and Industry II,
Arthur L. Schoenstadt et al., eds., Academic Press, New York, 1980, pp. 1-38.

[5] LARS ELDEN, Algorithms for the regularization of ill-conditioned least squares problems, BIT, 17 (1977),
pp. 134-145.

[6] M. T. HEATH, The numerical solution of ill-conditioned systems of linear equations, Tech. Rept. ORNL-
4957, Oak Ridge National Laboratory, Oak Ridge, TN, July 1974.

[7] ARTHUR E. HOERL AND ROBERT W. KENNARD, Ridge regression: biased estimationfor nonorthogonal
problems, Technometrics, 12 (1970), pp. 55-67.

CONSTRAINED LEAST SQUARES INTERVAL ESTIMATION 683

[8] ARTHUR E. HOERL AND ROBERT W. KENNARD, Ridge regression: applications to nonorthogonal
problems, Technometrics, 12 (1970), pp. 69-82.

[9] W. KAHAN, Circumscribing an ellipsoid about the intersection of two ellipsoids, Canad. Math. Bull., 11
(1968), pp. 437-441.

10] DONALD W. MARQUARDT, Generalized inverses, ridge regression, biased linear estimation, and nonlinear
estimation, Technometrics, 12 (1970), pp. 591-612.

11 DAVID L. PHILLIPS, A technique for the numerical solutions ofcertain integral equations of the first kind,
J. Assoc. Comput. Mach., 9 (1962), pp. 84-97.

[12] B. W. RUST AND W. R. BURRUS, Suboptimal methods for solving constrained estimation problems,
Defense Atomic Support Agency, 2604, January 1971.

13],Mathematical Programming and the Numerical Solution ofLinear Equations, American Elsevier,
New York, 1972.

14] H. SCHEFFE, The Analysis of Variance, John Wiley, London, 1959.

SIAM J. SCl. STAT. COMPUT.
Vol. 6, No. 3, July 1985

1985 Society for Industrial and Applied Mathematics
013

A SINGLE CODE FOR THE SOLUTION OF
STIFF AND NONSTIFF ODE’s*

G. HALLf AND M. B. SULEIMAN

Abstract. Many practical stiff problems contain a nonstiff subsystem. Automatic tests for partitioning
a system of ODE’s are described. Results of a code which uses Adams formulae on the nonstiff subsystem
and backward differentiation formulae on the remaining equations are given.

Key words, ordinary differential equations, stiff systems, linear multistep methods, partitioning, type
insensitive codes, stability

1. Introduction. We describe an algorithm for the automatic integration of a system
of first order ordinary differential equations with initial conditions,

(1.1) y’ =f(x, y), y(a) c, y,f Rs.
The algorithm uses the well-known Adams and Backward Differentiation (BDF)
multistep formulae.

Our first objective was to provide a single code which would be efficient for both
stiff and nonstiff problems. The integration is started with a variable order Adams
PECE method. If, during the integration, certain tests are satisfied the system is assumed
to be stiff and the implicit BDF methods are introduced.

The implementation of BDF methods for stiff systems requires estimates of the
Jacobian matrix J (Of/Oy) which are used in a Newton-type iteration for solving the
implicit formulae. The second objective has been to reduce the degree of implicitness
required by restricting the use of these methods to some subset (chosen automatically)
of the system (1.1). The program attempts to separate out what we will refer to as the
stiff subsystem of (1.1) and retain the Adams formulae for the remainder. In general
therefore we require estimates of a subset of the full Jacobian matrix which, if feasible,
can lead to computational savings.

If the problem (1.1) is stiff and the transient region can be correctly identified by
our tests there will be further gains in efficiency in using the Adams code over the
initial range. The program makes no attempt to revert to a full Adams code in case
the transients may be reintroduced, which can happen on some practical problems.

For nonstiff problems our intention is that the algorithm will perform as a normal
variable-order Adams code. It is therefore important that not too much time is wasted
in testing for stiffness on such problems.

The primary motivation for this work was the paper by Krogh (1974). An initial
code, which required partition of the system by the user was developed by Bentley
(1975). The code discussed here is given in Suleiman (1979) where some further
experimentation was done with a more general algorithm which treats higher order
equations directly.

It has been recognised for some time that many practical "stiff problems" contain
a nonstiff subsystem, which will usually vary in size over the integration range--initially
the whole system may be so treated. Proposals to take advantage of this are contained
in the work of Dahlquist (1968), Oden (1971), Krogh (1974), Hofer (1976), Robertson

* Received by the editors February 24, 1983, and in revised form March 19, 1984.

" Department of Mathematics, The University of Manchester, Manchester M 13 9PL, England.
t Jabatan Mathematiks, Universiti Pertanian Malaysia, Serdang, Selangor, Malaysia.

684

SINGLE CODE FOR STIFF AND NONSTIFF SYSTEMS 685

(1976), Enright and Kamel (1979), S6derlind (1980) and Shampine, most recently in
Shampine (1980b), (1981). Our work is most closely related to that of Hofer and
S6derlind; they are primarily concerned with stiff problems and used fixed order
methods with the partitioning provided initially by the user. Robertson and .Enright
and Kamel exploit the situation by proposing the use of stiff methods but with a
modified iteration strategy to take advantage of the nonstitt subsystem. The algorithm
of Enright and Kamel is fully automatic. Shampine has the objective of providing an
efficient code for both stiff and nonstiff problems, and proposes a technique for
switching between Adams and BDF methods and vice versa for the system as a
whole.

In 2 we discuss some absolute stability properties of an algorithm consisting of
a mixture of Adams PECE and BDF methods, see also Hofer (1976) and S/Sderlind
(1979). In 3 and 4 we describe the tests used in deciding to introduce the BDF
methods and in selecting the stiff subsystem. These tests evolved partly from the
practical observation of an Adams code on stiff problems. Finally in 5 we present
some numerical results using the code on some well-known test problems.

2. Absolute stability. For convenience we suppose that the first rn equations of
(1.1) are treated by the implicit BDF method and the remaining s-m) equations by
an Adams PECE metb.od. Although we assume here that the implicit formula is solved
exactly, the predictor for these components does affect the stability except in the case
m- s. Some important theoretical results for the case where two different linear
multistep methods are applied to each part ofthe partition are given in S6derlind (1979).

The appropriate model for absolute stability is the linear constant coefficient
system y’= Ay written in the form,

where u .Rm, t)c:.R and the matrix A is partitioned accordingly. The constant
stepsize algorithm may be expressed in the form

a*o (p.+, tin+,) + p*(E)u.+,_k qbh[Uun + non],

(2.2)
qn+, Vn+,) + Vn+, Vn) htr*(F_,)[Cun+,_ + VOn+,-],

p(E)u.+_k h[Uu.+ + Bv.+],

tn+, On ho[C(pn+, Un+,)+ V(qn+, tn+,)]+ ho’(E)[Cun+,_k + Vtn+l-k]-

(Note that the appearance of u.+, v.+ in the first two stages is illusory.) E is the
shift operator; p.+ and q.+ are the predicted values for u.+ and v.+ respectively.
We consider the cases b 0 or 1, both choices corresponding to extrapolation for

.kork+lfrom back values {u/_o by the third equation of (2.2). Note that although
nonstiff components are corrected first, which corresponds to our actual implementa-
tion, they appear last in (2.2) to correspond to the form of the stability polynomial
below. The polynomials p*(t)=k k-i k,=oa*t p(t)=i=oOtitk-’ are associated with
prediction and correction (BDF) of the first rn components. Similarly tr*(t)=
i=o/3*t and tr(t)=i=o are associated with the Adams predictor and

corrector respectively.
Eliminating p./ v.+ and q.+ v./ from the last equation in (2.2) the stability

polynomial may be immediately written down, from the last two equations, as

686 G. HALL AND M. B. SULEIMAN

p(t) htkU -htkB

-| hcr(t)C + hEfloCr*(t) VC

Ol o ol o 0 *o

where L(t) k k- her(t) V+ hflo V(k k- hcr*(t) V). By the obvious block row
operation we may write this as det (W)- 0 where

(2.3)

p(t) htkU -htkB

-| hcr(t)C + h:floCr*(t) VC
W= t_h fl .hflO p(t)]

a.oP*(t)C + tp
Ce*o --f-C L(t)

The determinant of the leading diagonal submatrix is the stability polynomial
associated with using the given BDF method on the system u’= Uu. Similarly the other
diagonal submatrix, L(t), gives the stability polynomial of the Adams PECE method
applied to v’- Vv. Sufficient conditions for the stepsize not to be severely restricted
by stability are that B or C be zero and the system v’= Vv be nonstiiI. Clearly such
a splitting may also be advantageous provided B or C contain sufficiently small entries.

The following analysis of the case s 1, m shows that it is not, in general,
necessary for B or C to be small. Let

(2.4) a (uc
Apply the one-step method

(2.5) p*(t)=t-l=p(t),

The stability polynomial reduces to

u<< v<0.

tr*(t) 1, tr(t) =1/2(t+ 1).

hut hbt

(2.6) det-hc(-) hc -1
tb2--- t hv

Necessary and sufficient conditions for at2+ bt + c- 0, a > 0, to have zeros inside the
unit circle are a + b + c > 0, a c > 0, a b + c > 0. Using this result on (2.6) gives the
stability requirement,

(i) h2(u/9 bc)(1 +-)>0,
(2.7) (ii) hE(uv bbc) 2h(u + v)(+.h) > O,

(iii) (2-hu)(2+hv+-) +h2bc(l + ch+h) >0.

Conditions 2.7(i) and 2.7(ii) both hold for h (0,-2/v), the usual absolute stability

SINGLE CODE FOR STIFF AND NONSTIFF SYSTEMS 687

restriction for the given Adams PECE method, given uv-bc > 0. For the case b 0
write (2.7)(iii) in the form

2(2+ hv+)-2hu(l+hv)2+ (3uv+ bc)h2(1 +.v) > 0.

This holds for h (0,-2Iv) provided 3uv+ bc>O. Therefore sufficient conditions for
the stepsize not to be restricted severely are

(2.8) -3uv < bc < uv.

In the case 4’ we write (2.7)(iii) in the form

2 2+hv+ -2hu l+X/+ hv
4

and require, similarly

+(x/’uv+bc) h:Z(2+-)>0,
(2.9)

4
uv < be < uv.

2

The eigenvalues of (2.4) may be written as (u + v)(1 0) and (u + v)O where
02-O+d =0, d =(uv-bc)/(u+v)2. Conditions (2.8)/(2.9) imply one large and one
small eigenvalue on the negative real axis; we have d of order v/u and 0 d. It is
unrealistic to expect a separation to be advantageous if both eigenvalues were large
in absolute value.

Note finally that the above discussion proves adequate for the following problem,
Enright et al. (1975).

Y’I 400y2 100ylY3 3000y2,
y -0.04y2 + 0.01YlY3,

y; 30y21,
in the interval 0_-< x-<40 with initial conditions y Y3 =0, Y2 1. Near x =40 one
eigenvalue of the Jacobian is zero and the others are -0.17 and -3352 approximately,
and the solution y =0.092, Y2 =0.72, Y3 28. The Jacobian evaluated here is

Cl VII 2

c2 0

where u =-3352, b =400, b2=-92, c =0.28, c2=5.52, v=-10-abl, v:,=-10-nb2
Applying (2.5) with the BDF method for the first equation only (m 1) gives a stability
polynomial with one root equal to and the others determined by (2.6) where v
and bc is replaced by bc + bc. The stability is therefore determined by (2.7) with
bc=61.2 and uv= 134.08. Since (2.8)/(2.9) hold, the range of stable stepsizes is
h (0, -2/v) (0, 50).

3. Testing for stiffness. For all problems an Adams PECE code, permitting
different order formulae for different component equations in (1.1) is used initially.
We describe here the tests used in this phase to decide whether to introduce the BDF
methods. If satisfied these are followed by a further test to select what we will treat
as the stiff subsystem, using the information generated here. This further test may then
be repeated at different points in the integration; it often happens that the stiff subsystem

688 G. HALL AND M. B. SULEIMAN

will grow. This is natural, corresponding to transient regions associated with different
time constants.

The order selection strategy is based on that given in Shampine and Gordon 1975)
and the stepsize is increased only if a significant change appears valid. As the problem
becomes stiff the code favors low orders and frequent step failures occur arising from
nonsmooth behaviour of the local error estimates. In the following description an
absolute local accuracy requirement, specified by TOL, is assumed. Denote by Ei the
ith component of the local error estimate and by ki the order of the formula used for
this component. We take an error test failure at low order as a first indication that the
problem could be stiff, namely

(3.1) IE,l>WOL and k-<5.
The tests we have developed for selecting the stiff subsystem, 4, require knowledge

of the ith row of the Jacobian. In principle this requires a Jacobian evaluation, i.e., s
function evaluations for nonsparse problems, each of which provides a column of the
Jacobian. There is the possibility of writing the function routines so that particular
component functions can be evaluated separately. In this case the Jacobian entries
required for our tests cost the equivalent of 3 function evaluations, but more than
three subroutine calls. This may therefore be a doubtful saving on some computer
systems. Our main concern has been to produce a general purpose type-insensitive
code and to explore the possibility of automatic selection of the stiff subsystem. We
have not considered the detailed implications for very large practical problems which
usually have sparse Jacobians and require special handling. In addition to the ith row
we assume that a particular column and the diagonal of the Jacobian are available,
although the latter could be dispensed with.

The second test required is that

(3.2) ,=1 y/<0,
based on the fact that the trace is the sum of the eigenvalues.

The final tests are based on the regions of absolute stability of the Adams PECE
methods at fixed stepsize and order for the system as a whole.

Let Ck denote the shortest distance from the origin to the boundary of the stability
region in the left-half plane. For unstable stepsizes we expect htr > Cki where tr

min {llJIl,, II111 }, since tr is an upper bound for the maximum eigenvalue. To reduce
the cost of the tests we approximate tr by

where

The final tests are

(3.3)

and, if this holds,

(3.4)

min
j=l Yp

SINGLE CODE FOR STIFF AND NONSTIFF SYSTEMS 689

Although the framework for the final tests is one of constant stepsize/order, they
have proved useful. It is generally observed that ki mint kr and that h is as large as
if this order was used for the system as a whole. It appears likely that such an Adams
code avoids combinations of formulae (orders) that restrict the stepsize unnecessarily,
Hall and Suleiman (1980). Many stiff problems have large entries in particular columns
of the Jacobian, Robertson (1976), or possibly rows depending on the scaling. In this
situation (3.3)/(3.4) are a good indication that the error test failure is due to instability
and that a change to BDF formulae is advisable.

It should be noted that one Jacobian approximation is computed when (3.1)
occurs. This will occasionally arise on nonstiff problems, particularly at crude toler-
ances, but the gains to be made on stiff problems can far outweigh this inefficiency.
One could replace the tests in this section by the strategy of Shampine (1980a). However
we would still use (3.1) as the starting point for determining the stiff subsystem.

4. Selecting the stiff subsystem. We note first that if (3.1) holds it is not necessarily
the case that the ith equation should be included in the stiff subsystem. Consider

u<<<0, Icl>lu-l.
C

Write the computed solution in terms of the eigenvectors of A,

(4.1) y,,=a

The first vector in (4.1) corresponds to the eigenvalue u, and we assume [aI<TOL;
the rapid transient has been integrated out, to the requested accuracy. It is the
re-excitation of this term in forming the error estimate that leads to the stepsize failure.
For example, using the Adams method (2.5) the local error estimate is

h:’ hZu :z (u v)/ + _._._-Azy’=a
2

An attempt to increase the stepsize after the transient phase will lead eventually to a
stepsize failure and this occurs first on a test of the second component; from the
discussion in 2 it is the first equation that should be treated by a BDF formula.

The tests used are now described. In general they may be applied when a stiff
subsystem has previously been selected. We assume first that the ith equation is not
part of the stiff subsystem.

Case I. [Ei > TOL, ki --< 5 and the ith equation currently nonstiff. The code uses the
error estimate

(4.2) Ei gk,,-l,2fiO)[xn+l, Xn, ", Xn-k,+l],

which is the usual difference between two different order Adams correctors. Here gi.,
is the t-fold integral

gi., (x x,,) (x x,,_+) dx dx() dx(2)" dx(t-)

and the divided difference is based onf(x,+, (o) (o)y,+) where y,+ is the vector of predicted
values. The nonstiff components are corrected first and the corrector iteration has the
form,

,,(m+ 1) (0),
_

(m)(4.3) yi,,,+ --Yi,n-,-I gk,.f [X,,+,X,,, X,-k,+]

690 G. HALL AND M. B. SULEIMAN

(re+l)
Y n+

(4.4)

and

m=0,1. For the differences between successive iterates we have, writing e
(")- from (4.3),Yi,n+l,

e 1)--" gk,.f["""],

e2)= gk,.l(f)[...]_f0)[...])
(o)Oti(fi(Xn+l, Y(nl+)1)--f/(Xn+l, yn+l)),

where ai g k,,l/gk,,O" Therefore we can write

(4.5) e2)= ai J=’ Oij, where 00 Y0f/el)"
For the low order Adams formulas if the local error failure is due to instability the
iterates will be at best slowly converging. If the stepsize is never allowed to more than
double it can also be shown that gk. >- gk-l.2. Hence from (4.2) and (4.4)

leI’)I>-IE,]>TOL,
and in the presence of instability we expect

(4.6) le}2)l TOL.

We use (4.5) and (4.6) to select the equations to be included in the stiff subsystem.
Our original strategy was to change to BDF for any equation for which

(4.7) kj-<6 and RIOi2It,>TOL
where R is an empirical constant. From (4.5) and (4.6) this we regard as a further
indication of instability, due to the coupling with equation j. However, it can happen
that the corrector iteration is strongly divergent and several equations be unnecessarily
included in the stiff subsystem. Therefore the following strategy is now used. Let
10,1- max [0[taken over all equations integrated by Adams methods of order at most
6. Then equation r is changed to stiff if

510irla > TOL.

We also make the change for all equations j for which

2510,1> 10,1,
i.e. they must satisfy (4.7) but also lie roughly within an order of magnitude of the
maximum contribution to (4.5). Note that e-) is not actually required.

Case II. IE, > TOL and the ith equation in the stiff subsystem. For most problems
we tested equations were included in the stiff subsystem under Case I. It is, however,
possible that the only indication that the stiff subsystem should be enlarged is under
Case II arising from a coupling with an equation currently regarded as nonstiff.

For simplicity we assume that the first rn equations comprise the current stiff
subsystem and write the problem in the form,

y’ f(x, y, z), y, f e l",

z’= g(x, y, z), z, g s-m.
We also write e(l) Yn+l"

()
-zn+,"

(o) d() z()+ --,+l,’() etc. Since the nonstiff components
are corrected first, the iteration for the stiff subsystem has the general form

SINGLE CODE FOR STIFF AND NONSTIFF SYSTEMS 691

(1) (0)’Ae() f(xn+l, yO)+,, Z,+l)- Yn+l
(4.8)

Ae2=f(x,,+,, y,, ,,+,)-Y,+,,-’,,.
where A (Of/Oy)-diag (/3) and/3 is a function of the previous k stepsizes. In this
way any change in z,+ has been suppressed in (4.8).

Under Case II we are envisaging a situation where f is sensitive to changes in
z,+. If the stiff components were to be corrected first we have found in practice that
nonconvergence of the corrector iteration (4.8) is the usual indication that the stiff
subsystem should be enlarged. Correcting the nonstiff components first allows us to
formulate similar tests to Case I.

The error estimate E is a multiple of e). Large entries in the matrix (Of/Oz) are
necessary to produce sensitivity of the estimate to the nonstitt components. The tests
require the ith row of (Of/Oz). Let O=(Of/Oz)d ’) and Io,l-max Iool over all
equations j with k =< 6. Then if

of,
5loipl>

the pth equation is included in the stiff subsystem; we also make the change for any
such equations for which

251001 >
Since we do not require or examine all of (Of/Oz) it is possible that the coupling

giving rise to IE, > TOL may not be detected (this has not occurred in practice and
we have failed to produce an artificial problem on which it was not detected). Neverthe-
less to cover this possibility, after 10 occurrences of Case II leading to no enlargement
of the stiff subsystem the whole system is thereafter regarded as stiff.

Finally note that a change from Adams to BDF is never made immediately. We
wait several steps until the required back information has been stored so that the BDF
method does not start with order 1.

5. Numerical results. The code has been tested on a large number of problems
given in the literature, both stiff and nonstiff. The following five problems give a clear
indication of the potential in this approach.

5.1. Test problems.
Problem 1. Nonstiff, Shampine and Gordon (1975).

yT=--yl/r3, y,(O)=l, y](O)=O,

Y -y2/r3, y’(O) O, y’(O) 1,

r (y+y)/, written as a first order system,

absolute error test, 0-< x -< 16r.

Problem 2. Stiff, Enright et al. (1975).

Y -Y + Y2, yl(O) 1,

Y -102yl-Y2, y_(0) =0,

y; 102y3 + Y4, y3(0) 1,

y 104y3 102y2, y4(0) 0,

O <__ x _<_ 20.

Eigenvalues + 10i, 100 + 100i. Mixed error test.

692 G. HALL AND M. B. SULEIMAN

Problem 3. Stiff, Enright et al. (1975).

Y -Yl + y2 /y+ y24,

Y2 10y2 / 10(y/ y42),

Y3 -40y3 / 40y,

y4 100y4/ 2,

0-<_ x_<_ 20.

yl(0) 1,

y2(0) 1,

y3(0) 1,

y4(0) 1,

Eigenvalues l, 10, -40, 100. Mixed error test.

Problem 4. Stiff, Enright et al. (1975).

y --0.04y + 0.01y2Y3, y(0)- l,

y 400y 100yEY3 3000y22, y2(0) 0,

y 30y, y3(0) 0.

Eigenvalues 0, 0--> -3100, -0.04-> -0.4 --> -0.03. Mixed error test.

Problem 5. Ehle (1972), variation of Krogh (1973).

y UBUry + Uw,

o oo o o ,_
B=-100 10 0 0

U= ’ 1/2
o 0 -oo o -o o o -o. 1/2 -w ((, z), ,, . z.) .

z Uy, y(0) r (0, -2, -1, -1),

0_<x_<25.

Eigenvalues at x O, 8 + 100i, -2.1, 102,
at x 25, -0.1, -10+/- 100i, -100.

Mixed error test.

5.2. Results. The following five tables give the results for each problem. The
headings are self explanatory except for

Stiffness tests the number of tests made in checking for stiffness.
Time time in seconds on CDC 7600 (Algol).
Stiff subsystem the notation (i, j,...)[a, b] means that equations i, j,... were

simultaneously included in the stiff subsystem at x a and where
the stepsize was equal to b.

Shampine Adams code, results from Shampine and Gordon (1975).

Each table gives the results for the algorithm described above on one of the test
problems. For the stiff problems it is of interest to compare the results with a comparable
code using standard techniques. To obtain such comparisons each stiff problem was
reintegrated by the same code, but this time treating the whole system as stiff from the
beginning. Results for these runs are given in brackets below the principal results.

SINGLE CODE FOR STIFF AND NONSTIFF SYSTEMS 693

TABLE
Problem (nonstifiO.

logo TOL

-2
-3
-4
-5
-6
-7
-8
-9
-10

Function
evaluations

Number
of Failed Maximurr Stiffness

steps steps error tests

464 232 14 1.6(0) 14
260 130 6 1.7 (0) 6
282 141 4 1.2 (-l) 0
338 169 0 1.9 (-2) 0
424 212 5.5(-5) 0
506 253 0 1.9 (-4) 0
600 300 0 1.4 (-5) 0
712 356 0 1.8(-7) 0
854 427 0 4.6 (-8) 0

Time

5.84 (- 1,)
3.37 (-1)
3.58 (-1)
4.42 (-1
5.72 (-I
6.77 (- 1)
8.19 (-1)
9.79 (-1)
1.23 (0)

Shampine method

Function
evaluations

219
253
313
352
494
547
633
974
899

Maximum
error

2.3(0)
3.8(-1)
1.8(-1)
1.9 (-2)
1.6 (-4)
1.7 (-4)
9.4 (-6)
6.6 (-8)
2.5 (-8)

5.3. Comments on the results. On problem 1, nonstiff, there were 14 instances of
(3.1) at TOL= 10-2 and 6 at 10-3, each time the problem being diagnosed as nonstiff.
Except at l0-2, however, the code compares reasonably well with a good Adams code.

Problems 2 and 3 illustrate the general improvement in efficiency obtained over
the same code using a standard approach. Both problems were eventually treated as
full stiff problems although for most of the integration range the implicit BDF formulae
(and consequent algebraic manipulations) were required only for a subsystem. As
anticipated the entry of an equation into the stiff subsystem is delayed with the move
to more stringent tolerances, but the stepsize at which this occurs appears to be
independent of TOL. The figures for the standard approach show an unnecessary
amount of matrix work (LU factorizations on a full s s matrix) required after stepsize
failures, mostly in the transient phase, where the Adams methods are clearly superior.
A new Jacobian is formed only after repeated failures (except in linear problems where
it is needed only once).

Problem 4 was discussed at the end of 2 (with the first two components inter-
changed for convenience). The stiff subsystem was correctly chosen as just one equation
confirming the previous analysis. Particularly striking here is the smooth behaviour of
the statistics with TOL, much better than in the standard approach (compare the entries
in the maximum error column).. This suggests that correct partitioning may lead to
more reliable software.

On problem 5 the whole system became stiff, at x- (approx.), for all values of
TOL. Nevertheless the use of the Adams code up to this point gives a considerable
improvement in the cost, and also avoided the failure at TOL- 10-3 in the standard
approach, due to getting on the wrong solution.

Although it is not possible to give a rigorous theoretical justification for the
strategies employed in the code the above selected results clearly indicate the potential
in this approach.

Acknowledgments. We are grateful for the referees’ comments which have led to
several improvements in presentation.

694 G. HALL AND M. B. SULEIMAN

TT?,? ,

SINGLE CODE FOR STIFF AND NONSTIFF SYSTEMS 695

TTTTTTTTTTTTT T T

696 G. HALL AND M. B. SULEIMAN

SINGLE CODE FOR STIFF AND NONSTIFF SYSTEMS 697

REFERENCES

[1] J. BENTLEY, (1975), M.Sc. thesis, Univ. Manchester, Manchester, England
[2] J. A. I. CRAIGIE, (1975), A variable order multistep method for the numerical solution of stiff systems of

ordinary .differential equations, NA Report No. l, Dept. Mathematics, Univ. Manchester,
Manchester, England

[3] G. DAHLQUIST, (1968), A numerical methodfor some ODE’s with large Lipschitz constants, Information
Processing 68, North-Holland, Amsterdam.

[4] B. L. LULL, (1972), A comparison of numerical methods for solving certain stiff ordinary differential
equations, Technical Report No. 70, Dept. Mathematics, Univ. Victoria, British Columbia.

[5] N. n. ENRIGHT, T. E. HULL AND B. LINDBERG, (1975), Comparing numerical methodsfor stiffsystems
of ODE’s, BIT, 15, pp. 10-48.

[6] W. n. ENRIGHT AND M. S. KAMEL, Automatic partitioning ofstiffsystems and exploiting the resulting
structure, ACM Trans. Math. Software, 5, pp. 374-385.

[7] E. HOFER, (1976), Partially implicit method for large stiff systems of ODE’s with only a few equations
introducing small time constants, SIAM J. Numer. Anal., 13, pp. 645-663.

[8] F. T. KROGH, (1973), On testing a subroutine for the numerical integration of ordinary differential
equations, J. Assoc. Comput. Mach., 20, pp. 545-562.

[9], (1974), Changing stepsize in the integration of differential equations using modified divided

differences, Lecture Notes in Mathematics 362, Springer-Verlag, Berlin, pp. 22-77.
10] L. ODEN, 1971), An experimental and theoretical analysis ofthe SAPS methodfor stiffordinary differential

equations, Rep. NA 71.28, Dept. Information Processing, Royal Institute ofTechnology, Stockholm.
[Ill H. H. ROBERTSON, (1976), Numerical integration ofsystems of stiff ordinary differential equations with

special structure, J. Inst. Math. Appl., 18, pp. 249-263.
[12] L. F. SHAMPINE AND M. K. GORDON, (1975), Computer Solution of Ordinary Differential Equations,

W. H. Freeman, San Francisco.
[13] L. F. SHAMPINE, (1980a), Lipschitz constants and robust ODE codes, Computational Methods in

Nonlinear Mechanics, North-Holland, Amsterdam, pp. 427-449.
14] ., (1980b), Type insensitive ODE codes based on implicit A-stableformulas, SAND 79-2444, Sandia

National Laboratories, Albuquerque, NM.
[15] (1981), Type-insensitive ODE codes based on implicit A(a)-stable formulas, SAND 81-0707J,

Sandia National Laboratories, Albuquerque, NM.
16] G. StDERLIND, (1979), Some stability properties oflinear multistep compound discretizations ofpartitioned

differential systems, TRITNA-NA-7910, Royal Institute of Technology, Stockholm.
17],(1980), DASP3--A programfor the numerical integration ofpartitioned stiffODE and differential-

algebraic systems, TRITA-NA-8008, The Royal Inst. of Technology, Stockholm.
[18] M. B. SULEIMAN, (1979), Generalised multistep Adams and backward differentiation methods for the

solution of stiff and nonstiff ODE’s, Ph.D. thesis, Univ. Manchester, Manchester, England.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 3, July 1985

1985 Society for Industrial and Applied Mathematics

014

PARALLEL NETWORKS FOR MULTI-GRID ALGORITHMS:
ARCHITECTURE AND COMPLEXITY*

TONY F. CHANf AND ROBERT SCHREIBERt

Abstract. We describe and analyze a family of highly parallel special purpose computing networks that
implement multi-grid algorithms for solving elliptic difference equations. The networks have many of the
features and advantages of systolic arrays. We consider the speedup achieved by these designs and how
this is affected by the choice of algorithm parameters and the level of parallelism employed. We find, for
example, that when there is one processor per grid-point, the designs cannot avoid suffering a loss of
efficiency as the grid-size tends to zero.

Key words, multi-grid algorithms, parallel architecture, computational complexity, speedup and
efficiency, elliptic difference equations

1. Introduction. We shall describe and analyze a family of highly parallel special-
purpose computing networks that implement multi-grid algorithms for solving elliptic
difference equations. These networks have the same characteristics--regularity, local
communication, and repetitive use of a single, simple processing element--that make
systolic architectures attractive [9]. These architectural advantages make it possible to
build large computing networks of VLSI cells that would be relatively cheap, reliable,
and very powerful.

Both a basic and a full multi-grid algorithm are considered. The basic method
reduces the error in a given initial approximation by a constant factor in one iteration.
The full method requires no initial guess and produces a solution with error proportional
to the truncation error of the discretization. These algorithms are representative of
many variants of linear and nonlinear multi-grid algorithms.

The analysis assumes that we are solving a linear system originating in a discretiz-
ation of an elliptic partial differential equation on a rectangle in R a, using a regular
n a point grid. The network is a system of grids of processing elements. For each
<_-k <_-K, processor grid Pk has (rig) v elements, where 3’ is an integer less than or

equal to d, and n/(n. The machine implements a class of multi-grid algorithms using
a corresponding system of nested point grids. For each <_-k_-< K, point grid Gk has
(rlk) d points. The key assumption, which is quite realistic, is that it takes this machine
O((nk)d-’) time to carry out the computation required by one step of the multi-grid
algorithm on point grid Gk using processor grid Pk.

We shall consider the efficiency of these parallel implementations, definirig
efficiency to be the ratio of the speedup achieved to the number of processors employed
[8]. We shall consider a design to be efficient if this ratio remains bounded by a positive
constant from below as n - . The analysis will show that when y < d some algorithms
can be efficiently implemented. But when y d (this is the most parallelism one can
reasonably attempt to use) no algorithm can be efficiently implemented. There does
exist, in this case, one group of algorithms for which the efficiency falls off only as
(log n)-

* Received by the editors August 9, 1983, and in revised form April 3, 1984.

" Computer Science Department, Yale University, New Haven, Connecticut 06520. The work of this
author was supported in part by the U.S. Department of Energy under grant DE-AC02-81 ER10996 and was
completed while this author was a visitor at INRIA, Le Chesnay, France in 1983.

t Computer Science Department, Stanford University, Stanford, California 94305. The work of this
author was supported in part by the Office of Naval Research under contract N00014-82-K-0703.

698

PARALLEL NETWORKS FOR MULTI-GRID ALGORITHMS 699

The analysis assumes that we implement the same algorithms used by uniprocessor
systems. Convergence results for these algorithms have been rather well developed
recently], [5], [7]. We make no attempt to develop algorithms that exhibit concurrent
operation on several grids. Note, however, that some encouraging experimental results
with such an algorithm have been obtained recently by Gannon and Van Rosendale [6].

In any discussion of the practical use of a specialized computing device, it must
be acknowledged that overspecialization can easily make a design useless. At least,
the designed device should be able to solve a range of size of problems of a particular
structure, perhaps solving large problems by making several passes over the data,
solving a sequence of smaller subproblems, or with some other techniques. We shall
consider how a large grid, with (mrl) d points can be handled by a system of processor
grids with n v elements each having O(mdrl d-’y) memory cells. Problems on nonrec-
tangular domains can be handled by techniques requiring repeated solutions on either
rectangular subdomains or containing domains.

Brandt [3] has also considered parallel implementations of multi-grid methods.
He discusses the use of various interconnection networks and appropriate smoothing
iterations. One of our results, a (log n)2 time bound for fully parallel, full multi-grid
algorithms, is also stated in his paper.

2. Multi-grid algorithms. We shall consider multi-grid algorithms in a general
setting. The continuous problem is defined by the triple {H, a(u, v), f(v)}, where H is
a Halbert space with a norm [1" [I, a(u, v) is a continuous symmetric bilinear form on
H H, and f(v): H --> R is a continuous linear functional. The problem is:

(1) Find u H such that a (u, v) f(v) for all v H.

It can be shown that if a(*, *) satisfies certain regularity conditions (for example, that
(u, u)=> o II ll for all v H), then problem (1) has a unique solution [4].

We consider finite-dimensional approximations of problem (1). Let M,j-> l, be
a sequence of N-dimensional spaces, on which one can define a corresponding bilinear
form aj(u, v) and a corresponding continuous linear functional f(v), which are con-
structed to be approximations to a(u, v) andf(v) respectively. Also, since the multi-grid
algorithms involve transferring functions between these spaces, we have to construct
extension (interpolatory) operators Ej M_l - M.We shall give two multi-grid algorithms, namely BASICMG and FULLMG, with
FULLMG calling BASICMG in its inner loop. The two algorithms differ in that
BASICMG starts its computation on the finest grid and works its way down to the
coarser grids, whereas FULLMG starts with the coarsest grid and works its way up
to the finest grid. In the conventional single processor case, BASICMG reduces the
error on a certain grid by a constantfactor in optimal time, whereas FULLMG reduces
the error to truncation error level in optimal time.

We give the basic multi-grid algorithm BASICMG in Table 2.1. This is a recursive
algorithm, although in practice it is usually implemented in a nonrecursive fashion.
The iterations are controlled by the predetermined parameters (c, j, m). In this sense
it is a direct method, unlike related adaptive algorithms which control the iterations
by examining relative changes in the residuals [2]. Figure 2.1 illustrates the iteration
sequence in the case c-2. This particular case is sometimes known as the W-cycle,
so-called because of the shape of the diagram in Fig. 2.1. Analogously, the case c-
is also known as the V-cycle. The major computational work is in the smoothing
sweeps (subroutine SMOOTH), which usually consists of some implementation of the
successive-over-relaxation or Jacobi iteration or the conjugate gradient method. The

700 TONY F. CHAN AND ROBERT SCHREIBER

TABLE 2.1
Algorithm BASICMG (k, z, c,j, m, ak,f,)
(Computes an approximation to Uk Mk,
where a Uk, V) fk (V) for all v Mk,

given an initial guess z
Returns the approximate solution in
Reduces initial error in z by a constant factor.)

If k then
Solve the problem using a direct method. Return solution z.

else
(Smoothing step (j sweeps):)
zC=SMOOTH (j, z, ak, fk).

(Compute data bk_ for coarse grid correction equation:)
bk- ak-1 (q, for all

(Solve coarse grid problem approximately by c cycles of BASICMG:)

Repeat c times:
BASICMG (k- l, q, c,j, m, ak_l, bk_l)

(Correction step:)
z z + Ekq.

(Smoothing step (m sweeps):)
zSMOOTH (m, z, ak, A).

End If
End BASICMG

smoothing sweeps are used to annihilate the highly oscillatory (compared to the grid
spacing) components of the error in z efficiently. We require that a suitably "parallel"
method, Jacobi or odd/even SOR for example, be used as the smoother. In the next
section, we shall discuss new architectures for implementing these smoothing operations
in more efficient ways.

Level

Coarse ds ds
/\ /\

2 /j m +j m\
Fine 3 j m

ds: Direct solves j, m: number of smoothing sweeps.

FIG. 2.1. Iterations of BASICMG for k 3 and c 2.

We give the full multi-grid algorithm FULLMG in Table 2.2. In the BASICMG
algorithm, the choice of initial guess for Uk is not specified. In practice, good initial
guesses are sometimes available essentially free (for example, from solutions of a
nearby problem, from solutions at a previous time step, etc.). The FULLMG algorithm
interpolates approximate solutions on coarser grids as initial guesses for the BASICMG
algorithm. It is also recursive and nonadaptive. Figure 2.2 illustrates the iteration
sequence in the case k 3, c 2 and r 1.

Level

Coarse ds ds ds ds
\/\ ./\ /\

2 j m j m+j m
\./ \

Fine 3 g m
ds: Direct solves j, m: number of smoothing sweeps.

FIG. 2.2. Iteration of FULLMG for k 3, c 2 and 1.

PARALLEL NETWORKS FOR MULTI-GRID ALGORITHMS 701

TABLE 2.2

Algorithm FULLMG (k, Zk, r, c,j, m, ak,fk)
(Computes an approximation Zk to It E M
where ak (Uk, V) fk for all v Mk,
using r iterations of BASICMG,
using initial guess from interpolating the approximate
solution obtained on the next coarser grid.
Solution obtained can be proven to have truncation error accuracy.)
If k then

Solve the problem using a direct method to get z.
else

(Obtain solution on next coarser grid:)
FULLMG (k- 1, Zk_l, r, C,A m, ak_l,fk_l).

(Interpolate Zk- :)
Zk t: EkZk_ 1.

(Reduce the error by iterating BASICMG times:)
Repeat times:
BASICMG (k, Zk, c,j, m, ak, fk).

End if
End FULLMG

We would like to summarize briefly the accuracy and convergence behavior of
the above two multi-grid algorithms. Since the main emphasis of this paper is on the
algorithmic aspects of these multi-grid algorithms, we shall refer the reader to the
literature for more details. The framework presented here is based on the work of
Bank and Dupont [1] and Douglas [5]. The accuracy and the convergence of the
BASICMG algorithm obviously depend on the three crucial steps of the algorithm:
smoothing, coarse grid transfer, and fine grid correction. The basic requirements are
that the smoothing sweeps annihilate the high frequency components of the error
efficiently, the coarse grid correction q be a good approximation to the fine grid error
in the low frequency components, and the interpolation operators (Ej’s) be accurate
enough. These conditions can be formalized into mathematically precise hypotheses
which can then be verified for specific applications [5]. Assuming these hypotheses,
one can show that Algorithm BASICMG reduces the error on level k by a constant
factor provided that enough smoothing sweeps are performed. Moreover, it can be
shown (see 4) that Algorithm BASICMG (for small values of c) can achieve this in
optimal time, i.e. O(Nk) arithmetic operations. Obviously, the work needed depends
on the accuracy of the initial guess and increases with the level of accuracy desired.
Often, one is satisfied with truncation error accuracy, i.e. <

C N- for some fixed 0 and C which are independent of k. For a general initial guess,
the straightforward application of Algorithm BASICMG to reduce the initial error to
this level takes O(Nk log (Nk)) time, which is not optimal. The FULLMG algorithm
overcomes this problem by using accurate initial guesses obtained by interpolating
solutions from coarser grids. The convergence result for Algorithm BASICMG can be
combined with the basic approximation properties of the various finite-dimensional
approximations {M, aj, f} to show that Algorithm FULLMG computes a solution Zk
that has truncation error accuracy in O(Nk) time.

3. The computing network. In this section we describe a simple parallel machine
design for multi-grid iteration. We restrict attention to linear elliptic problems in d
dimensions over rectangular domains, to discretizations based on grids of tl

d points,
and to multi-grid methods based on a system of point grids {Gk}ff=l where Gk has

702 TONY F. CHAN AND ROBERT SCHREIBER

(nk) a gridpoints, with mesh lengths hkd, <-j <-d, the finest grid has nr n, and

nk+l=a(nk+l)-l, k=l,2,...,K-1

for some integer a _-> 2.
The machine consists of a system of processor-grids {Pk} :=t corresponding to the

point grids. Each processor-grid is an (ilk) y lattice in which a processor is connected
to its 2y nearest neighbors.

We shall employ a standard multi-index notation for gridpoints and processors. Let
+z. ={0, 1,. ., n-l}.

Let +z.,s-= (z.+)s, the set of s-tuples of nonnegative integers less than n. We shall make
+ + defined for r>s byuse of a projection operator r’z..r z..s

"rr((i,. ir))=(i, ",is).
-4-By convention, if Z,,s, then (il,. ", is). Also let 1 (1,. ., 1). We shall also use

the norm lil--Ii 1 /"" / lisl on
+We shall label the gridpoints in Gk with elements of Z,k,d in such a way that the

point with label has spatial coordinates (ithk,, i2hk,.,’’’, idhk,d). Similarly, we label
+processors in Pk with indices in z,k,v.

Thus, processors and k are connected if li-k[1. In order to make the machine
useful for problems with periodic boundary conditions, we might also add "wrap-
around" connections, so that and k are connected if I(i-k) mod n 1. In 3.1, it is
shown that periodic problems can also be handled without these connections.

Evidently, if each processor has O(nd-’) memory cells, we can store the solution,
forcing function, and O(1) temporary values belonging to the whole of grid Gk in the

+processors of Pk; we store gridpoint in processor r(i) for i Z,,d.
With the given connectivity, smoothing sweeps of some types can be accomplished

in O(nd-’) time. It is not necessary for the stencil ofthe difference scheme to correspond
to the connectivity of the processor grid. Jacobi or odd/even SOR smoothing can be
so implemented, for example. Let be the time taken by a single processor to perform
the operations at a single gridpoint that, done over the whole grid, constitute a
smoothing sweep. If S is the time to implement a smoothing sweep over the whole of
grid Gk on processor grid Pk, then

(2) s=

Grid Pk is connected to grid Pk+. Processor i Pk is connected to processor
a(i+ 1)-1 Pk/. These connections allow the inter-grid operations (forming coarse
grid forcing terms bk and interpolation Ek) to also be computed in O(S) time. We
refer to the system of processor-grids {P,..., Pj} as the machine Lj for J=
1,2,...,K.

The execution of the BASICMG iteration by Lk proceeds as follows.
1. First, j smoothing steps on grid Gk are done by Pk. All other processor grids

are idle.
2. The coarse grid equation is formed by Pk and transferred to Pk+.
3. The c cycles of BASICMG on grid k-1 are performed by Lk-. Pk is idle.
4. The solution q is transferred to Pk and interpolation Ekq is performed by Pk.
5. The remaining m smoothing steps are done by Pk.
Let W(n) represent the time needed for steps 1, 2, 4 and 5. Then

(3) W(n)=(j+m+s)tna-

PARALLEL NETWORKS FOR MULTI-GRID ALGORITHMS 703

where s is the ratio of the time required to perform steps 2 and 4 to the time needed
for one smoothing sweep. Note that s is independent of n, d and y. Note that only
one processor grid is active at any instant.

The natural way to build such a machine is to. embed the y machine in two
dimensions as a system of communicating rows of processors, the 3’ 2 machine in
three dimensions as a system of communicating planes, etc. Of course, realizations in
three-space are possible for any value of 3’. For example, if d 2 and 2’ 2, we have
a machine that consists of K connected 2-dimensional grids of processors. Suppose
a 2, K 3 and n 1, n2 2(1 + 1) 3, n 2(3 + 1) 7. The corresponding
machine is shown in Fig. 3.1. Gannon and Van Rosendale [6] consider a similar
implementation of the fully parallel machine (2’= d) on proposed VLSI and multi-
microprocessor system architectures.

FIG. 3.1. A machine for d 2,), 2 and K 3.

This design differs from systolic array designs in that there is no layout with all
wire lengths equal. But for reasonably large machines the differences in wire length
should not be so great as to cause real difficulties. Moreover, one need not continue
to use ever coarser grids until a x grid is reached. In practice, 3 or 4 levels of grids
could be used and most of the multi-grid efficiency retained; this would make the
construction much simpler.

3.1. Solving larger lroblems. Suppose there are (mn)d gridpoints and only n
processors. Assume that each processor can store all information associated with
mdnd-v gridpoints. Now we map gridpoints to processors in such a way that neighboring
gridpoints reside in neighboring processors. To do this we define a mappingf, "z,,,
such that, for all i,j z+,,n, If,,(i)-f,(j)l<=[i-jl, as follows. Let j= qn+ r where q and
r are integers, 0_-< r-< n- 1. Now let

r if q is even,
f,,,(j)

n-l-r if q is odd.

Now if m is even, then f,,(O)=fm(mn-1)=0, so that periodic boundary conditions
can be handled without any "wrap-around" connections. This operation corresponds
to folding a piece of paper in a fan-like manner; for m 10, for example, like this:

/\/\/\/\/\.

704 TONY F. CHAN AND ROBERT SCHREIBER

To map a multidimensional structure we fold it as above in each coordinate. Let
the processor grid have n d elements and the point grid have mln m2n "" man
points. Point can be stored in processor Fa(ml," .,ma, n;i) where Fd(i)----
(fml(i),""" ,fm(ia)). If we have only n v processors then we map into F(i) where
F(i) Fv(r(i)).

With this mapping, neighboring gridpoints reside in neighboring processors, and
therefore relaxation and interpolation processes only require communication with
neighboring processors. Consequently,

W(mn)=mdW(n).
Thus with a factor of ma fewer processors, the time for these processes increases by
a factor of m d. Therefore, there is no loss of efficiency. It is important to note, and
simple to show, that this mapping also preserves locality throughout the hierarchy of
point grids {Gj} and processor grids {P}.

The mapping is illustrated in Fig. 3.2 for the case m 2, n 2 and 3’ d 2.

Processor grid
2

3 4

Processor assignment to grid points
2 2

3 4 4 3
3 4 4 3

2 2

FIG. 3.2. Point-grid to processor-grid mapping.

4. Complexity. In this section, we are going to analyze the time complexity of the
two multi-grid algorithms, BASICMG and FULLMG, as implemented by the different
architectures just discussed. It turns out that the complexity of the two algorithms is
very similar. Since the BASICMG algorithm is simpler and is called by FULLMG, we
shall discuss and analyze it first. After that, we shall indicate how to derive the results
for FULLMG.

4.1. Complexity of BASICMG. To simplify the analysis, we shall assume that the
computational domain is a rectangular parallelopiped and is discretized by a hierarchy
of cartesian grids (corresponding to the M’s) each with nj mesh points on each side
(denoted the n-grid). Further, we assume that the n’s satisfy n a(nj_l + 1)- where
a is an integer bigger than one. Generally, we denote by T(n) the time complexity of
the BASICMG algorithm on an n-grid. By inspecting the description of algorithm
BASICMG, it is not difficult to see that T(n) satisfies the following recurrence:

(4) T(an) cT(n)+ W(an),

where W(an) denotes the work needed to preprocess and postprocess the (an)-grid
iterate before and after transfer to the coarser n-grid. We have the following general
result concerning the solution of (4), the proof of which is elementary.

LEMMA 1. Let Tp be a particular solution of (4), i.e.

(5) T,(an)-- cTp(n)+ W(an).

Then the general solution of (4) is:

(6) T(n) anlgoc+ Tp(n), where is an arbitrary constant.

The term W(an) includes the smoothing sweeps, the computation of the coarse
grid correction equation (i.e. the right-hand side bk_) and the interpolation back to
the fine grid (Ekq). The actual time needed depends on the architecture used to

PARALLEL NETWORKS FOR MULTI-GRID ALGORITHMS 705

implement these operations (specifically the dimensionality of the domain and the
number of processors available on an n-grid). In general, as derived in 3, W(n) is
given by

(7) W(n)=(j+m+s)tg(n)=-flg(n), where g(n)=nPwithp=-d-y.

In Table 4.1, we give the form of the function g(n) as a function of the architecture
and the dimensionality of the domain. We also give a bound on the total number of
processors (P) needed to implement the architecture and note that it is always the
same order as the number of processors on the finest grid. For a d-dimensional problem
with n v processors on the n-grid, we have

ify=O,
P(T)=

(a’/(a ’-l))n ify>O.

TABLE 4.1
Table of g(n)

Total # of processors
Architecture 1-D 2-D 3-D on all grids, P

processor n 712 n

n processors n n (a/(a)) n

n processors n (a2/(a))n

n processors (a3/(a3- 1))n

Note: Architecture column gives number of processors on the n-grid.

We have the following general result for this class of functions g(n).
LEMMA 2. IfW(n finp, then we can take thefollowing as particular solution of (4):

fl(aP/(aP-c))np ifp #log‘, c,
(8)

[np log‘, n ifp loga c.

Combining the results of the last two lemmas, we arrive at our main result.
THEOREM 3. The solution of (4) for W(n)= finv satisfies:

(9)
((aP/(aP-c))np + O(n’g.c)

T(n) np log,, n + O(nv)
[.o(,,lao c)

ifc < ap,
ifc ap,
ifc > ap.

Note that in the last case, a # 0 (in (6)) because Tp(n) does not satisfy the boundary
conditions.

For the first two cases (c <-aP), we can determine the highest order term of T(n)
explicitly. However, for the case c > ap, the constant in the highest order term depends
on the initial condition of the recurrence (4) (i.e. the time taken by the direct solve
on the coarsest grid), which is more difficult to measure in the same units as that of
the smoothing and interpolation operations. Fortunately, the complexity for this case
is nonoptimal and thus not recommended for use in practice and therefore, for our
purpose, it is not necessary to determine this constant.

Based on the results in Theorem 3 and the specific forms of the function g(n) in
Table 4.1, we can compute the time complexity of Algorithm BASICMG for various

706 TONY F. CHAN AND ROBERT SCHREIBER

combinations of c, a and p, some of which are summarized in Table 4.2, where we
tabulated the highest order terms of T(n)/fl.

The classical one processor (3’ =0) optimal time complexity results [1], [5] are
contained in these tables. For example, in two dimensions (d 2) g(n) n and Table
4.2 shows that, for the refinement parameter a- 2, c < 4 gives an optimal algorithm
(O(n2)) whereas c_-> 4 is nonoptimal. More generally, we have an optimal scheme if
and only if c a d. For example, the larger a is or the larger d is, the larger the value
c can take for the algorithm to remain optimal. However, with a larger value of a,
more relaxation sweeps are needed and a larger value of c has to be taken in order
to achieve the same accuracy. We note that the constant in the highest order term of

TABLE 4.2
Time complexity T(n)/ of algorithm BASICMG.

s=2

C

p=d-y

8/7n

8/6n

8/5n

8/4n

4/3n

4/2n

4tl

n log n

n log2 n

O(?11g-"3

O(n2)

log n

o(n)

O(nlg2 3)

O(n 2)

s=3

4

27/26n

27/25n

27/24n

27/23n

p=d-y

9/8n

9/7n

9/6n

9/5n

3/2n

n log3 n

O(nlg. 4)

log n

O(nlOg3 2)

O(n)

O(n"’.)

s=4

c 3

64/63n

2 64/62n

3 64/61 n

4 64/60n

a: mesh refinement raUo

p=d-y

16/15n

16/14n

16/13n

16/12n

4/3n

4/2n

n log n

c: number of correction cycles in BASICMG
y: n processors on the n-grid
d: dimension of the domain

asymptotic efficiency boundary (See Theorem 5)

log n

O(n’ 2)

O(nlg 3)

O(n)

PARALLEL NETWORKS FOR MULTI-GRID ALGORITHMS 707

T(n) does not vary a great deal with either c or a (they are all about one, especially
for the larger values of a). This suggests that the best balance between speed and
accuracy can be achieved by choosing the largest value of c (or close to it) such that
the algorithm remains optimal. When d-3’ 2 and a 2, this means taking c to be 2
or 3.

4.2. Etticiency, speedup, accuracy, and optimal design. Next, we are going to look
at the ettects of the new architectures on the performance of the BASICMG algorithm.
There are four parameters in this study: c, a, 3’ and d. We shall call a particular
combination of these four parameters a design. We shall use the notation T(c, a, % d)
to denote the corresponding complexity of the design. One of the main issues that we
would like to address is the efficiency E and speedup S of a particular design, which
are defined as [8].

DEFINITION 4.

S(c, a, % d) T(c, a, O, d)/ T(c, a, % d),

E(c, a, % d)= T(c, a, O, d)/(P(3")T(c, a, % d)).

The speedup S measures the gain in speed over the one processor architecture while
the efficiency E reflects the tradeoff between processors and time and measures the
efficiency with which the architecture exploits the extra processors to achieve the
speedup. The optimal efficiency is unity, in which case a P-fold increase in the number
of processors reduces the time complexity P-fold. In general, the efficiency E and the
speedup S are functions of n. We shall call a design asymptotically efficient if E tends
to a constant as n tends to infinity and asymptotically inefficient if it tends to zero. We
shall primarily be concerned with analyzing the efficiency E of a design in this section.
The speedup S can be easily read from Table 4.2.

For determining the asymptotic efficiency of a design, it suffices to determine the
highest order term of E. The efficiency E can be derived from the explicit expressions
for T and P in a straighforward manner. Since the efficiency for 3, 0 is unity by
definition, we shall only be interested in 3, > 0. We summarize the results in the following
theorem.

THEOREM 5. Assume 3, > O.
(1) If c<ad-’ then E(c,a, 3",d)=(a’-l)(ad-’-c)/(ad-c).
(2) If c=ad- then E(c, a, % d)=(aV-1)ad-v/((ad-c) logan).
(3) Ifc > ad-v then

O(1/nlg,,c-d+3’)) ifc<a a,
E(c, a, % d) O(lOga n/n ’) ifc= a,

O(1/n ’) ifc>a.
Based on the above theorem, we can immediately make the following observations:
1. A design is asymptotically efficient ifand only if c < a d-v. This inequality defines

an efficiency boundary in the four parameter space of {c, a, % d}, the projections of
which are shown in Table 4.2.

2. Thefully parallel design (3" d) is always asymptotically inefficient. This follows
because to have an efficient design in this case requires c < which is meaningless for
the multi-grid algorithm.

3. Define a logarithmically asymptotically efficient design to be one with E
O(1/loga n) as n tends to infinity. Afully parallel design is logarithmically asymptotically
efficient if and only if c 1. This is case (2) in Theorem 5.

708 TONY F. CHAN AND ROBERT SCHREIBER

4. If we start with a nonoptimal design in the one processor case, then adding more
processors will not make the design asymptotically efficient. This corresponds to the last
two cases in Case (3) of Theorem 5. The reason is that too many coarse grid correction
cycles are performed so that even if more processors are added to speed up the setup
time for transferring to the coarser grids, too much time is spent on the coarser grids.

Asymptotically efficient designs are theoretically appealing. They indicate that the
extra processors are utilized efficiently to achieve the speedup. For this reason, it is
interesting to consider the following problem"

Optimal design problem.
For a given problem (i.e. given d), find the design that

minimizes T(n) and/or maximizes the accuracy of the computed solution
subjected to the constraint that it is asymptotically efficient.

In Table 4.3, we indicate the influence of each of the three design parameters {c, a, y}
on the optimality conditions and the constraint. For example, the accuracy of the
solution is independent of 3’ and to achieve maximum accuracy, one should take c

large and a small. The appropriate choice of optimality condition depends on the
requirements of the given problem. Moreover, the general optimal design problem
may not have a unique or bounded solution in the three parameter space {c, a, y}. In
practice, however, we usually do not have the freedom to choose all three parameters.
If the number of free parameters is restricted, then the optimal design problem may
have a unique solution.

TABLE 4.3

Influence of design parameters on optimality conditions.

Design parameters

Optimality conditions

Constraint

Max accuracy

Min T(n)

Efficiency E

large

small

small

small

large

large

indep

large

small

We shall illustrate this by fixing two of the three parameters in turn and study E
as a function of the free parameter. First, let us fix c and a and consider the effect of
varying 3’. In other words, we consider the case where the multi-grid algorithm and
the refinement of the domain are fixed and we are free to choose the architecture.
Varying 3’ corresponds to moving across a particular row of Table 4.2. It is easy to
see that one achieves a speedup as we use more processors (i.e. as one moves from
left to right in one of these rows). However, the efficiency E generally goes down as
one uses more processors, and after a certain entry the design starts to be asymptotically
inefficient. For example, take the three-dimensional case (d 3), with a 2 and c- 2.
With n processors on the n-grid, the efficiency is E(2, 2, 1, 3) 1/3. With n2 processors
on n-grid, we have E(2, 2, 2, 3) l/log2 n, and with n processors E(2, 2, 3, 3)-
O(1/n). Both the last two designs are asymptotically inefficient and thus the 3’-1
design is the fastest efficient design. In general, for fixed c and a, the design just to the
left of the efficiency boundary is the fastest efficient design.

Next we shall fix a and 3’ and vary c (columns in Table 4.2). That is, we fix the
architecture and vary the multi-grid algorithm. This time the speedup factor S decreases

PARALLEL NETWORKS FOR MULTI-GRID ALGORITHMS 709

slightly as we increase c which is not surprising as we are doing more work on coarse
grids, and this keeps many processors idle. Again, the efficiency E decreases as we
increase c, and after a certain entry, the algorithm becomes asymptotically inefficient.
For example, take the two-dimensional case with n processors on the n-grid (d 2,
3,= 1) and a =3. Going down the appropriate column, we have E(1, 3, 1, 2)=1/2,
E(2, 3, 1, 2) =72- and E(3, 3, 1, 2) 1/log3 n. Recall that the larger c is, the more accurate
is the computed solution and the more robust is the overall algorithm. Thus, the c 2
design is the most accurate efficient design. In general, forfixed a and 3,, the design just
above the efficiency boundary is the most accurate efficient design. If accuracy is no
problem, then c can be chosen smaller to speed up the algorithm.

Finally, we fix c and 3, and vary a. Generally, a larger value of a means fewer
processors are needed to implement the architecture. It also means that less work has
to be done on the coarse grids because they have fewer points. To see the effect of
varying a, note that the efficiency boundary moves towards the lower right hand corner
.of the tables in Table 4.2 as a is increased. This implies that, for a fix architecture (3’)
and algorithm (c), using a larger value of a will generally exploit the available processors
more efficiently. However, one cannot indiscriminantly use large values for a because
this leads to larger interpolation errors and less accurate solutions. For example, take
the two-dimensional case with n-processors on the n-grid and c 2. With a 2, the
algorithm is asymptotically inefficient (E(2, 2, 1, 2) 1/log2 n) whereas with a 3 and
a=4, it is asymptotically efficient (E(2,3, 1,2)=2/7, E(2,4, 1,2)=3/7). Thus, the
a 3 design is the more accurate efficient design. In general, for fixed c and 3", the
smallest value of a that yields an efficient design is the most accurate efficient design. If
accuracy is no problem, then a can be chosen larger to speed up the algorithm.

One can carry out similar parametric studies, for example, by fixing one parameter
and varying the other two. For instance, if we are free to choose both the architecture
(3’) and the algorithm (c), then by inspecting the form of the efficiency constraint
c < ad-v, it can be seen that smaller values of c allow more processors to be used
(larger 3’) to produce a faster efficient design. For example, in the a 2 case, if c 2
then the p 2 entry gives the fastest efficient design whereas if c 1, it becomes the
p entry, with the latter being faster. Similarly, for a fixed c, a larger value of a
allows more processors to be used to achieve a faster efficient design.

4.3. Complexity of FULLMG. In this section, we shall derive the complexity of
the FULLMG algorithm. Since FULLMG calls BASICMG, the results here depend
crucially on the complexity of Algorithm BASICMG.

Let F(n) denote the time taken by one call to FULLMG. By inspecting the
algorithm in Table 2.2, it can easily be verified that F(n) satisfies the following
recurrence:

(10) F(an)= F(n)+ rT(an),

where we have absorbed the cost of the interpolation step in FULLMG into the
interpolation costs of BASICMG (i.e. the term s in (7)). Note that this is just a special
case of the recurrence (4), with c 1 and W(an) rT(an). By inspecting the entries
in Table 4.2, we see that the forcing function W(n) in this case takes the form of either
np or np logan. We have the following result for particular solutions of (10) for this
class of forcing functions, which can be verified by direct substitution.

LEMMA 6.

If T(rt) onp then a particular solution of O) is

Fp(n)= (aP/(ap- 1))rcnp.

710 TONY F. CHAN AND ROBERT SCHREIBER

(2) If T(n) anp loga n, with p>0, then a particular solution of (10) is

Fp(n) (aP/(a’ 1))ranp logan -(a’/(ap- 1)2)rtnp.

(3) If T(n)=a logan then a particular solution of (10) is

Fp(n)=(ra/2)(logEa n +logan).

Since the homogeneous solution of (10) is a constant, the general solution is
dominated by the particular solutions. We give the highest order terms of F(n) in
terms of T(n) in the following theorem.

THEOREM 7.
(1) If T(n)=anp then F(n)=(aP/(aP-1))rT(n)+O(1).
(2) If T(n)=anp log, n, with p>0, then F(n)=(aP/(ap- 1))rT(n)+O(nP).
(3) If T(n) a log, n then F(n) (r/2) loga nT(n)+ O(log n).
In the first two cases, the complexity of F(n) is the same as that of T(n), except

for the constant multiplicative factor (ap/(ap 1)) r. The (ap/(ap 1)) part of this
constant is very close to unity for the values of a and p that occur. The r part of the
constant applies equally to all entries of Table 4.2 and reflects the number of times
BASICMG is called by FULLMG. We point out that the choice of r that results in
truncation error level accuracy depends on how efficiently BASICMG reduces its initial
error but can be chosen independent ofn [5]. Thus, the extra multiplicative factor does
not affect the asymptotic efficiency of a particular entry in Table 4.2. The complexity
of F(n) in the last case is actually increased by a factor of log n over that of T(n).
However, the corresponding entries in Table 4.2 are already asymptotically inefficient
and thus this extra factor again does not affect the asymptotic efficiency of the design.
It follows that the discussions concerning the efficiency, speedup and optimal design
for the BASICMG algorithm in 4.1 are also valid for the FULLMG algorithm, with
the exception that a fully parallel logarithmically asymptotically efficient design is
slower by the factor log n.

5. Conclusion. We have proposed an architecture based on a system of processor
grids for parallel execution of multi-grid methods based on a system of point grids.
We have analyzed its efficiency and shown that a combination of algorithm and machine
is asymptotically efficient if and only if c < ad-y, where

c is the number of coarse grid iterations per fine grid iteration,
a is the mesh refinement factor,
d is the dimension of the point grids,
y is the dimension of the processor grids.

We find therefore that fully parallel designsmwith y- dmcannot be asymptotically
efficient. There is, however, only a logarithmic fall-off in efficiency when c aa-y, and
for fully parallel designs this occurs for c- 1.

The notion of efficiency plays a central role in this paper and provides guidelines
in choosing algorithms and architectures. However, we emphasize that very often in
practice the real issue is performance (or speedup) and an inefficient design may still
be the best choice.

REFERENCES

R. E. BANK AND T. DUPONT, An optimal order process for solving ellipticfinite element equations, Math.
Comp., 36 (1981), pp. 35-51.

[2] A. BRANDT, Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31 (1977), pp.
333-390.

PARALLEL NETWORKS FOR MULTI-GRID ALGORITHMS 711

[3] A. BRANDT, Multi-grid solvers on parallel computers, Technical Report 80-23, ICASE, NASA Langley
Research Center, Hampton, VA, 1980.

[4] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
[5] C. DOUGLAS, Multi-grid algorithms for elliptic boundary-value problems, Ph.D. thesis, Dept. Computer

Science, Yale Univ., New Haven, CT, 1982, also available as Technical Report 223.
[6] D. GANNON AND J. VAN ROSENDALE, Highlyparallel multi-grid solversfor elliptic PDEs: an experimental

analysis, Technical Report 82-36, ICASE, NASA Langley Research Center, Hampton, VA, 1982.
[7] W. HACKBUSCH, A multi-grid method applied to a boundary value problem with variable coefficients in a

rectangle, Technical Report 77-17, Mathematisches Institut, Universitat zu Koln, Cologne, 1977.
[8] DAVID J. KUCK, The Structure of Computers and Computations, John Wiley, New York, 1978.

[9] H. T. KUNG, Why systolic architectures? IEEE Trans. Comput., 15 (1982), pp. 37-46.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 3, July 1985

(C) 1985 Society for Industrial and Applied Mathematics

015

PRACTICAL THREE-DIMENSIONAL MESH GENERATION
USING TRANSFINITE INTERPOLATION*

LARS-ERIK ERIKSSONf

Abstract. A computational procedure for generating three-dimensional nonorthogonal surface-fitted
mesh systems is presented. The method is based on the concept of transfinite interpolation and makes use
of normal derivatives of the mapping function at the boundaries to obtain the desired mesh control. A brief
description of the theory is presented together with 2D examples to demonstrate the general principles. The
generation of 3D meshes of O-O type around wings and schematic wing-fuselage configurations is described
in detail and several computed examples are shown.

Key words, numerical grid generation, body-fitted grids, nonorthogonal grids, curvi-linear coordinate
systems, mesh singularities, transfinite interpolation, blending function methods, algebraic grid generation

1. Introduction. In the past decade the numerical generation of curvilinear coor-
dinate systems has provided the key to the development of finite difference solutions
of partial differential equations on regions with arbitrarily shaped boundaries. Although
much of the impetus for these developments has come from fluid dynamics, the
techniques are equally applicable to heat transfer, electromagnetics, structures, and
all other areas involving field solutions.

With coordinate systems generated to maintain coordinate lines or surfaces coin-
cident with the boundaries, finite difference schemes can be devised which are appli-
cable to general configurations and have very simple and yet accurate boundary
conditions. Furthermore, the coordinate systems can easily be adapted to the solution
to provide a near optimum resolution for a given number of grid points. These
advantages of general boundary-fitted coordinate systems are well-known and will not
be elaborated upon in this paper.

Considerable progress has been made in the development of numerically generated
coordinate systems, and a variety of generating methods have been presented in the
literature. A survey of these methods will not be presented here, since several reviews
of the latest developments have already been published [1], [2]. However, it is easily
observed that all methods can be classified as belonging to either of two fundamentally
different groups; direct algebraic methods or methods that generate coordinates by
solving partial differential equations. The first group, direct algebraic methods, can
subsequently be split into two subgroups; interpolation methods and other direct
methods. Since the work presented in this paper belongs entirely to the interpolation
category, we may stop the classification process at this point and concentrate on
interpolation methods.

The idea of using interpolation as a means of constructing general curvilinear
coordinate systems or meshes stems from the fact that in most cases, the coordinates
or mesh points are known on several or on all of the boundaries of the computational
domain and the problem consists of extending this mesh into the interior of the domain.
Since the computational domain almost invariably is a "slab," interpolation from the
boundaries into the interior of this region can be accomplished by the so-called
transfinite interpolation concept (sometimes referred to as the blending function
method). This concept was originally developed by Coons [3] and subsequently exten-
ded by Gordon [4]. One ofthe earliest 2D .mesh generation applications using transfinite

* Received by the editors July 12, 1983, and in revised form May 1, 1984.
f FFA The Aeronautical Research Institute of Sweden, 161 11 Bromma, Sweden.

712

MESH GENERATION USING TRANSFINITE INTERPOLATION 713

interpolation is described in Gordon and Hall [5]. However, it is only during the last
three or four years that the transfinite interpolation concept has been used to generate
practical 3D meshes for complex geometries. A few examples of such applications are
the works of Gerhard [6], Anderson and Spradley [7] and Spradley et al. [8]. In these
applications, the transfinite interpolation in its simplest form is used, i.e. with no
control of the normal derivatives of the mesh coordinates at the boundaries. The
author’s own work in 3D mesh generation (Eriksson [9], 10], Eriksson and Rizzi])
differs from these examples in the sense that a more sophisticated form of the transfinite
interpolation is used which allows for the specification of any number of normal
derivatives of the mesh coordinates on the boundaries. The precise control of the
resulting coordinate system or mesh that this feature provides has made it possible to
generate meshes of advanced type that are both smooth and efficient in terms of
resolution for a given number of mesh points. It should be mentioned that the extension
of the transfinite interpolation method to incorporate the specification of normal
derivatives on the boundaries is covered by the general theory as described by Gordon
[4] and is therefore not a strictly new development. However, the manner in which
these normal derivatives are generated and used to control the overall mesh is certainly
novel. It is the author’s opinion that the key to successful mesh generation using
transfinite interpolation lies exactly in this area, i.e. the specification of coordinates
and normal derivatives of coordinates on the boundaries of the computational domain
in such a way that the desired mesh control is obtained with a minimum of input
parameters.

Apart from giving good mesh control, the transfinite interpolation concept offers
speed and simplicity when implemented on computers. The speed factor is very
important for 3D applications because the generation of a desirable mesh for a given
geometry is usually a process involving a series of mesh generation runs with visual
checks and adjustments in between. This fact is not always appreciated when evaluating
the cost of mesh generation. Naturally, a good graphics software package is an integral
part of any 3D mesh generation system.

The fact that transfinite interpolation offers the possibility of generating practically
any desired mesh calls our attention to the question of what mesh is desirable. One
way of analyzing this problem is to estimate the truncation error of the particular finite
difference scheme used and deduce from this what properties the mesh should have
in order to minimize the error. Unfortunately, this type of analysis requires some prior
knowledge of the desired solution, which is not always available. In most practical
applications, a combination of insight into the physics of the problem and computa-
tional experience is used to obtain a reasonable mesh. A good example of this is the
computation of finite difference solutions to the Euler equations as presented by Rizzi
[12] and Eriksson and Rizzi [11]. In these computations, which were performed upon
meshes generated by the present method, full use was made of the flexibility and
control offered by the transfinite interpolation concept.

The adaption of the mesh to the desired solution in order to minimize errors is
not the only example of interdependence between mesh generation and equation
solution. In many practical applications, mesh singularities of one sort or another must
be faced and the finite difference method used may determine which type of singularity
is preferable. A related topic is mesh interfacing, which is of special importance for
the so-called multi-block meshes where the computational domain is composed of
several interconnected "slabs." Again, the finite difference scheme used may determine
the continuity conditions that must be applied to the mesh at these interfaces. It is
thus clear that any practical mesh generation system must be flexible enough to satisfy

714 LARS-ERIK ERIKSSON

a number of requirements and it is the author’s firm belief that the transfinite interpola-
tion concept is an ideal tool for this purpose.

In the following sections, the relevant aspects of 3D mesh generation using
transfinite interpolation are discussed in more detail. Section 2 treats the general topic
of mapping type and mesh efficiency, using an aerodynamic application as an example.
In 3, the topic of singularities and mesh interfaces is addressed. The theory and
practical application of transfinite interpolation is described at length in 4, with 2D
examples that demonstrate the importance of normal derivatives as a means of control-
ling the mesh. Section 5 treats the 3D case and describes the practical application of
the method to a realistic aerodynamic problem. Finally, some concluding remarks are
given in 6.

2. Mapping type. Since the transfinite interpolation method is a means of generat-
ing a mesh in the interior ofthe physical domain by interpolating among the boundaries,
it is clear that the first stage of the mesh generation procedure must be the specification
of mesh coordinate data on the boundaries. In order to do this, it is first necessary to
determine the overall structure of the mapping, the mapping type, so that the correspon-
dence between the boundaries in the physical domain and the computational domain
is made clear. For any given geometry, there are usually several possible mapping
types with different characteristics in terms of efficiency, coordinate cuts, singularities,
etc. As an example we may consider the exterior region of a typical airplane wing, for
which there are at least six natural mapping types (Fig. 1). All of these alternative
mapping types give surface conforming meshes but they vary markedly in terms of
mesh efficiency, i.e. the resolution per mesh point. Assuming that the desired flow
solution varies most rapidly near the wing surface (a quite reasonable assumption), it
is evident that the density of mesh points in this region is a measure of the resolution
of the mesh. One way of comparing different mappings is then to compute (approxi-
mately) the number of mesh points required for each mapping type to obtain the same
density of mesh points near the wing surface. The result of such a comparison is shown

D

FIG. 1. Natural mapping types for a 3D airplane wing.

MESH GENERATION USING TRANSFINITE INTERPOLATION 715

Relot number
ot grd points

0-0 C-O H-O O--H C--H H-H Grid
Type

FIG. 2. Comparison ofalternative mapping types in terms ofrelative number ofmesh pointsfor approximately
equal resolution near the wing surface.

in Fig. 2 and shows that the mapping type designated O-O is the most efficient. The
notation O-O is to be interpreted as "type O in the chordwise direction, type O in
the spanwise direction," using the 2D notation shown in Fig. 1.

Since the O-O type of mapping for the exterior wing problem is efficient and the
corresponding meshes have been found to give very detailed flow solutions (using the
Euler equations as a flow model), it is appropriate to view it as a realistic example of
a 3D mapping. Taking a closer look at the structure of the O-O mapping, it is evident
that it maps the region around the wing onto a "slab" in the computational space.
The correspondence between the various boundaries in the physical domain and in
the computational domain is shown in Fig. 3. In this exploded view, the boundaries
in the physical space are drawn apart in order to make the picture more clear. It should

surface
Outer boundary

Plene of symmetry
ody[

Wing surface

FIG. 3. Structure of the 0-0 mapping for a wing-body configuration.

716 LARS-ERIK ERIKSSON

also be mentioned that the addition of a fuselage is done simply by distorting the
plane of symmetry and does not change the overall structure of the mapping. As the
figure shows, the entire wing surface (both upper and lower surface) is mapped to the
bottom of the computational box, the entire outer boundary is mapped to the top and
the combined plane of symmetry and fuselage is mapped to one of the side surfaces.
The remaining three surfaces of the computational box constitute coordinate cuts, i.e.
they correspond to interior surfaces in the physical domain across which the various
flow properties are continuous. A detail of the mapping between the wing surface and
the bottom of the computational box is shown in Fig. 4. This mapping may be generated
by defining the x, y, z-coordinates of the wing surface (we assume that a Cartesian

Root

Tip

Root

TraiLing edge

:Loe ur:oc

----/ldil ed

Up sure’ace

Traiting edge

Tip

FIG. 4. Structure of the surface mapping between the wing surface and the bottom surface of the computa-
tional box for the 0-0 mapping.

coordinate system is defined in the physical domain) as functions of the two u,v-
coordinates in computational space. If the u, v-coordinates are then discretized uni-
formly, the corresponding x, y, z-coordinates will form a curvilinear mesh on the wing
surface, as indicated in Fig. 4. It is evident that the same procedure can be used to
obtain the corresponding surface meshes on the outer boundary and on the combined
plane of symmetry and fuselage. Once these surface meshes are specified, the first
stage of the mesh generation procedure is completed and the remaining task is the
extension of the surface meshes into the interior of the domain. Working in the
computational domain, this amounts to the extension of the functions x(u, v, w),
y(u, v, w), z(u, v, w), x(u, v, w2), y(u, v, w2), z(u, v, w2), x(u, v, w), y(u, v, w),
z(u, v, w) to the entire computational region u =< u -_< u2, v _<- v _-< v2, w <= w <- w2. The
idea of using transfinite interpolation to accomplish this extension is thus very natural.
However, the details of this interpolation are discussed in 4 and 5.

The discussion so far has been limited to the topic of single-block meshes, i.e.
meshes that map the physical domain onto a "slab" in the computational domain.
This type of mapping is very desirable due to the simplicity of the computational
domain. However, for very complicated geometries it can be difficult to generate
single-block meshes that are both reasonably smooth and efficient. An example of such
a complex region is the exterior of a complete airplane with several lifting surfaces.
A possible solution to this problem is to use multi-block meshes, which map the
physical domain onto several interconnected slabs in the computational domain. This
technique is also referred to as subdomain methods or zonal methods. The development
of multi-block meshes and the practical use of such meshes has not yet come as far
as the corresponding development of single-block meshes, but the next few years may
see a change in this situation. As far as transfinite interpolation is concerned, the

MESH GENERATION USING TRANSFINITE INTERPOLATION 717

generation of multi-block meshes does not in principle differ from the generation of
single-block meshes. Indeed, transfinite interpolation is an ideal method for this purpose
since any continuity requirements at mesh interfaces can be satisfied explicitly.

3. Singularities and interfaces. In connection with mapping types it is appropriate
to discuss the topic of singularities and interfaces. Mesh singularities are undesirable
but very often unavoidable and any practical finite difference scheme must be able to
cope with them. A familiar example of a mesh singularity in two space dimensions is
the polar singularity of a polar coordinate system. In three dimensions, the exterior
wing problem discussed in the previous section serves as an instructive example of the
kinds of mesh singularities that must be faced for various mapping types. Starting with
the O-O type of mapping, it is readily shown that it gives rise to two singular lines
in the mesh, extending from the two tip corners of the wing to the outer boundary
(Fig. 5). A detail of the leading edge/tip corner of the wing (Fig. 6) shows that this

ndary

ParaboLic
/s!ngutar

PLane of
symmetry

FIG. 5. Position of singular lines for the 0-0 mapping.

Wing tip

Wing Leading
edge

Parabotic singuLar_line

FIG. 6. Detail of wing surface mesh at leading edge/tip cornerfor the 0-0 mapping.

718 LARS-ERIK ERIKSSON

singularity is similar in nature to the singular line of a cylindric-parabolic coordinate
system and can therefore be referred to as a "parabolic singular line." The other tip
corner of the wing, the trailing edge/tip corner, has the same type of singular line
emanating from the surface, but due to the sharp trailing edge the singularity has a
more complicated structure near the wing surface (Fig. 7). The fact that the trailing
edge is sharp implies that this edge also is a singular line in the mesh. However, it is
clear that this singularity falls into another category since it is caused by the actual
boundary geometry and not by the choice of mapping type.

singul.ar line

FIG 7. Detail of wing surface mesh at trailing edge/tip corner for the 0-0 mapping.

A similar inspection of the O-H type of mapping reveals that in this case there
are also two singular lines of parabolic type stretching between the tip corners and
the outer boundary. However, in addition to these singularities, the O-H mapping
also gives rise to a singular line on the wing surface, as indicated in Fig. 8. This is due
to the fact that the mesh surface that coincides with the wing is extended outside the
wing tip. The nature of this surface-bound singular line is shown in Fig. 9, and it is
typical of all H-type mappings.

If we for the moment assume that the wing trailing edge is not sharp, i.e. that the
wing is a smooth closed surface, then it is easily shown that the O-O type of mapping

Corner type- Wing reading

P_a__rab_o[ic-
!9_cj_u La_r

FIG. 8. Detail of wing surface mesh at leading edge/tip corner for the O-H mapping.

MESH GENERATION USING TRANSFINITE INTERPOLATION 719

FIG. 9. Mesh singularity caused by H-type mapping.

is unique in that it does not create any surface-bound singular line. Taking the sharp
trailing edge into account, it is evident that this edge will always be a singular line of
some sort or other, regardless of the mapping type. Since the C-O mapping type only
differs from the O-O type in that it creates a singular line along the trailing edge, it
is reasonable to say that the O-O and C-O mapping types are unique in that they
do not create any additional surface-bound singular lines.

It is clear that the existence of surface-bound singular lines of the type shown in
Fig. 9 is very undesirable as it may affect the accuracy of the boundary conditions to
a large extent. From this point of view, the other type of singular line that stretches
between two surfaces should be preferable, partly because it only affects the surfaces
at isolated points and partly because the singularity type of these lines is such that
there is a concentration of mesh points around the lines which counteracts the increase
oftruncation error. This heuristic reasoning is supported by the available computational
experience. A deeper analysis of the errors due to mesh singularities is not a trivial
task and necessarily involves the equations to be solved, the type of finite difference
scheme used, etc. An example of such an analysis is given in Eriksson 13] where the
error caused by a parabolic mesh singularity in two space dimensions is analyzed for
a linear hyperbolic model problem using central difference approximations. One result
of this work is that the so-called finite-volume method, which is a conservative
cell-oriented method, can be shown to be stable for any linear first-order symmetrizable
hyperbolic system regardless of the type of singularity involved. Furthermore, it is
possible to show that in the case of a parabolic singularity the scheme is "almost"
second order accurate when measuring the truncation error by the natural L2 norm.
These results together with the available computational experience indicate that the
interior parabolic singular lines inherent in most of the mappings considered for the
exterior wing problem can be dealt with in a satisfactory manner. In the case of the
surface-bound singular lines of the character shown in Fig. 9, a simple analysis of
truncation errors for the usual finite difference approximations reveals that these are
much more severe than the parabolic singularities. Since it is only the O-O and C-O
mapping types that do not introduce any such severe singularities, the overall conclusion
must be that these two mappings are the best, both from the viewpoint of efficiency
(as discussed in the previous section) and from the viewpoint of accuracy. Strangely
enough, the C-H mapping has so far been the most popular type for flow computations
around wings, even though this mapping has the more severe kind of singular line
along the wing tip. Possibly this may be explained by the fact that the C-H mapping
can be obtained by a simple "stacking" of 2D chordwise meshes (C-type) in the
spanwise direction, i.e. by a "quasi-3D" method. It seems clear that the price to be
paid for using such a simple mesh generation technique is high.

The topic of mesh interfaces may at first glance seem to be totally unrelated to
the topic of mesh singularities. However, it is possible to view interfaces as a more
general form of distributed singularity. In order to see this, we may consider the mesh
singularity depicted in Fig. 10a. If the mapping is forced to be smooth everywhere

720 LARS-ERIK ERIKSSON

Smooth mesh eoncentrcated sngul.ority

(al

Non-smooth distributed singutarty

FIG. 10. (a) Singular point caused by H-type smooth mapping. (b) Mesh interfaces (= distributed singular-
ity) caused by H-type nonsmooth mapping.

except at isolated points, it is clear that the result is a concentrated singularity as
shown in the figure. If on the other hand the mapping is allowed to be nonsmooth
along certain lines, the result may be as shown in Fig. 10b. The overall mapping type
of these two meshes are identical but they differ in that the second alternative gives
typical mesh interfaces where the mesh metrics are discontinuous. It is quite natural
to interpret this as a case of concentrated singularity versus a case of distributed
singularity. Obviously, the practical handling of mesh interfaces is not affected by a
change of viewpoint, but it is sometimes useful to see the overall connection between
different aspects of mesh generation.

4. Transfinite interpolation.
Theoretical background. Transfinite interpolation is a special case of multivariate

interpolation and the theory is best described in terms of projections. Consider at first
the subproblem of interpolating an arbitrary function f(x) on some interval [a, b].
Given a number of base functions (x), 2(x), ", b,(x) the interpolant g is defined
as

(1) g(x) E cdp(x)
j=l

and is required to coincide with f(x) at the points x, x2, , x in the interval [a, b]:

(2) g(x,)= cj.(x,)=f(x,),
j=l

This can be written in the more compact form

(3) Ac=d

where

i=l,’’’,n.

,(x.) .(x.) c. Lf(x.
If the problem is well-posed, A can be inverted and the coefficient vector c is

given by

(4) c=A-’d or ci= (A-’)of(xj), i= 1,’" ", n.
j=l

The interpolant g(x) is thus uniquely determined by (1) and (4)

(5) g(x)= f(x.) E (A-’)#b,(x).
j=l i--’1

MESH GENERATION USING TRANSFINITE INTERPOLATION 721

Defining a new set of functions lttl(X),""" lIl’n(X by

(6)
j=l

we obtain from (5) and (6):

(7) g(x)= f(x,),(x)
i=1

which implies that the new functions satisfy the relations

(8) ,I,,(x) ,.
From this we conclude that any well-posed univariate linear interpolation scheme can
be written in the form (7) with functions ,.-.,, that satisfy (8). An immediate
consequence of this is that two applications of the interpolation scheme give the same
result as one application"

st application.

2nd application.

g,(x) f(xi)i(x);
i=l

g2(x)= g,(x,)qi(x)
i=l

i=lj=l

f(xi),(x)= g,(x).
i=1

This means that the interpolation scheme is a projection, i.e. it defines an idempotent
linear operator such that

(9) g Y
Writing a complete univariate interpolation scheme as a projection gives a very compact
notation that makes it easy to formulate the concept of transfinite interpolation.
Consider now a function f(x, y) of two variables defined on the rectangular region
[a, b]x[c, d]. Let x and be two projections that correspond to some univariate
interpolation schemes in the x and y directions respectively. This means that the
function f coincides with f along some lines x x, x x2, , x x where
x, , x [a, b] and the function yf coincides with f along some lines y y, y
Y2, ",Y Y, where y, , y, [c, d]. An impoant propey of the projections
and y is that they commute, i.e. y y (this can easily be proved by using
formulation (7)). This means that the operator xr is also a projection, since

(xr)= xrxr xr xr.
The function xy f can be shown to coincide with f at the m x n points (x, y);
i= 1,. ., m,j 1,. ., n and is usually called the tensor product interpolant of

If we instead study the operator x + y-xr it is evident that this is also a
projection since

2 22 + xy+2xy 2y 2(x+ r-) +

722 LARS-ERIK ERIKSSON

Furthermore, the function (Trx + zry- 7rxzry)f can be shown to coincide with f along
the lines x x,..., x-x,, and y-y,...,y =y,, i.e. it combines the properties of
zrx and Try. The proof is very simple and makes use of the explicit formulation (7) of
an arbitrary univariate interpolation scheme The projection 7rx / zry- zrxzry is some-
times referred to as the Boolean sum 7rx 03 "fly of 7rx and zry and the function zr,, 03 7ryf
is usually called a transfinite interpolant because of its coincidence with f along lines
instead of at isolated points.

The concept of transfinite interpolation is easily extended to functions of more
than two variables. For three variables, the Boolean sum of the three univariate
interpolation operators Zrx, zry and Zrz is found to be

O) "o’x q’l’y qT" ’71" / q’l’y / 71" q’i’xqry q’l’xq’l" q’i’yqI" / q’i’xql’y7"l"

A useful formula for constructing the Boolean sum of an arbitrary number of operators
is the recursive algorithm

T/-I 7r

7r* zr* / 7r(I 7r *),

7r* zr2* + 7r3(I 7r*),
(ll)

It should be mentioned that the general formulation (7) and (8) of an arbitrary linear
univariate interpolation scheme is easily extended to osculatory interpolation by writing
the interpolant as

P
f(j)() g() y (x,).,(x)

= j=o

where the functions (x) satisfy the conditions

(3 x,., (x

This means that osculatory interpolation schemes like, for example, cubic Hermite
interpolation are also projections that can be combined with other projections to form
transfinite interpolants. We shall see from the applications of the transfinite interpola-
tion concept that osculatory interpolation schemes are important for mesh generation.

Application to mesh generation. The use of transfinite interpolation to generate
meshes is an unusual application of this multivariate interpolation method in the sense
that the quality" of the interpolant is not judged by its error" but rather by looking
at the general properties of the resulting mesh. In order to see this, we consider at first
the simple 2D problem of mapping an arbitrary region in x, y-space onto a rectangle
in u, v-space (Fig. 1). We assume that the mapping function f(u, v)= (x(u, v), y(u, v))
is known on the four boundaries of the rectangle, i.e. that the parametric representations
f(u, v),f(u, v),f(u, v),f(u, v)of the four boundary curves in x, y-space are defined.
The problem then consists of extending the mapping function f(u, v) from the boun-
daries to the interior of the rectangle in u, v-space. In order to construct a suitable
transfinite projection for this purpose, we must first construct some univariate interpola-
tion schemes in the u and v directions. Whatever schemes we choose, they can be

MESH GENERATION USING TRANSFINITE INTERPOLATION 723

f u,
Mappi ng y(u. v)

FIG. 11. The 2D mesh generation problem.

written in the form (7) described before:

(14)
rr,f =f(u, v)a(u)+f(u:, v)a(u),

7rvf =f(u, v)fl(v)+f(u, v2)fl2(v),

with

(15)

a,(u,) l, Ol(U2) 0

(u,) 0, (u) l,

#,(v,) , /,(v_) o,
t:(v,) o, #_(v) 1.

By forming the Boolean sum of these projections, we obtain the transfinite interpolation
scheme

=f(u,, v)a,(u)+f(u2, v)a(u)

(16) +f(u, v,)fl,(v)+f(u, Vz)/32(v)

-f(u,, v,)a,(u),(v)-f(u2, v,)az(U),,(v)

-f(u,, vz)a,(u),Sz(v)-f(u2, Vz)Cez(u)(v).

It is readily confirmed that this interpolant agrees with the given function along the
boundaries of the rectangle in u, v-space. The functions a, aa,/31, fl have to satisfy
relation (15) but otherwise we are free to choose them in any convenient way.

Before showing any examples of this transfinite interpolation scheme, it is con-
venient to describe the extension of the method to incorporate the specification of
normal derivatives of f at the boundaries. In this case we assume that the function
of/ou is known at the boundaries u u and u u2, and Of/Ov at the boundaries v v
and v v2. The univariate interpolation schemes in the u and v directions must then
be osculatory schemes and can be written in the general form:

(17)

cf(u v)oe2(u)+f(u2, O)OI3(U)’’Oo’f(u2,))O4(U"n’uf f(u,, V)a,(U)+--U ’,

f7r,f f(u, vl)[31(v)+ Of v,)2(v)+f(u, v2)fls(v)+-v(U,

724 LARS-ERIK ERIKSSON

with

a(u)=l, cei(u)=0, a(u2)=0, a(u2)-0,

a_(u,)=0, a;(u,)=, a(u:)=0, a(u)=0,
(18)

a3(u,)=0, a(u,)=0, a3(u)=l, a(u:)=0,

a4(U,) O, a(Ul) O, a4(U2) O, (U2) 1,

and similarly for , z, 3, 4.
As before, we form the Boolean sum of these two projections and obtain the

transfinite interpolation scheme

"rr,, @ "rrof "rr, + "a’o "rr,,’tr, f
off(u,, v)a,(u)+7-’-(u,, v)az(u)+f(uz, v)a3(u)
OU

of+ (uz, v)a,(u)+f(u, v,),(v)+-v(U v,)z(v)

+f(u, vz)3(v)+(u, Vz)fl4(v)-f(u,, v,)a,(u),(v)

(19)

Of(u2, OI)(/4(U)I(DOf V,)az(U)fl(v)--f(uz, V,)a3(U)(V)--OU
of
ov (u’’ v’)a’(u)(v)-ou ov

of(u,, v,)az(u)#z(v)-Uv(UZ, v,)a(u)#z(v)

of-(uz, vt)a4(u)z(v)-f(u,, vz)a,(u)3(v)--u(u,, vz)otz(u)3(v)

of ,/)2)0 (u)4())-f(uz, vz)a3(u)3(v)- (uz, I)2)O14(U)3(1))---O-(U

OU OV
of-(Ul,/)2)o2(u)4(/))--- (u2,/)2)o3(u)4(/)

OU OV

It should be mentioned at this point that for practical applications, a recursive
algorithm based on (11) is more convenient to use than the rather lengthy explicit
form (19), but it is instructive to derive the complete formula and check that the
interpolant really satisfies the boundary conditions. The transfinite interpolation
schemes (16) and (19) serve as examples to show the general principles of the method,
and in the general case, with f and any number of normal derivatives of f given on
one or several of the four boundaries, the corresponding transfinite interpolation
scheme is derived in exactly the same manner.

In order to demonstrate the superiority of the osculatory transfinite interpolation
scheme, the geometry shown in Fig. 12 is a suitable test case. Defining the four boundary
curves A, B, C, D is here equivalent to defining the functions f(u, v),f(uz, v),f(u, Vz),
f(u, v), wheref (x, y) as before. Since this parametric representation ofthe boundary
curves is nonunique, we may choose the functions in such a way that a suitable

MESH GENERATION USING TRANSFINITE INTERPOLATION 725

FIG. 12. 2D test case for transfinite interpolation. A wing, B and D combined plane ofsymmetry and
body, C outer boundary.

distribution of mesh points is obtained for a uniform discretization of u and v. Once
the mapping function f is specified at the four boundaries, we can use the simplest
transfinite interpolation scheme (16) to obtain a complete mapping in the entire domain.
A uniform discretization in u and v will then give a corresponding curvilinear mesh
in the x, y-space. The mesh obtained for the simplest possible choice of the functions
at, c2,/3,/32;

(20)
a,(u) uz- u

,(v) vz- v
U2 1,11 122 121

az(u)
u u,

z(v)
v- v,

1,12 1,11 I)2 1)1

corresponding to linear interpolation in u and v, is shown in Fig. 13. It is evident that
this mesh is not very satisfactory, even though the distribution of mesh points on the
boundaries was chosen to be reasonable (the geometry can be seen as a cross-section
of a typical airplane). The most severe flaw in the mesh is the discontinuity caused by
the two "kinks" in the boundary curves B and D. A possible way of damping the
influence of these kinks in the interior of the mesh is to alter the interpolation in the
u-direction. By constructing the functions c(u) and c2(u) such that they tend to be
very small away from the points Ul and u2, like for example

(21) a(u)= uz-u exp[_K(u,u!l, ozz(u)- u-u exp[_K(Uz-Utl"2- bll \ ’12- l/ 2- 1 \ ’12- 1

726 LARS-ERIK ERIKSSON

FIG. 13. Mesh obtained for the 2D test case using simplest possible transfinite interpolation (linear
interpolation in both u and v).

Where K is a large positive constant, we can achieve this goal as indicated by the
mesh shown in Fig. 14. Here we see the gradual damping of the kinks in the interior
of the mesh. However, this brings out the next serious flaw in the mesh. It is evident
that the distribution of mesh points in the vicinity of the wing and especially at the
wing tip is very poor. This problem is virtually impossible to solve just by altering the
functions ill(V) and fiE(V) for the interpolation scheme in the v-direction and it is
evident that the transfinite interpolation method "needs" some more information about
the mapping function in order to give the desired mesh. The natural information to
give in this case is the specification of the normal derivative off at the wing boundary
A, i.e. the function (Of/Ov)(u, v). Since f is a vector-valued function, this amounts to
the specification of both the direction of the outgoing mesh curves and the spacing of
the mesh along these lines. Obviously, this is exactly the kind of control that is desired
at a surface. To incorporate this extra information in the transfinite interpolation
scheme, we use the osculatory interpolation scheme

(22) "n’,,f =f(u, v,),(v)+(u, v,)2(v)+f(u,

in the v-direction, where 1, J2, 3 satisfy

(23)

t,(v,)=, t(v,)=o, t,(v)=o,

fl2(v,)=o, fl(Vl)=l, f12(v2)=o,

fl3(Vl)=O, fl;(Vl)=O, f13(v2)=l.

MESH GENERATION USING TRANSFINITE INTERPOLATION 727

FIG. 14. Mesh obtainedfor the 2D test case using the same method as in Fig. 13 except that the interpolation
in u is altered.

FIG. 15. Mesh obtainedfor the 2D test case using osculatory transfinite interpolation. The normal derivative

of the mapping function is specified on the wing (boundary A).

728 LARS-ERIK ERIKSSON

The simplest choice of fl,, f12, f13 are the polynomial functions

ft,(V): 1--(t--’Ul) 2,
\/32 U

(fl(v)= v-V,
2- l/

/92 --/91)

Forming the Boolean sum of the ru projection in (14) with a,, a2 given by (21) and
the cry projection (22) with fl,/32, f13 given by (24), we obtain a transfinite interpolation
scheme that allows us to specify the normal derivative of f on the wing boundary A.
Choosing this derivative such that the mesh is almost orthogonal at the wing boundary,
we obtain the mesh shown in Fig. 15. It is evident that the control offered by the
specification of normal derivatives of the mapping function makes this osculatory type
of transfinite interpolation much more attractive than the simpler method. Just to show
some further possibilities of the method, the mesh obtained by using the functions

(25)

v’=(v-v)/(v2-vl), K positive constant,

instead of those given by (24) is shown in Fig. 16 (the K-constant used in (25) does
not have to be the same as the K-constant used in (21)). The effect of using this choice
of ill,/32,/33 is to "delay" the influence of the outer boundary, i.e. the region where
the normal derivative of f on the wing boundary A controls the mesh is increased as
K is increased.

These simple 2D examples suffice to show the general principles ofmesh generation
using transfinite interpolation and to demonstrate the advantages of using osculatory
interpolation in terms of mesh control.

5. 3D mesh generation. As mentioned in 4, the derivation of transfinite interpola-
tion schemes in explicit form, like for example scheme (19) in 4, is not very practical
in the general multi-variable case since the formulas tend to be rather lengthy. It is,
however, possible to write any transfinite interpolation scheme as a recursive algorithm
composed of univariate interpolation steps. The basis of this algorithm is the recursive
relation (11) in 4 that gives the Boolean sum of an arbitrary number of projections.
Applying this relation to the three-variable case with the univariate interpolation
projections ru, ro, rw, we obtain (the ordering of ,, , w is arbitrary)

u

+(I-),
(26)

+w(I-),

MESH GENERATION USING TRANSFINITE INTERPOLATION 729

FIG. 16. Mesh obtainedfor the 2D test case using the same method as in Fig. 15 except that the interpolation
in v is altered.

If we apply these projection steps to a function f(u, v, w) and set f 7r.*f, f2 7to*f,
f3 7r’wf, "tru) "/r’v 7rwf, we get

(27)
f2=f +’tr(f-f)’

f3 f2 + 7rw(f-A),

From this we see that the final transfinite interpolant f is obtained by three successive
univariate interpolation steps.

We are now ready to treat a fully three-dimensional case of mesh generation.
Once again, we choose the problem of generating meshes around wings and wing-body
configurations as a realistic example of mesh generation using transfinite interpolation.
In particular, we choose the O-O mapping type that was described in 2 and proceed
to construct appropriate univariate interpolation schemes for this case. The mapping
function f(u, v, w)= (x(u, v, w), y(u, v, w), z(u, v, w)) that maps the physical domain
in x, y, z-space onto the computational box [u, U2] X[/)l, /’)2] X[Wl, W2] in u, v, w-space
is specified at three of the six boundary planes of this computational box (Fig. 3). The
"bottom" surface corresponds to the wing surface, i.e. f(u, v, w) is a parametric
representation of the wing surface in x, y, z-space. Just as for curves, the parametric
representation of a given surface is not unique, and the functionf(u, v, w) can therefore
be chosen in such a way that a desirable surface mesh is obtained on the wing for a
uniform discretization of the u and v variables. In the same way the mapping function
at the top of the computational box, f(u, v, WE), is a parametric representation of the

730 LARS-ERIK ERIKSSON

outer boundary and the mapping function at the side surface v v,f(u, v, w), is a
parametric representation of the combined plane of symmetry and fuselage. In addition
to these functions, we also specify the normal derivatives Of/ow(u,v,w),
02f/ow2(u, v, wl), 03f/ow3(u, v, w) on the wing surface to obtain the desired mesh
control in the vicinity of the wing. The choice of three derivatives and the generation
of these derivatives will be discussed, but at this stage we simply assume that the
derivatives are defined. The appropriate univariate interpolation schemes for this case
can now be formulated:

7ruf= 0 since nothing is specified at the boundaries u u l, u "-/’/2;

"rr,,f f u, 131,

"n’wf =f(u, v, w,)yl(W)+ O-ffff (u, v, w,)yz(w) + ozf (u, v, w,)y3(w)
Ow2

Ow

3[.O.,
(tt 13, w1)T4(w)+f(tt 13, w2)Ts(W)"OW3

with/3 (v)

/l(Wl)--1, //(Wl) "-0 /t(Wl)--" 0 //1 (Wl)--0, ’)/1 (W2) 0,

T2(WI)--0, T(W1)---1, T(WI)--0, Tt(WI)--0, T2(W2) 0,

(28)]/3(WI) 0,]/(W1) 0, T(W1)--1, T;(W,)--0, T3(w2) 0,

’)t4(Wl)---0 ’/(Wl)---0 ’y(Wl)--0 T’(w,)--1, /4(w2) 0,

]/5(Wl 0,]/(Wl) 0,]/(Wl)-" 0]/t(Wl)--0 ys(w2) 1.

Using the recursive formula (2) we can derive the desired transfinite interpolation
algorithm for this case (for convenience we reverse the ordering of the projections
77"u, 7/’v, "B"w)

0f +0ffl--"rrwf-f(u, 13, WI)’/I(W)--’-(U 13, W1)/2(W (U, 13, W1)’/3(W
O W:’OW

(29)

+ 3f0_.._ (tt, 13, Wl)T4(w)Tf(tt, 13, w2)Ts(W)OW3

A ---fl + 7rv(f--fl)=f, +(f(u, 131, W) --fl(tt, 131, W))(13),

f3=f2+ Tr,(f-f)=f2, f f3.
There are thus really only two steps involved in the final algorithm since the third

step is trivial. To complete the scheme, we must define the functions/3, y, y2, Y3, 3’4, 3’5
in accordance with the conditions in (28). Assuming that u =0, u2 1, v =0, v2 1,
wl =0, w2 1, the functions

with

(30)

fl(v)=e-K, v,
v,(w) G(w), ,(w) w- G(w),

]/4(W) =W3--G(w), Ts(w) G(w)

r,(w) =w--G(w),

G(w)
er 1- K:w-(1/2)(K2w):Z-(1/6)(K2w)

eK- K2-(1/2)K2-(1/6)K3
K,, K2 positive constants

MESH GENERATION USING TRANSFINITE INTERPOLATION 731

have been found to be satisfactory for this particular application. The constant KI
controls the rate at which the information at the v vl boundary "decays" in the
v-direction while K2 controls the asymptotic exponential behavior of the mapping
near the boundary w w2. In the physical domain, this simply means that K controls
the extent of the region where the geometry of the combined plane of symmetry and
fuselage surface influences the mesh significantly whereas K2 controls the extent of
the region around the wing where the wing data (including derivatives) influences the
mesh and also the asymptotic exponential stretching of the mesh near the outer
boundary.

Having defined the complete transfinite interpolation algorithm, we must now
consider how to generate the necessary boundary data. Specifying the mapping function
on the three boundaries in question is clearly no difficult task, since it is equivalent to
defining suitable parametric representations of the corresponding surfaces in x, y, z-
space. The specification of normal derivatives of .the mapping function on the wing
surface is not, however, quite as simple. As mentioned in 4, the derivative Of/Ow
defines both the direction of the outgoing mesh lines and the mesh spacing in this
direction. The higher derivatives O2f/Ow- and 03flOw similarly control the curvature
of the outgoing mesh lines and the rate of change of the mesh spacing. Obviously
these quantities cannot be generated in a point by point fashion and it is therefore
necessary to construct them by combining a small number of basic distributions. For
this particular application, it turns out that the derivatives can be generated by very
simple formulas, controlled by a small number of parameters. These formulas are
based on the behavior of 2D orthogonal mappings around ellipses. Choosing an
arbitrary ellipse with ellipse constant e (Fig. 17), we find that any orthogonal mapping

FIG. 17. Schematic of the simple ellipse geometry for which the normal derivatives of orthogonal mapping

functions can be computed exactly.

function f(u, w)= (x(u, w), y(u, w)) that maps the infinite region outside this ellipse
onto the semi-infinite strip u =< u -< u2, 0=< w-<, has normal derivatives Of/Ow(u, 0),
(02f/Ow2)(u, 0), (03f/Ow3)(u, 0), on the ellipse boundary that can be written as

Ox
kex,

Oy +/-kx/a x2,
Ow Ow

oZx
k2x,

02y k2ex/a2
X
2(31)

Ow2- Ow
2-+/-

03X
k 03Y kax/a2

X2,
(9 W

ex,
0w

+/- etc.

where k is an arbitrary scale factor and the plus-minus sign indicates different signs
on the upper and lower boundary. This means that for an ellipse the specification of
any number of normal derivatives of the mapping function is a simple matter if an
exactly orthogonal mesh is desired. However, it is also possible to apply these formulas

732 LARS-ERIK ERIKSSON

to any "approximation" of an ellipse, like for example an airfoil shape, if we do not
require exact orthogonality. Furthermore, by varying the parameters k and e smoothly
between the leading and trailing edges of the airfoil, the behavior of the mesh at these
edges can be adapted to the local radius of curvature. This technique has proved to
give very satisfactory mesh control for 2D meshes around airfoils. Before discussing
how to apply this technique to 3D wings, it is appropriate to demonstrate its validity
in the 2D case. Fig. 18 shows a typical mesh around an airfoil generated by a 2D
version of the transfinite interpolation method, which uses the extra information
provided by the first, second and third normal derivatives of the mapping function at

FIG. 18a. Example of 2D mesh around airfoil generated by osculatory transfinite interpolation. The first,
second and third normal derivatives of the mapping function are specified on the wing boundary.

FIG. 18b. Detail of the mesh in Fig. 18a showing the leading edge region.

MESH GENERATION USING TRANSFINITE INTERPOLATION 733

the airfoil boundary, just as the corresponding 3D method (29). These derivatives were
generated by the techniques described above and required no more than five parameters
to be defined. To give an idea of the flexibility offered by this technique, various choices
of the local behavior of the mesh at the trailing edge of an airfoil are shown in Fig. 19.

Since any chordwise section of a fully three-dimensional wing is an airfoil, the
natural way of extending the technique described above to the 3D case is to apply it
in a "section by section" manner from the wing root out to the wing tip. By this we
mean that for each wing section, the corresponding projection of the normal derivatives
of the mapping function are generated by the simple 2D technique for airfoils. The
remaining component of these derivatives, essentially the spanwise component, must
then be determined by some additional conditions. Over the major part of the wing
(all but the outermost tip region) this spanwise component can be set to zero, and it
is only in the tip region where a more refined method is needed to specify both the
chordwise and the spanwise components of the normal derivatives of the mapping

FIG. 19. Examples of meshes at the trailing edge of an airfoil showing the flexibility of the method.

function. Since the O-O mapping type is such that the mesh wraps around the wing
tip also, it is desirable to obtain a mesh that is nearly orthogonal at the tip. This can
be achieved to a high degree by again using the idea of copying the behavior of an
orthogonal mesh around an ellipse, i.e. by adjusting the chordwise and spanwise
components of the normal derivatives according to (31). Just as in the 2D case, the
overall technique gives very satisfactory mesh control for a 3D wing with a minimum
of parameters to specify.

Before showing some examples of 3D meshes generated by the present method,
some words should be said about the outer boundary and the combined plane of
symmetry and fuselage. As stated before, the specification of the mapping function at
the top of the computational box, the surface w w2, is equivalent to the construction
of a parametric representation of the outer boundary in x, y, z-space. This can be done
either by direct algebraic construction or by interpolation. In this work, transfinite
interpolation was chosen, i.e. the outer boundary was generated by interpolating
between a set of curves in x, y, z-space. Since the outer boundary surface mesh must
have the same tOpological structure as the wing surface mesh, it follows that it must
have two mesh singularities of parabolic type. Using an osculatory type of transfinite
interpolation like scheme (19), it is possible to generate a very smooth surface mesh
with exactly the "correct" type of singularity. An oblique view of such a surface mesh
is shown in Fig. 20. The other surface to be defined, the combined plane of symmetry

734 LARS-ERIK ERIKSSON

FIG. 20. Oblique view of the outer boundary surface mesh showing one of the two parabolic singularities.

and fuselage, presents some minor difficulties that should be remarked upon. In the
wing alone case, when the wing root coincides with the plane of symmetry, the simplest
way of obtaining a suitable surface mesh for this plane is to "project" the innermost
mesh surface generated by the first step in the interpolation scheme (29) onto the plane
of symmetry. In terms of the mapping function f(u, v, w), this amounts to defining
f(u, 1)1, W) as the geometric projection of f(u, v, w), where f 7rwf, onto the plane
of symmetry. The advantage of this method is that it simplifies the specification of the
function f(u, v, w). Since the normal derivatives off at w w in practice are specified
such that the function f(u, v, w) already coincides with the plane of symmetry, the
second step of the interpolation scheme (29) actually drops out altogether. In other
words, the wing alone case only needs the first step of scheme (29) if the normal
derivatives off at the wing surface are specified in the right way. In the wing-fuselage
case, the combined plane of symmetry and fuselage surface must be specified in some
practical way. Perhaps the simplest method is to use the same geometric projection
idea as for the wing alone case, i.e. to project the intermediate function fl(u, vl, w)
onto the combined plane of symmetry and fuselage surface, using some kind of oblique
geometric projection, and defining this projection as the desired function f(u, v, w).
The reason for using an oblique geometric projection method is to obtain a concentra-
tion of mesh points around the fuselage. It is clear that the resulting surface mesh
conforms to the combined plane of symmetry and fuselage surface but it is not aligned
with the curve where the fuselage intersects the plane of symmetry. This type of surface
mesh is consistent with the idea of representing the fuselage as a "bump" in the plane
of symmetry. To obtain a more accurate fuselage representation, the surface mesh
obviously must be aligned with the intersection curve, i.e. this curve must coincide
with a mesh line. In this work, the simpler alternative was chosen since it was judged
to give enough resolution for the problem at hand.

Computed examples. The first computed example is an O-O type mesh for the
Onera M6 wing without any fuselage. An oblique view of three constant-v mesh

MESH GENERATION USING TRANSFINITE INTERPOLATION 735

PARABOLIC SINGULAR LINES

FIG. 21. Oblique view of three chordwise (constant-v) mesh surfaces ofan 0-0 mesh for the Onera M6
wing. Only upper halves are shown.

FIG. 22. Planar view of the innermost chordwise mesh surface (v v) of the same mesh as in Fig. 21.
The bottom figure shows a detail of the top figure.

736 LARS-ERIK ERIKSSON

surfaces (Fig. 21) shows the characteristic structure of this mapping type in the physical
domain. The innermost mesh surface (v v) lies in the plane of symmetry, the
outermost mesh surface (v v2) lies in the horizontal wing plane and the intermediate
mesh surface indicates how these surfaces vary in between. Considering that only the
upper halves of the surfaces are shown, it is clear that as v approaches the upper limit
v2, the corresponding mesh surface "collapses" into a coordinate cut outside the wing
tip. The resulting parabolic singular lines at the edges of this coordinate cut are
indicated in the figure. Fig. 22 shows a planar view of the innermost surface (v v)
while Fig. 23 presents a planar view of a constant-u surface. The latter figure shows

FIG. 23. Planar view ofa spanwise (constant-u) mesh surface of the same mesh as in Fig. 21. The bottom
figure shows a detail of the top figure.

the behavior of the mesh around the wing tip. The surface mesh on the wing as seen
from above is presented in Fig. 24, together with an oblique and planar view of the
tip region that clearly shows the parabolic singularity at the leading edge/tip corner.

The next example is an O-O type mesh for a wing-body configuration. A planar
view from above of some mesh surfaces is shown in Fig. 25. The surface mesh on the
fuselage is here visible and it can be seen that this mesh is not aligned with the
intersection between the fuselage and plane of symmetry. A planar view of a constant-u
surface (Fig. 26) shows how the mesh conforms to the combined plane of symmetry
and fuselage surface.

MESH GENERATION USING TRANSFINITE INTERPOLATION 737

FIG. 24a. Vertical view of wing surface mesh for the same mesh as in Fig. 21.

FIG. 24b. Two different views of the tip region of the wing surface mesh in Fig. 24a. The parabolic singular
point at the leading edge/tip corner is clearly visible.

In order to demonstrate the applicability of the present mesh generation method
to other cases, an O-O type mesh for a delta wing is shown in Fig. 27. The structure
of the mapping in this case is slightly ditterent from that in the ordinary wing case,
but it is similar in that the entire wing surface (both upper and lower surface) is
mapped to the bottom surface of the computational box and the outer boundary is
mapped to the top surface. The difference is that the plane of symmetry is here mapped
to two opposing side surfaces instead of just one. In principle this would generate two
parabolic singular lines in the mesh, but due to the triangular planform, one singular
line is of polar type instead. This is clearly visible in the figure, where a number of
constant-v mesh surfaces are shown. Just as for the ordinary wing, the transfinite
interpolation scheme for the delta wing uses normal derivatives ofthe mapping function
on the wing surface to control the mesh, and these derivatives are generated by the
same technique.

738 LARS-ERIK ERIKSSON

FIG. 25. Vertical view of certain mesh surfaces of an 0-0 mesh for a wing-body configuration.

FIG 26. Planar view of a spanwise (constant-u) mesh surface of the same mesh as in Fig. 25.

MESH GENERATION USING TRANSFINITE INTERPOLATION 739

PARABOLIC SINGULAR LINE

SPANWISE GRIO
SECTION

FIG. 27a. Oblique view ofspanwise mesh surfaces ofan 0-0 mesh for a delta wing. Also shown is a detail

of one of these mesh surfaces.

POLAR SING-
ULAR LINE

FIG. 27b. Oblique view of the upstream part of the same mesh as in Fig. 27a.

740 LARS-ERIK ERIKSSON

6. Concluding remarks. The transfinite interpolation method is clearly an
extremely flexible tool for generating meshes in both two and three space dimensions
and the particular applications described in this work are to be seen as examples of
what can be accomplished with this tool. As far as the theory ofthe method is concerned,
there is not much to be added to what has already been said, except for a few comments
about "consistency of boundary data." In the derivation of the transfinite interpolation
scheme, the given boundary data was assumed to be consistent, i.e. the specification
of the function to be interpolated (including any normal derivatives) on the boundaries
was assumed to be such that no contradictions occurred at the intersections between
different boundaries. This is an important condition because the recursive formulation
of the transfinite interpolation method is independent of the order in which the
successive univariate interpolation steps are taken only if this condition holds. In
connection with the theory it should also be mentioned that the omission of any error
analysis, which is usually considered to be an integral part of any interpolation method,
is deliberate and motivated by the fact that for mesh generation, the interpolant
(=resulting mesh) is not judged by looking at some sort of error but rather by looking
at some relevant mesh properties. From this viewpoint, the transfinite interpolation
method is only the means of achieving the desired mesh whereas the control of the
generated mesh lies almost exclusively in the generation of boundary data. A good
example of this is the described 3D wing case, where the generated normal derivatives
of the mapping function on the wing surface provide an excellent mesh control in the
vicinity of the wing. This case is also typical in a practical programming sense; the
actual coding of the transfinite interpolation scheme does not take more than 25
FORTRAN statements whereas the complete boundary specifications including normal
derivatives takes of the order of a thousand statements.

Software distribution. A user-oriented computer program of this 3D mesh gener-
ation method is commercially available for public use on a number of different
computers, among others several Control Data CYBER 205 systems throughout the
world including the CYBERNET machines in Minneapolis and Paris. For more
information contact Mr. D. Astertun, Control Data, Box 7, 163 93 Stockholm, Sweden,
Tel. (08) 752 00 20.

REFERENCES

[1] Numerical grid generation techniques, NASA CP 2166, 1980.
[2] J. F. THOMPSON AND Z. U. A. WARSI, Boundary-fitted coordinate systems for numerical solution of

partial differential equations--a review, J. Comput. Phys., 47 (1982), pp. 1-108.
[3] S. A. COONS, Surfaces for computer aided design of space forms, Project MAC, Design Div., Dept. of

Mech. Engineering, MIT, 1964, Revised to MAC-TR-41, 1967.
[4] W. J. GORDON, Blending-function methods ofbivariate and multivariate interpolation and approximation,

SIAM J. Numer. Anal., 8 (1971), pp. 158-177.
[5] W. J. GORDON AND C. A. HALL, Construction of curvilinear coordinate systems and applications to

mesh generation, Int. J. Numer. Method Engrg., 7 (1973), pp. 461-477.
[6] M. A. GERHARD, OASIS, A general purpose mesh generatorfor finite element codes, M-101, Lawrence

Livermore Lab., Univ. California, 1979.
[7] P. G. ANDERSON AND L. W. SPRADLEY, Finite difference grid generation by multivariate blending

function interpolation, Numerical Grid Generation Techniques, NASA CP 2166, 1980.
[8] L. W. SPRADLEY, J. F. STALNAKER AND A. W. RATLIFF, Solution of the three-dimensional Navier-

Stokes equations on a vector processor, AIAA J., 19 (1981), pp. 1302-1308.
[9] L. E. ERIKSSON, Three-dimensional spline-generated coordinate transformations for grids around wing-

body configurations, Numerical Grid Generation Techniques, NASA CP 2166, 1980.

MESH GENERATION USING TRANSFINITE INTERPOLATION 741

[10] L. E. ERIKSSON, Generation of boundary-conforming grids around wing-body configurations using
transfinite interpolation, AIAA J., 20 (1982), pp. 1313-1320.

[l l]L. E. ERIKSSON AND A. W. RIZZI, Computation of vortexflow around wings using the Euler equations,
Proc. the Fourth GAMM-Conference on Numerical Methods in Fluid Mechanics, H. Viviand, ed.,
Vieweg Verlag, Paris, Oct. 1981.

[12] A. W. RIZZI, Damped Euler-equation method to compute transonic flow around wing-body combinations,
AIAA J., 20 (1982), pp. 1321-1328.

13] L. E. ERIKSSON, A study of mesh singularities and their effects on numerical errors, FFA Tech. Note
TN 1984-10, Stockholm, 1984.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 3, July 1985

1985 Society for Industrial and Applied Mathematics
016

A COMPARISON OF ELLIPTIC SOLVERS FOR GENERAL
TWO-DIMENSIONAL REGIONS*

TONY F. CHANf AND FAISAL SAIEDf

Abstract. We present results of some numerical experiments performed to compare the relative efficiency
and storage requirements of some elliptic solvers on general two-dimensional regions. The techniques
employed by the solvers included: capacitance matrix techniques, sparse matrix techniques, multi-grid
techniques and preconditioned conjugate gradient techniques. Special emphasis is placed on the many
right-hand side case, as motivated by applications to time simulation studies.

Key words. Poisson equation, irregular domains, multiple right-hand sides, sparse matrix methods,
capacitance matrix methods, pre-conditioned conjugate gradient methods, multi-grid methods

1. Introduction. The advent of fast elliptic solvers [24], [25] in the past decade
has tremendously advanced the state of the art of the field of numerical simulation of
dynamical physical systems. One of the major applications has been in computational
fluid dynamics. Here, various versions of the Navier-Stokes equation are solved and
at each time step an elliptic system governing either the pressure field or the stream
function has to be solved, which often constitute a major part of the computational
cost. Unfortunately, these fast solvers have a rather limited domain of applicability,
one of which is the restriction to rectangular domains. With the success of using fast
solvers becoming widespread, many users are starting to attempt more realistic simula-
tions on more general domains. Since fast solvers cannot be used directly on irregular
domains, alternative methods have to be used. One method that has worked very well
is the Capacitance Matrix (CM) Method [21], which embeds the irregular domain
within a rectangle and exploits the speed of a fast solver on the latter. However, the
work involved is substantially more than in the rectangular case, thus raising the
possibility that other alternative methods, which may not have been competitive on
rectangular domains, may be competitive in this new situation. Among these are Sparse
Matrix (SM) methods [8], [11], [14], Multi-grid (MG) methods [2], [3], [13] and
Preconditioned Conjugate Gradient (PCG) methods [4], 12], 17], 18]. In this paper,
we shall report the results of some numerical experiments designed to compare the
relative performance of these competing methods in terms of computing time and
storage requirements. Comparisons of elliptic solvers have been carried out before,
primarily on rectangular domains and for one-shot problems [23]. In our study, special
emphasis has been placed on irregular domains and situations where the same problem
has to be solved many times with different right-hand sides, such as in a time simulation
environment. To the best of our knowledge, such a comparison has not been published
before.

Since the efficiency of these methods is rather sensitive to implementation details,
we have employed publicly available computer packages embodying each of the above
mentioned numerical techniques in carrying out these experiments. Our criteria for
choosing the particular codes have been that the code (or the technique behind the
code) be recognized as representative and competitive, and the ease of obtaining the

* Received by the editors June 13, 1983, and in revised form March 21, 1984.

" Computer Science Department, Yale University, New Haven, Connecticut 06520. This work was
supported in part by the Office of Naval Research under grant N00014-80-C-0076 under a subcontract from
Florida State University and in part by the U.S. Department of Energy under grant DE-AC02-81ER 10996.

742

ELLIPTIC SOLVERS FOR TWO-DIMENSIONAL REGIONS 743

code. Only finite difference discretizations have been considered. We have not con-
sidered the issue of vectorization for machines like the Cray-1. Due to implementation
details, variations in machine architecture and compiler features, there is always the
danger of drawing conclusions that are too general from an em.pirical comparison like
this one. Nevertheless, we hope that such comparisons can still serve a useful purpose
by giving indications as to the relative performances of competing algorithms.

In 2, we describe the model problem and the discretizations used in the numerical
experiments. The next four sections (3-6) then describe briefly the essential features
of the four competing methods and their potential trade-offs in terms of speed and
storage. Section 7 summarizes the theoretical space and time complexity of the various
methods and serves as a basis for comparing them. The results of the numerical
experiments are presented in 8, and we try to draw some conclusions in 9.

2. The model problem. We consider the problem

(1)
u =f in the domain f,

u g on the boundary of f,

where is a linear, two-dimensional elliptic operator, and F and G are given functions.
Depending on the particular solver, the problem class has to be appropriately

restricted. For the CM method, has to be separable, so that a fast solver can be
used on a rectangle. The MG package we used restricts to be the Helmholtz operator.
For the SM and PCG methods, can be rather general. Except for the MG solver,
the domain can also be quite general, e.g. not simply-connected. Without loss of
generality, we assume that f/ can be inscribed in the unit square, R, on which we
impose a uniform grid with n intervals on each side. The mesh-width is thus equal to
1/n. We denote the number of grid points inside f by N. An inner grid point is called
irregular, if one or more of its neighbors is not an interior point. The number of irregular
points is denoted by p.

To discretize (1), we use the standard 5-point centered finite difference discretiz-
ation for the interior grid points. For the irregular points, we normally use the
Shortley-Weller formula, which has second order accuracy, and is also used by the
CM and MG packages. However, since our test problems all involve self-adjoint
operators which give rise to symmetric discretization matrices, the use of the Shortley-
Weller formula sometimes destroys this symmetry. For some of the methods which
crucially depend on this symmetry, namely the SM and the PCG method, we also use
a less accurate boundary approximation to preserve the symmetry in order to fully
exploit the power of the methods. This boundary approximation amounts to modifying
the boundary of f/so that it lies on the grid lines.

With the above discretization, we obtain the following N by N system of linear
equations for the grid-valued vector Uh:

(2) Ahtlh b.

We note that if the Shortley-Weller formula is used, all four methods solve the
same linear system (2), although with different accuracy.

3. Sparse Gaussian elimination. In this class of methods, the linear system (2)
obtained by discretizing the partial differential equation (1) is solved directly using
Gaussian elimination. This approach was not feasible for large problems until the
development of special sparse matrix techniques that do not store or operate on the
zeros of the matrix [8J, [14]. The usual factor and solve phases are preceded by a

744 TONY F. CHAN AND FAISAL SAIED

preprocessing phase which operates on the sparsity pattern of Ah. In this phase, the
rows and columns of Ah are permuted, usually with some heuristic strategies, to reduce
the fill-in that arises in the subsequent factorization. Thus we have:

(3) PAhQ- LU

where L is lower triangular and U is unit upper triangular. The solve phase then
consists of two back-substitutions:

(4) Ly= Pb, Uz= y, Uh- QZ.

The factorization phase is usually more time consuming then the solve phase. Moreover,
even with a good ordering strategy, the amount of fill-in may still be substantial, thus
increasing the storage overhead. However, if several systems with the same matrix
have to be solved, the LU factors need only be computed once. This is the most
important advantage of this class of methods. Note that the factorization phase can
also take advantage of systems with the same sparsity pattern but different numerical
entries, such as in elliptic systems with time dependent or nonlinear coefficients.

The sparse matrix program that we tested is the Yale Sparse Matrix Package
(YSMP) 11]. It uses the minimum degree ordering algorithm to symmetrically reorder
the rows and columns of A and assumes that no pivoting is needed for maintaining
numerical stability. It has one driver (SDRV) for symmetric systems and three drivers
(TDRV, NDRV and CDRV) for nonsymmetric systems. The nonsymmetric drivers
offer different trade-offs between storage and work. We give the results for NDRV and
CDRV, both of which are more suitable for the many right-hand side cases. CDRV
has a smaller storage requirement than NDRV but needs more computation time
because of a compressed storage format. The symmetric driver SDRV needs about half
as much storage and time for the preprocessing and factoring as the nonsymmetric
ones. The speeds of the solve phases are roughly the same.

4. Capacitance matrix methods. Capacitance matrix methods were developed in
an attempt to exploit the advantages of fast elliptic solvers for solving problems on
nonrectangular domains [21]. In this approach, the domain [l is embedded in a rectangle
R with a uniform mesh. Let B be the matrix that represents the discretization of the
elliptic operator on R and let A be the matrix corresponding to extending Ah to R
with u and b the corresponding extended solution and right-hand side. Then it can
easily be verified that A differs from B by a low rank correction matrix corresponding
to the irregular points on the boundary"

(5) A B + WZT,

where the matrix W represents an extension operator that maps [l onto R and the
matrix Z can be regarded as a compact representation of A-B. Note that both W
and Z are sparse and thus their applications to grid-valued vectors are relatively cheap.
The capacitance matrix technique can be viewed as applying the Sherman-Morrison-
Woodbury formula to (5):

(6) A-’ B-’[I + W(I + ZTB-l W)-’ZTB-I].
The solution u A-b can then be computed by two solves with the matrix B (e.g. by
a fast solver for rectangular regions) and one solve with the p by p capacitance matrix"

(7) C=I+ZTB-’W.
For the many right-hand side case, the capacitance matrix C can be computed and
factored once and its LU factors stored for repeated back-substitutions. Note that C

ELLIPTIC SOLVERS FOR TWO-DIMENSIONAL REGIONS 745

is dense and nonsymmetric in general. However, since p is usually much smaller than
N, factoring and solving with C is usually much cheaper than doing the same things
with Ah. Thus, the efficiency of the capacitance matrix method derives from exploiting
the lower dimensionality of the boundary of the irregular region and the speed of a
fast solver on a rectangular region.

The capacitance matrix program that we tested is a revised version of the routine
HELMIT written by Proskurowski [22]. This code solves the Helmholtz equation with
constant coefficients and can handle both Dirichlet and Neumann boundary conditions.
The storage requirement is p2 + n2 + O(p). The underlying fast solver is based on FFTs
which restrict the mesh width to powers of two. The package includes a subroutine
HLMHLZ, which solves the capacitance matrix equation by applying a conjugate
gradient method to the normal equation for C. This has a smaller storage requirement
than HELMIT (since C is not stored), but requires two fast solves per conjugate
gradient iteration. Our numerical experiments showed that it is not competitive for the
multiple right-hand sides case and therefore the results will not be presented. Recent
work on preconditioning the capacitance matrix may make these methods more
competitive for the multiple right-hand sides [27].

5. Multi-grid methods. This is the class of optimal order methods described in [3]
that are based on relaxation sweeps on a hierarchy of grids. Relaxation methods for
solving linear systems of equations, due to their "local" nature, can rapidly damp out
errors whose frequencies are high compared to the mesh width, but slow down after
that. Multi-grid techniques can be viewed as using a hierarchy of coarser grids to
smooth out the lower frequency errors, and derive their efficiency from the fact that
smoothing relaxation sweeps on these coarser grids are much cheaper to carry out
than on the fine grid. For rather general elliptic problems, these methods have been
proven to be "optimal order", that is, they take only O(N) arithmetic operations and
storage to reduce the error to truncation error level [2], [3], [7], [16].

Although multi-grid methods have very nice theoretical properties, their
implementations are by no means straightforward, as witnessed by the small number
of general purpose multi-grid codes that are available. Our tests were carried out with
the MG01 code from the G.M.D. in Germany [26]. This package solves the Dirichlet
problem for the Helmholtz equation on a domain which is specified by two functions
fl(x) and fh(x) that define the lower and upper boundaries, respectively. As a result,
it cannot handle domains with "holes" in them. The method implemented is a fixed
version of the Full Multi-Grid (FMG) method which starts from the coarsest grid and
works its way up to the finest grid, using the solution obtained from a coarse grid as
the initial guess for the next finer grid. Theoretically, it computes a solution that is
accurate to truncation error level. On the coarsest grid, MG01 uses Gauss-Seidel rather
than a direct solver. The program allows the user to adapt to the difficulty of a given
problem by providing a complexity parameter (ITYP), which can take on values from
to 4 (the higher values are recommended for problems with highly oscillatory solutions

or very irregular domains). ITYP controls the number of relaxation sweeps performed
on each level after the (h 2h) and (2h- h) transfers. The smoothing sweep used is
Gauss-Seidel with red/black ordering. For the grid transfers, linear interpolation is
used for the (2h h) transfer, except when a finer grid is visited for the first time, in
which case cubic interpolation is used, and half residual weighting is used for the
(h 2h) transfer with the following operator:- 4

0

746 TONY F. CHAN AND FAISAL SAIED

The package can be run either in the Full Approximation Storage (FAS) mode or in
the Correction Storage (CS) mode. Our tests were conducted using the CS mode
because it is applicable to linear problems and is faster.

It should also be pointed out that the MG01 code does not offer any savings for
multiple right hand sides. Moreover multi-grid methods are of optimal order only
when computing the solution to truncation error level. Foerster, Stiiben and Trottenberg
[13] found that the solution vh computed by MG01 satisfies

(9) IIv,-u*ll=<-kllu-u*ll. with < k=<2,

where u* is the exact solution of the partial differential equation (1), Uh is the exact
solution of the discretized linear problem (2) and k is independent of h. On the other
hand, the results of Dendy and Hyman [6] indicate that multi-grid methods need
substantially more (by a factor of 4 or 5) time to compute a solution with a small
residual (e.g. discrete 2-norm <-10-6). Whether an accuracy at the level of truncation
error level is enough depends on the particular application. In time simulations, a

good predictor is often available and a moderate accuracy in the corrector may be
good enough to control the stability of the time integration. The optimal stopping
criterion iteration remains an open question.

6. Preconditioned conjugate gradient methods. Conjugate gradient methods,
originally designed as a direct method for symmetric positive definite linear systems
[17], have been resurrected in the last ten years as a fast iterative method for solving
large sparse systems, especially when used with preconditioning techniques ([4], [12],
[18], and references therein).

The basic Conjugate Gradient (CG) method solves a symmetric positive-definite
system, Ax b, iteratively, and is optimal in the sense that it minimizes the A-norm
of the error in the ith Krylov subspace at the ith iteration. The sparsity of the matrix
is exploited by only requiring a routine for computing a matrix-vector product. The
performance of the CG method is known to depend, often sensitively, on the symmetry,
positive definiteness and the distribution of the eigenvalues of the coefficient matrix,
A. In fact, until recently [51, 12], 18], [28], relatively little was known about applications
to nonsymmetric problems. For one-shot large elliptic problems, the method has proven
to be competitive with direct methods. However, as is true for many other iterative
methods, one potential drawback of the CG method is its inability to take advantage
of multiple right hand sides beyond saving the preconditioning matrix (or its factors).
Although some information about the Krylov subspace can be saved and block methods
have been devised to exploit multiple right-hand sides [20], it is not easy to exploit
the information gathered from previous iterations, since, in a time simulation, not all
the right-hand sides are known simultaneously.

The code package that we have chosen for the CG method is the PCGPACK
produced at Yale (Elman, 12])). It handles general nonsymmetric systems and contains
a large number of the known competitive CG algorithms and preconditioning tech-
niques. We use the basic Conjugate Gradient method. Only the symmetric discretization
of the partial differential equation was used, since this case fully exploits the power
of the CG method. The results obtained can be regarded as lower bounds for the work
in the general nonsymmetric case.

We shall present results computed by two preconditioning techniques, namely the
Dupont-Kendall-Rachford (DKR) preconditioning [9], [15], which is related to the
class of Incomplete Cholesky factorization methods 19] and the Symmetric Successive
Over-Relaxation (SSOR) preconditioning technique [1], which requires less storage.

ELLIPTIC SOLVERS FOR TWO-DIMENSIONAL REGIONS 747

As tests reported in 12] show, these are representative of the most successful precon-
ditionings for elliptic problems. The storage requirement of the PCG method is
essentially O(N) with a relatively small constant (< 10).

Since the PCG method is an iterative method, the stopping criteria has to be
specified. In our tests, we stop the iterations when the residual is reduced by a factor
e. In the numerical results that we present, we have chosen e to be 10-6. We also give
the times the PCG method takes to achieve the same relative residuals as the MG
algorithm.

7. Complexity. In Table 7.1, we summarize the complexity of the four competing
methods in terms of the number of arithmetic operations and storage requirements.
Although all the estimates are asymptotic, they do serve as a basis for comparing the
algorithms.

TABLE 7.1
Theoretical complexitv of the algorithms.

Factor

New RHS

Storage

SM (*)

O(n3)

O(tl log n)

O(rl log n

CM

p3/3+
O(n log n)

O(n log n) +
p2

p2 + n

MG

none

O(n2)

PCG

O(n2)

O(tl
2’5 log / e))

O(n 2"s log n), if e O(n -2)

O(n2)

p number of irregular points.
n / mesh-width.

e reduction factor in error.
(*) => with nested dissection.

In deriving these results, we have assumed that the number of unknown grid
points, N is O(n2). The estimates for the SM method are based on the nested-dissection
ordering [14]. The ordering routine in YSMP produces a minimum degree ordering
but it is not known whether it achieves the nested-dissection storage estimate,
O(n2 log (n)). The estimates for the CM method are based on a direct LU factorization
of the capacitance matrix C. The estimates for the MG method are for reducing the
error to truncation-error level [13]. The new right-hand side estimate for the PCG
method is based on well-known estimates for model elliptic problems (e.g. Poisson’s
equation on a rectangle) [4]. The parameter e is the reduction factor in the residual
ofthe iterates used in the stopping criterion. The results for stopping at truncation-error
level are obtained by setting e O(n-2).

From Table 7.1, one can see that the MG method has optimal asymptotic com-
plexity in both storage and work. However, the work estimate only holds if one solves
to truncation-error level, which may not be adequate in a time-simulation context.
Besides, practical implementations of MG are rather complicated, resulting in large
constants in the operation counts. It is also not clear how to take advantage of multiple
right hand sides.

For the PCG method, the constants involved in the complexity bounds are usually
quite small. However, it is not easy to take advantage of multiple right-hand sides
other than by using previous direction vectors [20] or by reusing the preconditioner,
which unfortunately is equivalent to only a few iterations and is usually not a dominant
part of the total work.

The computational costs for the SM and the CM methods are also equal in
complexity, whereas the storage for the SM method is higher. The actual cost of the

748 TONY F. CHAN AND FAISAL SAIED

CM method is dependent on p, the number of irregular boundary points. In this study,
we have assumed a rather general domain, implying that p cn with c -4. With this
value of p, we see that the part of the complexity for the CM method that depends
on p (i.e. the part that relates to the capacitance matrix) can be dominant over the
FFT part in the preprocessing stage. Thus, the total work for CM method may be
higher than that for the SM method.

As we shall see in the next section, the above observations are borne out by the
results of the numerical experiments.

8. Numerical experiments. In this section, we present the storage requirements
and CPU times of the methods tested. The test problem was

-Au=f infl and u=0 on the boundary offl

with f= 1.
The tests were conducted in single precision (27 bit mantissa) using optimized

Fortran on a DEC-2060. All times are in milliseconds. The three domains used in the
tests are shown in Fig. 8.1.

The tests were run with a uniform grid imposed on the unit square that enclosed
the domains with n 16, 32, 64. For the methods and domains for which the storage
was adequate, the problem was also solved with n 128. In Table 8.1, the corresponding

Domain

0.1 0.6 0.9

Domain 2

0.9

0.1

0.5
Domain 3

FIG. 8.1. Computational domains.

TABLE 8.1
Problem size.

Domain

3

N
P

N
P

N
P

16

136
43

144
47

129
32

32

511
87

544
95

64

2113
181

2240
199

509 2061
72 144

128

8594
369

9088
407

8245
288

N Total number of grid points in domain.
P Number of irregular points in domain (points with one or more neighbors

outside domain).

ELLIPTIC SOLVERS FOR TWO-DIMENSIONAL REGIONS 749

values of N and p are tabulated for these domains. Note that indeed N O(n2) and
p O(n). Figs. 8.2, 8.3, and 8.4 give the storage requirements for the various methods
for each domain, Figs. 8.6, 8.7 and 8.8 give the corresponding preprocessing times and
Figs. 8.9, 8.10 and 8.11 give the corresponding times to solve for new right-hand sides.
In these plots, we have plotted storage and time per inner grid point (N) versus n.

5TBRflGE [DOMflIN i)

1 o O0 120

n SDRV
B NORV
C CDRV
D CM
E MG
F PCG/DKR
G PCG/SSOR

FIG. 8.2. Domain 1. Storage per grid point vs. n.

5TORFIGE {DBMRIN 2}

10 o I00 120

SORV
B NDRV
C CDRV
D CM
E MG
F PCGIDKR
G PCGISSOR

FIG. 8.3. Domain 2. Storage per grid point vs. n.

750 TONY F. CHAN AND FAISAL SAIED

5T@RflGE (DOMflIN 3)

;o ,’o io io ,oo

SDRV
B NDRV
C CDRV
D CM
E MG
F PCG/DKR
G PCG/5SBR

FIG. 8.4. Domain 3. Storage per grid point vs. n.

I00

80

80

0

20

YSMP 5TIRAGE (DOMAIN 2)

;o ’o ’o ’o ’,oo

R SDRV TOT#L
B LU FRCTORS
C NDRV TOTRL
D LU FnCTBRS

FIG. 8.5. YSMP: Breakdown of storage.

ELLIPTIC SOLVERS FOR TWO-DIMENSIONAL REGIONS 751

l0

PREPRBCESSING TIME {DOMFIIN i)

10

R SDRV
B NDRV
C CDRV
D CM

FIG. 8.6. Domain 1. Preprocessing time vs. n.

l0

PREPROCE551NG TIME (DIMAIN 2)

10

SDRV
B NDRV
C CDRV
D CM

FIG. 8.7. Domain 2. Preprocessing time vs. n.

752 TONY F. CHAN AND FAISAL SAIED

10t

PREPROCE$SING TIME (DOMAIN 3)

A SDRV
B NDRV
C CDRV
D CM

FIG. 8.8. Domain 3. Preprocessing time vs. n.

I0

IME FOR NEN R.H.S. (DOMAIN 1]

n SDRV
B CM
C MG (ITYP I)
D MG (ITYP q)
E PCG/DKR (T@ REDUCE RESIDURL BY I0(-6)
F PCG/SSOR (TO REDUCE RESIDURL BY

FIG. 8.9. Domain 1. Time for new RHS vs. n.

ELLIPTIC SOLVERS FOR TWO-DIMENSIONAL REGIONS 753

IME FIR NEN R.H.S. [DOMFIIN 2

SDRV
CM
MG IITYP I)
MG [ITYP ql
PCG/DKR ITB REDUCE RESIDUAL BY I0I-61
PCG/SS@R (T@ REDUCE RESIDUAL BY I0I-61

FIG. 8.10. Domain 2. Time for new RHS vs. n.

10

IME FIR NEW R.H.S. IDIMFIIN 3

I0 60 70

SDRV
CM
MG [ITYP I)
MG [ITYP q)
PCG/DKR IT@ REDUCE RESIDUAL BY
PCG/SS@R IT@ REDUCE RESIDUAL BY

FIG. 8.11. Domain 3. Time for new RHS vs. n.

Figs. 8.2, 8.3 and 8.4 show the high storage needs of the sparse matrix solver.
Even though the symmetric driver, SDRV, needed only half as much space as the
nonsymmetric drivers, NDRV and CDRV, it still used more storage than any of the
other methods. The MG code, on the other hand, required the least memory. PCG
with the SSOR preconditioning needs only four vectors in addition to the matrix, the
right hand side and the approximate solution. Approximately 11 N words were needed
to store the nonzeroes of the matrix and the necessary pointers in the sparse storage
format that was used. The DKR preconditioning took up almost twice as much memory
as SSOR because the approximate factorization of the matrix required just as much

754 TONY F. CHAN AND FAISAL SAIED

storage as A itself. We add that this higher storage requirement is attributable to the
code used and that for two-cyclic matrices, efficient implementations with substantially
less storage requirements are possible [10]. The storage for CM and PCG agrees with
the O(n) behaviour as discussed in 7. For MG01, the amount of storage required
per grid point actually decreased as n was increased, but this is probably due to the
relatively large overhead for smaller grid sizes. Fig. 8.5 shows how the size of the LU
factors grows with the size of the problem for YSMP and Domain 2. The storage for
the LU factors includes the integer storage used for storing the pointers to the LU
factors and the permutation used to reorder the matrix. In our tests, an integer variable
took up as much storage as a real variable. The total storage requirements of YSMP
shown in the storage plots include the space needed to store the original matrix, the
right hand side and the solution in addition to the space used for the LU factors. For
n=16, 32 and 64, we compute the following values for (size of LU fac-
tors)/(N log (N)), for Domain 2: 2.86, 2.95 and 2.98 for the symmetric driver, SDRV,
and 5.30, 6.43 and 7.25 for the nonsymmetric driver, NDRV. The LU factors appear
to grow as N log (N) for the symmetric case and somewhat faster for the nonsymmetric
case. On computers where integers may take up less space than real numbers, it is
possible to lower the storage requirements. For example, with the nonsymmetric driver,
NDRV, roughly half the total space used is for integers. On a computer where a real
number takes up twice as many bits as an integer, this represents a potential saving
of 25% in terms of total storage requirements. The other drivers, SDRV and CDRV,
use a compressed storage format for the pointers for the LU factors and would offer
a smaller saving.

Figs. 8.6, 8.7 and 8.8 show that the CM method takes the most preprocessing time
of all the methods. It is substantially more than that for the SM method, although the
complexity for the two methods are of the same order. This is probably so because,
in order to simulate a truly general region, we have not taken special advantage of
the straight edges of the domains in our implementation, resulting in a larger value
for p than necessary. However, even for the circular region in Domain 3, the preprocess-
ing time for the CM method is more than twice that of the SM method. For the PCG
methods, only the DKR preconditioning involves a preprocessing phase. The times
can be found in Table 8.2 but they are negligible on the scale of the plots for the CM
and SM methods. There is no preprocessing for the MG method.

Figs. 8.9, 8.10 and 8.11 show how the time needed per grid point to solve for a
new right hand side varies with n. The times for NDRV and CDRV are indistinguishable
from those for SDRV on this scale and hence were not plotted. The CM times exhibit
O(n2) behaviour in the plot while for MG the time per grid point is actually decreasing,
probably due to the relatively large overhead for small problems. For PCG the times
required for reducing the initial residual by a factor of 10-6 are shown. These figures
indicate that for larger grid sizes (n > 100), MG would be faster than the solve phases
of both YSMP and the CM method. We see that the SM method is the most efficient
method for even reasonably large problems (n < 100). On the other hand, the PCG
methods are not competitive at this accuracy level.

In what follows, we shall give somewhat more details on the numerical results.
Table 8.2 gives in more details the times for the Preconditioned Conjugate Gradient

method, with the DKR and the SSOR preconditionings, and also for the CG method
(no preconditioning). The two preconditionings, DKR and SSOR, depend on scalar
parameters, a and to respectively. In our numerical tests, we used near optimal values
of these parameters which were determined experimentally. For example, Figs. 8.12
and 8.13 give the dependence of N on a and to for the DKR and the SSOR

ELLIPTIC SOLVERS FOR TWO-DIMENSIONAL REGIONS 755

TABLE 8.2
Times for the preconditioned conjugate gradient method.

No pre-conditioning:

n 16 32 64 128

Domain 1: N 36 74 240

t 15 56 231
Domain 2: N 29 69 240

t 16 58 249
Domain 3: N 18 45 204

t 14 54 222

DKR pre-conditioning (a 0.0):

Domain 1: N 12 17 27
57 237 930

tl 24 95 385
Domain 2: N1 11 16 23

61 224 1039
27 99 415

Domain 3: N 11 16 25
58 257 887

t 25 92 391

SSOR pre-conditioning (to given in brackets):

Domain 1: N 11(1.55) 15(1.65) 22(1.80)
t 31 115 490

Domain 2: N 11(1.55) 15(1.65) 21(1.80)
t 35 131 521

Domain 3: N 10(1.55) 15(1.65) 20(1.80)
t 30 122 465

31 (1.90)
2078

32 (1.90)
1994

N Number of iterations required to reduce initial residual by 10-6.
tp Time required for pre-processing (only for DKR).
tl Time required for one iteration (without pre-processing).

EFFECT IZIF I:::ILPHFI IZIN PCG/DKR.

RLPHR

FIG. 8.12. PCG: Effect ofparameter a on DKR preconditioning.

756 TONY F, CHAN AND FAISAL SAIED

EFFECT IZIF BMEGI::::I IZIN PCG/SSIZIR.
25

20

11 It. 181.0 .2 1. 1.6 1.

OMEG
2.0

FIG. 8.13. PCG: Effect ofparameter to on SSOR preconditioning.

preconditionings respectively, for Domain with n 32. N is the number of iterations
required to reduce the initial residual by a factor of 10-6. The value a 0.0 was used
for all domains and grid sizes for the DKR preconditioning. For the SSOR precondition-
ing, the best value of to varied with grid size but not over the domains. The values of
to used are given in Table 8.2.

The choice of 10-6 for the error reduction factor for the PCG method was arbitrary
but commensurate with the accuracy of the direct methods, starting with a zero initial
guess. Thus, the number of iterations actually needed would be correspondingly lower
if one had a better initial guess, and the initial residual did not have to be reduced by
such a small factor. In order to compare the PCG method to the other competing
methods, we give the number of PCG/DKR iterations (rounded up) that could be
performed in the time needed by other methods (Table 8.3). Here the preprocessing
times for the PCG method were included in computing the number of iterations
performable in the Factor+ Solve times of YSMP and the CM method. As can be seen,
in the multiple right hand side case, the PCG method is competitive only if a few
iterations are enough for controlling the accuracy and/or stability.

In order to compare the PCG method to the MG method in the case where
truncation error accuracy is sufficient, we give the times for MG01, the relative residual
achieved by it and the times and numbers of iterations needed by PCG/DKR and
PCG/SSOR to achieve the same relative residual (see Table 8.4). The discrete 2-norm
of the relative residuals should give an indication of the accuracy of the final solutions.
We see that even at truncation error level, PCG is not competitive with MG. For all

TABLE 8.3
PCG: Comparison with SM, CM and MG for domain 1, n 64.

Method Number of PCG/DKR iterations that can be performed in the
same time (rounded up)

YSMP (SDRV)
YSMP (SDRV)
CM
CM
MG
MG

Factor+ Solve: 18
Solve: 2

Factor+ Solve: 92
Solve: 5

ITYP- 1: 3
ITYP 4: 4

ELLIPTIC SOLVERS FOR TWO-DIMENSIONAL REGIONS 757

TABLE 8.4
PCG: Comparison with MG.

The following table gives the times and numbers of iterations required by PCG/DKR and
PCG/SSOR to achieve the same relative residuals as MG01.

Rel residual
Domain n (MG01) MG01 time

PCG/DKR PCG/SSOR
Time (N) Time (N)

ITYP
16 0.55 E-2 141 120 (5) 155 (5)
32 0.242E-2 369 950 (10) 920 (8)
64 0.698E-3 1131 6545 (17) 6370 (13)

ITYP 4
16 0.293E-4 221 240 (10) 279 (9)
32 0.267E-4 586 1330 (14) 1380 (12)
64 0.440E- 5 1775 9625 (25) 9800 (20)

Domain 2
Rel residual

n (MG01) MG01 time
PCG/DKR PCG/SSOR
Time (N) Time (N)

ITYP
16 0.133E-1 131 135 (5) 175 (5)
32 0.582E-2 358 792 (8) 917 (7)
64 0.159E-0 1096 2905 (7) 3126 (6)

ITYP 4
16 0.611E-4 211 216 (8) 280 (8)
32 0.759E-4 579 1188 (12) 1310 (10)
64 0.508E-2 1770 4980 (12) 5210 (10)

Domain 3
Rel residual

n (MG01) MG01 time
PCG/DKR PCG/SSOR
Time (N) Time (N)

ITYP
16 0.711E-7 157 325 (13) 360 (12)
32 0.270E-6 441 1564 (17) 1952 (16)
64 0.130E- 5 1416 9384 (24) 9300 (20)

ITYP 4
16 0.365E-7 227 325 (13) 360 (12)
32 0.226E-6 655 1564 (17) 1952 (16)
64 0.112E- 5 2035 9384 (24) 9300 (20)

values of n, the number of levels in the MG algorithm, m, was chosen so as to make
the mesh-width of the coarsest grid, ho 1/2, i.e. m log2 (n), since this was found to
be faster than using a finer coarsest grid. Recall that MG01 uses Gauss-Seidel iterations
to solve on the coarsest grid, rather than a direct solver and generates its own initial
guess for the finest grid.

The solve phase for the CM method includes 2 calls to the Fast Helmholtz Solver
(FHS) and one back-substitution of the capacitance matrix system. Asymptotically,
the FHS is the higher order part of this phase and will dominate it. The observed
percentage of the solve phase time that was spent in the FHS is given in Table 8.5.
We see that about two thirds of the solve phase time is spent in the FHS. In other
words, the time taken for one call of the FHS is about the same as one back-substitution
of the capacitance matrix. These statistics may facilitate the usage of the results
presented here when a different fast solver is used, e.g. when applying the CM method
to more general elliptic problems.

758 TONY F. CHAN AND FAISAL SAIED

TABLE 8.5
CM: Percentage of time spent in the fast Helmholtz solver.

Domain 16

60.2

58.7

63.9

32

68.7

74.1

64

73.1

70.5

78.3

Finally, in Table 8.6 we compare the theoretical complexities of the different
methods with the actual times that were obtained from our tests. The theoretical values
for a are given as well as the "empitical" values for each domain. For example, if the
time for a method is expected to be Cn’, we determined the c that gave the best linear
fit to In T a In n + In C in the least squares sense. Because of the more complicated
forms of the complexities for the CM method, we do not have sufficient data to a
comparable fit. Hence the values for the CM method are not included. We see that
the observed results agree quite well with the theoretical estimates.

9. Concluding remarks. Based on the results of the experiments presented in 8,
we can draw the following general conclusions:

1. If enough storage is available and many right-hand sides are to be processed,
then the Sparse Matrix method seems to be the best choice even for relatively large
values of n (100).

2. The Preconditioned Conjugate Gradient method is not competitive if more
than a few (5) iterations are required to achieve the desired accuracy.

3. Iftruncation error level accuracy is adequate and a Multi-Grid solver is available
for the particular elliptic operator and domain, then the MG method is very competitive
in both work and storage, especially for larger problems (n > 64).

4. The performance of the Capacitance Matrix method lies between those of the
SM and MG methods. It requires less storage than the SM method, but quite a bit
more than MG. For values of n up to 64, the work for a new right-hand side is slightly
less than that of the SM method, but a factor of 2 or 3 more than that of the MG
method. The preprocessing time is also substantially larger for a general domain. If a

TABLE 8.6
Empirical time complexities.

The three empirical values are the least square fits of the timing figures to the
theoretical estimates for each of the domains.

Theoretical Empirical ct

complexity Theoretical a (Domains 1, 2, 3)

SDRV Factor
Solve

NDRV Factor
Solve

MG
PCG/DKR
PCG/SSOR

n" 3 2.82, 2.89, 3.05
n In n 2 2.22, 2.21, 2.20
n" 3 3.16, 3.13, 3.27
n In n 2 2.21, 2.23, 2.22
n 2 1.69, 1.69, 1.74
n" 2.5 2.59, 2.50, 2.58
n 2.5 2.49, 2.41, 2.48

ELLIPTIC SOLVERS FOR TWO-DIMENSIONAL REGIONS 759

MG solver is not available and not enough storage is available for the SM method,
or if the number of irregular points is small (e.g., almost rectangular domains), then
the CM method should be considered.

While the experiments presented in this paper are necessarily limited in scope,
we believe that this does not limit the usefulness of the results. We shall conclude by
making a few remarks about using the results presented here to estimate relative
performances of the methods in more general settings.

The first remark concerns the generality of the problems tested. While the Poisson
problem is not the most general elliptic system, it is nonetheless heavily used in practice,
very often as a preconditioner for more general problems. Moreover, the results reported
in the paper do not really take advantage of any special features ofthe Poisson equation.
The relative efficiency of these methods, in terms of speed and storage, should be
about the same for more general problems. This is certainly true of the sparse matrix
methods because the work there only depends on the sparsity pattern and not on the
particular values of the elements of the matrix. The convergence rate of multi-grid
methods have also been shown to be not very sensitive to variations in the coefficients
of the elliptic system, as long as they are reasonably smooth. Similarly, the convergence
rate of conjugate gradient methods depends more on the distribution of eigenvalues
rather than on the specific matrix involved and for that the Poisson equation is
representative. The only possible exception is the capacitance matrix code that we
used, which does only work for the Helmholtz equation. However, even here the results
can still be useful, because the only place where this matter is in the fast solver on a
rectangle and fast solvers do exist for more general elliptic operators. In any case, the
timings for this part of the calculation are tabulated separately and thus the results
can still be used to extrapolate to more general problems when the timings for the
appropriate fast solver are substituted.

The second remark concerns the choice of initial guesses for the CG and MG
methods as the actual amount of computation taken by the methods obviously depend
on them. In a time dependent problem, initial guesses would be available from
extrapolations from previous time steps. However, comparing these two methods in a
true time dependent setting will actually make the results less general because the
dependence on the particular problem, e.g. its transient features, the predictor used
etc., would make it more difficult to extrapolate the results to another problem. We
record the work required for reducing the initial error by a certain factor which should
be more problem independent. In fact, point number 2 above is stated in this fashion.

The above considerations also apply to the factorization time for the sparse matrix
methods for time dependent problems. The frequency with which the refactorization
has to be done is necessarily problem dependent. Again, we present the time for the
factorization phase separately so that for a specific problem they can be used to estimate
the actual time. In any case, the conclusions that we made are valid for cases where
the refactorization cost is relatively small.

Acknowledgments. The authors would like to thank Professor Martin H. Schultz
and Stanley C. Eisenstat, and Dr. Howard C. Elman for their many helpful suggestions
throughout this project.

REFERENCES

[1] O. AXELSSON, A generalized SSOR method, BIT, 13 (1972), pp. 443-467.
[2] R. E. BANK AND T. DUPONT, An optimal order processfor solving ellipticfinite element equations, Math.

Comp., 36 (1981), pp. 35-51.

760 TONY F. CHAN AND FAISAL SAIED

[3] A. BRANDT, Multi-level adaptive solutions to boundary-value problems, Math. Comp., 31 (1977), pp.
333-390.

[4] RATI CHANDRA, Conjugate gradient methods for partial differential equations, Ph.D. thesis, Dept.
Computer Science, Yale Univ., New Haven, CT, January, 1982, also available as Technical Report

129.
[5] P. CONCUS, G. H. GOLUB AND D. P. O’LEARY, A generalized conjugate gradient method for the

numerical solution of elliptic partial differential equations, in Proc. Symposium on Sparse Matrix
Computations, J. R. Bunch and D. J. Rose eds., Academic Press, New York, 1975, pp. 309-332.

[6] J. E. DENDY, JR. AND J. M. HYMAN, Multi-grid and ICCG for problems with interfaces, in Elliptic
Problem Solvers, M. H. Schultz ed., Academic Press, New York, 1981, pp. 247-253.

[7] C. C. DOUGLAS, Multi-grid problemsfor elliptic boundary-value problems, Ph.D. thesis Dept. Computer
Science, Yale Univ., New Haven, CT, May, 1982, also available as Technical Report 223.

[8] I. S. DUFF, Sparse matrix software for elliptic PDE’s, in Multigrid Methods, Proceedings, K61n-Porz,
1981, W. Hackbusch and U. Trottenberg eds., Springer-Verlag, Berlin, 1982.

[9] T. DUPONT, R. P. KENDALL AND H. H. RACHFORD, JR., An approximate factorization procedurefor
solving self-adjoint elliptic difference equations, SIAM J. Numer. Anal., 5 (1968), pp. 559-573.

10] S. C. EISENSTAT, Efficient implementation of a class ofpreconditioned conjugate gradient methods, this
Journal, 2 (1981), pp. 1-4.

[11] S. C. EISENSTAT, M. C. GURSKY, M. H. SCHULTZ AND A. H. SHERMAN, The Yale sparse matrix
package I: The symmetric codes, Int. J. Numer. Methods Eng., 18 (1982); The Yale sparse matrix

package II: The unsymmetric codes, to appear.
12] H. C. ELMAN, Iterative methodsfor large, sparse, nonsymmetric systems oflinear equations, Ph.D. thesis,

Dept. Computer Science, Yale Univ., New Haven, CT, April, 1982, also available as Technical
Report 229.

13] H. FOERSTER, K. STOBEN AND U. TROTrENBERG, Nonstandard multi-grid techniques using checkered
relaxation, in Elliptic Problem Solvers, M. H. Schultz ed., Academic Press, 1981, pp. 285-300.

[14] J. A. GEORGE AND J. W.-H. LIU, Computer Solution of Large Sparse Positive Definite Systems,
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[15] I. GUSTAFSSON, A class offirst orderfactorizations, BIT, 18(1978), pp. 142-156.
16] W. HAGKBUSCH, Convergence of multi-grid iterations applied to difference equations, Math. Comp., 34

(1980), pp. 425-440.
17] M. R. HESTENES AND E. STIEFEL, Methods for conjugate gradient for solving linear systems, J. Res.

National Bureau of Standards, 49 (1952), pp. 409-436.
[18] K. C. JEA, Generalized conjugate gradient acceleration of iterative methods, Ph.D. thesis, Center of

Numerical Analysis, Univ. Texas at Austin, 1982, also available as CNA Research Report
:CNA-176.

[19] J. A. MEIJERINK AND H. A. VAN DER VORST, An iterative solution methodfor linear systems of which
the coefficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148-162.

[20] B. N. PARLETT, A new look at the Lanczos algorithm for solving symmetric systems of linear systems,
L.A.A., 29 (1980), pp. 323-346.

[21] W. PROSKUROWSK AND O. WIDLUND, On the numerical solution of Helmholtz’s equation by the
capacitance matrix method, Math. Comp., 30 (1976), pp. 433-468.

22] W. PROSKUROWSKI, Four Fortran programsfor numerically solving Helmholtz’s equation in an arbitrary
bounded planar region, Report LBL-7516, Lawrence Berkeley Laboratory, Univ. California,
Berkeley, 1978.

[23] J. R. RICE, Performance analysis of 13 methods to solve the Galerkin method equations, L.A.A., 52/53
(1983), pp. 533-546.

[24] M. H. SCHULTZ, ed., Elliptic Problem Solvers, Academic Press, New York, 1981.
[25] U. SCHUMANN, ed., Fast Elliptic Solvers, Advance Publications, United Kingdom, 1977.
[26] K. STOBEN, A multi-grid program to solve AU-c(x,y)U=f(x,y) (on I), U=g(x,y) (on 1) on

nonrectangular bounded domains 11, IMA-Report 82.02.02, GMD, Bonn, 1982.
[27] A. J. WALLCRAFT, The preconditioned capacity matrix technique, in Advances in Computer Methods

for Partial Ditterential Equations-IV, R. Vichnevetsky and R. S. Stepleman, eds., IMACS, Rutgers
Univ., New Brunswick, NJ, 1981.

[28] O. WIDLUND, A Lanczos method for a class of nonsymmetric systems of linear equations, SIAM J.
Numer. Anal., 15 (1978), pp. 801-812.

SIAM J. Scl. STAT. COMPUT.
Vol. 6, No. 3, July 1985

(C) 1985 Society for Industrial and Applied Mathematics

017

ELEMENT PRECONDITIONING USING SPLITI’ING TECHNIQUES*

B. NOUR-OMID- aND B. N. PARLETT

Abstract. The finite element method is a good way to turn elliptic boundary value problems into large
symmetric systems of equations. These large matrices, A, are usually assembled from small ones. It is simple
to omit the assembly process and use the code to accumulate the product Av for any v. Consequently the

conjugate gradient algorithm (CG) can be used to solve Ax b without ever forming A.
It is well known, however, that CG performs best when applied to preconditioned systems. In this

paper we show one way to precondition without forming any large matrices.
The trade-off between time and storage is examined for the I-D model problem and for the analysis

of several realistic structures.

Key words, finite element, conjugate gradient, preconditioning

1. Introduction. Much effort has been expended on exploiting the sparsity struc-
ture of large symmetric matrices A when solving linear systems

(1) Ax:b

(see [1] and [2]). Our interest is in the systems which arise from the application of the
finite element method to engineering structures.

The field, or speciality, called sparse matrix technology has been concerned to a
large extent with minimizing, or at least reducing, the storage requirements for solving
Ax b by direct methods. The experts in the subject relentlessly hunt down unfortunate
matrix elements which get "filled-in" during the process of Choleski factorization. By
various clever techniques the menacing fill-in is often kept down to the order of the
original number of nonzero elements in the matrix. Nevertheless big problems make
big demands on storage.

The outsider to this field of sparse matrix technology can be forgiven for wondering
why the original matrix components are treated with such respect, while the fill-ins
are despised and only with the greatest reluctance given a place to stay. After all, each
component of a matrix makes the same storage penalty.

If storage really is in short supply, then every aspect of the solution procedure
should be examined for possible economies. Why discriminate solely against fill-in?

It has been pointed out in [3] and [4] that it is not essential to assemble the stiffness
matrix A from the sum of many simple matrices. The code which produces A from its
usual definition

(2) A=SeaeSt

can be modified to produce, for any given column vector u,

(3) An (SeaeSteu)

* Received by the editors December 13, 1982, and in final revised form October 15, 1984. This paper
was presented at the Sparse Matrix Symposium held at Fairfield Glade, Tennessee, October 25-27, 1982.

This work was supported in part by the Office of Naval Research under contract N00014-76-C-0013.
Center for Pure and Applied Mathematics, University of California, Berkeley, California 94720.

$ Department of Mathematics, and the Computer Science Division of the Department of Electrical

Engineering and Computer Science, University of California, Berkeley, California 94720.

761

762 B. NOUR-OMID AND B. N. PARLETT

without ever forming the elements of A. Here the Ne are long, thin Boolean connectivity
matrices and ae denotes the small stiffness matrix for element e. Moreover, ae itself
may be a product, say rtekere, such that ke and re require less space than ae. It is our
belief that B. Irons was the first to make use of this observation. Of course, it requires
more arithmetic operations to use (3) than to use A explicitly in some compact form.
The extra arithmetic might double the cost of a step, but with clever coding on the
right type of computer it might cause very little increase in elapsed time. The motivation
in [3] and [4] was to avoid cancellation of digits during the assembling of A. Ours is
to reduce storage demands at the cost of increasing the arithmetic effort.

In the absence of A’s elements direct methods are out but it is easy to use the
conjugate gradient algorithm (CG hereafter) to solve Ax b, since A is symmetric,
positive definite. The CG method does not modify A and needs only 3 n-vectors in
the fast store. In fact A is needed only to multiply a vector at each step of the process.

Frontal methods [5] successfully keep down the fast storage needs but, in the end,
all the nonzeros of the Choleski factor of A have to be kept somewhere, presumably
in secondary store and accessed as needed. So total storage and access do exceed those
of the element approach.

Unfortunately CG can take many steps to reduce the residual norm to an acceptable
level. One lesson at least has been learnt about CG during the last 10 years.

CG should be used with preconditioning.

The problem which remains is

How to precondition an unformed matrix ?

There are a number of different ways to produce implicit preconditioners that use
the same structure as in (3). This communication describes a few approaches based
on the popular splitting technique for solving differential equations. Our goal is to
demonstrate how preconditioners can be constructed and to exhibit their effect on the
convergence of the CG algorithm. We make no claim that these techniques are among
the best to be used. Two of our numerical tests are taken from realistic problems but
the size of the matrices which we can handle on our system (time-shared VAX) is too
small to model serious applications.

We end this introduction by pointing out that our interest in element precondition-
ing is in keeping down storage requirements in the analysis of regular structures but
the advent of parallel computing may make this approach a fast one as well.

2. Preconditioned conjugate gradient. Let < <(A) be A’s condition number;
(A) --IIA[[[[A-Ill. The standard worst casetheory of_CG (see [6]) says that the residual
norm s reduced by at worst a factor of (/K 1)/(x/K + 1) at each step on the average.
However, in practice convergence is observed to be superlinear near the end of the
iteration. The whole eigenvalue distribution is more important than the ratio of the
largest to smallest.

Given an initial guess Xo and a positive definite matrix M close to A, the precondi-
tioned CG algorithm generates a sequence Xk of approximations to the solution x as
follows:

Set Po ro b- Axo.
(2) Solve Mdo ro.
(3) For k 0 step until convergence do

(a) k (rk, d)/(p, Ap),
(b) Xk+ X + akPk,

ELEMENT PRECONDITIONING USING SPLITTING TECHNIQUES 763

(C) rk+ rk-- akApk,
(d) Solve Mdk+l rk/l.

(e) flk (rk+l, dk/l)/(rk, dk),
(f) Pk+l d+l +,8p.

Polynomial preconditioning. A natural choice for M- is the polynomial precon-
ditioning (PP here after) proposed by Johnson et al. [7]. This employs a low degree
polynomial in A, Pm (A), as the inverse of the preconditioning matrix. The matrix-vector
product, P,(A)v, for a given vector v can be computed via Pm(.,e NeaeNte)v in much
the same way as Av. This method of preconditioning increases the cost of one CG
iteration by m matrix vector multiplications and m vector additions. However, on
vector processors this extra work takes little time.

The theoretical weakness of PP is as follows. Let kJ[f; A] denote the Krylov
subspace spanned by the basis vectors [f, Af, A2f, AJ-f]. After j-1 steps it pro-
duces the best approximation to A-b from a special Krylov subspace of dimension j,
namely

k k[P.,(A)b; P.,(A)A].

For the same number of matrix-vector products CG would produce the best approxima-
tion from

k2 k:(’+)[b; A].

But k is a subspace of k2, and so there are better approximations to the solution in
k_ than in k. Consequently standard CG will produce a better approximation than
PPCG for the same number of matrix-vector products. As indicated above machines
like the CRAY and the CYBER 205 make the assessment of efficiency more complicated.
It depends on the extent to which the computation of Av dominates a step of the
iteration. We must also emphasize that the weakness is a theoretical one, based on
exact arithmetic. PPCG is useful.

3. Element preconditionings. The code which forms v Ee NeaeNte!i can also pro-
duce w Ee (NebeNtev) for any choice of the element conditioning matrices b which
have the same dimensions as the corresponding ae. Consequently it is feasible to use
as preconditioner any matrix of the form

(4) B= E (NebeNte).

This raises three technical questions.
(1) For a given collection {ae}, what is the best choice of {be} such that K(BA)

is minimized ?
(2) How significant a reduction in the condition number does this optimal B

produce ?
(3) Can one find a good, if not optimal, B in practice?
In contrast to explicit conditioners (which approximate A) our method often

approximates A- (step 3(d) in the algorithm becomes dk+l Brk+). That is, standard
preconditioners actually solve the system Mdk+ rk/ in step 3(d) of the algorithm.
Our preconditioners usually operate directly on rk+ to find dk+. Consequently, B
defines M-. The matrix B is restricted to have the same sparsity structure as A and
consequently yields a weak preconditioner. For example, no tridiagonal matrix approxi-
mates well the inverse of the modal tridiagonal matrix (diagonal elements 2, and off
diagonal elements -1). However our goal is to keep down storage costs.

764 B. NOUR-OMID AND B. N. PARLETT

These questions, though interesting, will not be pursued here because we have no
theoretical results as yet. Instead we present a special class of conditioners. The code
which forms v=Y. (NeaeNteu) can, with trivial modifications, also form either
v- He (I + NegeNte)U or v He (I + NegeNte)-lu for any matrix g with same dimensions
as ae. The three questions raised above can now be posed again.

In the sequel we construct various forms for ge by considering "splitting methods"
for the solution of linear systems as the steady state of diffusion equations.

Preconditioning based on splitting technique. Let A e Ae, where Ae SeaeNte
Then, based on the splitting technique (see [8], [9], and [10]) for solving +Ax b,
we approximate A- by

(5) P fi (I+ o-Ae) -1
e=l

where ne is the total number of finite elements, and o- is a free parameter.
The matrix P is not symmetric and so we do not use it directly as M-1 in the PCG

algorithm described in 2. Here we propose three natural ways to create symmetric
positive definite preconditioners.

(I) Element Choleski factor (ECF). Unless o" is too large, the matrix (I+ rAe)
has a Choleski factorization which can be written as

(6) I+o-Ae=CeCte
where Ce is a function of . Define

(7) C-- fi C
e=l

and use M CC’ to precondition A. Here, C approximates the Choleski factor of A
by the product of ne lower triangular matrices. Then, M-l is 1-IeLI CT I]l C -l

e=ne
(II) Symmetric element product (SEP). As in the SSOR method it is possible to

use M-l= ppt as a preconditioner, with P given by (5).
(III) Element splitting (ES). Let Ue +Ue ae. Define

(8) U l-[(I + o’Ue)
e=l

where U--N,ueNt. Then use M UtU as a preconditioner. M-1 is obtained the same
way as in ECF method.

The first technique (ECF), though not consistent with known splitting methods
is first order accurate when applied directly to systems of first order ordinary differential
equations. The second method (SEP) can be identified with the alternating direction
method and is second order accurate. This method has been used to solve certain
differential equations with some degree of success [8], [9]. The third preconditioner
(ES) is best viewed as applying the splitting method directly to A e SeueSte + SeuteNte
and therefore is first order accurate.

In summary, our idea is to take the methods used in [8] and [9] as system solvers
but to treat them simply as preconditioners.

Model problem. In this section we try to assess the effectiveness of the different
preconditioners described in the previous section. As an example we apply one of the
above methods, namely ECF, to our model problem. Consider the one-dimensional
problem with -y"=f in the interval [0, n + with Dirichlet boundary conditions. The
domain is discretized using n + finite elements. This results in a common element

ELEMENT PRECONDITIONING USING SPLITTING TECHNIQUES 765

matrix

(9) ae
-1

The resulting global matrix A is tridiagonal, with diagonal elements 2, and off-diagonal
elements -1. The matrices involved in (5) are of the form

(10)
(i+ 0-Ae)

1+0-

-0- 1+0-

-0-

I

The Choleski factor of this matrix is

I

(ll) Ce= --0- (1 +20-] /2

4I+

Note that in forming C the boundary conditions are applied to Ce rather than Ae. The
preconditioning matrix, say M, resulting from ECF method can be written as

a b

(12) M =CCr=
b a

where a /1 + 20- and b -0-/x/1 + 0-. The explicit form of M can now be written as

(3) M=

ab
a2+ b2

ab
ab

a2+b2

ab
a2+b2

a2

Scaling this matrix by a factor 2/(a2+ b2), we get

(14) l,l=

where

2a

-/3 2

20-2 + 30- +
c

30-2 + 30- +
and

20-/(1 + 20-)(1 + 0-)
30-2 + 30- +

766 B. NOUR-OMID AND B. N. PARLETT

Defining the error matrix E A-1(’I, we get

0 /3-1
-1 0

(15) E--
0 /3-I

+2(1-c)eleT

/3-1 0

where el is the first column of the identity. The matrix ee is only of rank one and
may increase the total number of iterations in a CG run by at most one and therefore
may be ignored in this analysis. The norm of the remainder depends on I/3- 11 which
gets small for large values of or. In fact

(16) lim I/3- 1] -0.058

which suggest that M may be a good preconditioning matrix for A.
We ran tests for various values of or. The condition number of M-1A dropped

from 50 for cr 0 to below 10 for cr-> 2. See 11 for more details.
The CG method was used to obtain the solution to the discretized model problem

for a given right-hand side. The actual number of iterations required to converge is
plotted against o- (Fig. 1). The tolerance for convergence was set at 10-8. The value
of or=0 corresponds to CG with no preconditioning. It can be seen that for this
example the correct choice for cr results in reduction in the number of iterations by a
factor of nearly 4. This analysis does reveal the limitations of this form of precondition-
ing. Note that our tolerance is quite severe.

n-
w
i-

100

75

5O

25

C]--- ECF
0-- ES
A-- SEP

1. 2. 3. 4. 5.

FIG. 1. 100 X 100 1-D model problem.

ELEMENT PRECONDITIONING USING SPLITTING TECHNIQUES 767

4. Implementation. We view the formation of Au via (3) as a mechanism for saving
storage in return for extra arithmetic work. The reduction in storage demand is due
to the following observations"

1. In most practical finite element (FE hereafter) problems there is a considerable
amount of repetition of a given element in the mesh structure.

2. The element matrices of a number of element types, such as beams, trusses,
etc., are known explicitly and depend on only a few fundamental parameters.

The first observation allows us to create a data structure which keeps the element
matrix of one element to represent a whole group of elements. The second observation
results in a canonical form for each element type, and therefore only a few parameters
need be stored to define each element matrix. Hence the storage requirements for all
the distinct ae is often significantly less than the number of words required to hold A,
even when a sophisticated sparse storage scheme is used (see [1], [2]). Furthermore,
one can always recompute the element matrices ae each time the product Av is required.

Cost overhead. The overhead for the reduction in storage is the increased number
of operations. However, two comments are in order.

1. The cost of a multiply no longer dominates arithmetic evaluations.
2. Vector machines or other special purpose devices can execute , (N,aNtu)

very efficiently.

TABLE
The cost factor y and reduction in storage for

different elements on regular mesh with 2 unknowns
per node. is the average number of elements
connected to each node and m is the number of
nodes per element.

Dimension snvinss
of space element t3e q in storage

1-1)

1.77 88

1.7 94

2.57 88

1.57 94

2.37

768 B. NOUR-OMID AND B. N. PARLETT

When using the implicit form of Av it can be seen that different elements operate
on different parts of the vector v. One can take advantage of this fact by performing
some of the element matrix operations in parallel.

The implicit product increases the cost of matrix operations by a factor of, say y,
where 7 depends on r, the average number of elements connected to a node. 3’ is
computed for a few different elements on regular meshes. It can be seen from Table
that the magnitude of 7 is not very large, although one could design examples that
result in large 7. One such example is the star graph with all the nodes constrained
except the center node. For this example 3’ he.

5. Numerical examples. We performed a number of tests designed to illustrate
the effectiveness and limitations of the three preconditioners developed here. Each
method was used to solve the problems for a range of tr. The standard CG method
corresponds to r 0.0. We set the factor for the reduction in residual norm at 10-8.

133

125

100-

50-

25

0

E3---

O-- ES

8-- SEP

19 118 11]7 116

/

/
/
/
/

/
/
/

/
/
/
/
/
/
/
/
/
/
/

///
///

///

///

FIG. 2. Truss building example.

ELEMENT PRECONDITIONING USING SPLITTING TECHNIQUES 769

The first set of tests was performed on the 100 100 model problem (see Fig. 1).
The numerical results demonstrate the reduction in the number of iterations for the
ECF method for large values of tr. The smallest number of iterations achieved with
the ECF method was 26 when tr 103. The minimum number of iterations for the ES
method was 45 with any tr in the interval 1.5, 2.0]. The curve for the SEP method has
a very sharp minimum, and therefore small changes in o- will result in large changes
in the number of iterations and therefore the optimum tr (0.4 in this case) is difficult
to estimate.

We performed similar tests on two different, but realistic problems occurring in
FE applications:

(1) a building example consisting of truss elements with a total of 132 unknowns
(Fig. 2),

(2) a plane stress problem (Laplacian on rectangular domain) corresponding to
a beam with a total of 160 unknowns (Fig. 3).

In all the test performed a ECF preconditioner was found to be the most effective.
A reduction by a factor of four in the number of iterations was observed with the
model problem and the building example. However the ES method required less

125

100

75-

50 [3--- ECF

0-- ES

Z--- SEP

1. 2. 3. 4. 5.

I’11 !’
9111111lllllllilllllt

_!

FIG. 3. Plane stress problem.

770 B. NOUR-OMID AND B. N. PARLETT

computer time. This is because there is no factorization of element matrices in the ES
method.

The result of our tests demonstrate that the optimum value of tr can vary a lot.
This is due to the fact that O’opt is not invariant under scaling of A and depends on
the range of the terms in A.

We should point out that in all the tests that were carr.ed out the problems were
too small and too well conditioned to display the advantages of preconditioning.

There is much more work to be done. Our goal was to introduce a new approach
to the analysis of huge, regular structures.

Acknowledgment. The authors wish to thank Carlos Rodriguez for performing the
numerical tests reported here.

REFERENCES

1] A. GEORGE AND J. W. LIU, Computer Solution ofLarge Sparse Positive Definite Systems, Prentice-Hall,
Englewood Cliffs, NJ, 1981.

[2] I. S. DUFF, A survey of sparse matrix research, Proc. IEEE, 65 (1977), pp. 500-535.
[3] R. L. Fox AND E. L. STANTON, Developments in structured analysis by direct energy minimization,

AIAA J., 6 (1968), pp. 1036-1042.
[4] I. FRIED, More on gradient iterative methods in finite-element analysis, AIAA J., 7 (1969), pp. 565-567.
[5] B. M. IRONS, A frontal solution program for finite element analysis, Int. J. Numer. Meth. Engrg., 2

(1970), pp. 5-32.
[6] P. CONCUS, G. H. GOLUB AND D. P. O’LEARY, A generalized conjugate gradient method for the

numerical solution of elliptic partial differential equations, in Sparse Matrix Computations, J. R.
Bunch and D. J. Rose, eds., Academic Press, New York, 1976.

[7] O. G. JOHNSON, C. A. MICCHELLI AND G. PAUL, Polynomial preconditioners for conjugate gradient
calculations, SIAM J. Numer. Anal., 20 (1983), pp. 362-376.

[8] T. J. R. HUGHES, I. LEVlT AND J. WINGET, Element-by element implicit algorithms for heat conduction,
J. Engng. Mech., 109 (1983).

[9] M. ORTIZ, P. M. PINSKY AND R. L. TAYLOR, Unconditionally stable element-by element algorithms for
dynamic problems, Report No. UCB/SESM-82/01, Dept. Civil Engineering, Univ. California,
Berkeley, 1982.

10] A. R. GOURLAY, Splitting methods for time dependent partial differential equations, in The State of the
Art in Numerical Analysis, D. Jacobs, ed., Academic Press, New York, 1977.

[11] I. NOUR-OMID AND B. N. PARLETT, Element preconditioning, Report No. PAM-103, Center for Pure
and Applied Mathematics, Univ. California, Berkeley, Oct. 1982.

SIAM J. Scl. STAT. COMPUT.
Vol. 6, No. 3, July 1985

(C) 1985 Society for Industrial and Applied Mathematics
018

GLOBAL EXTRAPOLATION OF A FIRST ORDER SPLITTING METHOD*

J. G. VERWERf AND H. B. DE VRIES

Abstract. This note deals with the numerical solution of multi-space dimensional parabolic partial differential
equations and advocates classic global Richardson extrapolation for splitting methods. The paper concentrates on
the first order locally one-dimensional splitting method. This robust, low order splitting method is known to possess
two favourable properties. It rapidly damps high frequency components, which is of importance for problems
having nonsmooth initial data, and it possesses excellent stability properties for nonlinear problems. Global extrapolation
to higher order leaves these properties invariant. In addition, global extrapolation is easy to implement. A comparison
is made with a local extrapolation procedure which has been proposed by Lawson and Morris (SIAM J. Numer.
Anal., 15 (1978), pp. 1212-1224). A few numerical results are reported.

AMS(MOS) 1980 subject classifications. 65L05, 65M05, 65M20

1982 CR categories. 5.17

Key words, numerical analysis, parabolic partial differential equations, splitting methods, method of lines,
global extrapolation

1. Introduction. In the numerical solution of parabolic partial differential equations
with nonsmooth initial data, it is desirable to employ a time discretization which, in a
sufficient manner, simulates the rapid exponential decay of high frequency components. For
example, when a discontinuity exists between the initial function and the boundary condi-
tions. Within the class of splitting methods for multi-space dimensional problems, the first
order locally one-dimensional method (LOD method, cf. [17]) possesses this damping prop-
erty. A disadvantage of this method is its low accuracy in time. To increase the accuracy,
Lawson and Morris [9] have proposed a local extrapolation of the LOD method to order
two which maintains the rapid damping of high frequency components. This locally extrap-
olated LOD scheme requires in general twice as many operations per step as the basic LOD
scheme. However, a numerical experiment [9] on a model heat equation in two space
dimensions with a discontinuity between the initial and boundary conditions, has shown that
local extrapolation may pay off. In particular, for such problems the Lawson-Morris scheme
will perform better than the second order Peaceman-Rachford scheme due to a lack of
damping of high frequency components in the latter one.

We advocate an alternative extrapolation of the LOD method, viz. global Richardson
extrapolation. This type of Richardson extrapolation, which is classic in the numerical
solution of ordinary differential equations [5, p. 81], involves parallel integration with the
same basic scheme on different time grids, but completely separated. Consequently, all
stability and damping properties of the basic scheme are left invariant by global extrapolation,
contrary to local extrapolation. Global extrapolation is easy to implement. For the LOD
method it is also less expensive than the Lawson-Morris extrapolation. Global extrapolation
to order two requires one and a half-times as many operations per step as the basic scheme.
For global extrapolation to order three this factor is equal to 7/4 or 2, depending on the
implementation.

*Received by the editors March 29, 1983, and in revised form May 17, 1984.
tCentre for Mathematics and Computer Science, Foundation Mathematical Centre, Kruislaan 413, 1098 SJ

Amsterdam, the Netherlands.
:Fokker, B.V., Dept. RAMS, S018-29, 1117 ZJ Schiphol Oost, the Netherlands.
As a sequel to [9] Gourlay and Morris have published [3] and [4] where they develop new schemes of orders

2, 3 and 4 which also rapidly damp high frequency components. However, in contrast to those of [9], no splitting
versions of their new schemes were given and, as far as we know, the question of applying them in a splitting
context has not been discussed in the literature.

771

772 J. G. VERWER AND H. B. DE VRIES

Recent alternative approaches to increasing the accuracy of splitting methods include
the application of defect correction techniques [7], [8], [14]. A common property of these
techniques with the local extrapolation technique of Lawson and Morris [9], is that the
accuracy is increased by some local procedure. For splitting methods such local procedures
always seem to interfere with the requirement of unconditional stability and, particularly,
with rapid damping of high frequency components. In this respect, the present approach
differs in principle. By global extrapolation the accuracy is increased in a global way and
by no means influences the stepwise stability of the solution process. This latter point is our
main motive to advocate global extrapolation. Furthermore, the technique is simple and can
be applied to any one-step splitting method for time-dependent, multi-space dimensional
problems.

In this note we concentrate on the LOD method. Apart from its well-known damping
properties, which is an essential requirement in [9], this method also possesses excellent
stability properties for nonlinear problems 15]. Global extrapolation does not interfere with
these nonlinear stability properties either. Furthermore, the LOD method is not restricted to
two space dimensions; it is equally applicable to two- and three-space dimensional problems.

2. The LOD method. In this section we briefly recall the LOD method [17]. By
following the method of lines approach, the LOD method can be formulated in a very
compact way (cf. [6]). Let the initial value problem for the ordinary differential system

(2.1)]y(t) f(t, y(t)), > 0, y(0) Yo

represent a semi-discrete version of a given initial-boundary value problem for a partial
differential equation. For the moment it will not be necessary to be specific about the partial
differential equation and the space discretization. We only assume that the vector function
f(t, y) can be written as

k

(2.2) f(t, y) .f.(t, y),
i=1

wheref corresponds to a one-space dimensional partial differential operator. The following
time integration formula:

n+ Yn

(2 3) (i) (i-1) --(i) (i)
Yn+l Yn+l -I- zfi(tn+l,yn+), 1,’",k,

Yn+ Yn+ 1,

then defines the LOD step y ---> y, / 1. Here, y, is the approximation to y(t), the exact solution
of (2.1), at time t, and z tn+ 1-t is the timestep. Further, we suppose t < #(i) <

n+ tn+ 1
i=l,...,k.

In applications k is normally equal to 2 or 3, being the space dimension of the partial
differential equation. In 4 we shall give a numerical example of a two- and three-space
dimensional problem. Note that we formulate the splitting method directly for time-dependent
and, possibly, nonlinear problems.

The order of consistency of (2.3) is equal to one for all splitting functionsf/, 1,.-., k,
satisfying (2.2). Observe that (2.3) consists of k consecutive backward Euler steps, each of

<i) from thewhich applied with a different function f/. The computation of the vectors Yn/l
implicit backward Euler relations can be performed cheaply using a Newton type iteration,
because we assumed that f/stands for a semi-discrete, one-space dimensional partial differ-
ential operator.

GLOBAL EXTRAPOLATION OF A FIRST ORDER SPLITTING METHOD 773

The LOD method is known to be unconditionally stable for the linear model problem

(2.4) U, 2 Uxix
i=1

where the second order derivative has been replaced by the central difference operator.
Furthermore, the method possesses excellent damping properties for high frequency solution
components (see e.g. [9]). In addition to these linear stability properties, the LOD method
can also be shown to be unconditionally stable for nonlinear parabolic problems of the form

i=1 X i(t,X) XaC

This nonlinear stability result can be shown by exploiting the intimate relation with the
backward Euler scheme. For details we refer to 15].

To conclude our description of the LOD method we have to recall two possible sources
of inaccuracies, viz. nonconstant boundary values and nonconstant inhomogeneous terms
[2], 12], 16]. These inaccuracies will also be noticeable for locally and globally extrapolated
results (see Experiment 2 of 5). Other splitting methods, such as ADI, also suffer from
these phenomena, although to a somewhat lesser extent.

3. Global Richardson extrapolation. The LOD method (2.3) may be considered as
a particular one-step integration method of order of consistency p for the ordinary
differential system (2.1). Suppose that a pth order one-step method is applied from to 0
up to tN T, using a time grid GN. This grid does not need to be uniform. It is only assumed
that for N sufficiently large, the minimal and maximal stepsizes " behave like O(N-1). If
this natural assumption is satisfied, we are assured of the existence of an asymptotic expansion
in the maximal stepsize, rN say, for the global error [13]

(3.1) eN YN y(tN)"

If we let f be M times differentiable, in some neighbourhood of the exact solution (2.1),
then functions ej, j p,-.., M, exist, independent of N, such that

M

(3.2) eN ’ej(tN) + O(’ff+ ’), ZN--->O.
j=p

The existence of this asymptotic expansion for eN forms the basis for global Richardson
extrapolation.

The use of this technique for estimating the global error of one-step integration methods
for ordinary differential equations is classic (see [5, p. 81] and [13, p. 157]), although it is
not very often applied [1], [10], [11]. As far as we know, the possibility of using this
technique for increasing the accuracy of low order splitting methods has not yet been
discussed in the literature.

Global extrapolation is easy to implement. It involves parallel integration with the same
method on different grids GN. Let us consider the coherent grids GN, Gv and G3N depicted
in Fig. 1. G is obtained from GN by halving all stepsizes, etc. Because of this coherence
between the grids, expansion (3.2) holds for ’N, zz zN/2 and %N ZN/3, at all common
gridpoints, i.e., on the whole of GN. Let Yn,i denote the approximation to y(t) at the grid
GiN. Then, at all common points,

M

(3.3) En,i Yn,i y(tn) (’N/i) Jej(tn) q- O(7"M+), ’rN’--> 0,
j=l

774 J. G. VERWER AND H. B. DE VRIES

if p 1. Next suppose M sufficiently large and compute

(3.4) y2 2y,,.2 y,,. ,,
9

yl,,31=- y,,.3 4y,,.2 +- y..,.

Then

(3.5)
y,Z, y(t.) - ez(t.) + O(z3u),

y3= y(t.) + "r3ue(tn) + O(z4u),

showing that y,2 and y,31 are of order of convergence two and three, respectively.

t._ t. t.+

FIG. 1. Three coherent grids.

It is emphasized that the extrapolation is passive, i.e, the integrations are performed
independently of each other. This trivially implies that global extrapolation cannot interfere
with the stability of the basic scheme.

Observe that it is theoretically possible to extrapolate to arbitrarily high order of con-
vergence. We restrict ourselves to orders two and three, assuming that this is sufficiently
high for partial differential equations. When compared with the result Y,,2 computed at the
grid Gzu, the computation of y,21 requires an additional computational effort of 50%. Global
extrapolation to order three requires twice as many operations per step as the basic scheme
on G3v. When using the grids Gu, Gv and Gary, the corresponding factor is equal to 7/4. We
prefer to use Gu, G2u and G3v in order to avoid a too large difference between the stepsizes.

4. Comparison with the Lawson-Morris extrapolation scheme. Lawson and Morris
[9] restrict their investigations to constant coefficient, homogeneous linear semi-discrete
systems

k

(4.1) ay Eaiy,
i=1

where =< k _-< 3. For this linear problem, the LOD scheme (2.3) reduces to

(4.2) Y,/ H (i -Ai)-y,,.
i=k

The second order, locally extrapolated LOD scheme of [9] is given by

(4.3)

k

Zo H (i -Ai)-y., z 1-I (I zAi)-’Zo,
i=k i=1

k

z2 1-I (I 2zA,)-’y., z3 I-I (I 2’A,)-’y,,
i=k i=1

Yn+2 2z- (z2 + z3).
Z

GLOBAL EXTRAPOLATION OF A FIRST ORDER SPLITTING METHOD 775

This scheme performs the step Yn Yn/ 2 over an interval of length 2z by performing four
basic LOD steps. Hence, per interval of length z, it requires twice as many operations as
the basic scheme. Lawson and Morris have defined their extrapolation in such a way that
for the linear model (4.1) associated to (2.4) (i) the scheme is unconditionally stable, and
(ii) the damping of the basic scheme is maintained. In fact, the preservation of damping has
been their main concern.

Remark. The reader should observe the symmetrization in method (4.3), i.e., the order
in which the matrices Ai appear alternates. Lawson and Morris do not motivate their use of
symmetrization. However, it benefits the accuracy and stability. We also remark that sym-
metrization is not necessary for obtaining order two. Further, if the matrices commute, which
they do in the stability analysis, we get y,/ 2 2zl z, i.e., straightforward local Richardson
extrapolation to order two. Hence in this case the extrapolation requires 3/2 times as many
operations. If the matrices do commute we use this work estimate for scheme (4.3) rather
than the factor 2 mentioned above.

The second order, local extrapolation scheme (4.3) can be extended to the general
problem cases (2.1)-(2.2). Introduce the formal notation Yn/ E[,t,yn,fl,’", fk] for the
LOD formula (2.3). The extention then reads

Zo E[z, tn, y,f,’",fk], Z E[r, t +l, Zo, fk,’" ",f],

(4.4) z2 E[2’, t, yn,f, "",f], z3 E[2’, tn, y,f, ",f],

Y,+2 2Zl- (z2 h- z3).

A straightforward Taylor expansion shows that this algorithm is of second order for any
choice of intermediate time points .,/t) in (2.3).

To demonstrate their scheme, Lawson and Morris [9] computed the solution to the
problem

Ut Ux,xl + Ux2x2, t>0, 0<x,xz<2,

(4.5) U(O,x, x2) sin (ff-), O <- x, x2 <-_ 2,

U(t, x, x_) 0, > 0, x, x on the boundary.

The Fourier solution of this problem is given by

(4.6) U(t, Xl, X) sin [1 1)"]
2 [nTrxl 7r

2

,,=, n’n’S/n,---,) exp ---(n2 + 1)t

Because of the discontinuity between the initial function and the boundary function, this
problem should be integrated with a method which rapidly damps high frequency components.

Following Lawson and Morris [9], we also compute the solution to this problem, at
t= 1, using the first order LOD scheme, the second order Lawson-Morris scheme, the
second order ADI scheme of Peaceman-Rachford, and global extrapolation to order two
and three applied to the LOD scheme. The spatial discretization is based on the standard 5-
point finite difference operator on a uniform grid of stepsize h. In Table 2 we show the
maximum of the absolute errors for some values of z and h. It should be noted that at
the theoretical solution has a maximum value of approximately 0.01. We refer to [9] for a
plot of this two-dimensional function. The values of " given in the table belong to the finest
time grids. In the column "Work" we have expressed the total computational effort per z-
interval into the computational effort of the LOD scheme.

776 J.G. VERWER AND H. B. DE VRIES

Method

TABLE 2
Maximum absolute errors in solving problem (4.5) at 1.

Work
7"= 1/12

h 0.1 h 0.05 h 0.025

LOD 5.31o-3 5.21o-3 5.21o-3
Peaceman-Rachford 3/2 2.31o-3 1.81o-2 4.11o-2
Lawson-Morris 3/2 7.51o-4 6.91o-4 6.71o-4
Global extrap. (2) 3/2 8.41o-4 9.01o-4 9.21o-4
Global extrap. (3) 2 5.51o-5 1.11o-4 1.21o-4

’T 1/24

h 0.1 h 0.05 h 0.025

2.5o-3 2.51o-3 2.51o-3
3.41o-5 2.31o-3 1.81o-2
3.01o-4 2.41o-4 2.31o-4
1.81o-4 2.31o-4 2.51o-4
5.91o-5 3.11o-6 1.11o-5

It can be concluded that for problem (4,5), which serves as a test example for problems
with nonsmooth initial data, the third order global extrapolation scheme is to be preferred
to the other schemes. For example, the globally extrapolated third order results for " 1/12
are more accurate than the second order extrapolated results for " 1/24. Note the somewhat
awkward error behaviour of the third order results for the three different values of h. It
seems plausible to owe this to interference of space and time errors of nearly equal magnitude.
We recall that Table 2 shows full discretization errors, whereas the implemented extrapo-
lations only deal with the time integration. We also emphasize that the very minor increasing
error behaviour of the global extrapolation methods for decreasing h does not occur system-
atically. See Tables 3a, b for comparison. Finally it should be observed that the ADI scheme
yields relatively large errors when h decreases. This is caused by a lack of damping of high
frequency components. The LOD type schemes do not suffer from this phenomenon.

Method

LOD
Lawson-Morris
Global extrap. (3)

TABLE 3a
Maximum absolute errors in solving problem (4.7) at for / 1/6.

Work

3/2

2

’r= 1/12

h 0.1 h 0.05 h 0.025

3.71o-3 3.41o-3 3.41o-3
6.31o-4 4.01o-4 3.41o-4
2.510-4 3.71o-5 3.0o-5

"r= 1/24

h 0.05 h 0.025

1.91o-3 1.71o-3 1.71o-3
4.11o-4 1.81o-4 1.21o-4
2.91o-4 6.91o-5 1.31o-5

TABLE 3b
Time integration errors at the gridpoint (1/2, 1/2, /2).

LOD
Lawson-Morris
Global extrap. (3)

’T 1//12 ’T 1/24

3.41o-3 1.610-3
3.310-4 1.010--4
5.01o-5 6.01o-6

As a further illustration we also compute the solution to the following three-dimensional
version of problem (4.5):

U 7(Uxlxl-F UX2X2 1- UX3X3) t>0, O<Xl, X2, X3 < 1,

(4.7) U(0, Xl, X2, X3) sin(-n’x2)sin(Trx3), 0 <--_ xl, xz, x3 <--- 1,

U(t, x, x2, x3) O, > O, Xl, x2, x on the boundary.

GLOBAL EXTRAPOLATION OF A FIRST ORDER SPLITTING METHOD 777

The Fourier solution is given by

(4.8) U(t, x, x_, x3) sin(’rrxz) sin(qrx3))n]2 sin(nTrx,) exp(),’rrZ(n + 2)t).
n=l nTr

Again we have a discontinuity between the initial and boundary function. The spatial dis-
cretization is based on the standard 7-point finite difference operator on a uniform grid of
stepsize h. Table 3a shows the maximum of the absolute errors for some values of " and h
at t= for three LOD schemes using o 1/6. For this value of y the solution (4.8) has a
maximum value of approximately 0.01 at t= 1. The column "Work" has the same meaning
as in Table 2.

Again we may conclude that it pays to apply extrapolation. It was found that in all
cases the maximum absolute error appeared near the point (1/2, 1/2, 1/2). For this grid
point the space errors (fully continuous solution semi-discrete solution) are -3.0o-4,
-7.4o- and 1.9o-. For all three methods the corresponding time errors (semi-discrete
solution fully discrete solution) were found to be independent of h. They are listed in
Table 3b. This table shows the performance of the extrapolation procedures more clearly
than Table 3a.

5. Two more numerical experiments. In addition to the previous experiments, we
discuss two more experiments in order to give some more insight into the use of the
extrapolation procedures. For this purpose we consider the first initial-boundary value prob-
lem for the simple linear problems

2 2
Xl Xl X2 X2U, Ux,x, + Ux2x2, t>0, 0<Xl, X2 < 1,

(5.1) 4 4
2U(t, xl, x2) e (xl xl)(x2 x2), >= O, 0 <= xl, x2 <- 1,

and

(5.2)
2Ut Ux,x, + U2x2- e-t(x + x2 + 4),

U(t, Xl, X2) + e-’(xz + xz2), -->_ 0,

t>0, O<xl, xz, < l,

0Xl, X2 1.

For the space discretization we use again standard finite differences on a uniform grid with
meshwidth h. Note that, due to the solutions selected, the space discretization is exact. So
we can illustrate the effect of the extrapolations without interference of space discretization
errors. Note also that the selected solutions are smooth, i.e., free of high frequency com-
ponents. This implies that here the ADI scheme could also successfully be applied, possibly
in combination with global extrapolation.

We have applied
(i) The first order LOD scheme

(5.3) y* y, + "rfl(t, + ’, y*), Yn+l Y* + zf2(t, + ’, y,+ 1)"

(ii) Global extrapolation on this scheme to order three.
(iii) The extension (4.4) of the Lawson-Morris scheme (4.3), where E now represents

(5.3).
(iv) The second order Peaceman-Rachford ADI scheme

z (y,) "Y* Y, + - fl t, + - r, + - fz(t,, y,)
(5.4)

y* + fl t. + a’, + f2(tn+ ,Yn+Yn+l 1)"

778 J. G. VERWER AND H. B. DE VRIES

(v) Global extrapolation on this ADI scheme to order four using the grids of Fig. 1.
The extrapolation formula to order four reads

27 4
Y,,2 +"Yn.3]Yn.,.

Experiment 1. This experiment deals with the homogeneous problem (5.1). We empha-
size that the solution is constant at the boundary. Space discretization leads to the splitting
functions

(5.5) f(l, y) Aly + B, f2(f, Y) A2y + B2,

where B and B2 are sparse vectors containing the constant boundary values. The meaning
ofA and A2 should be self-evident. Because of the fact that the present semidiscrete problem
is of constant coefficient type we in fact really apply the original algorithm of Lawson and
Morris, as the extension of their algorithm to the inhomogeneous form is not essential.

Table 4 shows maximum absolute errors at for three values of z using h 1/4o.

The z-values correspond to the finest grid. Observe that the LOD scheme (5.3) and the ADI
scheme (5.4) were applied using half the value of z given in the table. The column "Work"
has the same meaning as in Table 2.

TAaLE 4
Maximum absolute errors in solving problem (5.1) at 1.

Method

LOD (applied with ’/2)
Lawson-Morris
Global extrap. LOD (3)
ADI (applied with z/2)
Global extrap. ADI (4)

Work Z-" 1//6 Z lJ12 ’r 1J24

4.7o-4 2.41o-4 1.210-4
8.010--5 2.31o-5 6.2o-6
4.91o-6 6.910-7 9.21o-8
3.3o-6 8.310-7 2.1o-7
2.31o-8 1.41o-9 8.810--11

For the present problem it can be concluded that, due to the smooth solution, the
homogeneity, and the constant boundary values, all methods perform relatively accurately.
In particular, it pays to apply extrapolation. Also observe that the order of convergence of
all time integration methods shows up clearly (the space discretization is exact).

Experiment 2. The second experiment deals with the inhomogeneous problem (5.2),
whose solution has time-dependent boundary values. This experiment serves to illustrate the
effect of the extrapolation procedures in the presence of time-dependent boundary values
and time-dependent source terms. For all splitting methods these dependencies are known
to reduce the accuracy of the time integration [2], 12], 16]. Space discretization yields the
splitting functions

(5.6) f(t, y) Aly(t) + B(t) + 1/2V(0 f(t, y) A2y(t) + B2(t) + 1/2V(t),
where V(t) originates from the source term of (5.2) and A, A2 and B(t), B2(t) have the
same meaning as in Experiment 1. The results for h I/4o are given in Table 5. Observe
that we now apply an extension of the original Lawson-Morris algorithm (4.3).

It is striking that all LOD methods are significantly less accurate than in the previous
experiment, although the solution of problem (5.2) has the same "smoothness properties"
as the solution of problem (5.1). For the LOD methods the order of convergence shows up
insufficiently for problem (5.2). Here we must conclude that the LOD extrapolation pro-
cedures are hardly more efficient than their respective basic schemes. The errors of the

GLOBAL EXTRAPOLATION OF A FIRST ORDER SPLITTING METHOD 779

TABLE 5
Maximum absolute errors in solving problem (5.2) at 1.

Method

LOD (applied with z/2)
Lawson-Morris extension

Global extrap. LOD (3)
ADI (applied with z/2)
Global extrap. ADI (4)

Work 1/12 " 1/24

1.21o-2 7.8o-3 4.51o-3
2.31o-2 1.5o-2 8.71o-3
9.81o-3 4.71o-3 2.0o-3
2.61o-6 6.61o-7 1.61o-7
3.81o-6 2.21o-7 1.31o-8

Lawson-Morris extension are even larger than the LOD (z/2)errors. Finally, the ADI schemes
perform very satisfactorily for the present problem. Their time integration errors are rather
small while their order of convergence in time is clearly visible.

As already remarked at the end of2 the disappointing behaviour of the LOD algorithms
lies in the time dependencies of the boundary values and the source term. ADI algorithms
also suffer from these dependencies, although to a lesser extent. The decrease of accuracy
can be understood from a study of the error of approximation, i.e., the defect which is
obtained by substituting an exact and smooth solution into the numerical scheme. When
expanding this error in the time step ’, any splitting gives rise to terms which cannot be
combined to a higher derivative of the smooth solution, a situation which is not encountered
in the application of fully implicit schemes such as backward Euler or implicit midpoint.
These terms, finite difference expressions multiplied by h -z, thus may be relatively large
when compared with derivatives of an exact solution. It turns out that these terms are clearly
present when the problem has time-dependent boundary values and/or source terms (for
details, see [2], [12], [16]). The fact that ADI methods suffer less than LOD from this
phenomenon can be explained from the consistency of the intermediate level.

It is also worthwhile to realize that the accuracy of a splitting scheme may depend
significantly on the splitting of the source term. To illustrate this we have given Table 6
which shows some results of the LOD method applied to problem (5.2), when using the
splitting

(5.7) f(t, y) Ay(t) + B,(t) + aV(t),

fz(t, y) A2y(t) + B2(t) + (1 a)V(t),

for ce 0, 1/2, 1. The correct splitting of V(t) appears to be the one we have used in Table 5,
at least for problem (5.2). It is obvious of course that the differences shown in Table 6
penetrate into the extrapolations. For the ADI method one will find even larger differences
in accuracy for a 0, 1/2, 1.

Finally, we should like to observe that inaccuracies caused by time-dependent boundary
values can be removed by applying the Fairweather-Mitchell boundary value correction [2],

TABLE 6
Maximum absolute errors in solving problem (5.2) at using the LOD methodfor three

different splittings (5.7). The mesh width h 1/4o.

ct /2

a=l

"r 1/ "r= %0 "r 1/20 "r 1/40 "r 1/80

9.5 6.9 4.5 2.61o- 1.41o-
1.81o- 1.31o- 8.91o- 5.21o- 2.9o-
5.91o- 4.31o- 2.81o- 1.61o- 8.51o-

780 J. G. VERWER AND H. B. DE VRIES

TABLE 7
Maximum absolute errors in solving problem (5.2) at when using the boundary

value correction technique and the splitting (5.6).

Method

LOD (applied with r/2)
Lawson-Morris

Global extrap. LOD (3)
ADI (applied with r/2)
Global extrap. ADI (4)

Work ,]---- 1/6 ’]"---- 1/12 ,’/"--- 1/24

2.21o-3 1.31o-3 7.01o-4
2.21o-3 1.11o-3 5.010--4
1.31o-3 4.51o-4 1.11o-4
2.71o-6 6.61o-7 1.61o-7
1.31o-6 8.31o-8 4.710-9

[12], [16]. For problem (5.2) this is illustrated by the results shown in Table 7, although
the influence of the source term is still visible (this table is to be compared with Table 5).
In fact, the gain in accuracy of the extrapolated LOD schemes is still not up to our expec-
tations. The accuracy of the ADI scheme (5.4) is not improved by applying the boundary
value correction. On the other hand, the global extrapolation of the ADI scheme is benefited
slightly by this correction technique.

REFERENCES

K. DEKKER AND J. G. VERWER, Estimating the global error of Runge-Kutta approximation, in Differential-
Differenzengleichungen, Anwendungen und numerische Probleme, L. Collatz, G. Meinardus and W.
Wetterling, eds., ISNM Series, Vol. 62, Birkhiuser, Basel-Boston-Stuttgart, 1983.

[2] G. FAIRWEATHER AND A. R. MITCHELL, A new computational procedure for ADI methods, SIAM J. Numer.
Anal., 4 (1967), pp. 163-170.

[3] A. R. GOURLAY AND J. LL. MORRIS, The extrapolation offirst order methodsfor parabolic partial differential
equations. II, SIAM J. Numer. Anal., 17 (1980), pp. 641-655.

[4], Linear combinations of generalized Crank-Nicolson schemes, IMA J. Numer. Anal., (1981),
pp. 347-357.

[5] P. HENRICI, Discrete Variable Methods for Ordinary Differential Equations, John Wiley, New York, 1962.
[6] P. J. VAN DER HOUWEN AND J. G. VERWER, One-step splitting methods for semi-discrete parabolic equations,

Computing, 22 (1979), pp. 291-309.
[7] P. J. VAN DER HOUWEN, Multistep splitting methods ofhigh orderfor intial value problems, SIAM J. Numer.

Anal., 17 (1980), pp. 410-427.
[8] ., Iterated splitting methods of high order for time dependent partial differential equations, SIAM J.

Numer. Anal., 21(1984), pp. 635-656.
[9] J. D. LAWSON AND J. LL. MORRIS, The extrapolation offirst order methods for parabolic partial differential

equations, I, SIAM J. Numer. Anal. 15 (1978), pp. 1212-1224.
10] F. G. LETHER, The use ofRichardson extrapolation in one-step methods with variable stepsize, Math. Comp.

20, (1966), pp. 379-385.
11 L. F. SHAMPINE AND n. A. WATI’S, Global error estimation for ordinary differential equations, ACM Trans.

Math. Software, 2 (1976), pp. 172-186.
[12] B. P. SOMMEIJER, P. J. VArq DER HOOWEtq ArqD J. G. VERWR, On the treatment of time-dependent boundary

conditions in splitting methods for parabolic differential equations, Internat. J. Numer. Meth. Engrg.,
17 (1981), pp. 335-346.

[13] H. J. STEerER, Analysis of Discretization Methods for Ordinary Differential Equations, Springer-Verlag,
Berlin, 1973.

[14] J. G. VERWER, The application of iterated defect correction to the LOD method for parabolic equations,
BIT, 19 (1979), pp. 384-394.

[15] Contractivity of locally one-dimensional splitting methods, Numer. Math, 44 (1984), pp. 247-259.
[16] YE. G. D’YA:OrqOV,’ Some difference schemes for solving boundary problems, USSR Comput. Math. Math.

Phys., (1963), pp. 55-77.
[17] N. N. YANENKO, The Method of Fractional Steps, Springer-Verlag, Berlin, 1971.

SIAM J. Sc. STAT. COMPUT.
Vol. 6, No. 3, July 1985

(C) 1985 Society for Industrial and Applied Mathematics
019

A UNIFICATION OF SOME SOFTWARE RELIABILITY MODELS*

NAFTALI LANGBERGf AND NOZER D. SINGPURWALLA

Abstract. In this paper we show how several models used to describe the reliability of computer software
can be comprehensively viewed by adopting a Bayesian point of view. We first provide an alternative motivation
for a commonly used model, the Jelinski-Moranda model, using notions from shock models. We then show that
some alternate models proposed in the literature can be derived by assigning specific prior distributions for the
parameters of the above model. We also obtain other structural results such as stochastic inequalities and association,
and discuss how these can be interpreted.

Key words, software reliability, Bayesian statistics, shock models, association, reliability theory

1. Introduction, review of models, motivation, and summary. The increasing demand
for computers and computing services has brought about a great need for the study and
solution of many computer related problems. In particular, the problem of estimating the
reliability of computer software has, over the last few years, been receiving a great deal of
attention.

The software segment of a computer system involves instructions or codes used to
program the hardware system. Let N* be the total number of distinct "input types" to the
software system; N* is assumed to be large, conceptually infinite. By an input type we mean
a specific type of a job, data set, or function, which the software system is required to
undertake. Let N _-< N* be the number of input types which result in the inability of the
software system to perform its desired function; N is assumed unknown. Such input types
lead to what will be termed as software failures. Software failures are either due to errors
in the logic of the instructions, errors in the coding of the instructions (the program), or an
input that is incompatible with the design of the software system. We assume that the
processing of an input (if successful) is instantaneous; this implies that there is no queueing
of inputs at the system. We also allow for the possibility that the same type of input can
arrive at the software system over and over again. That is, as is typical, the software could
be called upon to perform the same type of job more than once. When a software failure
occurs, a diagnosis is made of the cause of the failure, and one of the following two actions
is taken:

(a) an error(s) in either the logic or the coding, or both, is (are) corrected, so that now
N is reduced by one (or more); this input type presents no future problem; or

(b) if it is determined that the input is incompatible with the software, then it is
eliminated from further consideration by an appropriate modification of the software.

Given tl,’",tk, k <= N, the times between failures of the software system, a problem
is to estimate (N- k), the number of input types which would lead to future software failures.
By "time" we mean here "execution time."

One of the earliest, and certainly the most referenced, models for describing the sto-
chastic failure of software, is that proposed by Jelinski and Moranda (1972)--henceforth
J-M. Here, attention is focussed on the N input types which lead to software failures; these
inputs are viewed as faults (bugs) in the program. The following assumptions are made:

*Received by the editors August 2, 1982, and in revised form February 13, 1984. This research was supported
by the Office of Naval Research under contract N00014-77-C-0263, Project NR-042-372, and by the Army Research
Office under grant DAAG 29-84-K-0160.

fTel Aviv University, Tel Aviv, Israel.
Department of Operations Research and Department of Statistics, George Washington University, Washing-

ton, DC 20052.

781

782 N. LANGBERG AND N. D. SINGPURWALLA

(i) The failure rate of the software at any point in time is proportional to the residual
number of faults in the program; the program begins life with N faults.

(ii) Each of the N faults contributes an equal amount, say A (unknown), to the failure
rate.

(iii) t,.. ",tv, the times between successive failures of the program, are judged inde-
pendent, given A and N. Thus the conditional density of T;, 1,... ,N, is

(1.1) f(t,[N,A) A(N- + 1)exp{-A(N + 1)ti},

with N and A being the unknown parameters.
Given t, "",tk, k-<_ N, Jelinski and Moranda, among others, apply the method of

maximum likelihood to estimate N and A.
To date, it appears that there are two issues that are critical of this model. These have

been emphasized by Littlewood (1981); they are:
(i) the "bug counting" framework from which the model is derived is regarded as being

naiveNin particular, assumption (ii) above, which states that every fault has the same effect
on the overall failure rate, has been challenged;

(ii) the standard "sample theory" approach of maximum likelihood estimation (MLE)
of the parameters of this model has often produced misleading answers (Forman and Sing-
purwalla (1977), (1979)).

In response to (i) above, alternate models have been proposed. Those by Littlewood
and Verrall (1973), henceforth L-V, and Goel and Okumoto (1979) have proved to be of
practical value.

Arguing that different portions of the program code are exercised with varying fre-
quencies, and that there is some uncertainty in the removal of a fault, L-V whilst retaining
the assumption that T, 1,2,.-., are conditionally independent with density

(1.2) f(t A,) A, exp(A/i)

require that the A,.’s be independent with density

(1.3) f(Ai i), a)
i){(i)Ai}- exp{ ,(i)A,}.

F(a)

To describe "reliability growth," which is expected to occur from the debugging process,
the parameter O(i) is taken to be an increasing function of i, flo + fli. This choice of O(i)
ensures that the sequence {A} stochastically increases in i. In L-V, the parameters/30 and
/31 are estimated using maximum likelihood, whereas a is estimated via a Bayesian argument.
Littlewood (198 l) uses some real life data on software failures to show that the L-V model
reasonably well describes his data, and uses this as empirical evidence in support of the
model.

Goel and Okumoto (1979) consider M(t), the cumulative number of software failures
in time t, and make some other assumptions to show that {M(t); >_-- 0} is a nonhomogeneous
Poisson process with a mean value function a(1 -e-b’); a is the expected number of faults
to be eventually detected, and b is a constant of proportionality for which no physical
meaning has been given. By contrast with the J-M model, this formulation treats N as a
random variable with expectation a, and the T now depend on 1T, 1,2,.... Using
some real life software failure data, Goel and Okumoto obtain the maximum likelihood
estimators of a and b, and show that the estimates of reliability using their model are
conservative as compared to those given by the J-M model. This, they argue, is a desirable
feature.

1.1. Motivation and summary. Our initial motivation for undertaking the work reported

UNIFICATION OF SOFTWARE RELIABILITY MODELS 783

here grew out of a desire to respond to the second of the two issues critical of the J-M
model. In so doing, we were led to a careful examination of the likelihood function for N
and interpreting its behavior. This in turn led us to conclude that a Bayesian point of view
is the natural one to consider here (see Meinhold and Singpurwalla (1983)). In the sequel,
we determine that besides coherent inference (Lindley (1972, p. 3)), we also have a way
to pull together the software reliability models presented above.

These and other matters are developed according to the following outline:
In {}2 we present an alternate derivation of the J-M model using notions from the theory

of shock models. We also obtain the posterior distributions for the parameters of this model
for a certain choice of prior distributions. In 3 we show that the prior distributions of 2,
regarded as special cases, result in the L-V model and the model by Goel and Okumoto. In
4 we derive certain properties, such as "stochastic inequalities" and "association," of the
times between software failures, and discuss the relevance of the above in software reliability.

The unification of models discussed in 3 enables us to view the major software
reliability models, some of which have proved to be useful, in a comprehensive manner,
and this together with the analysis of 4 is the main contribution of this paper.

2. A shock model for software failures and inference for its parameters. Before
proceeding to the problem of inference for the parameters of the J-M model (1.1), we shall
first consider the following alternative interpretation of the model.

To do this suppose that the inputs arrive at the software system according to the postulates
of a Poisson process with intensity function co. Then, given N* and N, the probability that
the software encounters no failures in a time interval [0,t) is given by

(2.1) (tlN, N*) e-’’(cot)J
,_-o /

As a justification for the above, note that the first term inside the summation sign denotes
the probability that j inputs (shocks) are received in time t, and the second term inside the
summation sign denotes the probability that all j inputs do not lead to a failure of the
software. Arguments of this type form the basis of the theory of shock models and wear
processes, which have played an important role in reliability theory (see Barlow and Proschan
(1975, p. 52).

It is easy to verify that (2.1), when simplified, leads to

(2.2) (tIN,N*) e -’u’/u*,

implying that the time to first failure of the software, say T, has an exponential distribution
with a scale parameter wN/N*. Following the error correction policy described under (a)
and (b) of 1, we note that T;, the time between the (i- 1)th and the ith failure of the
software, -< N, has survival function

(2.3) ffi(tlN,N*) P{Ti> tlN,N*} exp(w(N + 1)t) t>0g

In order to verify that the J-M model is a special case of the model described above,
we note that for the J-M model, Ti has survival function

(2.4) ffi(t IN,A) exp(- A(N + 1)t), -> 0,

where N denotes the number of errors in the program, and A is an unknown constant.
Clearly, (2.3) and (2.4) are alike if we set A co

The scenario described above can be viewed as being an alternative to the "bug-counting"
scenario considered by Jelinski and Moranda. Mathematically, and especially from the point

784 N. LANGBERG AND N. D. SINGPURWALLA

of view of inference, the J-M model and the model derived above are the same, even though
their motivations are different and their parameters have different interpretations. Since the
mathematical form of the J-M model is familiar to those working with the modelling of
software failures, we shall in the subsequent text use the form (2.4), and treat A and N as
the unknown parameters.

Bayesian inference for the unknown parameters N and A involves assigning a prior
distribution to the pair (N, A), and then obtaining the resultant posterior distribution using
T1, "", Tk and the Bayes theorem. Our uncertainty in knowledge aboutN and A is summarized
by the posterior distribution.

In 2.1, we obtain the posterior distribution of the pair (N, A) for various choices of
their prior distribution. The parameters N and A refer to tangible quantities, for which a
software expert must have judgments and perhaps even data, and these should be incorporated
into our choice of the prior distribution. Perhaps a detailed discussion of how to elicit the
software experts’ judgments about N and A would be helpful here. However, we have
refrained from including this in the interest of brevity, and because this aspect does not
represent the main thrust of our paper.

To start our Bayesian analysis, we shall need the following assumption.
A1. Let the prior distribution of (N, A) be . In what follows, we shall consider special

cases of . In what follows, we shall consider special cases of and obtain the resulting
posterior distributions. These can be further exploited by a user.

2.1. Determination of posterior distributions. We shall consider three cases, Case
1 requiring the assumption that N*, the total number of distinct input types, is conceptually
infinite

Case 1. Assume that "rr, the prior distribution for N, is Poisson with parameter 0, and
that A is degenerate at a known A.

Let fi,..., tk be the observed times between failures, and let {k) (q,..., tk). Then given
the observed outcome k), the likelihood for N q, q -> k is (for any unspecified but non-

informative stopping rule)

L(N q[{k)) exp A (q j + 1)t
(q k)V

so that

L(N q lt)r(N q)
(q k)

exp A
j=l

(q j + 1)tj

Summing q from k to , we obtain the posterior probability of N as

oq--k (e I lj-ll)
q-k

[j=l]P{N q lt,’",t} (q-/:)! xp t 0 exp t

If we let y(q,-..,t) 0 exp[- Ajk.= b], then it follows from the above that the posterior
distribution of (N- k) is a Poisson distribution with mean y(fi,...,t).

Case 2. Assume that N is degenerate at a known value, say n, and that A has a gamma
distribution with scale parameter/z and shape parameter a. We denote this latter distribution
as A---3(/x, a).

Given the observed outcome t<k, the likelihood of A for k _-< n is (for any unspecified
noninformative stopping rule)

L(A t(k))
(n k)-----, j=l

UNIFICATION OF SOFTWARE RELIABILITY MODELS 785

so that

n! /x-- Ak+’+’exp -A /x+ (n-j+ 1)tL(hlt)d(tz’a)
(n k).F(a) =1

Integrating over A, we obtain the joint density of the observed outcome as
-(k + a)

n! tz F(k+a)[tx+(n-j+l)tjfl-tCk))
(n k)- F(a) =

a multivariate Pareto, and Bayes theorem gives us the result that the posterior density of A
is (+ Zk (n-j + 1)t,k + a)

Case 3. Assume that N has any specified prior distribution, and that A (,a),
independent of the distribution of N.

Given k), and following the guments used in Cases and 2, we see that for q k,
and any unspecified noninfoative stopping le, the joint density of of k), N q, and A
is

q’ h+-lexp[-h(+ (q-j+ 1)t)]P{N=q}f((*,N q, A)
r(a) (q k) j=l

Summing q from k to , and integrating over A, we obtain the joint density of the obseed
outcome as

F(a+k){kq(F(a) (q) -(+k)}f([())
k)

P(N q) g + (q j + 1)tj

which is a mixture of multivariate Paretos.
Using Bayes’ theorem, the joint posterior probability of N and A is

P(N q, A A tl, "’, tk)

l(q--j+ 1)91

F(+ k)
+ (q -j + 1)t

j=l

q! j=l

(a + k)

(q k)
/z+(q-j+ 1)t P(N=q)

It now follows that the posterior probability of A, given that N q, is u3(/x + = (q -J + 1)tj,
k + a), and the posterior probability of N q, for q _-> k, is

q,(q)-(a+k)(q k).
/z +

=1
(q j + 1)t P(N q)

P{N q ltl,’",tk} _+)q)(r-k) g + (r-j+ 1)t P(N=r)

3. Model unification. Let M(t) denote the number of times that the softwe fails in
a time inteal [0, 0. Using the assumptions A2, A3, and A4 given below, we shall show
in Theorem 3.3 that {M(t), 0} is a nonhomogeneous Poisson process with EM(O
0(1 -e-a’), the constants 0 and A e defined in A3 and A4, respectively. This is precisely
the model considered by Goel and Okumom (1979).

786 N. LANGBERG AND N. D. SINGPURWALLA

A2. For k 1, 2,..., the conditional random variable (TkIN, A) is such that

oo, k>N,(TkIN, A) (A(N- k + 1))-’Uk, k<-N,

where UI, U2,"" is an i.i.d, sequence of exponential random variables with mean 1.
A3. The prior distribution for N is Poisson with a known parameter O.
A4. The parameter A is degenerate at a known A; that is, P{A A} 1.
Note that these assumptions describe Case of 2.1. Thus, the model by Goel and

Okumoto is a generalization of the J-M model obtained by assuming A known, and assigning
a special prior to N.

Just as Case helps us describe the Goel and Okumoto model, Case 2 helps us to
describe the L-V model. Thus the L-V model is a generalization of the J-M model by
assuming N known and assigning a specific prior to A. The model in Case 3 seems to be a
combination of the Goel and Okumoto and L-V models, by assuming both N and A to be
random variables.

To prove Theorem 3.5, we need assumption AS, which is a generalization of assumption
A2, obtained by considering a nondecreasing positive real valued function h defined on
(0, o), and a sequence of i.i.d, random variables V, V2,’", with mean 1.

AS. For k 1, 2,-.., the conditional random variable (Tk[N,A) is such that

k>N,(TIN’A) h(A(N k + 1))V, k _-< N.

Note that A5 reduces to A2 if V is an exponential random variable and h(x)= x-.
To begin our unifying effort, we need the following well-known lemma.
LEMMA 3.1. Let ’,:l < ’,:2 < < ’,:, be the order statistics of a sample of size n

taken from an exponential distribution with mean 1. Furthermore, let U1 U2,"" be inde-
pendent and exponentially distributed random variables with mean 1. Then, for k 1,... ,n
and >= O,

P (n q + 1)-U _-< P{’..._-< t}.
q=l

Proof. Let ’n:O 0. The proof follows from the fact that the two random vectors
[(n-q + 1)-Uq, q 1,..., k] and [rn:q- ’n:q-l, q 1,’", k] are stochastically equal (Barlow
and Proschan (1975, p. 59)). [--1

In an unpublished technical paper, Stefanski (1981) has further exploited the above
lemma to point out some connections between the J-M model and the order statistics property
of point processes.

In the theorem below we show that under A2, the number of times that the software
fails between any two specified time points has a distribution that is a product of certain
binomial terms.

THEOREM 3.2. Let 0 to < t <"" < tk; er exp(A(tr 1)), lr {0,1,’.-},
and Sr X.= lj, r 1,’", k and So O. Then, under A2, for Sk <- N,

Proof. Throughout the proof, let M(t, N) denote the number of times that the software
fails in time (0, t), given N. Then, from the lack of memory property of the exponential
random variables, we have for r 1,..., k

UNIFICATION OF SOFTWARE RELIABILITY MODELS 787

P{(M(tr, N) M(tr_ ,, N)) lr M(tj,N) Sj, j 0,..., r- l}
P{M(tr- tr--, N- Sr_) lr}.

Thus, to obtain the desired result, it suffices to show that for k 0,..., N, and ->_ 0

We next verify that the above equation is true. Let Sq Z/= ITj, and letfsj denote the density
function of Sq, q 1,...,N. Note that for t>0, and k 1,...,N- 1,

and

P{Sk -< < Sk + l} [A(N k)]- lfs/ l(t)

fP{S1 > t},
P{M(t, N) I} P{S Sk+ l}

IP{Ss <- t},

k--0,
0<k<N,
k=N.

Since Sk and Eq= [A(N q + 1)] Uq are stochastically equal for k 1,..., N, the desired
result follows from Lemma 3.1. [--1

THEOREM 3.3. Under A1, A2, A3, A4, the notation of Theorem 3.2, and

j--I

,j def OPj H (1 eq), j 1, k,
q=l

then

P{(M(tr) M(tr_)) r 1,’", k} I-I e-/r’y(lr !) -1.
r=l

Proof. By Theorem 3.2,

P{(M(tr) M(tr_ 1)) lr, r 1,"’, k}

since

P{(M(tr) M(tr_ 1)) lr, r 1,"-, kiN n}P{N n}
n=S

-I(’)lr)lrsII]e- 0 (1 Pj)
r=l Ir! j=l

k

H e-3’r(/r)l
r=l lr!

S

[(n Sk)!} -1

k r--1

ZPrH (1 -Pq)-- 1-I (1 -Pq).
r=l q=l q=l

Clearly, under A2-A4,

e{(M(tr) M(tr_,) lr, r 1,’’’, k} -/"ILI e-’/r(%)l----’--de{A < A}.
r=l lr!

0

In particular, for _--> 0, @ {0, 1,...},

788 N. LANGBERG AND N. D. SINGPURWALLA

and

P{M(t) l} f exp[-0(1 e-X’)] [0(1 e-X*)]
l!

o

dp{A <- a},

EM(t) 0(1 Ee -’t) 0(1 e-at).

A key feature of L-V is that the times between failures of the software, T, T2,"’, have
a decreasing failure rate (DFR). Even though the above authors motivate this DFR feature
with an interesting subjective argument, they deduce special cases of this property by using
physical arguments. We show (Theorem 3.5) that the DFR feature follows, in a more general
way, within the framework of our assumptions. A second feature of the L-V paper is that
T,T2,’" are stochastically increasing. In Theorem 3.4 below, we obtain a stochastic rela-
tionship between the two unconditional random variables T and T+ for all positive integers
k and r, which retains this second feature.

THEOREM 3.4. Under A1, A3, and A5 T is stochastically less than T/,, for all positive
integers k and r.

Proof. Let _-> 0, and be a positive integer. Then

P{T,> t} P{N<I} +
e-Oq

q=t q!
P{V, > t[h(A(q + 1))]-’} dP[A <-_ A 0].

o

Thus, P{T > t} <-_ P{T+,>t}, t>0, and the desired result follows. 1--]
Note that in the above theorem we can choose A3, the assumption of a Poisson prior

distribution, without any loss of generality.
THEOREM 3.5. Under A1, A3, A5, and the assumption that V has a DFR, T, k 1,2,..’,

also has a DFR.
Proof. Let >_- 0; then

P{T > t} P{N < k} + I I P{h(A(n k + 1))V > t} dF(n,A).
o o

Since a mixture of DFR distributions in DFR (Barlow and Proschan (1975, p. 103), the
desired result follows. [--]

4. Association of the times between software failures and its implications. In 2
we have assumed that T1, ...,T,, the times between software failures, are conditionally
independent. That such an assumption need not always be true has been pointed out by
Crow and Singpurwalla (1983). As a first step towards weakening this assumption, we shall
now prove the association of [T1,’-’,T], k 1,-.-,2. Association as a notion of positive
dependence is well known in reliability theory, and is summarized by Barlow and Proschan
(1975, p. 29). We first prove the following lemma, which is of interest in its own fight.

LEMMA 4.1. Let T and S be some random vectors defined on some probability space.
Assume that

(i) the conditional random vector TIS is associated;
(ii) the conditional random vector TIS is stochastically nondecreasing (nonincreasing)

in S; and
(iii) the random vector S is associated.
Then the random vector T is associated.

Proof. Assume that T is a k-dimensional random vector, and letf andf2 be two bounded
real valued nondecreasing functions defined on the kth Euclidean space. First, note that

UNIFICATION OF SOFTWARE RELIABILITY MODELS 789

Cov[fl(T),f2(T)] E Cov{[fl(T),f2(T)] S} + Cov[E(fl(T) S},E{f2(T) S}].

By (i), Cov{[fl(T), A(T)IS} >_- 0. By (ii), E{fl(T)[S} and E{f2(T)[S} are nondecreasing
(nonincreasing) in S. Thus by (iii) Cov[E{fl(T)]S}, E0C2(T)IS}] -> 0. The result of the lemma
follows. [--1

THEOREM 4.2. Assume that A1, A3, and A5 hold, and that the pair (N, A) is associated,
Then for every positive integer k, Tk [T1,’", Tk] is associated.

Proof. Under A5, (TIN, A) has independent components, and is therefore associated.
Since (N A) is associated, the result of the theorem can be proved using Lemma 4.1, if we
can show that (TIN, A) is stochastically nonincreasing in (N,A).

Since (TIN,A) has independent components, the preceding statement can be proved
if we can show that for each positive integer k, (TIN,A) is nonincreasing in (N,A).

To prove the latter statement, we note that for k 1,2,..- and >_- 0,

1,P{T > N,A} P{V1 > th(A(N k + 1))},

Thus, (T,IN, A) is stochastically nonincreasing in (N, A). [S]
Note that if N and A are independent random variables, and if A1, A3, and A5 hold,

then T1,’", Tk are associated for k 1,2,....
By way of a corollary to Theorem 4.2, we have the following inequalities which are

useful and have an interesting interpretation.
COROLLARY 4.3. Assume that the conditions of Theorem 4.2 hold. Let To f oo,

to O, and let r and k be positive integers such that <- r < k. Then for all t,.. ",t,
t>-O,

P{Tr > tr, Tk > tk To > to,’", Tr_ > tr_ l} P{Tr > tr, Tk > t},

and

P{Tr<-- tr, Tk<- ttl To<-- to, L--1 <-- tr-,} >=P{Tr<-- tr, Tt<= tt}.

Proof. Let f(x) I-Ikq=rl(Xq tq), fz(x) I-Iq= ll(xq > tq), f3(x) 1-Ikq=rl(xq < tq),
f4(x) l-lq= fl(Xq < tq), where x [Xl,’",x] and I is an indicator function. The results
of the corollary now follow, since by Theorem 4.2,

Cov[f(Tk),f2(T)] => 0 and Cov[f3(T),f4(T)] >= 0.

One way to interpret the inequalities of Corollary 4.3 is that statements about the
uncertainties of the future times between failures, Tr,’", T, can be improved by incorporating
knowledge about the previous observed times between failures, To,’",Tr_ 1. This is rea-
sonable because the association of Tk [T1, ...,Tt} for every positive integer k implies a
kind of positive dependence between the components of Tt. It is useful to remark that a
similar interpretation would have been possible had we been able to establish a negative
dependence between the components of Tt. What is important here is that positive or negative
correlation conveys "information" among the variables. We suspect that inequalities of the
kind described by Corollary 4.3 may be useful for preposterior analysis.

Acknowledgments. We would like to acknowledge comments on a preliminary version
of this paper by Chris Dale, Ralph Evans, Thomas Mazzuchi, Ray Shafer, and Len Stefansky.
Professor Richard E. Barlow has made substantial comments which have led us to rethink
matters and arrive at the present version.

790 N. LANGBERG AND N. D. SINGPURWALLA

REFERENCES

[1] R. F. BARLOW AND F. PROSCHAN (1975), Statistical Theory of Reliability and Life Testing, Holt, Rinehart
and Winston, New York.

[2] L. H. CROW AND N. D. SINGPURWALLA (1984), An empirically developed Fourier series modelfor describing
software failures, IEEE Trans. Reliability, R-33, pp. 176-183.

[3] E. H. FORMAN AND N. D. SINGPURWALLA (1977), An empirical stopping rule for debugging and testing
computer software, J. Amer. Statist. Assoc., 72, pp. 750-757.

[4] (1979), Optimal time intervals for testing hypotheses on computer software errors, IEEE Trans.
Reliability, Ro28, pp. 250-253.

[5] A. L. GOEL AND K. OKUMOTO (1979), Time-dependent error-detection rate modelfor software reliability and
other performance measures, IEEE Trans. Reliability, R-28, pp. 206-211.

[6] Z. JELINSKI AND P. B. MORANDA (1972), Software reliability research, in Statistical Computer Performance
Evaluation, W. Freiberger, ed., Academic Press, New York, pp. 485-502.

[7] O. V. LINDLEY (1972), Bayesian Statistics, A Review, CBMS Regional Conference Series in Applied Math-
ematics 2, Society for Industrial and Applied Mathematics, Philadelphia.

[8] B. LIqTLEWOOD (1981), A critique of the Jelinski-Moranda model for software reliability, Proc. Ann. Rel.
and Maintainability Symp., pp. 357-364.

[9] B. LITTLEWOOD AND J. L. VERRALL (1973), A Bayesian reliability growth modelfor computer software, Record
IEEE Symposium on Computer Software Reliability, IEEE, New York, pp. 70-77.

10] R. J. MEINHOLD AND N. D. SINGPURWALLA (1983), Bayesian analysis ofa commonly used modelfor describing

software failures, The Statistician, 32(1&2), pp. 168-173.
11 L. A. STEFANSKY (1981), A note on a well-known software reliability model, unpublished report, Division of

Mathematics, U.S. Army Research Office, Research Triangle Park, NC.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 3, July 1985

1985 Society for Industrial and Applied Mathematics
020

CORRIGENDUM:
BLOCK PRECONDITIONING FOR THE CONJUGATE

GRADIENT METHOD*

P. CONCUSS’, G. H. GOLUB: AND G. MEURANT

In Theorem 4 and Theorem 5 change "negative" to "nonpositive".

* This Journal, 6 (1985), pp. 220-252.

" Lawrence Berkeley Laboratory and Department of Mathematics, University of California, Berkeley,
California 94720.

$ Computer Science Department, Stanford University, Stanford, California 94305.
Commissariat l’Energie Atomique, Limeil 94190 Villeneuve-Saint-Georges, France, and Computer

Science Department, Stanford University, Stanford, California 94305.

791

SIAM J. ScI. STAT. COMPUT.
Voi. 6, No. 4, October 1985

1985 Society for Industrial and Applied Mathematics
001

CONTINUATION-CONJUGATE GRADIENT METHODS FOR THE LEAST
SQUARES SOLUTION OF NONLINEAR BOUNDARY VALUE PROBLEMS*

R. GLOWINSKI"f, H. B. KELLER:I: AND L. REINHART

Abstract. We discuss in this paper a new combination of methods for solving nonlinear boundary value
problems containing a parameter. Methods of the continuation type are combined with least squares
formulations, preconditioned conjugate gradient algorithms and finite element approximations.

We can compute branches of solutions with limit points, bifurcation points, etc.
Several numerical tests illustrate the possibilities of the methods discussed in the present paper; these

include the Bratu problem in one and two dimensions, one-dimensional bifurcation and perturbed bifurcation
problems, the driven cavity problem for the Navier-Stokes equations.

Key words, nonlinear boundary value problems, bifurcation, continuation methods, nonlinear least
squares, conjugate gradient, finite elements, Navier-Stokes equations, biharmonic solvers

1. Introduction. We present in this paper a powerful combination of techniques
that are used to solve a variety of nonlinear boundary value problems containing a
parameter. Indeed the resulting method can be employed to study a large class of
nonlinear eigenvalue problems. The individual techniques include: arclength or pseudo-
arclength continuation, least squares formulation in an appropriate Hilbert space
setting, a conjugate gradient iterative method for solving the least squares problem
and finite element approximations to yield a finite dimensional problem for compu-
tation.

In 2 the solution techniques are described in some detail. Specifically in 2.1
the last squares formulation of a broad class of nonlinear problems, say in the form

(1.1) AU=T(U),

are formulated in an appropriate Hilbert space setting. Then in 2.2 a conjugate
gradient iterative solution technique for solving such least squares problems is presen-
ted. In 2.3 a pseudo-arc length continuation method for nonlinear eigenvalue problems
in the form

(1.2) Lu=G(u,A)

is discussed. This involves adjoining a scalar linear constraint, say

(1.3) l(u,A,s)=O,

and with U {u, A } the previous least squares and conjugate gradient techniques can
be applied to the system (1.2), (1.3). One big advantage of our specific continuation
method is that simple limit or fold points of the original problem (1.2) are just regular
points for our reformulation in the form (1.1). The entire procedure thus enables us
to determine large arcs of branches of solutions of (1.2) with no special precautions
or change of methods near limit points.

* Received by the editors November 22, 1982, and in revised form June 12, 1984.

" Paris VI University, LA 189, Tour 55.65, 75230 Paris Cedex 05 France, and INRIA, Domaine de
Voluceau, Rocuqencourt, 78153 Le Chesnay Cedex, France.

t Applied Mathematics, California Institute of Technology, Pasadena, California 91125. The research
of this author was supported in part by the U.S. Department of Energy under contract EY-76-S-03-0767,
Project Agreement 12, and by the Army Research Office under contract DAAG 29-78-C-0011.

INRIA, Domaine de Voluceau, Rocquencourt, 78153 Le Chesnay Cedex, France.
793

794 R. GLOWINSKI, H. B. KELLER AND L. REINHART

These techniques, as described in 2, apply to the analytical problem. However
they go over extremely well when various discrete approximations are applied to yield
computational methods ofgreat power and practicality. We illustrate this by considering
several nonlinear boundary value problems of some difficulty and current interest. In
each ofthese problems the discretization is obtained by some finite element formulation.
The well-known Bratu problem on a square domain is treated in 3. Several ordinary
differential equation examples displaying bifurcation and the effects of perturbed
bifurcation are treated in 4. We show how to use perturbed bifurcation and continu-
ation to obtain the bifurcating solutions. Finally in 5 the Navier-Stokes equations
are solved for the driven cavity problem.

Actually the techniques described in this paper have also been applied to the
solution of nonlinear boundary value problems, more complicated than those con-
sidered in the following sections. Among these problems, we shall mention the Von
Karman equations for nonlinear plates and the computation of the multiple solutions
of the full potential equation modelling transonic flows for compressible inviscid fluids.

2. Solution techniques. We introduce in this section the methods we shall apply
in 3, 4, 5, to the solution of quite general nonlinear boundary value problems. They
include least squares, conjugate gradient and arc length continuation methods.

Let V be a Hilbert space (real for simplicity) equipped with the scalar product
(.,.) and the corresponding norm 11.11. We denote by V’ the dual space of V, by (.,.)
the duality pairing between V and V’, and by [[. 1[. the corresponding dual norm, i.e.

(2.1) Ilfll, sup f V’.

The problem that we consider is to find u V such that

(2.2) S(u) =0,

where S is a nonlinear operator from V to V’.

2.1. Least squares formulation of problem (2.2). A least squares formulation of
(2.2) is obtained by observing that any solution of (2.2) is also a global minimizer over
V of the functional J: V- defined by

(2.3) J(v) 1/21IS()11 =
Hence a least squares formulation of (2.2) is:

Find u V such that

(2.4) J(u)<=J(v) Vv V.

In practice we proceed as follows. Let A be the duality isomorphism corresponding to
(.,-) and (.,.). That is Vv V, Av V’ satisfies

(Av, w)=(v, w) Vw V,(2.5)

(2.6)

It follows that

(2.7) J(v) 1/2(A,)
where is a (nonlinear) function of v obtained via the solution of the well-posed linear
problem

(2.8) A=S(v).

CONTINUATION-CONJUGATE GRADIENT METHODS 795

We observe that (2.4) has the structure of an optimal control problem, where
(i) v is the control vector,
(ii) is the state vector,
(iii) (2.8) is the state equation,
(iv) J is the cost function.

As a final remark we observe that any solution of the minimization problem (2.4) for
which J vanishes is also a solution of the original problem (2.2).

2.2. Solution by a conjugate gradient algorithm. We suppose from now on that S
is ditterentiable implying in turn the ditterentiability of J over V. We denote by S’ and
J’ the Fr6chet derivatives of S and J respectively.

From the ditterentiability of J it is quite natural to solve the minimization problem
(2.4) by a conjugate gradient algorithm; among the possible conjugate gradient
algorithms we have selected the Polak-Ribire variant (cf. Polak [1]) whose very good
performance has been discussed by Powell [2] (see also Shanno [28]). The Polak-Ribire
method applied to the solution of (2.4) provides the following algorithm.

Step O" Initialization. For some given

(2.9) u V,

compute g0 V as the solution of

(2.10) Ag=J’(u),

and set

(2.11) z=g.
Then, for n_>-0, with u", g", z" known, compute u "+1

Step 1" Descent. Compute:

(2.12) p. arg min J(u" pz"),

and then set

(2.13) u "+1 u" p,z".

g"+l, z"+ by:

Step 2" New descent direction. Define gn+lG V as the solution of

(2.14)

then compute

and set

Ag"+=j’(u"+);

(Ag",g") (g",g")

(2.16) zn+I gn+l d- Tnz n.
Set n n + 1 and return to Step 1.

The two costly steps (because they need some auxiliary computations) of algorithm
(2.9)-(2.16) are:

(i) The solution of the one-dimensional minimization problem (2.12) to obtain
p,. We have done the corresponding line search by dichotomy and parabolic interpolation,
using p,_ as starting value (see [3] for more details). We recall that each evaluation

If the nonlinearity is polynomial we can use faster methods.

796 R. GLOWlNSKI, H. B. KELLER AND L. REINHART

of J(v), for a given argument v, requires the solution of the linear problem (2.8) to
obtain the corresponding :.

(ii) The calculation of g,/l from u "/1 which requires the solution of two linear
problems associated with A (namely (2.8) with v u"+ and (2.14)).

Calculation ofJ’(u") and g": Owing to the importance of Step 2, let us detail the
calculation of J’(u) and g".

Let v V; then J’(v) may be defined by

(r + tw) (v)
(2.17) (J’(v), w)= lim Vw V.

to
t#o

We obtain from (2.7), (2.8), (2.17) that

(2.18) (J’(v), w)=(A,

where and r/are the solutions of (2.8) and

(2.19) Arl= S’(v). w,

respectively. Since A is self-adjoint (from (2.5)) we also have from (2.18), (2.19) that

(2.20) (J’(v), w) (A:, r/) (At/,) (S’(v). w, :).

Therefore J’(v) V’ may be identified with the linear functional
(2.21) w --> <S’(v) w, >.
It follows then from (2.14), (2.20), (2.21) that g" is the solution of the following linear
variational problem:

Find g"6 V such that
(2.22)

(Ag", w)= (S’(u"). w, ") Vw V,

where :" is the solution of (2.8) corresponding to v u".
Remark 2.1. It is clear from the above observations that an efficient solver for

linear problems related to operator A (in fact to a finite-dimensional approximation
of A) will be a fundamental tool for the solution of problem (2.2) by the conjugate
gradient algorithm (2.9)-(2.16).

Remark 2.2. The fact that J’(v) is known through (2.20) is not at all a drawback
if a Galerkin or a finite element method is used to approximate (2.2). Indeed we only
need to know the value of (J’(v), w) for w belonging to a basis of the finite-dimensional
subspace of V corresponding to the Galerkin or finite element approximation under
consideration.

Convergence ofalgorithm (2.9)-(2.16): We introduce the concept of regular solution
of problem (2.2) by the following definition.

DEFINrrON 2.1. A solution u of (2.2) is said to be regular if the operator S’(u)
((V, V’)) is an isomorphism from V onto V’.

Using a modification of the finite-dimensional techniques of Polak [1], it has been
proved in Reinhart [3] that if problem (2.2) has a finite number of solutions and if
these solutions are regular, then the conjugate gradient algorithm (2.9)-(2.16) converges
to a solution of (2.2), depending upon the initial iterate u in (2.9). This convergence
result requires that u is well chosen, as in Newton’s method. Hence the role that
continuation methods may play is apparent.

CONTINUATION-CONJUGATE GRADIENT METHODS 797

2.3. Arc length continuation methods. Consider now the solution of nonlinear
problems depending upon a real parameter A; we would like to follow in the space
VR branches of solutions {u(A), A} when A belongs to a compact interval of R.

These nonlinear eigenvalue problems can be written as follows

(2.23) S(u,)t)=0,)t i, uV.

Equation (2.23) reduces quite often to

(2.24) Lu G(u,)t),)t , u 6 V,

where L: V--> V’ is a linear elliptic operator, and where G is a nonlinear Fredholm
operator (see e.g. Berger [4] for the definition of Fredholm operators).

A classical approach is to use)t as the parameter defining arcs of solutions. If for
)t)to problem (2.23) has a unique solution u Uo and if that solution is isolated, that
is

OS
(2.25) S =uu(UO,)to) is an isomorphism from V onto V’,

and if {u,)t}--> S(u,)t) is C in some ball around {Uo,)to}, then the implicit function
theorem implies the existence of a smooth arc of regular solutions u=u()t) for
I)t-)tol < P- Therefore, for)t given sufficiently close to)to we may solve problem (2.23)
just as problem (2.2). These procedures, however, may fail or encounter difficulties
(slow convergence for example) close to a nonisolated solution.

To overcome these difficulties we replace problem (2.23) by the following system

(2.26) S(u,)t 0,

(2.27) l(u,)t, s)=O,

where 1: VR -->R is chosen such that s is some arc length (or a convenient
approximation to it) on the solution branch. We look then for a solution {u(s),)t(s)},
s being given (but not)t). If in addition to {Uo,)to} we know a tangent vector to the
path {ti(So), A(So)} (where t3 denotes the derivative of v with respect to s) satisfying:

(2.28a)

(2.28b)

S.(uo, Xo)a(So) + s (Uo, o);(So)=0,
II(so)ll = + IA(so)12 1,

then we can use

(2.29) l(u,)t, s)= (ti(So), u(s)- U(So)) + A(So)()t (s))t (So))- (s- So) =0,

for Is- So[sufficiently small.
Let us define U Vx by U {u,)t}; then problem (2.26), (2.27) can be written

as

(2.30)

where

(2.31)

with

(2.32)

L(u)=o,

T(U) (TI u)

Ts(U)=S(u,)t), T_s(U)=l(u,)t,s).

798 R. GLOWINSKI, H. B. KELLER AND L. REINHART

The main interest of this new formulation is that the ordinary limit points of (2.26)
become regular solutions of (2.30) (see H. B. Keller [5], [6] for more details).

Using the notation of 2.1 a least squares formulation of (2.30) (generalizing
(2.4)) is given by:

(2.33)

with

(2.34)

Find U(s)= {u(s), h(s)} such that

L(U(s))<-_L(w) vw={w,#}e vxR,

J,(W) 1/2(Aft,, w>+1/21 l=

where, in (2.34), ff and/2 are (nonlinear) functions of {w,/} via the solution of the
linear problems

(2.35) Aft= Tis(w,

(2.36) /2 T2s(w,

respectively.
We consider now a conjugate gradient algorithm (in fact, a variation of algorithm

(2.9)-(2.16)) to solve the least squares problem (2.33); this algorithm is defined as
follows.

Step O" Initialization. For some given

(2.37) UO= {uo, xo}
compute GO= {gO, gO} e V xR as the solution of

oL(uo),(2.38) Ag"

(2.39) gO _(uO),
and set

(2.40)

Then for n->_ 0, with U", G", Z" known, compute Un+l, Gn+l, Zn+l as follows.
Step 1: Descent. Compute

(2.41) p, Arg Min J(U" -pZ"),

(2.42) U"+1

(i.e. u "+1= u" -p,z",, A"+I= A"-p,z").
Step 2: Calculation ofthe new descent direction. Define G"+1 {g+, g+} VR

as the solution of

(2.43) Ag,+ OJ U,+I

(2.44) g+l aJs U.+I

CONTINUATION-CONJUGATE GRADIENT METHODS 799

then compute

(2.45)

(A(g+-g,), g,+)+(g+l-g)g"x+l
(Ag,,g,)+lgl2

(g,+ g, g+l) + (g+_

and set

(2.46) Z/1+= Gn+l + y/1Z/1.

Set n n + 1 and return to Step 1.

The various comments given in 2.2, concerning algorithm (2.9)-(2.16), still hold
for algorithm (2.37)-(2.46). In particular as we pointed out in Remark 2.1 is the
importance of efficient methods for solving linear problems related to operator A. This
remark still holds, indeed, since in the context of 2.3, A is replaced by the block-
diagonal isomorphism " V V’ defined by

We do not go into the details of the calculation of OJ/Ou, OJ/O since it is just a
trivial modification of the calculation done in 2.2 to obtain J’.

A crucial step in the continuation method is a good" initialization choice in
(2.37). The obvious choice

(2.47) {uo,
is naive and a better choice is provided by using the tangent of (2.28) in the extrapolation:

u. U(So) + (s So)C,(So),
(2.48)

)to=)t (So) + (s So)(So).
This results in much faster convergence, especially close to the limit points. This
initialization technique leads to the so-called continuation method with incremental load
and is of order 2 (see Deuflhard [38]). We shall return to this initialization problem
in 2.4.

Convergence of algorithm (2.37)-(2.46). The fundamental advantage of the arc
length continuation approach is that it provides an efficient solution method in the
neighborhood of the so-called limit (or fold) points of problem (2.23). A precise
formulation of the concept of simple limit points is given by the following definition.

DEFINITION 2.2. Let {Uo,)to} V be the solution of problem (2.23). We say
that {Uo,)to} is a simple limit point if:

(2.49) dim Ker (uo, ,o) codim Range (uo, Io) 1,

(2.50) -(uo,)to) Range uo,)to)

We show in Fig. 3.2 an example of such a limit point (located on a solution curve of
S(u,) =0 where o c).

The main justification of arc length continuation methods follows from the next
proposition.

800 R. GLOWlNSKI, H. B. KELLER AND L. REINHART

PROPOSITION 2.1. Any simple limit point solution of problem (2.23) is a regular
solution ofproblem (2.30).

For a proof, see Keller [39], Decker-Keller [40].
From a practical point of view, Proposition 2.1 is of fundamental importance for

the following reasons.
(i) Since simple limit points for problem (2.23) are regular points for problem

(2.30), the conjugate gradient algorithm can be used to compute these limit points via
the least squares formulation (2.33). This property is a direct consequence of the
convergence properties of the conjugate gradient algorithm mentioned in 2.2 and
discussed in details in [3].

(ii) Using a perturbation technique, bifurcation points can be approximated by
simple limit points. Then the solution methods described in the present 2 can be
applied; several examples of such situations will be discussed in 4.

2.4. Implementation of the arc length continuation method. To help potential users
of continuation methods discussed in the previous sections, we summarize here the
essentials of these methods. We solve the nonlinear problem (2.23) via the solution of
a family (parametrized by s) of nonlinear system (2.26), (2.27). In practice we approxi-
mate (2.26), (2.27) by the discrete family of nonlinear systems described below, where
As is an arc length step, positive or negative (possibly varying with n) and where
u"- u(nAs), h"- h(nAs):

Initialization. We suppose that we know a solution {u, A} of (2.23); we take it
as origin of the arc of solutions, i.e. u- u(0), A= A(0). We suppose also that we
know the tangent (ti(0), ,(0)) satisfying (2.28a, b) (or at least an approximation to it;
see Remark 2.3).

Continuation. Then for n_>-0, with u", A" known and also u -1, A "-1 (resp.
ti(0), A(0) if n=0), we obtain {u"+, A"+} VR as the solution of:

(2.51)

and

(2.52)

S(u"+, ,"+) 0,

(u’-u, ti(0))+(A’-A),(0)=As if n=0,

(2.53) (u "+’ u’-u’-a) (-A)=As ifn_>_l.-u,
As

+(A,+_A.) A" As"-
Remark 2.3. It may occur that obtaining {ti(0),,(0)} is by itself a complicated

problem; however obtaining a second solution of (2.23), close to {u, A}, may be easy
(using the nonlinear least squares-conjugate gradient methods of 2.1, 2.2, for
example). This supposes that we are sufficiently far from a singular point. Let us denote
this second solution by {u -1, A-l}; to approximate {ti(0), (0)} we compute first As by

(2.54) (As)2= Ilu- u- ll = + -and approximate ti(0), A(0) by

uO_u- Ao_A-
(2.55)

Aso Aso

respectively. The sign of As depends upon the orientation chosen for the arc of
solutions and of the relative positions of {u, A} and {u-, A -} on it.

Remark 2.4. Relations (2.52), (2.53) employ difference quotients to replace or
approximate the tangents used in (2.28b) and (2.29). From this idea we can derive

CONTINUATION-CONJUGATE GRADIENT METHODS 801

many other schemes for the approximation of (2.26), (2.27). Methods for the automatic
adjustments of As are important but we do not discuss them here; see Rheinboldt [41].
A least squares conjugate gradient method for solving in V x R systems very close to
(2.51)-(2.53) has been discussed in 2.3. To start this algorithm we have used
{2u" -/,/n-l, 2A h h n--l} as an initial guess to compute {U n+l, n+l}. This is just another
use of the difference approximation to the tangent, but now in (2.48).

3. Application to the solution of the Bratu problem.
3.1. Formulation of the problem, properties of its solutions. As a first test problem

for the solution techniques discussed in 2 we consider the numerical solution of a
modified Bratu problem, i.e. find a solution u of the nonlinear boundary value problem:

-Au =Ae"+f in
(3.1)

u 0 on Of.

Here f is a bounded domain of Rv and 0f its boundary. We denote by x {x,}l
the generic point of N and define dx by dx=dXl.., dxN. The (quite classical)
Sobolev-Hilbert space

(3.2) H(f) {v v L2(I’]), Ov }x L2(f),Vi- 1,’’’, N, v=0 on 012

equipped with the scalar product

(3.3)

and the corresponding form

(1,,1, 1))H(n)-- I rig" V l) dx

(3.4) Iloll,g= Ivl= dx

provides a functional framework well suited to the solution of (3.1) by variational
methods, and most particularly by those discussed in 2.

For simplicity we consider only situations for which f is a nonnegative constant
(f= 0 in the Bratu case). We suppose also that A => 0, since problem (3.1) has a unique
solution in H(f) if A <-0; such a result can be proved using monotonicity methods,
like those discussed in e.g. Lions [7], and based on the fact that the operator

v-Av-Ae-f
is monotone over H(f) if A < 0. If A > 0, problem (3.1) and closely related nonlinear
problems, have been considered by many authors; with regard to recent publications
let us mention among others Crandall-Rabinowitz [8], [9], Amann [10], Mignot-Puel
[11], Mignot-Murat-Puel [12], Keller-Cohen [30], Keener-Keller [31]; in particular
we find in [12] an interesting discussion showing relationships between (3.1) and
combustion phenomena and in [30] a relationship to joule-heating in conductors. The
following has been proved for A > 0:

There exists a critical value of A, say A*> O, such that:
If A > A *, then problem (3.1) has no solution.

(ii) If A]0, A*] (resp. A]0, A*[), then problem (3.1) has at least one solution
(resp. two solutions) belonging to Ho(f)fq w2’P(f) /p_-> 1, where

{OvO2vLp }W2’p() v v, (1), ’ql < i,j < N
Oxi Oxi Oxj

802 R. GLOWINSKI, H. B. KELLER AND L. REINHART

(iii) If A A* there exists a unique u* Ho(f) f’) W2"p(fl), Vp => 1 moreover
{u*, A*} is a simple limit point for the equation

S(u,x)=0,

where the operator S is defined over Hlo(12) R by

S(v, l -Av txeV f.

In the above theoretical references it is also proved that these solutions which are
not limit points are regular solutions. It follows from all these properties that the
solution techniques discussed in 2 can be applied to the solution of (3.1) if A > 0.
Their application to the computational solution of (3.1) requires, however, a finite
dimensional approximation of this last problem; such an approximation--by finite
element methodsmis considered in the following sections. Problem (3.1) has been
investigated numerically by, among others, Kikuchi [13], Simpson [14], Moore-Spence
[15], Chan-Keller [16] (by arc length continuation and multigrid finite difference
methods), Reinhart [3], to which we refer for more details and further references.

3.2. Finite element approximation of the Bratu problem.
3.2.1. Variational formulation of the Bratu problem. Triangulation of 1. Funda-

mental discrete spaces. A variational formulation of the Bratu problem (3.1), well suited
to finite element approximations and to the solution techniques of 2, is given by

Find {u, A} H(12) xR such that
(3.5)

I. Vu.Vvdx= Ia(Ae"+f)vdx VveH(12).

We describe only the approximation of problem (3.1) for N 2 (the one-dimensional
case, N 1, is much simpler); we suppose also for simplicity that 12 is a polygonal
domain of 2. We consider now a standard family of finite element triangulations
{"h}h of 12, i.e. for a given h, -h is a finite collection of (closed) subtriangles, T, of
12, such that

(i) t_J Th T 12,
(ii) V T, T’ :Y’h, T T’, we have either

(.) T f-I T’ f,
(**) or T, T’ have only one vertex in common,
(***) or T, T’ have only a whole edge in common,

(iii) h is the maximal length of the edges of the T
An example of such a triangulation is shown in Fig. 3.1, for 12]0, 1[]0, 1[.
We approximate H(12) by the finite-dimensional space:

(3.6) Voh { Vh I1)h C(fi), Vh IT P1 VT r’h, Vh 0 on 012}

where P1 is the space of polynomials in xl, X2 of degree <_- 1. It follows that dim Voh Nob
where Nob is the number of vertices of 3-h interior to 12 and Voh

3.2.2. Formulation of the approximate problems. As an approximate problem it is
quite natural to take"

(3.7)
Find {Uh, A} e Voh such that

IVUh’Vl)h dX-- ff (AeUh 4rf)l)h dX V1)h Voh

CONTINUATION-CONJUGATE GRADIENT METHODS 803

t

FIG. 3.1. Finite element triangulation for the Bratu problem.

Problem (3.7) is equivalent to a system of nonlinear equations in R Noh/l. To obtain
this system we suppose that the set EOh of the vertices of ffh has been ordered so that

(3.8) ,Oh {P,} rqhi=1

and that to each Pi of ’0h we have associated the function wi satisfying

(3.9) w, e Voh, w,(P) ; I1 <--_ i,j <--_ Nob.
The set Boh { Wi} Nh is a basis ofthe vector space Voh and we clearly have the importanti=1

relation, VVh e Voh"
Nob

(3.10) Vh Vh(P)w,.
i=1

Using (3.10) in (3.7), we get the nonlinear system:

Vw,.Vwclx Uh(P)
j=l

(3.11)
A exp u(P)w; + w dx, 1 <= <= Noh.

\j=l

Here the unknown vector is {{Uh(P)}}r A}R .
i=1

Since Vw, I7w are piecewise constant functions, the calculation of the left-hand
side is an easy task. The integrals occurring on the right-hand side of (3.11) can be
calculated exactly. However in order to reduce the computational work, we evaluate
these integrals approximately. Two possibilities are as follows"

(i) Calculate a eUwi dx using the two-dimensional Simpson rule on each triangle
T h, i.e.

(3.12) 49(x) dx 1 measure (T) 2 b(mr),
T j=l

where mlr, m2T, m3T are the midpoints of the three edges of T. Formula (3.12) is exact

804 R. GLOWINSKI, H. B. KELLER AND L. REINHART

if b P2 (P2 space of polynomials of degree <-2). We need to apply Simpson’s rule
only on those triangles of -h with Pi as a common vertex.

(ii) Apply to eUhwi dx the two-dimensional trapezoidal rule, i.e.

(3.13) 4(x) dx=1/2measure (T) 4(Pr),
T j=l

where r, j 1, 2, 3 are the veices of T; formula (3.13) is exact if e P1. If h is a
regular triangulation, like the one of Fig. 3.1, using (3.13) to calculate the right-hand
sides of (3.11) we recover classical finite difference schemes for the discretization of
(3.1).

3.3. Numerical solution of the discrete Bratu problem by arc length continuation
methods. We now apply the continuation methods of 2.3, 2.4 to solve the discrete
Bratu problem (3.7). This leads to the following algorithm:

(a) Initialization. Set

(3.14) A=0.

The corresponding u is the unique solution of the followng discrete linear Dirichlet
problem (given in variational form).

Find u Voh such that
(3.15)

IVu.VVhdX=IafVhdX VVh Voh.

This is equivalent to a linear system (obtained by setting A =0 in (3.11)) whose matrix
is symmetric and positive definite. We take {u, 0} as the point on the arc of solutions
{Uh(S), A(S)} for which s=0. Denote dX(s)/ds by (s) for X= uh or X A. Then
by differentiation of (3.7), with respect to s, we obtain at s 0:

h(O)"vh dx (0) e "vh dx VVh e

(3.

We also require as a definition of s"

(3.7 I.(0l ax + X(0 .
Define h as the solution of

h e Voh,
(3.18) . v dx e "Vh dx Vvh e

Then from (3.16)-(3.18) we have

(3.19) h(0) (0)h,

(3.20) X2(0) 1+ IVahldx

Since we are interested in solving the Bratu problem for A > 0 and we have set A (0) 0

CONTINUATION-CONJUGATE GRADIENT METHODS 805

we must orient the solution arc in such a way that dA / ds (=) >= 0. Thus (3.20) yields"

(3.21) Jr(0) 1 + IVal2 dx

(b) Continuation. With As (> 0) as a fixed step in arc length, we define for n _>-0

an approximation {u,+,X "+} (Vo) of {Uh((n+l)As), A((n+l)As)} as the
solution of the following nonlinear variational system:

Find {u"+ "+, }Vo=suchthat

I "+’(3.22a) Vun .Vv dx= (A + e +f)v dx qvn e Voh,

(3.22b) (u-u).a,(O)&+(ll-1)X(O)=s ifn=O,

=s if nl.(3.22c) (Uh --Uh)’
S S

To solve the nonlinear system (3.22), we use the nonlinear least squares conjugate
gradient techniques of 2.3. We give a detailed description of the operations involved
in the solution process for this first application.

A convenient nonlinear least squares formulation of (3.22) is:
n+l n+lFind { u h ,1 } E Voh X such that

(3.23)
Jn+l(u+1, An+l)<Jn+l(Wh,/z) {Wh, tZ}E Voh X.

Here the functional J,+l(’," is defined by

where fin and are nonlinear functions of {wn, } obtained as the solutions of the
linear problems:

Vow,

ffh Oh dX Wh Vh dX (eW" +f) Vh dX Vh Voh,

(3.25) , f(Wh--U) (u-u-I) dx+(. X)(n_n-1,) +As.
As As

In this paicular case, the conjugate gradient algorithm (2.37)-(2.46) reduces to:

Step 0: Initialization. For a given

(3.26) {u, ho} Vo x,
compute {g, g]} Vo x as the solution of:

(3.27) Vg2.Vv, dx=
k

(u,X), v, Vv, Vo,,

(3.28) g =OL+, (u h).
Oh

806 R. GLOWlNSKI, H. B. KELLER AND L. REINHART

Then set

(3.29) {z, z} {g, gO}

and for m->0, assuming that {u’,h’}, {gm,g,}, {Z,Z’} are known, compute
{U+I, am+l}, {g+l, gT+}, {zT+l, zT+l} by:

Step 1" Descent. Find p such that, p "
(3.30) J,+(u pz, h pz) J,+(u pz, A pz).

Then set

(3 1 m+l.3 u +1
U h PmZ A A PmZx

Step 2: Calculate new descent direction. Compute {g+, ga Von x as the
solution of:

(3.32) g:+’’vhdx=OJ+l(u+l, Ouh
h+), Vh) Vh Voh,

(3.33) gT+ 0L+(U+ +
h ,h).

Evaluate

(3.34) Ym

and

(3.35)

m+l m+lI V(g+l--gT)’Vg’+l dx+(ga -ga

f.. IvgTl dx + IgTI=

gm m+l g,+lz.m+l= +1 + 3’.,Z.’, Z + y,,,Z.

Then set m m + and return to step 1.

As in 2.4 we can use {2u,-u,-1, 2A" -A"-I} in (3.26). The partial derivatives
OJ,+l/Ouh, OJ,+I/OA (occurring in (3.32), (3.33)) can be evaluated using the derivative
calculation technique of 2.2. At {Wh, } this gives:

(Wh,), Vh h" Vh dx ewhVh dx

(3.36)

As

(3.37)
Oh AS eWhh&"

Here of course {ffh, } are obtained from {Wh,/z}, through the solution of (3.24), (3.25).
As convergence test we took

(3.38) m+l m+lJn+l(Uh ,X)<=e.

For the examples we used e 10-6.

3.4. Numerical examples. We have employed the above indicated procedures to
solve problem (3.1) in three specific cases:

A. fO, fl ---]O, l[
B. f-=l, 1/--]0,1[;
C. f----O, 1]----]0,1[]0,1[.

CONTINUATION-CONJUGATE GRADIENT METHODS 807

Cases A and B have been discretized by one-dimensional finite elements, using a
space discretization step h 0.1. Case C has been approximated using a triangulation
ffh as shown in Fig. 3.1, consisting of 512 triangles. The unknowns are the values taken
by the approximate solution Uh at the interior nodes of ffh; we have 225 such nodes.
The continuation algorithm described in 3.3 has been applied with fixed As 0.1.

We show in Fig. 3.2 the variation of Uh (0.5, 0.5) (maximal value of Uh) as a
function of A for case C. The numerical results agree very well with those of Kikuchi
[13], obtained by quite different methods.

8,00

%20

5,60

4,80

4,00

3,20

2,40

0,80

Uh(.S,.5)

"’I

o, .,0 3,zo 4,80 ,40 8,00

FIG. 3.2. Solution Uh at {x, y} {0.5, 0.5} of the Bratu problem on the unit square (case C).

With As =0.1, the solution ofthe above three test problems never required more
than 3 to 4 iterations of the conjugate gradient algorithm (3.26), (3.35) to obtain
{u,+1, A ,+1} from {u,, A "} and {u,-1, A "-1 } via the solution of the least squares problem
(3.23). This efficiency is partly due to the good initialization of algorithm (3.26)-(3.35)

n--1 n--l}provided by the initial guess {2Uh--Uh ,2h -h and partlydue to the small step
size of As. Using the above methods there were no difficulties close to and at the limit
point.

We point out that each iteration of the conjugate gradient algorithm (3.26)-(3.35),
requires the solution of several discrete linear systems with a fixed coefficient matrix
independent of n and m; since this matrix is symmetric and positive definite we use
only one Cholesky factorization, taking into account the sparsity of the matrix. The
solution procedure is thus quite efficient.

4. Applications to the solution of bifurcation problems via perturbed bifurcations.
4.1. Synposis. Generalities. In this section we discuss the numerical treatment of

nonlinear second order boundary value problems whose branches of solutions exhibit
bifurcation. To do this we perturb the original problem into a new one whose branches

808 R. GLOWINSKI, H. B. KELLER AND L. REINHART

of solutions do not bifurcate but instead have limit orfold points. The solution branches
can then be computed by the continuation methods of 2.3. The process is based on
the use of a simple perturbation method related to the concept of perturbed bifurcation,
see Keener-Keller [32], Matkowsky-Reiss [33]. By continuing from the perturbed to
the unperturbed problem we can recover the bifurcating solution branches.

4.2. First example: A nonlinear Dirichlet problem. With f a bounded domain of
(N -> 1), we consider the solution in V H(f), ofthe nonlinear Dirichlet problem:

-Au=Au+6 inf,,
(4.1)

u 0 on 0f.

Here 6 is the perturbing parameter. The nonperturbed problem (6 =0) has two
solution branches for A->_ 0"

(i) the trivial branch {u, A} {0, A}, A.
(ii) a nontrivial branch which never crosses the trivial one (see Fig. 4.1). By

symmetry with respect to {u, A } - {-u, -A } about {0, 0} we easily obtain the unperturbed
solutions of (4.1) corresponding to A _-<0. Thus in general the unperturbed problem
with 6 =0, has three disjoint solution branches: u 0, A and two "hyperbolic"
branches, one for A > 0, and one for A < 0. For the perturbed problem, 6 0, it follows
from Mignot-Puel 11] that only two distinct branches exist. One of these is a perturba-
tion of one of the hyperbolic branches and it contains only regular solutions. The other
is formed from the perturbed trivial branch joining the other hyperbolic branch and
it contains one simple fold point. Figure 4.1 shows some of these solution branches
for 6=>0.

This problem with 6 0 is not, technically, a bifurcation problem. Rather we may
say that it exhibits bifurcation at A +o. However it furnishes a clear example of our
perturbation techniques. We now describe our procedure for computing the nontrivial
branch of solutions of the unperturbed problem (4.1) with A->0. With fixed 6>0,
"sufficiently small", we solve (4.1) by a continuation method, as described in 2.3,
using {u, A} {u, O} as starting point. Here u H(f) is the solution of

-Au=6 inf,,
(4.2) u 0 on 0f.

For 6 > 0 and sufficiently small, the upper part, C of the branch of solutions of the
perturbed problem, away from the limit point {u, h} is a good approximation of the
nontrivial branch of solutions of the nonperturbed problem. We take two distinct
points on C, say {u,, h,} and {u,)t:} and compute the nontrivial solutions of the
unperturbed problem corresponding to values h h, and h h. These solutions can
be obtained using simply the least squares conjugate gradient method of 2.1, 2.2
(i.e. without continuation), taking u, and u as starting points. If necessary, however,
continuation with respect to 6 can be used to reach the value 6 0.

Once two distinct solutions (sufficiently close to each other) on the nontrivial
branch of solutions of the unperturbed problem have been obtained, we can use
continuation, again, to compute the whole unperturbed branch. Fig. 4.1 illustrates the
indicated process. Indeed the curves in this figure are the results of computation using

-=]0, 1[in (4.1). We discuss these calculations below where also the influence of step
size As and other factors are considered.

The above technique has been applied to compute the nontrivial solutions of more
complicated nonlinear boundary value problems. We discuss some such examples in

CONTINUATION-CONJUGATE GRADIENT METHODS 809

FIG. 4.1

4.3 and 4.4. The Von Karman equations for nonlinear plates are treated in Reinhart
[3], [7].

Computational Results and Tests. The methods of 2 were applied to (4.1) with
I1]0, 1[for (5, 4, 3, 2, 0. The nontrivial branch of solutions corresponding to ; 0
is obtained by the method indicated on Fig. 4.1. We have used h 0.1 and As 0.1
for the space discretization and the continuation algorithm, respectively. The numerical
results are shown on Fig. 4.1, where we have plotted maxxto,ll Uh(X) Uh(.5) versus A.

The computed results agree with those obtained elsewhere by other methods.
Using (4.1) with ; 5 as a test problem we show in Fig. 4.2(a) the number of

conjugate gradient iterations necessary to solve the least squares problem encountered
at each step of the continuation process. The convergence test is as indicated in (3.38),
with e 10-6.

If one takes 3’, =0 in algorithm (2.37)-(2.46) (instead of 3’, given by (2.45)) we
recover a steepest descent algorithm for solving the least squares problem (2.33). In
the particular case of (4.1) with (=4 we have done a comparison between the
performances of the steepest descent and conjugate gradient algorithms when applied
to the continuation solution. The computed results are summarized on Fig. 4.2(b)

02
e$

o3
o2
o2

o3

4.4

(a) Conjugate gradient (, 5).

1.2

11

(b) Steepest descent (3=4).

0

5.7

(c) Conjugate gradient (3=4).

FIG. 4.2

810 R. GLOWlNSKI, H. B. KELLER AND L. REINHART

(steepest descent) and 4.2(c) (conjugate gradient). They show clearly the superiority
of the conjugate variant in the neighborhood of the limit point. Note that the steepest
descent case "oscillates", each step taking more or less iterates depending upon the
previous rate of convergence. This effect is less apparent in the conjugate gradient
case. Finally we note some effects of the size of As upon the convergence of our
continuation method, particularly in the neighborhood of the limit point.

(a) If As is too large, the algorithm does not converge close to the limit point.
We can explain this behavior by the fact that the initial guess at the solution, provided
by {2u,- u,-, 2A-h-} or {u, h"} is too far from the branch of solutions.

(b) The smaller the As, the smaller is the number of iterations close to the limit
points. However if we are sufficiently far from the limit point the number of iterations
is quite small and essentially independent of As.

(c) The smaller the As, the better is the approximation to the location of the limit
point.

In conclusion, we should use large As if we are sufficiently far from the limit
point, and decrease As if we are close to the limit point (further details concerning
the choice of As may be found in [3], [5], in Rheinboldt [41] and in Perozzi [34]).

4.3. Bifurcation from a trivial branch.
4.3.1. Synopsis. Generalities. In this section we study simple nonlinear eigenvalue

problems with bifurcations from the trivial branch. In the perturbed form, these
problems are:

Find u H(f) such that

(4.3)

Here f satisfies:

(4.4)

and

(4.5)

-Au=hu+f(u,h)+8 in f,

u 0 on Oft.

f(0, h)=0 VAR

f’(0, A)=0 VA

For 6=0 we note that {u,A}={0, A} is a solution of (4.3) for all.A e. This is the
trivial branch and we seek nontrivial branches bifurcating from it. The linearized
problem about u 0, reduces to:

-Aw= hw in
(4.6)

w 0 on 0fl.

It is well known (i.e. Crandall-Rabinowitz [18] or Keller-Langford [36]) that if h is
an eigenvalue of multiplicity one of (4.6), then the pair {0, h} is a simple bifurcation
point for solutions of the unperturbed problem: 6 0 in (4.3). If wi is a corresponding
eigenfunction then it is also well known (i.e. Keller-Langford [36] or Brezzi-Rappaz-
Raviart [19]) that the bifurcation is symmetric for a 0 and asymmetric or transverse
for a 0 where:

(4.7) a,= Ia w3(x) Ia G(x,)f,(O, h) d dx.

Here G(x,) is the Green’s function for (-A) on . These cases are illustrated by the
curves for 6 0 in Figs. 4.3 and 4.4, respectively. If 6 # 0 we have the local behavior

CONTINUATION-CONJUGATE GRADIENT METHODS 811

iOoO0

Uh(0.5)

890

":/o40

o80

350

220

0,,80

/

-.Ioo =o

-3ooo

oo

FIG. 4.3. -u"=Au+Au2/2+6 in]0, 1[, u(0)= u(1)=0.

indicated on Figs. 4.3 and 4.4, for the solutions of the perturbed problem (4.3). These
configurations are called perturbed bifurcation in Keener-Keller [32] or imperfect
bifurcations in Matkowsky-Reiss [33]. We shall study in particular the cases of (4.3)
in which

/ 2(4.8) f(u, A)------u
and

(4.9) f(U,A)--U3.

FIG. 4.4. -Au=Au-u3+in]0,1[]0,1[(=f), u=0 on O.

812 R. GLOWINSKI, H. B. KELLER AND L. REINHART

It easily follows from (4.6) and (4.7) that for fl--]0, 1[:

(4.10a) ai O, Vi 1, 2, when f is as in (4.9),

(4.lOb) ai =0 for 2, 4, 6,. when f is as in (4.8),

a 0 for i= 1,3, 5, ..
Similarly for f]0, 1[]0, 1[it follows that for the smallest eigenvalue Al1:

=0 for (4.9),
(4.11) a 0 for (4.8).

Using finite element approximations and the continuation methods discussed in
4.2, we have computed approximate solutions of the perturbed and unperturbed

problems near the first eigenvalue of the linearized problems. In Fig. 4.3 we show
results for fI]0, 1[and f(u, A hu2/2.

Both perturbed and unperturbed asymmetric bifurcation phenomena at the first
eigenvalue of the linearized approximate problem are illustrated. For f(u, A)=-u
and f]0, 1[]0, 1[we have symmetric bifurcation phenomenon (a =0) at the first
eigenvalue of the linearized problem. The results are shown on Fig. 4.4 for both
perturbed and unperturbed cases. For more details about the numerical procedure we
refer to [3]. We refer also to [17] where it is shown (theoretically and computationally)
that the solutions of Von Karman equations for nonlinear plates have the same
qualitative behavior as observed here for f(u)=-u (for the first eigenvalue of the
linearized problem).

4.4. Bifurcation from a nontrivial branch.
4.4.1. Formulation and properties of the solutions. We discuss in this section the

solution of the nonlinear boundary value problem of Neumann type:
Find { u, h } H (0, 1) R such that:

U
2 -u he on]0, 1[,

(4.12)
u’(0) u’(1) 0.

Problem (4.12) has a branch of solutions {u, A} with u const, on]0, 1[. This constant
is any root of

(4.13a) u=he.
Alternatively each u R is a root of (4.13a) for the value

(4.13b) A =ue-u.
The "almost trivial" solution branch of (4.12) given by (4.13) is shown in Fig. 4.5a.

To find solutions bifurcating from the nontrivial branch, we note that the linearized
form of (4.12) about the nontrivial branch is

W
---i+ w A eUw in]0, 1[,

(4.14)
w’(O)=w’(1)=O.

It easily follows that A e must have one of the values

(4.15) A e= l + k2, k-O, 1,....

CONTINUATION-CONJUGATE GRADIENT METHODS 813

Since the relation u h e holds, we find that the set of"singular" points { u, h } {Uk, ,k}
is a discrete set defined for k O, 1,..., by:

(4.16) Uk 1 + k2, hk (1 + k2) e-(1+k2).

We can take as eigenfunctions Wk in (4.14)"

(4.17) Wk(X) COS kTrx, k O, 1," .
The first "singular" point (obtained by taking k =0 in (4.16)) is {1, e-l}.

We can show that it is a simple limit point for problem (4.12). This reduces to
showing that r2e is not in the range of: -d2/dx2qb subject to 4’(0)= b’(1)=0. But
this follows since r2e 0.

On the other hand {u, hi} {2, 2e-2} is a simple bifurcation point and it can be
proved (using e.g., [36] or [19]) that the bifurcation at {u, h} is a symmetric one. All
points {Uk, hk} for k> 1 are also bifurcation points.

4.4.2. Numerical results. To compute the nonconstant solutions of (4.12) we use
that combination of finite element approximation and continuation techniques already
used in the previous sections. To avoid difficulties close to the bifurcation points during
the continuation process we introduce a perturbation of the problem in the boundary
conditions to get

2t-u=he on]0,1[,

(4.18)
-u’(0) u’(1) &

We observe that if{u, h} is a solution of (4.18) and if u* is defined by u*(x)= u(1 x),
then {u*, A } is a solution with 8 replaced by -8. This property of course holds if 8 0.
It holds also for the approximate problems.

With N a positive integer and h 1/N, we define xi by

xi ih, O, , N,

and we use piecewise linear elements and the trapezoidal rule in our variational
formulation. The resulting system of N+ 2 nonlinear equations is identical to the
standard finite difference formulation of the Neumann problem (4.18). Our solution
algorithm is but a trivial modification of that described in 3.

Using the continuation strategy summarized in Fig. 4.1 we have computed
branches of solutions of the perturbed problem (4.18) and also the nonconstant

FIG. 4.5a. Constant solutions, u Ae", of (4.12).

814 R. GLOWINSKI, H. B. KELLER AND L. REINHART

5. O0

4.45

3.90

3.35

2.80

2.25

1.70

1.15

O. 60

O. 05
,022 0.091 0.160 0.229 0.299 0.368

FIG. 4.5b. -u"/"w + u he". -u’(0) u’(1) 6. 6 0.01, 8 =0, 6 -0.01.

0.240 0.260 0.280 0.300 0.320 0.340

FIG. 4.6. --u"/,rr2+u=Ae u, u’(O)=-u’(1)=6 8=0.01, 8=0,--- 8---0.01.

CONTINUATION-CONJUGATE GRADIENT METHODS 815

solutions of the unperturbed problem (4.12). The following results have been obtained
using N 20 (i.e. h 0.05) for the approximate problems, and 8 0.01 as perturbation
parameter.

The variation of Uh(O) with h is shown in Fig. 4.5b. (Clearly the behavior of Uh(1)
is also described by this figure). Since. the first bifurcation is symmetric, the tangent to
the branch of nonconstant solutions of this bifurcation point has to be vertical; it is
so with good precision. Actually, using smaller As and amplifying the vertical variations,
we have shown in Fig. 4.6 the variations of Uh(O) and the above property of vertical
tangent appears even more clearly.

5. Application to the Navier-Stokes equations for incompressible viscous fluids.
5.1. Formulation of the Navier-Stokes equations. Let be a domain ofN (N-

2, 3 in practice) and F be its boundary. The steady flows of an incompressible and
viscous Newtonian fluid, in f, are modelled by the Navier-Stokes equations:

(5.1) -vAu+(u.V)u+Vp=f infl,

(5.2) V.u=0 in [l (incompressibility condition).

In (5.1), (5.2)"
u { ui} is the flow velocity,
p is the pressure,
v is a viscosity parameter,
f is a density of external forces,
(u-V)u is a symbolic notation for the vector-function {ui Oui/Oxs} i=1"

Typical boundary conditions associated with (5.1), (5.2) are

(5.3) u=us on F,

where us is a given function defined over F and satisfying (from the incompressibility
condition (5.2))

(5.4) [us.n dF 0
Jr

where n is the outward normal unit vector on F.
The Navier-Stokes equations for incompressible viscous fluids have motivated a

countless number of papers, reports, books, conferences, workshops, from both the
theoretical and numerical points of view. Concentrating on books only, we mention,
among others: Lions [7], Ladyzhenskaya [20-1, Temam [21], Girault-Raviart [22],
Rautmann [23], Thomasset [24], Glowinski [42, Chapt. 7]; we refer also to the numerous
references contained in these books.

It follows in particular from [7], [20], [21] that if f and us are sufficiently smooth,
then problem (5.1), (5.2), (5.3) has a solution {u, p} belonging to (Hl(f))s x (L2(f)/)
(the pressure p is clearly determined only to within an arbitrary constant). If we
suppose in addition that v is sufficiently large (or equivalentlynif v is givenmthat f
and us are sufficiently small), then problem (5.1)-(5.3) has unique solution in
(nl())N x (LE(f)/).

5.2. Stream function-vorticity formulation of the Navier-Stokes equations. We
suppose from now on that f is a bounded domain of 2. We also assume for simplicity
that l is simply connected (see e.g. Glowinski-Pironneau [25] for the case where is
multiply connected). With F the boundary of f, let n, s be respectively the unit vector

816 R. GLOWlNSKI, H. B. KELLER AND L. REINHART

of the outward normal at l-I on F and the unit vector of the corresponding oriented
tangent.

There exists from (5.2) a stream function tp (determined only to within an arbitrary
constant) such that

(5.5) u- u=-,
OX OX

and it follows from (5.1), (5.5) that 0 satisfies the following (well-known) nonlinear
biharmonic equation

(5.6) uAk+0ff0AO 0ff 0 Ad2=Of2_of in a.
OX OX2 OX20X OX OX2

Concerning the boundary conditions we have

(5.7) 0__O=u.n on F.
Os

Since r u.n dF 0, (5.7) implies that

(5.8) (M)= I u.n dF VMeF,
MoM

where Moe F (Mo can be arbitrarily chosen and we have prescribed O(Mo)= 0). We
also have

(5.9) 0_ s.u on F.
On

Actually (5.6), (5.8), (5.9) is a particular case of the more general family of nonlinear
biharmonic problems

(5.10) vA2$ +
0X 0X2

(5.11) -- gl on F,

(5.12) --=g2 on F.
On

An equivalent formulation of (5.10)-(5.12) as a nonlinear system of coupled second
order elliptic equations is

(5.13) -vAcoq =f in f/,
OX10X2 OX20X

(5.14) -AO= w in 1,

with the boundary conditions (5.11), (5.12). In (5.13), (5.14), w is the voritcity of the
flow.

5.3. Variational formulations. We suppose that g {gl, g2} is sufficiently smooth
(see [25] for the precise requirement), so that there exists 0o such that, ,olF= g,
(0Oo/0n)[r g2. Let us define Vg by

(5.15) Vg {b b H2(D,), blr g, nn g2
F

CONTINUATION-CONJUGATE GRADIENT METHODS 817

then Vg is a nonempty, closed, affine subspace of HE(I)), where

HE(l)) t q,
Ox OX O-jj e LE(l)), V i, j

In particular Vo {blb HE(l)), blr (o4)/on)l=o}=- H,(a)) is a closed subspace of
HE(l)). We recall--l) being bounded--that b-(lAbl2 dx) /2 is a norm on Vo
equivalent to the HE-norm.

A variational formulation of (5.10)-(5.12) is then:

Find b Vg such that V49 Vo
(5.16)

f aq, a6 dx + f zXq (Ox O4, oq o4,) fOX OX "x2 dx f6 dx.

To obtain a variational formulation of (5.11)-(5.14) seems to be more complicated;
in fact, introducing 0e L(O) such that 0=-A4 and using (5.14), it follows from
(5.16) that the pair {co, q} satisfies

(5.17)

where

(5.18)

(5.19)

{,o, q} e Wg,

and V{ 0, b} e Wo we have

u coOdx+ co
Ox2 Ox2

Wo {{0, b} 0 e L2(l)), b e Vo, -Ab 0 in l)},

Wg {{ 0, 4}10 e L{l)), b e Vg, -Ab 0 in l)}.

Conversely if a pair {co, } satisfies (5.17), then {co, $} is also a solution of the nonlinear
boundary value problem (5.11)-(5.14) (and q a solution of (5.10)-(5.12)).

The variational formulation (5.17) of problem (5.11)-(5.14) contains second order
derivatives in the definition of Wo and Wg; having in view the approximation of
(5.11)-(5.14) by simple finite element methods, it is of great interest to have a variational
formulation of (5.11)-(5.14) containing first order derivatives, only. Such a goal is
easily achieved since Wo and Wg have the alternative definitions

(5.20) Wo={{O, 4)}L2(lI)xH(f),favc/).Vqdx=faOqdx,/qH’(l))},

(5.21)
Wg {{0, 4}e L2(I)) x H’(a), 4 gl on F,

f, V4)’Vqdx=IaOqdx+igEqdF, VqeH’(l)) },
respectively. The equivalence between (5.18), (5.19) and (5.20), (5.21) follows easily
from the Green’s formula

r--qdF= Abq dx + Vg)’Vqdx Vq e Hi(l)),

and the assumption that F (=011) is sufficiently smooth (or 12 convex).
A variational formulation such as (5.17), (5.20), (5.21) is usually known as a mixed

variational formulation.

818 R. GLOWlNSKI, H. B. KELLER AND L. REINHART

5.4. Continuation solution of problem (5.10)--(5.12).
5.4.1. Synopsis. We apply now the solution methods of 2 to the nonlinear

boundary value problem (5.10)-(5.12). As parameter A we choose A 1/; A is directly
proportional to the Reynolds number if we fix the boundary conditions as A varies.

We consider first (in 5.4.2) the solution of (5.10)-(5.12) via the variational
formulation (5.16); the solution of (5.10)-(5.12) via (5.17) will be discussed in 5.4.3.
A mixed finite element implementation will be discussed in 5.5.

5.4.2. Solution of (5.10)-(5.12) via the variational formulation (5.16). The space
Vo (= H(f)) which plays a fundamental role in the sequel is equipped with the inner
product

{v, w}-, | AvAwdx

and the corresponding norm v--> (lay[2 dx) ’/2.
Taking h as parameter the problem to be solved is

(5.22) A2 h (Ox 0___ Aq
Oqt O

OXl OXl Ox2

(5.23) q g on F,

(5.24) g2 on F.
On

A variational formulation of (5.22)-(5.24) is given by:

Find d/ Vg such that V ch Vo
(5.5)

Ia AbAdx=h Ia AP(0x Ox20 oxOtP 0_) dx + h Infqb dx.

Description ofthe continuation procedure. In the particular case of problem (5.22)-
(5.24) the continuation techniques of 2.3, 2.4 lead to the following algorithm:

(a) Initialization.

(5.26) Take A o 0;

the corresponding qo is the unique solution of the following linear variational problem:

Find d/ Vg such that
(5.27)

=0 V Vo.dx

Problem (5.27) is in fact equivalent to the linear biharmonic problem

A,=0 in II,
(5.28)

qo g on F,
0q

--g2 on F.
On

We take {q,, 0} as the origin of the arc of solutions passing through it, and define the
arc length s by

(5.29) (6s)= = dx +(6h).

CONTINUATION-CONJUGATE GRADIENT METHODS 819

Denote dX/ds by ’; by differentiation of (5.25) with respect to s, we obtain at s =0

fnA(O)Ak dx=(O) faA,O(O 0OXl OX2 OX2 , dx

(5.30)

J,f dx V e Vo, (O) e Vo.

We have also by definition of s

(5.31) fa IA(0)12 dx + (0) 1.

Define as the solution of the following problem

eYo,
(5.32)

faAAdx=faA$(O6O 0 0)fx, ox x dx + f dx V Vo.

We clearly have from (5.30)-(5.32), that

(5.33) (0) (0),

(5.34) (0) 1 + [A] dx

b) Continuation. With As (0) an increment of arc length, we define for n 0
an approximation {"+, A+} (Vg x) of{((n + 1)As), A ((n + 1)As)} as the solution
of the following nonlinear variational system"

Find {$"+l, A"+I}E Vg such that

(5.35a)
36"/’A dx X"/’ A"/’\ -+ ;"+’ I.fe dx Vee Vo,

(5.35b) fn A($’-P)A(0) dx+(A1-A)(O)=As /fn=0,

(5.35c) h(O"+l ")h As
dx+(A "+’ A

A -A-1
--As

As

With Vo equipped with the inner product

{v, w} I. hvhwdx
a convenient nonlinear least squares formulation of (5.35) is then"

Find {’+1, A"+l}e Vg x such that
(5.36)

Here the functional J,+(.,. is defined by

(5.37) Jn+l(X,

ifn>=l.

820 R. GLOWINSKI, H. B. KELLER AND L. REINHART

where , and/.7, are nonlinear functions of {g,/z }, obtained as the solutions of the linear
problems, respectively:

(5.38)

0X2

As
dx+(tz-X")

X-X
As

-As.

Problem (5.38) is a biharmonic problem.
The least squares problem (5.36) can be solved by the conjugate gradient algorithm

described in 2.3; since the nonlinearity in (5.35a) is quadratic one should verify that
each iteration requires the solution of "only" 3 linear biharmonic problems of the
following type:

A2w=f in I
(5.40)

Ow
w- g on I, g2 on 17’.

On

Finite element solvers for (5.40) will be discussed in 5.5; they are founded on the
mixed variational formulation (5.17).

More details about the conjugate gradient solution of (5.36) are given in [43].

5.4.3. Solution of (5.10)--(5.12) via the mixed variational formulation (5.17). Using
1/, as parameter, the nonlinear mixed variational problem (5.17) becomes

(5.41)
Find {to, } Wg such that V { O, qb} Wo we have

O0 0 O00 dx A fdx,Odx+A
Ox Ox2 Ox2

with Wo and Wg still defined by (5.20), (5.21), respectively.
Description of the continuation procedure. We clearly have from 5.4.2.
(a) Initialization.

(5.42) Take ;t=0;

then {w, o} is the unique solution of the following linear mixed variational problem
(equivalent to (5.27)):

Find {to, o} Wg such that
(5.43)

v{o, }e Wo.dx O

We take then {{too, o}, 0} as the origin of the arc of solutions passing through it and
define the arc length s by

(5.44) (ts)2= (tto)2 dx+ (A)2.

CONTINUATION-CONJUGATE GRADIENT METHODS 821

(5.45)

By differentiation of (5.41) with respect to s, we obtain at s 0

io /\ Ox2 Xl Oxl - dx

ffCdx V{O, }e Wo, {&(O), (O)}e Wo.

ob(O)12 dx + J:(O)= 1,

Since we have

we obtain from (5.45) that

l’)-1/2(0) 1 + = dx {(o), (o)} (o){$, q;},

where {o3, q} is the solution of the linear mixed variational problem

(5.46)
{o;, q;} e Wo,

O dx to
o

ax. x dx + f dx V{0, } e Wo.

(b) Continuation. With As (>0) an elementary arc length we define for n->0
an approximation {{to,+1, q,+l},X,+}e We,R of {{o((n+l)as), q((n+l)as)},
)t((n + 1)As)} as the solution of the following nonlinear mixed variational system"

(5.47a)

(5.47b)

Find {{to"+, q"+}, X"+}e We, such that

fafCdx V{0, }e Wo,+A .+1

.(’-)(o)

dx+(’-l(O)=as fin=0,

(5.47c) (+-) dx + (I+- I) -a As s As

The space Wo can be equipped with the inner product

{{ o, }, { o, }} [. oo dx.

A convenient least squares formulation of (5.47) is then

Find {{w"+, "+}, "+}e Ws x such that
(5.48)

L+({w"+, "+},X"+)j,+({n,x},) V{{n,x},}e

where in (5.48) the functional j,+(., .) is defined by

(5.49) J,+({n, X},)=f Il dx+l.

ifn>=l.

822 R. GLOWlNSKI, H. B. KELLER AND L. REINHART

In (5.49), {, ,} and are nonlinear functions of r/, X,/z obtained as the solutions of
the linear problems

{,, 2} Wo,

(5.50) V{0, b} Wo we have

Ia Ir Ia (0x2 0 Ox O-) dx-I Ia fC dx’O dx rtO dx- tx "O
Ox Ox

As
dx +(h") ’ ’ -1

As
--As,

respectively; problem (5.50) is equivalent to the biharmonic problem (5.38).
The conjugate gradient algorithm (2.37)-(2.46) can be applied, again, in this

context, each iteration requiring, as in 5.4.2, the solution of 3 linear biharmonic
problems (see [43] for more details).

Remark 5.1. The main motivation of the mixed variational formulation discussed
in 5.3 and 5.4.3 is that it provides a convenient framework for the approximation
of linear and nonlinear biharmonic problems, by very simple finite element methods
like those discussed in the following section. Another application is discussed in [17];
it concerns the Von Karman equations for nonlinear plates.

5.5. Finite element approximation.
5.5.1. Triangulation of II. Fundamental discrete spaces. We suppose for simplicity

that fl is a polygonal domain oft2. With -h a triangulation of f obeying the conditions
given in 3.2.1 we define the following finite-dimensional functional spaces:

(5.52) Hlh {VhlVh C(), Vh]r Pk, VT 3-h},

(5.53) Hh=HLf-IH(O) (={vhlv. eH,v.lr=O)
with Pk--space of polynomials in x,x of degree _-<k; H, and Hh approximate
H(O) and H(O), respectively.

We approximate then the spaces Wo and W (defined by (5.20) and (5.21),
respectively) by

(5.54) Woh={{Oh,h}HhXHh, ltiVh’VqhdX= faOhqhdX, VqhHlh},

(5.55)

Here glh and g2h are convenient approximations to gl and g2, respectively. We observe
that Woh Wo; similarly Wgh l Wg, even in the simple case where glh--gl, g2h "-g2.

5.5.2. Approximation of the Navier-Stokes equations via the {to, tk} formula-
tion. Using A 1/v as parameter, a mixed variational formulation ofthe Navier-Stokes
equations was given in 5.4.3 by (5.41). We approximate (5.41) by:

(5.56)
Find {Oh, I]lh} e Wgh such that I{ Oh, 49h} e Woh we have

09hOh dx + A h
k OX2 OX2 0Xl/

CONTINUATION-CONJUGATE GRADIENT METHODS 823

with fh a convenient approximation to f We refer to Girault-Raviart [22] for the
convergence properties of {(Oh, Oh} as h--)0.

Concentrating on the numerical solution of problem (5.56) by continuation least
squares methods we easily adapt the algorithms of 2.3 and 5.4.3 to the solution of
the approximate problem (5.56) (see Reinhart [3] for more details on the solution of
(5.56) by the methods of the present paper).

In fact applying the discrete analogues of the methods described in 5.4.3 to the
solution of (5.56) requires an efficient solver for the various discrete linear biharmonic
problems coming from the mixed finite element approximation. Such a solver is
particularly required by the conjugate gradient algorithm in solving the least squares
problem encountered at each step of the continuation process (we have to solve 3
linear biharmonic problems at each iteration).

5.5.3. On the solution of the discrete linear biharmonic problems.
5.5.3.1. Generalities. Synopsis. A careful examination of the algorithms discussed

in 5.4.3 shows that the discrete linear biharmonic problems to be solved are in fact
mixed finite element approximations of biharmonic problems of the following class:

AmO__f oft of2 Af in l,
OXl

(5.57)

gm"q’]r gl
On r

Here fL(), V/-0, 1,2,3, and the derivatives occurring in (5.57) have to be
understood in the sense of distributions. Assuming that gl, g are sufficiently smooth,
problem (5.57) has a unique solution in Vg (see 5.3 for the definition of Vg and Vo);
this solution is also the unique solution of the following variational problem:

Fi,d d/ Vg stlch that Vqb Vo
(.)

An equivalent mixed variational formulation of (5.58) is given by:

Find {w, q,} Wg such that V{0, 4} Wo
(5.59)

faOdx=la (f&+flOd+fmO+f30)012

where Wo and Wg are defined by (5.20) and (5.21), respectively.
Starting from the mixed formulation (5.59) we shall discuss in the following

sections the finite element approximation of (5.59) and solution methods for the
approximate problems.

5.5.3.2. Finite element approximation of (5.59). Following Ciarlet-Raviart [26] and
Glowinski-Pironneau [25] we approximate (5.59) by

Find {O.)h, ih} Wgh such that V{Oh, l)h} Woh
(5.60)

where Woh and We.h are still defined by (5.54) and (5.55), respectively, and where fh
is, for i= O, 1, 2, 3, a convenient approximation to f.

824 R. GLOWlNSKI, H. B. KELLER AND L. REINHART

It is quite easy to prove that (5.60) has a unique solution; concerning the conver-
gence of {tOh, h} to {-A, if} as h 0, it follows from Ciarlet-Raviart [26], Scholz [27]
that

(5.61) lhim
for all k -> 1 (in the definition of H,; cf. (5.52)). Actually the convergence result (5.61)
supposes that some mild assumptions on the angles are satisfied as h 0 (see the two
above references for more details).

5.5.3.3. Decomposition properties of the approximate problem (5.60). We here
follow and extend on some points in Glowinski-Pironneau [25].

A direct solution of (5.60) is a nontrivial task; however taking into account the
very special structure of (5.60) we shall be able, via a decompositon principle, to reduce
its solution to the solution of a family of discrete Poisson problems which are much
easier to solve.

The starting point of our discussion is the fact that the pair {tOh, @h}, solving (5.60),
is characterized by the existence of Ph such that

Ph E Hh,
(5.62a)

faVph. VbhdX=fa(.foh,h+fl h OX’-----t-fEh-x7 dx Vdph Hoh,

tOh Hlh,
(5.62b)

ft tOhOh dx= fn (f3h +Ph)Oh dx VOh Hlh,

Ih Hh, I]h glh on F,
(5.62c)

f, Vqh Vqh dX Ia tOhqh dX + fr g2hqh dF Vqh Hh.

To prove the characterization (5.62) we observe that (5.60) is equivalent to the
minimization problem:

(5.63)

where

Find { tOh, clh } - Wgh such that

jh (,o, , <-j o, 4> v{ o, } w,,

Oh O’h_ ,(5.64) jh(Oh, fh) 1/2 Jn Oh dx--J, tfoh4h "l-Jlhoxl+f2h--X2-rJ3hOh) dx.

Hence Ph appears as a Lagrange multiplier for the linear equality constraints satisfied
by {h, h} in (5.62c) (and in the definition of Wgh; see (5.55)).

To go fuher into the decomposition propeies we introduce a space h with
the following propeies:

h is a complementary space (not precisely defined for the moment) of Hh(5.65) in H, i.e. h H and Hh h H.
It follows from (5.65) that the bilinear form h XhR defined by

{Ah, h} f Ahh dF
Jr

CONTINUATION-CONJUGATE GRADIENT METHODS 825

is a scalar product over th. The key step is in fact to introduce a bilinear form
ah’. d///h X .////h R, defined as follows:

Let Ah dh and let Ph, respectively h, be the solutions ofthe following approximate
problems:

(5.66a) faVph.Vckhdx-O ChHh phHh, ph--AhHh

(5.66b) f Vh’VqbhdX=f phqbhdX lhHh, hHh.
d d

Then we define the bilinear form ah(’," by

(5.66c) ah Ah, l.l.h It phl.th dX ff V lh Vh dX Vl,h . Jh.

It then follows from [25, 3.5] that ah(’," is symmetric and positive definite.
Application to the decomposition of the approximate problem (5.60). Let {tOh, h}

be the solution of (5.60) and let Ah be the component in Mh of the function Ph occurring
in the characterization (5.62). Let/h, h be the solutions of

(5.67) Vh’VCkhdx=O VCkheHh, h--AheHh,

(5.68) V Vh dx

Let POh and Oh be the solutions of

t
Vpoh" Vh dx

(5.69)

=ft(fOhPh+fl Oh
h OX-----+f2h--X2) dx VCkh e Hh, Poh e

ron" VCkh dx
(5.70)

l (Poh +f3h)qbh dX Vh e nh, ch nlh, Oh g,h onF.

We clearly have Ph ffh d- Poh and Ith Ih "[- I0h.
We shall now show that hh is the solution of a variational problem in th.
THEOREM 5.1. Let {tOh, h} be the solution of (5.60) and let Ah be the component

in h ofph defined from {tOh, h} by (5.62). Then hh is the unique solution of the linear
variational problem

ah A,,, tZh f Voh Vtxh dX fc Poh f3h l.th dX

(5.71)

I g2hh dF Vlh - Jh, ih - JhJF

which is equivalent to a linear system with a positive definite matrix.

826 R. GLOWINSKI, H. B. KELLER AND L. REINHART

But from (5.62b, c) we have

fch’VhdX--f(Ph-Ff3h)thdX=ffVh’VtzhdX--fothtZh dx

g2hh dF Vxh h,

which, together with (5.72), proves (5.71). The uniqueness is obvious since ah(’," is
positive definite. The equivalence with a positive definite linear system is a classical
result in the approximation of linear variational problems.

Remark 5.2. To compute the right-hand side of (5.71) it is necessary to solve the
two approximate Dirichlet problems (5.69) and (5.70). Similarly if Ah is known, to
compute Ph, tOh and I]/h it is necessary to solve

Ph Hh, Ph Ah Hh,
(5.73)

ex= +/1. ex

(5.74)
tOh E nlh,

ffl tOhOh dX’-- Icl (f3h-Fph)Oh dX VOh E nlh,

(5.75)
Oh H, h glh on

ftVl[Ih’Vh dX-- ffl (Ph q-f3h)h dX [h Hh,

i.e. two discrete Dirichlet problems, (5.73) and (5.75), and (5.74) which is a much
simpler linear problem (tOh is in fact the L2-projection on H of the function Ph +f3h)"

Recapitulation. It has been shown that solving the discrete biharmonic problem
(5.60) is equivalent to solving (5.69), (5.70), (5.71), (5.73), (5.74), (5.75) sequentially.
Problems (5.69), (5.70), (5.73), (5.75) are discrete Dirichlet problems, for the operator
-A, for which very efficient direct or iterative solvers exist. The variational problem
(5.74) is even simpler to solve, since the matrix of the equivalent linear system is very
sparse, has a condition number O(1) and is in fact an approximation to the identity
operator. Finally the only nonstandard step is the solution of the variational problem
(5.71) which is discussed in the following 5.5.3.4.

5.5.3.4. Solution of problem (5.71). Several methods for the solution of (5.71) have
been discussed in [25, 4 and 5]. Let us mention among them a conjugate gradient
method which yields a solution algorithm for the discrete biharmonic problem (5.60);

CONTINUATION-CONJUGATE GRADIENT METHODS 827

the cost per iteration is essentially the solution of two discrete Dirichlet problems for
the operator -A; numerical experiments show a convergence in O(Nh/2) iterations,
where Nh dim h. We find also in [25, 4] a detailed analysis of a direct method
for solving (5.71) requiring the construction of the symmetric, positive definite (and
full) matrix Ah of the linear system equivalent to (5.71). In fact one does not construct
Ah, but (using the Cholesky factorization method) a lower triangular-regular matrix
Lh such that Ah LhL; since the construction of Lh requires (cf. [25, 4]) the solution
of 2Nh discrete Dirichlet problems it seems preferable to use the conjugate gradient
algorithm. However in practice we prefer direct solvers for the following reasons:

(i) Since the 2Nh discrete Dirichlet problems mentioned above have all the same
matrix which is symmetric and positive definite, a Cholesky factorization done once
and for all will result in an important saving of computational time.

(ii) If a large number of linear discrete biharmonic problems have to be solved--as
in time dependent problems or during an iterative process like those discussed in this
papermthe solution method of (5.60), founded on the construction of Lh offers (from
our numerical experiments) a more economical strategy than the conjugate gradient
algorithms discussed in [25, 5].

The above comments justify the choice of the direct solution of (5.71) for the
numerical experiments described in 5.6.

We have given in [43] the description of a new conjugate gradient algorithm with
scaling (i.e. preconditioning). If the speed of convergence is measured in number of
iterations, the new algorithm is faster than those discussed in [25, 5]. However the
new algorithm requires the solution of three discrete Dirichlet problems instead of
two, for each iteration, as in the algorithm (5.26)-(5.33) [25, pp. 197-198].

Remark 5.3 (On the choice of h). Suppose that H is composed of ordinary
Lagrangian finite elements of order k (k 1, 2 in most applications). It follows then
from [25] (for which we refer for more details) that the best choice for h is given by

(5.76) h {]dl’hll’h E Hh,/Xhtr =0 VTE -h such that aTfqF=}.

With such a choice the elements ofh are completely determined by the values attained
at those nodes of ’h belonging to F. Thus we should take as basis functions for
those basis functions of H, associated with the boundary nodes (again, see [25] for
more details).

5.6. Numerical experiments.
5.6.1. Formulation of the test problem. With f]0, 1[]0, 1[we consider the

following Navier-Stokes test problem:

-uAu+(u.’)u+rp=O in f,

(5.77) V.u=0 inf,,

{1,0}u(x,,
t{o, o}

if x2 1,
if 0-<_ x2 < 1.

Hence problem (5.77) is the classical driven cavity problem. The corresponding {w,
formulation is

vAw + (Ox2 oxlOt OxOq’ Ox2) 0 in ,
(5.78) -Aq, w in 12,

q, 0 on F; nn (x,,

828 R. GLOWINSKI, H. B. KELLER AND L. REINHART

5.6.2. Triangulation of [l. The triangulation ’h used to approximate (5.77), (5.78)
by the methods of 5.5, is shown on Fig. 5.1. It contains 800 triangles and since
piecewise quadratic elements are used (i.e. k=2 in (5.52)), it corresponds to 160
boundary nodes and 1581 interior nodes (vertices and midpoints); we have therefore
a nonlinear system of about 3300 unknowns to solve after discretization.

FIG. 5.1

5.6.3. Numerical results---further comments. The numerical procedure described
in 5.4.3 has been applied to the solution of the approximate problem (5.56) associated
with (5.78) (using A 1/,=Re). The computations have been done on a CRAY-1
computer, with special vectorized subroutines (in particular every subroutine concern-
ing profile matrices (product, Cholesky factorization, resolution of triangular linear
systems) has been vectorized).

We have used As 100 for 0 -< A _-< 1400, As 200 for 1400 -< A-<_ 2600, As 400
for A 3000.

The conjugate gradient iterations were stopped as soon as the least squares cost
functional was less than 10-5. The computations have been done with double precision
variables.

Figures 5.2, 5.3, 5.4, 5.5, 5.6 show the variations of the least squares cost functional
as a function of the number of conjugate gradient iterations, for A 100, 400, 1600,
2000, 3000, respectively; as expected the number of iterations necessary to obtain the
convergence is an increasing function of A (= Re).

For Re 3000, the average CPU for one iteration of conjugate gradient is about
0.9 second on the CRAY-1 computer.

The stream lines for Re= 100, 400, 1600, 2000, 3000 are shown in Figs. 5.7-5.11
respectively. The values of the stream function along the lines are:

-0.12,-0.1,-0.08,-0.06,-0.04, -0.02, 0.0

0.0025, 0.001, 0.0005, 0.0001, 0.00005.

Even for small values of the Reynolds number, there appear two secondary vortices
in the lower upstream and downstream corners. These vortices grow larger as the
Reynolds number increases. For values of Re beyond 1500, a third secondary vortex

CONTINUATION-CONJUGATE GRADIENT METHODS 829

t0

IO

FIG. 5.2. Re 100.

to’.

80 tO

FIG. 5.3. Re 400.

to-t

t8 14 41 gO

FIG. 5.4. Re 1600.

to:

to"
t| 14 48

FIG, 5.5. Re 2000.

to;

FIG. 5,6. Re 3000.

830 R. GLOWINSKI, H. B. KELLER AND L. REINHART

FIG. 5.7. Re 100. FIG. 5.8. Re 400.

FIG. 5.9. Re= 1600. FIG. 5.10. Re= 2000.

FIG. 5.11. Re 3000.

CONTINUATION-CONJUGATE GRADIENT METHODS 831

appeared in the upper, upstream corner. These qualitative results agree with the
numerical tests done by Olson-Tuann [29] using other finite element methods, by
Schreiber-Keller [35] using continuation and finite difference methods and by Winters-
Cliff [44] using finite elements and refinements in the corners.

A most interesting question is the possible occurrence of multiple solutions as the
Reynolds number increases beyond some critical value. So far, we did not observe
such behavior in the range of Re that we considered in our computations, i.e. 0 _-< Re =<
3000. Actually and to our knowledge the computed solutions obtained in the range
0 <_- Re <_- 5000 by various authors using different methods agree quite well; this observa-
tion suggests that multiple solutions can only appear for greater values of Re. Neverthe-
less it would be interesting to refine the numerical techniques in order to detect such
a behavior.

6. Conclusion. We have discussed in this paper the solution of nonlinear boundary
value problems containing a parameter by a combination of arc length continuation
methods, least squaresmconjugate gradient algorithms and finite element approxima-
tions. The resulting methodology is quite general and has been applied to the solution
of second order and fourth order nonlinear boundary value problems whose branches
of solutions may exhibit limit points and bifurcation.

Acknowledgments. The authors would like to thank Professor R. B. Simpson and
the referees for most helpful comments and suggestions.

REFERENCES

[1] E. POLAK, Computational Methods in Optimization, Academic Press, New York, 1971.
[2] M. J. O. POWELL, Restart procedure for the conjugate gradient method, Math. Programming, 12 (1977),

pp. 148-162.
[3] L. REINHART, Sur la r.solution numd.rique de problmes aux limites non lind.aires par des mdthodes de

continuation, Thse de 3me Cycle, Universit6 Pierre et Marie Curie, Paris VI, June 1980.
[4] M. S. BERGER, Nonlinearity and Functional Analysis, Academic Press, New York, 1977.
[5] H. B. KELLER, Numerical solution of bifurcation and nonlinear eigenvalue problems, in Applications of

Bifurcation Theory, P. Rabinowitz, ed., Academic Press, New York, 1977, pp. 359-384.
[6], Global homotopies and Newton methods, in Recent Advances in Numerical Analysis, C. de

Boor and G. H. Golub, eds., Academic Press, New York, 1978, pp. 73-94.
[7] J. L. LIONS, Quelques md.thodes de rdsolution des problmes aux limites non lind.aires, Dunod, Gauthier-

Villars, Paris, 1969.
[8] M.G. CRANDALL AND P. n. RABINOWITZ, Bifurcation, perturbation ofsingle eigenvalues and linearized

stability, Arch. Rat. Mech. Anal., 52 (1973), pp. 161-180.
[9], Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue

problems, Arch. Rat. Mech. Anal., 58 (1975), pp. 207-218.
[10] H. AMANN, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM

Rev., 18 (1976), pp. 620-709.
[11] F. MIGNOT AND J. P. PULL, Sur une classe de problmes non lind.aires avec non lind.arit, positive,

croissante, convexe, Comptes Rendus du Congr6s d’Analyse Non Lin6aire, Rome, May 1978,
Pitagora Editrice, Bologna, 1979, pp. 45-72.

12] F. MIGNOT, F. MURAT AND J. P. PULL, Variation d’un point de retournement en fonction du domaine,
Comm. Partial Differential Equations, 4 (1979), pp. 1263-1297.

[13] F. KIKUCHI, Finite element approximations to bifurcation problems of turning point type, in Computing
Methods in Applied Sciences and Engineering, 1977, Part I, R. Glowinski and J. L. Lions, eds.,
Lecture Notes in Mathematics 704, Springer-Verlag, Berlin, 1979, pp. 252-266.

[14] R. B. SIMPSON, A method for the numerical determination of bifurcation states of nonlinear systems of
equations, SIAM J. Numer. Anal., 12 (1975), pp. 439-451.

[15] G. MOORE AND A. SPENCE, The calculation of turning points of nonlinear equations, SIAM J. Numer.
Anal., 17 (1980), pp. 567-576.

832 R. GLOWINSKI, H. B. KELLER AND L. REINHART

16] T. F. CHAN AND H. B. KELLER, Arclength continuation and multigrid techniquesfor nonlinear eigenvalue
problems, this Journal, 3 (1982), pp. 173-194.

17] L. REINHART, On the numerical analysis ofthe Von Karman equations: mixedfinite element approximation
and continuation techniques, Numer. Math., 39 (1982), pp. 371-404.

[18] M. G. CRANDALL AND P. n. RABINOWITZ, Bifurcation from simple eigenvalues, J. Funct. Anal., 8
(1971), pp. 321-340.

[19] F. BREZZI, J. RAPPAZ AND P. A. RAVIART, Finite dimensional approximation of nonlinear problems.
Part III: Simple bifurcation points, Numer. Math., 38 (1981), pp. 1-30.

[20] O. A. LADYZHENSKAYA, The Mathematical Theory of Viscous Incompressible Flows, Gordon and
Breach, New York, 1969.

[21] R. TEMAM, Navier-Stokes Equations, North-Holland, Amsterdam, 1977.
[22] V. GIRAULT AND P. A. RAVIART, Finite element approximation ofthe Navier-Stokes equations, Lecture

Notes in Mathematics 749, Springer-Verlag, Berlin, 1979.
[23] R. RAUTMANN, ed., Approximation Methods for Navier-Stokes Equations, Lecture Notes in Mathe-

matics 771, Springer-Verlag, Berlin, 1980.
[24] F. THOMASSET, Implementation ofFinte Element Methodsfor Navier-Stokes Equations, Springer-Verlag,

New York, 1981.
[25] R. GLOWINSKI AND O. PIRONNEAU, Numerical methods for the first biharmonic equation and for the

two-dimensional Stokes problem, SIAM Rev., 17 (1979), pp. 167-212.
[26] P. G. CIARLET AND P. A. RAVIART, A mixed finite element method for the biharmonic equation, in

Mathematical Aspects of Finite Element Methods in Partial Differential Equations, C. de Boor,
ed., Academic Press, New York, 1974, pp. 125-145.

[27] R. SCHOLZ, A mixed method for 4th order problems using linear finite elements, Rev. Franaise Autom.
Inf. Rech. Op., Anal. Num., 11 (1977), pp. 197-208.

[28] D. F. SHANNO, Conjugate gradient methods with inexact searches, Math. Oper. Res., 13 (1978), pp.
244-255.

[29] M. D. OLSON AND S. Y. TUANN, Further finite element results for the square cavity, Proc. Third
International Conference on Finite Elements in Flow Problems, Banff, Alberta, Canada, 10-13
June, 1980, Volume 1, D. H. Norrie, ed., University of Calgary, pp. 143-152.

[30] H. B. KELLER AND D. S. COHEN, Some positone problems suggested by nonlinear heat generation,
J. Math. Mech., 16 (1967), pp. 1361-1376.

[31] J. P. KEENER AND n. B. KELLER, Positive solutions of convex nonlinear eigenvalue problems, J. Diff.
Eqs., 16 (1974), pp. 103-125.

[32] ., Perturbed bifurcation theory, Arch. Rat. Mech. Anal., 50 (1973), pp. 159-175.
[33] B. MATKOWSKY AND E. L. REISS, Singular perturbations of bifurcations, SIAM J. Appl. Math., 33

(1977), pp. 230-255.
[34] D. PEROZZI, Thesis, Part II: Analysis ofoptimal step size selection in homotopy and continuation methods,

California Institute of Technology, Applied Math., 1980, pp. 82-156.
[35] R. SCHREIBER AND H. B. KELLER, Driven cavity flows by efficient numerical techniques, J. Comp.

Phys., 40 (1983), pp. 310-333.
[36] H. B. KELLER AND W. F. LANGFORD, Iterations, perturbations and multiplicitiesfor nonlinear bifurcation

problems, Arch. Rat. Mech. Anal., 48 (1972), pp. 83-108.
[37] W. RHEINBOLDT, Solution field of nonlinear equations and continuation methods, SIAM J. Numer.

Anal., 17 (1980), pp. 221-237.
[38] P. DEUFLHARD, A stepsize controlfor continuation methods and its special application to multiple shooting

techniques, Numer. Math., 33 (1979), pp. 115-146.
[39] H. B. KELLER, Practicalprocedures in pathfollowing near limit points, in Computing Methods in Applied

Science and Engineering V, R. Glowinski and J. L. Lions, eds., North-Holland, Amsterdam, 1982,
pp. 177-183.

[40] D. W. DECKER AND n. B. KELLER, Multiple limit point bifurcation, J. Math. Anal. Appl., 75 (1980),
pp. 417-430.

[41] W. C. RHEINBOLDT, Solution fields of nonlinear equations and continuation methods, SIAM J. Numer.
Anal., 17 (1980), pp. 221-237.

[42] R. GLOWINSKI, Numerical Methods for Nonlinear Variational Problems, Springer, New York, 1984.
[43] R. GLOWINSKI, H. B. KELLER AND L. REINHART, Continuation-conjugate gradient methods for the

least square solution of nonlinear boundary value problems, Rapport de Recherche INRIA No. 141,
June 1982.

[44] K. H. WINTERS AND K. A. CLIFFE, A finite element study of driven laminar flow in a square cavity,
AERE Report R. 9444, 1979.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 4, October 1985

(C) 1985 Society for Industrial and Applied Mathematics
OO2

NUMERICAL CONFORMAL MAPPING OF A TOWEL-SHAPED REGION
ONTO A RECTANGLE*

ALBERT SEIDL" AND HELMUT KLOSE*

Abstract. If technical applications are involved, partial differential equations often have to be solved
on a nearly rectangular domain ("towel"), one or more boundaries of which deviate from a straight line.
A numerical method is presented for the mapping of such a region onto a rectangle. The calculation consists
mainly in solving two coupled Laplace equations.

Key words, conformal mapping, Laplace equation, finite difference method, field calculations

1. Introduction. The finite difference method is a quite simple and very efficient
method for the solution of field, diffusion and hydrodynamic problems. However, the
programming effort and the calculation times increase dramatically as soon as complex
geometries are involved, where the boundaries no longer fit with the rectangular grid
lines. For certain classes of problems, these difficulties can be bypassed by using
coordinate transformation techniques. The use of such transformations, which conserve
the orthogonality of the grid, is preferred because of easier discretization. Moreover,
a nonorthogonal transformation may cut down the convergence of the solver. Many
physical problems have to be solved on a nearly rectangular region which is bounded
by curved lines.

In this paper, we present a method for establishing an orthogonal finite difference
grid in a domain bounded by four curved lines. This domain has to be simply connected
and should have four rectangular corners. One way of doing this is to transform a
rectangular domain D (see Fig. 1) to the quasi-rectangle W by using conformal
mapping. The mapping should be done in such a way that the corners of D are mapped
onto the corners of W. This is only possible for a certain length to width ratio (conformal
modulus) of D, which is unknown at the beginning.

D

f(v)

C

A(u) B

(Y

D

f(v)

u(x,y)

v(x,y)

FIG. 1. Definition ofphysical domain W and model domain for numerical calculations D.

Many more or less efficient methods for numerical conformal mapping have been
published, but most of them treat a mapping of an arbitrary region onto the unit circle.
Such a mapping has traditionally been performed by solving integral equations [4],

* Received by the editors April 26, 1983, and in revised form January 3, 1984.

" Institut fiir Festk/Srpertechnologie, Paul-Gerhardt-Allee 42, 8000 Miinchen 60, Germany.
Siemens AG, ZT ZFE ME33, Otto-Hahn-Ring 6, 8000 Miinchen 83, Germany.

833

834 ALBERT SEIDL AND HELMUT KLOSE

[13]. The authors of [1] used a finite difference solution of the Cauchy-Riemann
equations, developed in [8], whereas the author of [3] calculated coefficients of a
Laurent expansion.

Using a disk as an intermediate domain for our towel problem would introduce
many difficulties. For some problems, a proposal by Fornberg [3] may work (see Fig.
2a). However, it maps two semi-infinite regions with only one curved boundary.

(a)
numerical

(b)

numerical log

(c)
numerical log

FIG. 2. Alternative mapping schemes: (a) Fornberg’s method" (b) mapping a towel onto a disk directly;
(c) method using a doubly connected region.

The proposal in Fig. 2b introduces singularities at the corners. Thus the unit-circle
maps will perform poorly, because a great number of nodes or Laurent coefficients
are needed. Note that we want to transform a whole finite difference grid, and that it
would be necessary to evaluate the entire Laurent series or boundary integral for every
grid point. The grid is transformed into a polar coordinate grid, which is usually not
wanted, because grid lines are concentrated in the middle of the region.

In contrast to the above-mentioned methods, the elliptic grid generators (a survey
is given in [12]) work on rectangular domains, but they do not necessarily solve the
Cauchy-Riemann equations. The grid could become either nonorthogonal or
anisotropic. An exception is the work of Challis and Burley [2], who performed a
conformal mapping based on a FFT-solution of the Laplace equation. However, their
algorithm allows for only one side of the physical domain to be curved.

In this work, the strategy will be as follows:
The Cauchy-Riemann equations are converted into a set of two Laplace

equations, which are coupled by the boundary conditions.

NUMERICAL CONFORMAL MAPPING 835

Two examples are given of how the standard elliptic solvers can be employed
for an iterative solution of this equation system.

Numerical experiments are performed to test the efficiency of the algorithms
and to examine for which class of problems they work.

2. Conversion for numerical solution. One way to obtain the functions u(x, y) and
v(x, y) (see Fig. 1) so that the lines u const, and v const, are orthogonal is to satisfy
the Cauchy-Riemann equations (CR’s) [7]:

(1) ux=Vy,

(2) Uy -v,,.

As a direct consequence of (1) and (2), both u and v have to satisfy the Laplace equation:

(3) Uyy + Uxx O,

(4) Vyy+V,,x=O.

Note that we want to map the four corners of D onto the corners of W. Thus the
precondition for existence and uniqueness of u and v is that s So, i.e., the length-to-
width ratio of D is a certain value (conformal modulus). For further details of the
conformal module problem, we refer the reader to [2], [5]. If the mapping exists, u
and v will satisfy the following boundary conditions, where the Dirichlet conditions
describe the shape of the physical domain W. The second CR, (2), is applied to the
remaining boundaries in order to provide uniqueness for the solution of (3), (4).

boundary u v

(5a, b) Uy -v, v =f(u) on y s

(5c, d) 2 t/ =f2(D) I) =--t/y on X

(5e, f) 3 Uy=-Vx v=f3(u) ony=0
(5g, h) 4 u =fn(v) vx=-Uy onx=0

What follows is the proof that the Laplace equation, together with the boundary
conditions (5), indeed solves the Cauchy-Riemann equations.

By solving the Laplace equation, we do not necessarily obtain the functions u
and v, but rather an infinite number of solutions f and g, where

f,,, +fyy O,

gxx + gyy O.

They differ from the solutions sought by

p=f-u, q=g-v,

where p and q themselves satisfy the Laplace equation. Substitution of f and g into
(1) and (2) yields

fx gy px qy rl(x, y),

.fy + gx Py + q,, r_(x, y).

It is trivial to show that rl and r2 satisfy the Laplace equation. If we apply boundary
conditions that force rl =r2 0, then we obtain the desired solutions

f=u, g=v.

836 ALBERT SEIDL AND HELMUT KLOSE

By applying the second CR as a boundary condition (5a, d, e, h), we obtain r2 0 at
the boundaries, r2 0 follows for the whole domain because r2 satisfies the Laplace
equation. With the Dirichlet boundary condition (5b, c, f, g), we obtain

q--0 ony=s, y=0,

p=0 onx=l, x=0,

together with r2
follows:

0, and the condition for p and q to satisfy the Laplace equation

p=q=rl=r2=O.

Now let us suppose s # So, i.e., we do not yet know the value of the conformal
module, and we have solved the system (3), (4), (5) with only a first estimate for s.
We now have one more free variable in the geometry. Solutions u and v exist only if
we introduce one more free parameter into the Cauchy-Riemann system"

(6) ux-Vy=Cl,

(7) Uy+Vx=O.

Now u and v can still be obtained by solving the Laplace equations analogously
to the solution of (1), (2), because the additional parameter cl has been introduced
in such a way that

u and v still satisfy the Laplace equation,
the boundary conditions (5) are not violated.

Assume u and v have been obtained with an iterative procedure by solving the
Laplace equations (3) and (4) with boundary conditions (5). The constant c in (6)
can be evaluated as the residual of the first CR (1). Thus, the parameter s (see Fig. 1)
must be determined in such a way that cl becomes zero.

.4

/.2

.0

0.2 0.4 C

FIG. 3. Typical c(s) curve.

NUMERICAL CONFORMAL MAPPING 837

Figure 3 shows the values one obtains for C when solving (3), (4) with boundary
conditions (5) for a given s. The problem now is to find the root of the function
c(s) 0. This can be done in the following manner:

1: set a starting value for s
2: solve the equation system (3), (4), (5) for a given s by a Laplace solver
3: determine c(s)
4: calculate a new value for s (e.g., by Newton’s method)
5: repeat steps 2-4 until the desired accuracy has been attained.

Step 2 of this procedure will be done by using an iterative method, but as will be seen
in the next section, it is better for practical implementations to run both iterations
simultaneously.

3. Simple iterative method. First, we will give a detailed description of a very
simple method based on point successive overrelaxation (SOR); and in the next section,
we will present a survey of more efficient methods.

The Laplace equation was discretized using the well-known second order difference
scheme. For easier understanding without loss of generality, we assume an equidistant
grid:

(8) u,+,,+u,-,,+u"+’+u"-’ ()s + 2+ u, O.

For the Cauchy-Riemann boundaries, we obtain a four point formula by introduc-
ing ghost points immediately outside the domain. These ghost points are then eliminated
by substituting a discretized equivalent of the boundary condition into (8). Thus, we
obtain for the boundary points (e.g., boundary 1; y s):

2"u,,2(. s) vi+,.-vi_.(9) ui+. + ui-1, + 2+ ui
S S

A relaxation step on the Laplace equations (3), (4) with boundary conditions (5)
can be constructed as follows:

1:1 SOR step on u, including the Cauchy-Riemann boundary conditions (5a, e)
2: update the Dirichlet boundaries of v (5b, f), e.g., vk+l =f3(u)
3:1 SOR step on v, including the Cauchy-Riemann boundary conditions (5d, h)
4: update the Dirichlet boundaries of u (5c, g).

For a nonequidistant grid, successive overrelaxation by lines (SLOR) works better
than point SOR.

An outer iteration cycle is necessary to find the root of the function c(s) (see
Fig. 3 and (6)). After a certain number of relaxation iterations, as described above,
we update the value of s. This can be done by using a secant iteration:

sk_sk-1

(10) sk+l sk ck.

An estimate for cl is calculated by using a discretized equivalent of (6):

i=lj=l

838 ALBERT SEIDL AND HELMUT KLOSE

Better stability than in the case of the Newton method was obtained by using the
following formula, derived from (11) and setting c to zero.

(12) Ui+l,j ui_,j Sold Vi,j+ Vi,j-1 =0.
i= j= 2h Snew 2hSod

Numerical experiments were performed to determine how many inner relaxation
iterations per outer iteration yield the best convergence. For all examples treated in
this paper, the optimal number of inner iterations was about 5.

It is reasonable to assume that the number of relaxation iterations necessary to
solve only the coupled Laplace equations (3), (4), (5) without an s-iteration is the
minimum number required for the solution with s-iteration. The optimal number of
iterations was typically exceeded by 10% to 20%.

As a stopping criterion, both the correction of s and the residual of the discretized
Laplace equation were checked. A flow chart of the whole algorithm is shown in Fig. 4.

5-10 times

set the
starting values for

S, H, L

SLOR step
for u

update the Dirichlet boundaries
of v

SLOR step
for v

update the Dirichlet boundaries
of u

FIG. 4. Flow chart of iterative method implemented in this work.

4. More etlicient methods. The relaxation method described above is carried out
with minimal storage of 2 times the number of grid points. If more storage space is
available, fast Laplace solvers can be used as well. Let the discretized equivalent of

NUMERICAL CONFORMAL MAPPING 839

(3) and (4), with boundary conditions (5), be represented by the nonlinear equation

(13) (w) =0

with w=().
Many efficient iterative solvers, such as multigrid [6] and incomplete LU decompo-

sition [11], exist that do not work with (13) directly, but rather, with an equation for
the residual of (13).

If wk denotes the approximation for w after the kth iteration and

(w) r,

a correction vector e is calculated by solving the linearized matrix equation

(14) -Le= r.

An iteration cycle can then be constructed"

W
k+l

W
k e.

Inside the domain D, the problem is linear. Therefore, L is identical with . For
the boundaries, the nonlinear coupled Dirichlet conditions (5b, c, f, g) were substituted
into (9). The resulting formula was linearized in a Newton-like manner:

(15) 1 e_,-2+ e,+ 1+ e/,+e,-hr,=O.

In this work, a multigrid method [9] was used. The following procedure describes
what we will later refer to as one multigrid step:"

1" restriction of the matrix equation for a coarse grid
2" relaxation sweep
3" interpolation on the next finer grid
4: repeat steps 2 and 3 until the finest grid is reached.

A detailed description of the multigrid method can be found in [6] and [9]. It can
be applied to our problem as follows"

1" guess starting values for u, v and s by applying a multigrid step directly to the
nonlinear system (13). s is adjusted at every level

2: calculate e by applying one multigrid step to (14)
3" update s
4: repeat steps 2 and 3 until a converged solution is obtained.. Hybrht ethds. The results published in [10] indicate that the CPU times for

the solution of a Laplace equation are below 7.1 10-4 sec per point on a Cyber 175.
The reason that this optimum is not reached for some cases is due to the nonlinearity
of the problem, i.e., the boundary conditions (5) and the s-iteration. For special
problems, it is possible to bypass some of these nonlinearities.

For many technical problems, we have only two curved boundaries on opposite
sides of the domain. Theodorsen’s integral equation for a doubly-connected region,
as described by Gaier [4], can be applied directly as shown in Fig. 2c. A formula for
the calculation of the conformal module is also given in [4]. As soon as the mapping
of the boundaries is done, the coupled boundary conditions (5b, c, f, g), e.g.,

v =fx(u),

840 ALBERT SEIDL AND HELMUT KLOSE

become ordinary Dirichlet conditions:

V fl(X).

Thus, if the boundaries have been mapped by using an integral equation or a Laurent
series method [3], a multigrid solution of the Laplace equation is a good alternative
to the solution of a line integral or to the evaluation of the entire Laurent series for
every grid point.

6. Numerical results. Our testing program was implemented in FORTRAN and
runs on both a Cyber 175 and a VAX 11/750. It has the ability to work with a
nonequidistant grid and with four curved boundaries. The computation times given
in the following section were obtained with this program on the Cyber with simple
accuracy (60 bit wordlength). It performed just as well on the VAX with 32 bit. The
CPU times were 17 times greater on the VAX. It is obvious that the program can be
further optimized if one has a special application in mind. Particularly if the discretiz-
ation is restricted to be equidistant, a reduction in CPU time of at least 50% is possible,
due to reduced effort for the calculation of the coefficients of the Laplace equation.

FiG. 5. The rectangle was mapped onto the part ofa sector between < < e using thefunction w e 1.
This figure shows the numerical solution obtained on the grid 17 * 17.

To test the accuracy, the numerical solution was compared with an analytical one.
A rectangle was mapped onto the sector of a circle by using the exponential function
according to Fig. 5. The following measure was used to judge the accuracy:

1 Ia.-u(x,y)l+la-v(x,y)l,(16) f=-7,=lj=
where t, t denote the numerically calculated solutions and u, v the exact solutions.
For the case where no analytical solution exists, a further criterion was checked using
the discretized equivalents of the CR’s (1) and (2):

(17a) defl
i=1 j=l

i+l,j i--l,j V"i,j+l V"i,j--1
2h 2sh

(17b) def2 - i--1

/i+l,j i--l,j 1)"/,j+l /i,.--1
2sh 2h

TABLE

grid f (see (10)) deft.2 (see (11))

analytical 0
65,65 6.86E-5
33*33 2.75E-4
17,17 1.11E-3
9*9 4.32E-3

0/0
4.7E- 5/2.4E-6
1.4E-4/4.6E- 6
5.9E-4/6.9E- 5
1.2E-3/1.2E-6

.78540

.78534

.78517

.78448

.78178

NUMERICAL CONFORMAL MAPPING 841

FIG. 6. Typical towel:

grid 33 * 33 65 *65

def,2 3.6E-3/1.8E-6 1.1E-3/9.5E-7
calculated s 1,0364 1.0367
CPU time (SOR) 2.2 sec 15 sec.

FIG. 7. Comparison of calculation times with SLOR and multigrid depending on the smoothness of the
boundary y O.

case 1: case 2 (MG):
33 65 33 65 33 65

MG 5 5 1.382 3.802 5 6 n

SLOR 12 22 1.642 10.4 1.213 4.32 T

n T n := number of outer iterations
T := CPU time/seconds
33 =coarse grid: 33* 25 grid points
65 fine grid: 65*49 grid points

842 ALBERT SEIDL AND HELMUT KLOSE

The numerical results exhibit an error dependence proportional to 1/h2. The
calculated value for s was used as an additional criterion.

In Fig. 6, an example of a domain bounded by four curved lines is presented.
Further calculations were done to investigate the dependence of convergence on

the shape of the boundary and on the choice of the Laplace solver. The results (Fig.
7) show how the calculation times become better for smoother boundaries. Case 2 is
an example where convergence slows down to an almost impractical value with our
SOR procedure. When using the multigrid method, the example shown was the steepest
boundary profile for which reasonable results were obtained. Moreover, a comparison
is made in Fig. 7 between the CPU times using a SLOR (TSLOR) and a multigrid solver
(Tuo).

7. Summr. In this paper, a new method has been introduced to solve the
Cauchy-Riemann equations usin8 a relatively simple and fast computer program. With
this alsorithm, it is possible to calculate the velocity and potential distribution for
hydrodynamic and electric field problems on nonrectansular reions. Moreover, this
method can be used to map a nonrectanular domain onto a rectangular one, in order
to solve the Poisson equation by standard elliptic solvers for curved boundaries on a
very simple resion. Thus, this numerical conformal map, tosether with the finite
dif[erence method, could be used as a substitute for various finite element applications,
which require complicated equation systems, complex codes and lon computation
times.

eknovledgments. The authors wish to thank R. F6ssmeier and L. Zink (Institut
fr Informatik, TU Mnchen) for valuable advice and helpful discussions.

REFERENCES

[1] S. CHAKRAVARTHY AND D. ANDERSON, Numerical conformal mapping, Math. Comp., 33 (1979), pp.
953-969.

[2] N. V. CHALLIS AND D. M. BURLEY, Numerical methodfor conformal mapping, IMA J. Numer. Anal.,
2 (1982), pp. 169-181.

[3] B. FORNBERG, A numerical methodfor conformal mappings, SIAM J. Sci. Stat. Comput., (1980), pp.
386-400.

[4] D. GAIER, Konstruktive Methoden der Konformen Abbildung, Springer Tracts in Natural Philosophy
3, Springer-Verlag, Berlin, 1964.

[5] Determination of the conformal module of quadrilaterals by difference methods, Numer. Math.,
19 (1972), pp. 179-194.

[6] W. HACKBUSCH, Introduction to multigrid methods, Lecture Series of Computational Fluid Dynamics,
Karman Institute of Fluid Dynamics, Rhode Saint Genese,

[7] P. HENRICI AND R. JELTSCH, Komplexe Analysis fiir lngenieure, Birkhiuser Verlag, Basel, 1977.
[8] H. LOMAX AND E. D. MARTIN, Fast direct numerical solution ofthe nonhomogeneous Cauchy-Riemann

equations, J. Comp. Phys., 15 (1974), pp. 55-80.
[9] A. SEIDL, A multigrid method for the solution of the diffusion equation in VLSI process modeling, IEEE

Trans. Electron Dev., ED-30 (1983), pp. 999-1004.
[10] J. STOEHR AND R. BULIRSCH, Einfiihrung in die Numerische Mathematik II, Springer-Verlag, Berlin

1979.
11 H.L. STONE, Iterative solution ofimplicit approximations ofmultidimensionalpartial differential equations,

SIAM J. Numer. Anal., 5 (1968), pp. 530-558.
[12] J. F. THOMPSON, Numerical grid generation, April 1982, Nashville, TN, pp. 79-105.
[13] R. WEGMANN, An iterative method in conformal mapping, Numer. Math., 30 (1978), pp. 453-466.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 4, October 1985

1985 Society for Industrial and Applied Mathematics

003

NUMERICAL RESOLUTION OF MAXWELL’S EQUATIONS IN
POLARISABLE MEDIA AT RADIO AND LOWER FREQUENCIES*

BERNARDO COCKBURNf

Abstract. A new model of geophysical prospecting based on a modification of Maxwell’s equations
governing low frequency electromagnetic wave propagation in a polarisable medium is considered. The
main difficulty of the mathematical and numerical study of the problem is the treatment of the convolution
term containing the information on the polarisable properties of the medium. A powerful method to treat
the convolution term numerically is proposed and given a firm mathematical basis. Numerical simulations
demonstrating the efficiency of the method are presented.

Key words. Maxwell’s equations, polarisation, convolution, Fourier transform

1. Introduction. In [2] Dias suggests the use of the concept of a total current
complex conductivity tr to model the electromagnetic behaviour of polarisable media
at radio and lower frequencies. In this range of frequencies the relationship between
the electric and the magnetic fields can be assumed to be linear. His very form is
obtained in the frequency domain.

Dias writes down Maxwell’s equations in the frequency domain as follows,

rot H =trE,

rot E itoB,
(1)

div B 0,

div D 0,

where the total current complex conductivity tr is given by

tr tro(A + (1- A)t),
()

t=(1 +(ito/tOc)’/2) -’

(see Fig. (1)), and depends on spatial variables by means of the conductivity ro, a
real valued function, the polarisation parameter A, A >= 1, and the critical frequency toc.

0.0

-0.5

f

f=Im

0.0 10.0 20.0

FIG. 1. The real and imaginary parts of &(w) (1 + (iw)/2)-.
* Received by the editors January 16, 1984, and in revised form June 21, 1984.
f INRIA, Domaine de Voluceau, Rocquencourt B.P. 105 78153, Le Chesnay Cedex, France.

843

844 BERNARDO COCKBURN

It depends also on the frequency to by means of the polarisation law t only when the
medium exhibits electrical polarisation, i.e., only when A > 1.

The purpose of this paper is to study this model in the one-dimensional case, as
we are interested in applying it to geophysical prospecting.

More precisely, the problem to be studied is the determination of the magnetic
field at the surface, Ho, when the electrical field Eo at the same point is known. See
Fig. 2.

H(x, to)

Eo(w)

-’E(x, o)
Eo excitation of the medium

tr parameter

Ho response of the medium

x

FIG. 2. The precise problem we consider.

Fixing the frequency to equations (1) can be solved. Then to obtain the time-
depending solution the inverse Fourier transform is applied. This method will be
referred to as the frequency method. Equations (1) can be solved analytically in the
one-dimensional case (and on a stratified medium) but this advantage, from the
numerical point of view, no longer exists in the case of 2 or 3 dimensions.

This remark motivates us to solve directly the equations (1) written in the time
domain,

/Zo rot h v-l(e- K e),

rot e --IoOth,
(3)

div h O,

div e O,

where

(4)
v (/zoroX)-,
K (1-- A-’)F-’(&).

The method of solving (3) will be called the time method, in contrast to the frequency
method (F denotes the Fourier transform).

Mathematically the polarisation phenomenon can be considered as a perturbation
of an autonomous system introducing a memory in it. So, to obtain numerical solutions
we have

(i) to discretize the convolution term with accuracy (see 3),
(ii) to stock all the history of the electrical field (see 4).

To avoid the second difficulty we propose to replace the polarisation law t by another

The Fourier transform used in this paper is the conjugate of the one that is used by Dias in [2].

MAXWELL’S EQUATIONS IN POLARISABLE MEDIA 845

aN of the form
N

(5) ,, bk(1 + iakw/Wc)-1,
k=

where ak, bk R for 1 <= k =< N. In this way the convolution term is replaced by a simple
sum of N functions each of them satisfying an ordinary differential equation of first
order (see (14)).

The organization of this paper is as follows. In 2 we formulate the time problem.
In 3 we show that the polarisation phenomenon introduces only a slight perturbation
on the solution of the case K 0. In 4 we consider the problem of the approximation
of by ,. This problem is written as a nonlinear minimization one and is solved in
the particular case we consider, using an algorithm based on the conjugate-gradient
method. Finally in 5 we show some numerical simulations comparing the time method
solution with that of the frequency-method. The latter solution will be considered to
be exact.

2. Formulation of the time-problem. We suppose that
(i) all the functions appearing in (3) depend only on and on the depth x,
(ii) the system is at rest for =< 0,
(iii) it is excited by imposing the electrical field at the surface, and
(iv) on values of the fields e and h only past values have influence.
We shall restrict ourselves to the domain Q]0, L[]0, T[.
With these assumptions we must write the electric and magnetic field as follows,

e (0, el, e2) and h (const, -h2, hi) where (ei, hi) 1, 2 is the solution ofthe following
equations,

(6)

where

tXoO,h + v-’(e-g(e)) =0

tXocgth + ,e 0

e(t=O)=h(t=O) =0

e(x O) ck, e(x L) O

in Q,

in Q,

on [0, L],

on [0, T],

(7) g(e)(t)=(K.e)(t)= K(t-s)e(s) ds Vt>=O.

We point out that e(t) 0 for =< 0 and that

(7’) K(/)=0 Vt<0

by (iv).
We shall call "the time problem" the problem of finding solutions of (6), and we

shall denote it by (P). In [3] a mathematical analysis of problem (P) is done. See also [5].
For regular parameters existence and uniqueness of the solution are obtained by

writing it as a perturbation of the well-known solution of the case K 0 and then
applying a fixed point technique, see Brezis [1]. In order to extend this result to a wide
class of parameters appearing in applications the method of a priori estimates is used,
see Lions [7].

These estimates give immediately the continuous dependence of the solutions on
the parameters.

In the case considered here the bilinear form

a(e, v) (e, v) (g(e), v), (e, v) V V,

846 BERNARDO COCKBURN

where (., stands for the inner product of V L2(0, T; Lz(R+)), is V-elliptic, i.e.,

(8)

the V-ellipticity of a is verified if the following condition is fulfilled,

(8’) :1/3>0: Re (F(K(., x))(w)) <= l fl Vx a.e. in R+,
Roughly speaking, it is this property that makes our solution behave in the same way
as that of the case K 0. Because of this it is possible to get a nice estimate of the
energy, prove the existence of a periodic solution of the problem (P) with g replaced
by

g’(e)(t)=IooK(t-s)e(s)ds Vt
and show that as t- c the solution of (P) converges to the periodic solution, when a
T0-periodic boundary condition b satisfying the mean time zero condition,

(s) ds =0

is imposed.

3. The polarisation phenomenon: a slight perturbation. In practical cases the polari-
sation introduces only a slight perturbation on the solution of the case K =0 (or
equivalently 1, see (2)).

(0.10, 1.0, 0.1)

(o.ol, 1.o, o.1)

(ro, X, w,.)
\\\\\\\\\\\\\\\

(0.10, 1.0, 0.1)

(o.ol,2.o,o.1)

(o.lo, 1.o, o.1) (o.lo, 1.o, o.1)

nonpolarisable polarisable
medium medium

x 0.0 km

x 1.0 km

x 1.5 km

FIG. 3. Values of the space-dependent parameters.

To see this we shall compare the response ho (i.e. the values of the magnetic field
at the surface, calculated by the frequency method), for each of the media shown in
Fig. 3.

The response obtained on the polarisable (res. nonpolarisable) media will be
denoted by ho(p) (resp. ho(np)). The relative importance of the polarisation
phenomenon will be measured by using what will be called the polarisation pattern,

(9) p (ho(p) ho(np))/ho(np).

This pattern is shown in Fig. 5b in the case of a boundary condition b equal to zero
except in the interval]0, 1[in which it is equal to 1. It can be seen that the polarisation
introduces a perturbation of less than 1% ofthe response ofthe nonpolarisable medium.
This shows the necessity of using a very accurate scheme to discretise problem (P).

MAXWELL’S EQUATIONS IN POLARISABLE MEDIA 847

4. The approximate polarisation law.
4.1. Introducing the approximate polarisation law. Even if we discretise problem

(P) with such a scheme we still have the following difficulty: to evaluate g(e), (see
(7)), we have to stock all the past values of e and this is not very convenient to do in
2 or 3 dimensions. The best way to overcome this difficulty would be to use the same
memory place as in the case of a vanishing convolution kernel. But, this can only be
achieved when K is an exponential function.

In this way we are led to replace our exact kernel K by a sum of exponential
functions and this is equivalent to replacing t7 (see (2)) by a function taN given by
(5). g(e) is then replaced by a sum of N functions, each of them satisfying a simple
first order differential equation (see (14)).

We want taN to have the two most important properties of the function t- (7’)
and (8’). More precisely, if we put

Ka=(1-A-1)F-I(-a) (see (4)),

then we shall only consider those raN
is verified if and only if

for which Ka verifies (7’) and (8’). In fact, (7’)

(10) ar >O, l <- k<- N,

and (8’) is verified if,
N

(11)
k=l

In other words, we shall replace t by a function taN given by (5), verifying the
properties (10) and (11).

4.2. Fitting ON to t. Let us introduce (w)=t(wtoc(x),x) and aN(W)
oN(WtOc(X), X). It can be proved (see [3] [4]) that a choice to fitting t in an interval
of the form]0, wl] is sufficient to ensure that the solutions of our time-problem with
t and taN remain close to each other. (Here aN fitting t means that taN is a good
approximation of in the region of (low) frequencies lying between 0 and WltO(X),
for each x]0, L[).

By (5) and the definition of a, we have

N

(12) d’,, (w) , bk(1 + iakw)-1
k=l

so that we can "identify" the function to with the point xN- (al, bl,..., bv) R2.
We shall take ta to be the solution of the following problem.
Find _&oN in sv such that,

where

J(-N) =< J(taN) VaN in v,

{to of the form (12) verifying (10) and (11)}.

This is a nonlinear minimisation problem that we solve using an algorithm based on
the conjugate-gradient method. We remark that Mm is of dimension 2N. For details
see [3]. Theoretical convergence results can be found in [5].

848 BERNARDO COCKBURN

4.3. The numerical results. In this case the value w --20 has been taken. The
numerical results given in Figs. 4 and 5 show that this value was large enough. On the
one hand, in Fig. 4 a comparison of the real and imaginary parts of & and Cra is
made. A good fitting is obtained with N-4.

2.0 .f
f Re(aN)/Re()

1.0

0.0

0.0 10.0 20.0

N=I
N=2
N=3
N=4

FIG. 4a. Comparison of the real parts of and ar

0.0

0.0 10.0 20.0
N=I
N--2
N=3
N=4

FIG. 4b. Comparison of the imaginary parts of and &a

On the other hand, in Fig. 5 a comparison of the polarisation pattern p (see (9))
and the errors introduced by replacing t by ta,, is made. These errors, which will be
called the approximation errors, eapp, are given by

(13) eapp(N) p PN,

where pN denotes the polarisation pattern obtained by the frequency method using
tTaN instead of t. It can be seen that they decrease monotonically with N and that for
N 4, eapp(N) does not distort significantly the polarisation pattern.

So, it is possible to replace the exact polarisation law t by and approximate law
ta and still have the same polarisation properties of the system.

MAXWELL’S EQUATIONS IN POLARISABLE MEDIA 849

0.001

0.000

-0.001

-0.002

N=2
N=3
N=4

FIG. 5a. Comparison of the errors in the polarisation pattern due to the approximation of by tZa (the
polarisation patterns have been obtained by the frequency method), eapp(N)= P-Pry (see (9), (13)).

0.005

...............--__eapp(N
0.00 -.’-.--..._......

-0"0051
2.0 4.0

-0"0101
-0.0151

0.0

FIG. 5b. Comparison ofthe approximation error eapp(N) and the exact polarisation pattern. the exact

polarisation pattern p (see (9)), the approximation errorfor N 1, the approximation errorfor N 2,
the approximation error for N 3, the approximation error for N 4.

5. Numerical analysis.
5.1. Discretisation of the time-problem. If in (6) t is replaced by t’aN the equations

can be rewritten as follows:
N

tZoOxh + v- e v- Y. fk in Q,
k=l

(14)

O,fk tOCfk + (1 A-’)bk toc

Ok ak

tZoOth + Oxe 0

e(t=O)=h(t=O)=O

f(t 0)=0

e(x =0) b, e(x=L)=O

in Q, l <-k<=N,

in Q,

on [0, L],

on [0, L],

on [0, T].

l<_k<_N,

850 BERNARDO COCKBURN

These equations are discretised using finite differences. The scheme obtained in this
way is implicit and unconditionally stable. It is of second order in time and of second
order in space locally (when two consecutive step sizes are equal). When K vanishes
the scheme reduces to the classical Crank-Nicolson scheme, see Richtmyer and
Morton [9].

To study the properties of this scheme the same techniques applied in the
continuous case are used (see [3]). The discrete equivalents ofthe V-ellipticity properties
(8) and (8’) hold in this case and it is possible to get estimates of the energy as in the
continuous case when the time and space step sizes are small. Stability and convergence
properties of this scheme are then exactly the same as in the case when K vanishes.

We shall discretise the domain Q as in Fig. 6.

70p

20p

20p

20p

(in sec)
4.00

1.05

1.00

0.05

0.00

0 2 10 100,
200p 160p 90 Pints

FIG. 6. Discretisation of the domain Q]0, 100[]0, 4[.

x (in km)

5.2. The error introduced by the time-method. We want to know if the time method
proposed to solve numerically problem (P) is able to detect the polarisation
phenomenon. In order to do that the polarisation patterns obtained by this method,
Ptv (N indicates that CaN has been used), will be compared with p (see (9)) the
polarisation pattern obtained with the frequency method using t (see (2)). p will be
considered to be exact.

Let us define the total error etot(N).

(15) etot(N)=p-p,
In Table 1, the relative percentage L1-errors, that is,

E(e.) lOO(11 e.llc(o,)llpll (o,))
are shown.

TABLE
Relative percentage L -errors ofpolarisation pattern.

N E (eapp) E(etot)

.56 .59 .95
2 .16 .22 .73
3 .08 .12 .67
4 .03 .12 .25

The ratio r of the approximation error to the total error decreases monotonically
with increasing N. For N 4 this ratio is 0.25 showing that it is the discretisation

MAXWELL’S EQUATIONS IN POLARISABLE MEDIA 851

-0.002

0

N=2
N=3
N=4

2.0 4.0

FIG 7a. Comparison ofthe errors in thepolarisation pattern introduced by the time method, etot(N) p -Ptrv
(see (9), (15)).

0.005

0.000

-0.005

-0.010

-0.015

FIG 7b. Comparison ofthe total errors etot(N) and the exact polarisation pattern. the exactpolarisation
pattern (see (9)), the total errorfor N 1, the total errorfor N 2, the total errorfor N 3,

the total error for N 4.

process and not the replacement of the polarisation law that has the most important
influence on the total error. Moreover this error also decreases with N and is very
small where the polarisation is "important", i.e., on the interval [0, 2]. (see Fig. 7).

We point out that the cpu-time needed to compute the response of the polarisable
medium (see Fig. 3) with N 4 was only 5.6% greater than that needed for the same
computation on the nonpolarisable medium. In other words, the introduction of the
polarisation phenomenon, or equivalently the introduction of a (weak) memory, in
the model does not increase significantly the cpu-time.

6. Conclusion. To model the electromagnetic behaviour of polarisable media at
radio and lower frequencies we consider an analytical model proposed by Dias [2].
Numerical solutions can be obtained by solving the equations (1) in the frequency
domain and then applying the inverse Fourier transform. Equations (1) can be solved

852 BERNARDO COCKBURN

analytically in the one-dimensional case (and on a stratified medium), but this advantage
no longer exists in the case of 2 or 3 dimensions. Instead, equations (1) are written
directly in the time domain and then solved numerically. It can be seen that the
polarisation phenomenon is introduced as a convolution perturbation term that makes
a memory to appear in the system. To overcome the difficulty of evaluating numerically
this term (in 2 or 3 dimensions) we propose a special numerical treatment which
consists in replacing the polarisation law by another one of a more adequate form
(see (5)).

It has been shown that the polarisation phenomenon causes only a slight perturba-
tion in the solution of the case in which it does not appear. Despite this fact it has
been proved that the replacement of the polarisation law can be done in such a way
the polarisation phenomenon is not distorted significantly and that the proposed
numerical method is able to detect the polarisation phenomenon well enough.

Acknowledgments. The author would like to thank A. Bamberger for fruitful
discussions, and Y. Goldman for his help in carrying out certain computations.

REFERENCES

[1] H. BREZIS, Equations d’dvolution non-lindaires en m.canique et en physique, DEA’s course notes, Paris
VI, 1981.

[2] C. A. DIAS, Analytical model for a polarisable medium at radio and lower frequencies, J. Geophys. Res.,
77 (1972), pp. 4945, 4956.

[3] B. COCKBURN, Etude mathdmatique et numdrique des dquations de Maxwell dans des milieux polarisables,
3-cycle doctoral thesis, Paris IV, Juin 1983.

[4] Equations de Maxwell et perturbations singulires, INRIA report, to appear.
[5] B. COCKBURN AND P. JOLY, Justification thdorique d’une mdthode de rdsolution des dquations de Maxwell

en milieu polarisable, INRIA report to appear.
[6] S. HARAUX, Semi-groupes lindaires et .quations d’dvolution lindaires pdriodiques, Lab. d’Analyse

Num6rique, Paris, VI, no 78011.
[7] J. L. LIONS AND E. MAGENES, Problmes aux limites non homognes et applications, vol. 1, Dunod,

Paris, 1968.
[8] R. F. HARRINGTON, Time-Harmonic Electromagnetic Fields, McGraw-Hill, New York, 1961.
[9] R. D. RICHTMYER AND K. W. MORTON, Difference Methods for Initial Value Problems, John Wiley,

New York, 1967.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 4, October 1985

1985 Society for Industrial and Applied Mathematics
004

A JACOBI-LIKE ALGORITHM FOR COMPUTING THE SCHUR
DECOMPOSITION OF A NONHERMITIAN MATRIX*

G. W. STEWARTf

Dedicated to Peter Henrici on his sixtieth birthday

Abstract. This paper describes an iterative method for reducing a general matrix to upper triangular
form by unitary similarity transformations. The method is similar to Jacobi’s method for the symmetric
eigenvalue problem in that it uses plane rotations to annihilate off-diagonal elements, and when the matrix
is Hermitian it reduces to a variant of Jacobi’s method. Although the method cannot compete with the QR
algorithm in serial implementation, it admits of a parallel implementation in which a double sweep of the
matrix can be done in time proportional to the order of the matrix.

Key words, eigenvalue, Schur decomposition, Jacobi algorithm, parallel algorithms

(1.1)

1. Introduction. Let A be a Hermitian matrix of order n, and let

A= UnAU
(A diagonal, U unitary) be the spectral decomposition of A. The Jacobi algorithm for
computing the decomposition (1.1) is based on the following observation. Let akl (k < l)
be an off-diagonal element of A, and let

(1.2) [][akk akt][C]__[kk O]--S alk au.I S 0 ll
be the spectral decomposition ofthe 2 2 submatrix subtended by the rows and columns
k and of A (hereafter, called the pivot matrix). If

1.3) Rkl

Ik_ 0 0 0 0

O0 c 0 g 0

0 II_k_ 0 0

s 0 0

0 0 0 In-I
is the rotation in the (i,j)-plane corresponding to the transformation (1.2), then, RnkARk satisfies

1. akl alk 0,
(1.4)

^2 22. E aii--E a,i+2lakll2.

Thus by annihilating the off-diagonals akt and atk the transformation Rkl moves A
toward diagonality, in the sense that the sum of squares of the diagonal elements is
increased by the squares of magnitudes of the annihilated elements.

The Jacobi algorithm consists of applying Jacobi rotations of the form (1.2)
iteratively. If the sequence of pivot matrices is properly chosen, the off-diagonal
elements of A converge to zeronultimately quadratically [3], [9, Chap. 5]. Since each
Jacobi rotation affects only two rows and columns of A, an entire sweep of the
off-diagonal elements can be accomplished in O(n3) arithmetic operations. In practice,
the algorithm is observed to converge in a small number of sweeps, which makes it a

Received bythe editors June 21,1984. This research was supported bythe Air Force Office of Sponsored
Research under grant AFOSR-82-0078.

f Department of Computer Science, University of Maryland, College Park, Maryland 20742.

853

854 G.W. ST.WART

workable algorithm for the symmetric eigenvalue problem, although it is usually slower
than the QR algorithm. However, Brent and Luk [1] have recently shown that the
method can be implemented on a grid-connected system of n2 processors in such a
way that a sweep requires O(n) time. In this environment the Jacobi method is
effectively an O(n) algorithm for solving the symmetric eigenvalue problem.

The purpose of this paper is to describe a generalization of Jacobi’s method to
non-Hermitian matrices that also lends itself to parallel implementation. There are two
paths that such a generalization might take. One is to drop the requirement that the
transformations Rij be unitary, while continuing to demand that kl--tk "-0. The
prototypical algorithm of this kind is due to Eberlein [2]. When it works, it reduces A
to diagonal form, and the convergence is ultimately quadratic [7]. However, the
intermediate transformations can fail to exist or, what is more likely, may be very ill
conditioned.

The second path, which we shall follow in this paper, is to continue to work with
unitary transformations but drop the requirement that kl 0. The goal of the resulting
iteration is the Schur decomposition

(1.5) UnAU T,

where T is an upper triangular matrix. Although we cannot guarantee the global
convergence of the method and the ultimate convergence is only linear, the fact that
a sweep of the algorithm requires only O(n) time in a suitable parallel implementation
makes it a serious candidate for the parallel solution of non-Hermitian eigenvalue
problems.

The key to the algorithm is to work with rotations that, unlike the usual Jacobi
rotations, are as far as possible from the identity matrix. Nonetheless, the algorithm
reduces to a variant of the Jacobi algorithm in the symmetric case. In the next section
we introduce the rotations used in the algorithm. In 3 we describe the algorithm itself
and establish its relation to the Jacobi algorithm. In 4 a parallel version of the
algorithm is described, and in 5 its local convergence properties are examined. The
paper concludes with some numerical examples and a discussion.

2. Sehur rotations. In this section we shall derive the basic transformations used
in our algorithm. For now let A be the 2 2 matrix

(2.1) A= Jail a12],
a21 a22J

and let (c s) " be an eigenvector of A normalized to have Euclidean norm one; i.e.,

and

(2.3) Icl2 + Isl2= 1.

Then the matrix

(2.4) R=[C -g]s

JACOBI-LIKE ALGORITHM FOR SCHUR DECOMPOSITION 855

is unitary and

[A(2.5) ,=_ RHAR all ,2

0 a22.1

is upper triangular. Thus the Schur transformation R reduces A to Schur form.
In general A will have two independent eigenvectors and hence two associated

Schur rotations. We shall call the one for which [c[is the largest the inner Schur rotation
and the other the outer Schur rotation (the inner rotation is the one nearest the identity
when c is taken to be real and positive).2 There are also inner and outer Jacobi rotations,
and most implementations of the Jacobi method work with the former (e.g., see the
elegant code of Rutishauser [8]). An essential feature of the algorithm proposed in
this paper is that it uses outer Schur rotations.

Inner and outer Schur rotations are related in a way that helps explain the relation
of our algorithm to the Jacobi method. Let

(2.6) P=[O1 10].
If (c s)T is an eigenvector of A, then (s c)T is an eigenvector of PAP. In view of (2.5),
if R is an inner rotation ofA then PR is an outer rotation of PAP, and vice versa. Thus
the application of an outer rotation to A may be regarded as a symmetric permutation
followed by the application of an inner rotation.

3. The algorithm. In order to motivate the algorithm, it is useful to consider a
matrix that is almost in Schur form; that is, a matrix that has the form illustrated below
for n=4:

(3.1) A=

X X x X

X X x
e X X

X

Here x is generic for an arbitrary matrix element and e for a small one. The idea of
the algorithm is to use Schur rotations Rk, formed in analogy with (1.3), to eliminate
e in the (l, k) position. A sine qua non for such an algorithm is that it not destroy e’s
in one part of the matrix while it introduces zeros in another. This requirement restricts
the rotations we are allowed to perform. For example, if the first and fourth diagonal
elements of A are about e apart, then an inner rotation R14 used to annihilate the
(4, 1)-element will have a value of s that is of order one, and the resulting matrix ,
will have the form

(3.2)

X X X X

X X X X
A--

x e x X

0 x x x

In so calling these transformations we follow a tradition, already incipient in the literature, of naming
plane rotations according to their applications. Thus a Givens rotation introduces a zero h la Givens, while
a Jacobi rotation solves a symmetric 2 2 eigenvalue problem. Note that in practice any of these rotations
would be scaled so that c or s is real.

In applications where rounding error is involved, ties are unlikely to occur. It will be assumed that
when they do, they are broken in some systematic manner.

856 G.w. STEWART

Our algorithm is based first of all on the observation that if the pivot block is
taken from two contiguous diagonal elements, then no e can be destroyed. More
precisely, let

(3.3) A=E+B,

where E is strictly lower triangular and B is upper triangular. Let

(3.4) tr=llEIl and z=llnll.
Then the effect of using a Schur rotation in the (k, k + 1)-plane to annihilate ak+l,k is
to produce a matrix A satisfying

(3.5)

and

Thus a rotation on a contiguous pivot matrix shares with the Jacobi method the property
that it drives the matrix toward the form to be computed [cf. (1.4)].

The foregoing suggests that we use contiguous rotations cyclicly to annihilate
elements on the first subdiagonal, say in the order (2, 1), (3, 2), (4, 3),. . Unfortu-
nately, if inner rotations are used the process can quickly stagnate. To see how this
happens, suppose that the diagonal elements of A are well separated, so that any inner
Schur rotation will have an s-value of order e. After the rotation R12 in the (1, 2)-plane
is applied, the resulting matrix has the form

(3.7)

X X X X

0 x x x
e e x x
e e e x

The next rotation has the form

(3.8) R93

1 0 0 0

0 0

from which it is easily seen that R2H3AR:,3 has the form

(3.9)

x X X x
e2

Xo Xx >
e e x

Arguing similarly, we see that after a sweep through the first subdiagonal, A has the form

(3.10)

X X x x
E2

2

X X

e X X

e 0 x

JACOBI-LIKE ALGORITHM FOR SCHUR DECOMPOSITION 857

After m- sweeps, A will be bounded by a matrix of the form

(3.11)

Le e 0

In effect, the elements of the first subdiagonal, which are converging to zero, act as a
barrier that keeps the rest of E from getting up to where it can be incorporated into B.

A way out of this dilemma is suggested by the fact that the nearness of the rotation
(3.8) to the identity is responsible for the appearance of e2 in (3.9); if the rotation
were more balanced, it would move a larger fraction of e in the (3, 1)-element into
the (2, 1)-element. We therefore propose that outer rotations be used to annihilate
elements of the first subdiagonal. If the e’s are small, so that the diagonal elements
of A approximate eigenvalues, then after one sweep through the first subdiagonal, the
diagonals will appear in the order 2, 3,. ", n- 1, 1. This suggests that the process be
repeated to move the second diagonal into position n- 1, repeated again to move the
third into position n- 2 and so on. This leads to the sequence of pivot matrices

(1, 2), (2, 3),..., (n-2, n-l), (n-l, n)

(1, 2), (2, 3),..., (n-2, n-l)
(3.12)

(1, 2), (2, 3)

(1,2)

which we shall call a forward sweep of the matrix A.
The relation between inner and outer rotations allows us to show that the forward

sweep is equivalent to a full Jacobi sweep when the matrix A is Hermitian. For n 4
let

(3.13) S12, $23, $34, S12, $23, S12

be the sequence of outer rotations in a forward sweep. By the observation at the end
of 2, Sk PkRk, where Rkl is an inner rotation in the k, /)-plane. From this it can
be verified directly that the result of a forward sweep is equivalent to operating on the
matrix

(3.14) P12P23 P12/)34/)23P12APt2P23/)34P2P23P12

with the sequence of inner rotations

el2P23P12P34P23R12P23P34P12P23el2

P2P23P:zP34R23P34P2P23P1:

Jl223 Jr312R34/l223kl2
(3.15)

fi, fi3, P23l2

12 23 P12
12.

858 . w. s’rzwAwr

The permuted matrix (3.14) has the form

(3.16)
X6 X

X X4 X

Y X2 X X

and the inner rotations (3.15) annihilate the elements in the order indicated by the
superscripts in (3.16). From this it is seen that although the algorithm appears to be
eliminating only elements on the first subdiagonal, it is actually sweeping the entire
permuted matrix. In particular, if A is Hermitian, then one forward sweep of our
algorithm is equivalent to one Jacobi sweep on the permuted matrix. This leads us to
conjecture that our algorithm will perform very well on nearly Hermitian matrices,
something that will be borne out by the analysis in 5 and the examples in 6.

Corresponding to the forward sweep, there is a backward sweep that restores the
approximate eigenvalues to their original order. Here the rotations are performed in
the order

(n- 1, n), (n-a, n- 1),..., (2, 3), (1, 2)

(n-l,n),(n-2, n-1),. ., (2, 3)
(3.17)

(n-l,n),(n-2, n-1)

(n-l, n).

We shall call a forward sweep followed by a backward sweep a double sweep, and it
is this algorithm that we shall consider in the rest of the paper. There are two reasons.
First, one double sweep seems to reduce tr more than two forward sweeps or two
backward sweeps. Second, on a grid-connected system of processors, the backward
and forward sweeps mesh nicely to increase the parallelism of the algorithm, as we
shall see in the next section.

4. Parallel implementation. A useful strategy for devising a parallel implementa-
tion of an algorithm is to fix on a suitably chosen subtask, parallelize it, and hope that
the rest of the algorithm will follow along. In the double-sweep algorithm the place
to look to is the diagonal of the matrix, whose elements are in effect being moved
around by pairwise interchanges. Figure 4.1 exhibits a parallel implementation of these
interchanges for the case n 6. The numbers to the side are time steps, and the six
numbers following them mark the current position of the original diagonal elements.
A dash between two elements indicates an interchange to be performed in passing to
the next time step. Forward and backward sweeps are separated by a vertical bar.

From the figure it is seen that the forward and backward sweeps can be imple-
mented simultaneously. During the first six steps, the forward sweep propagates the
first element to the last position on the diagonal and the second element to the
next-to-last position, after which the backward sweep begins. The timing is such that
as the first element moves backward it is met by the proper element just ending its
own forward sweep. At step twelve the first element has returned to its original position,
and at step thirteen it is joined by the second element, whereupon another forward
sweep commences.

It is also seen from Fig. 4.1 that the rotations can be generated alternately: first
for all the pivot matrices that begin with odd-numbered diagonal elements and then
for those beginning with even-numbered diagonal elements. The rotations propagate

JACOBI-LIKE ALGORITHM FOR SCHUR DECOMPOSITION 859

1. 1-2 3 4 5 6
2. 2 1-3 4 5 6
3. 2-3 1-4 5 6
4. 3 2-4 1-5 6
5. 3-4 2-5 1-6
6. 4 3-5 2-6[
7. 4-5 3-612-1
8. 5 4-613-1 2
9. 5-614-1 3-2

10. 615-1 4-2 3
11. 6- 5-2 4-3
12. [6-2 5-3 4
13. 1-216-3 5-4
14. 2 -3 16-4 5
15. 2-3 1-415-6

FIG. 4.1. Parallel implementation of diagonal interchanges.

through the matrix as shown in Fig. 4.2. The first matrix in the sequence shows the
rotations being generated in the odd pivot matrices (the blocks labeled with a 1). Each
block passes its rotations north, south, east and west. Where (in blocks also labeled
1) two rotations meet in the second matrix, the rotations are applied and then passed
on to the blocks next outward in the third matrix. At this point the elements of the
even pivot matrices will not be further altered by the rotations labeled 1. Hence their
rotations (labeled 2) can be generated. These rotations fan out following the first set
until in the fifth matrix they have moved far enough to allow the rotations for the odd
pivot matrices to be generated (labeled 3). The process now continues in an obvious
manner.

1. 2.
x

x
x x x x x x x x
x x x x x x x x x
x x x x x x x x x
x x x x x x x x x x
x x x x x x x x x x x x

3. x x x x 4. x 2 2 x x
2 2 x x x 2 x 2 2 x

x 2 2 x x x 2 x x 2 2 x x x
x x x 2 2 x x 2 2 x x 2 2 x

x 2 2 x x x x 2 2 x x 2 2 x
x x x 2 2 x x x x 2 2 x x 2

x x x 2 2 x x 2 2 x x 2
x x x x x x x x x 2 2 x

5. 3 3 x 2 2 x x x 6. x x 3 3 x 2 2 x
3 3 x x x 2 2 x x x 3 3 x x x 2
x x 3 3 x 2 2 x 3 3 x x 3 3 x 2
2 x 3 3 x x x 2 3 3 x x 3 3 x x
2 x x x 3 3 x 2 x x 3 3 x x 3 3
x 2 2 x 3 3 x x 2 x 3 3 x x 3 3
x 2 2 x x x 3 3 2 x x x 3 3 x x
x x x 2 2 x 3 3 x 2 2 x 3 3 x x

FIG. 4.2. Propagation of the rotations.

860 o.w. STEWART

In a parallel implementation of the algorithm, it is natural to associate a processor
with each 2 2 block of contiguous elements. In Fig. 4.3 the processors associated with
the block beginning with alj are labeled (I, J). These are connected horizontally and
vertically in staggered grids to allow the rotations to pass through the matrix. After a
processor has finished generating or applying a rotation, it passes the elements of its
block (denoted by in the figure) diagonally to its four neighboring processors, so
that they can apply their rotations. Synchronization is by data flow; a processor may
compute any time it has all its elements and rotations. For more details, see [6].

(2,0) (0,4)x x x x
X (1,, 1) ,X X- (,3) X X

(0,2) ,-(2,2)
x x x x x

(3,1) (3,3)
x x x x x

(4, O) (4, 2) (4, 4)
x x x x

(5,1) (5,3) (5,5)

(6,o)
X X X X X

(6,2) (6,4)
X (7,1) X X (7,3) X X (7,5)

(0,6)

(1,5) (1,7)

(2,6)

(3,5) (3,7)
x x

(4,6)
X

X
(6,6)

X

FIG. 4.3. Computational network for the Jacobi-Schur algorithm.

(5,7)

Each cluster of rotations requires O(n) time to pass completely out of the matrix,
and since the clusters follow each other at intervals of two time steps, the realization
of a double sweep will also require only O(n) time. Since the algorithm reduces to a
variant of Jacobi’s method when A is Hermitian, it can be regarded as a O(n)
implementation ofthat method--however, one that is different from the implementation
of Brent and Luk [1].

5. Asymptotic properties. As was indicated in the introduction it is not possible
to establish a global convergence theorem for the algorithm proposed in this paper;
indeed, as we shall see later in this section, there are matrices that are not in Schur
form for which the algorithm is stationary. However, we are able to analyze the behavior
of the algorithm under the assumption that the matrix E of (3.3) is small, and this
analysis sheds some light on its properties.

We shall assume that the eigenvalues of A are distinct. This implies that the upper
triangular matrix T in the Schur decomposition is uniquely determined up to diagonal
unitary similarities by the order of the eigenvalues on the diagonal of T. Moreover, if
$12, $23," are the outer rotations resulting from one double sweep of T, then they
are differentiable functions ofthe elements of T. It follows that if r in (3.4) is sufficiently
small, then the sequence $12, $23," of rotations for A satisfies

(5.1)

Now let

A1 =-- Sln2ASI E1 + BI,

where E1 is strictly lower triangular. If Pk is the operator that sets the (l, k)-element
of a matrix to zero, then it is easy to verify that

(5.3) E, SP,=(E)S,_.

JACOBI-LIKE ALGORITHM FOR SCHUR DECOMPOSITION 861

In view of (5.2),

(5.4) E1 P,2(E)g,2+ O(tr2).

Similarly, if

(5.5) A2 =- S3AS23 E2+ B2,

then

(5.6) E2 3P23(E)23 + O(r2).

Proceeding in this manner, we find that the error matrix E, resulting from a full
double sweep can be written in the form

(5.7) E,=S(E)+ O(tr2),

where S is a linear operator on the space of strictly lower triangular matrices (normed
by the Frobenius norm), which is composition of m pairs of unitary similarity transfor-
mations and operators of the form Pk,k+l. If 0< Ilsll < 1, where I1" is the operator
norm, then (5.7) implies that the iteration converges at a rate at least as fast as the
convergence of IIsII If IlSll--0, then the convergence is quadratic.

It is easy to show that Ilsll is not greater than one. For the unitary similarity
transformations that are part of S are also unitary transformations in the space
of n x n matrices, since they do not change the Frobenius norm of a matrix. The
operators Pk are orthogonal projections, since they simply set elements to zero. Thus
S is the product of unitary transformations and orthogonal projections, and its norm
is therefore bounded by one.

The exact value of Ilsll will depend on the matrix T. It is instructive to examine
two boundary cases" one in which Ilsll- 1; and one in which Ilsll 0,

The first case occurs when T has the form illustrated below for n 5:

(5.8) T=

1 1 0 0 0

0 1 1 0 0

0 0 1 1 0

0 0 0 1 1

0 0 0 0 1

It is easily verified that the iteration is stationary for any matrix of the form

(5.9) T

1 1 0 0 0

0 1 1 0 0
x 0 1 1 0
x x 0 1 1
x x x 0 1

In other words S leaves invariant any strictly lower triangular matrix E, which implies
that Ilsll- 1.

On the other hand, it can be verified that whenever the transformations Sk,k+l are
permutations, then Ilsll- 0. This will happen when

(5.10) T =diag (A1, A2," ", A,,),

where the Ai are distinct. This happens precisely when A is normal with distinct
eigenvalues, and it follows that if our method converges at all for such a matrix, the

862 G.w. SrEWARr

ultimate convergence must be quadratic. Since multiple eigenvalues do not seem to
prevent the quadratic convergence ofthe Jacobi algorithm, there is a strong presumption
that a closer analysis will establish the local quadratic convergence of our algorithm
for all normal matrices.

The matrix T of (5.8), being a Jordan block of order n, is about as defective as
a matrix can be. On the other hand, the diagonal matrix T of (5.10) lies at the extreme
of nondefectiveness. This suggests that our algorithms will tend to perform well in
proportion as the matrix in question is nondefective. In the next section, we shall see
that the matter is not that simple, but some insight into how defectiveness enters may
be seen by examining the outer Schur rotations Sk, l.

Consider, for example, the leading 2 2 submatrix of T. Its outer rotation will be
determined by the eigenvector (1 t) r satisfying

0 a22j
a22

From (5.11) it follows that

a22 al(5.12) =.

The number -1 may be taken as a measure of the departure of the matrix

(5.13) [all0 a22d

from normality3: if it is small, then (5.13) is near, in a relative sense, to a normal
matrix; if it is large, to a defective matrix. Thus when (5.13) is nearly normal it tends
to produce permutations, which we have seen corresponds to quadratic convergence.
On the other hand, when it is nearly defective, it tends to produce identity matrices,
which are associated with stationarity.

6. Examples and discussion. In this section we shall present the results of some
numerical experiments performed with the double sweep algorithm. The reader should
keep in mind that the examples are intended primarily to illustrate the considerations
of 5 and not as a broad justification of the algorithm itself. The latter can only be
accomplished by testing the algorithm in parallel implementation on a wide variety of
real-life examples.

The examples in this section were generated in 64-bit hexadecimal arithmetic
using the MATLAB system of C. B. Moler [5]. The first sequence shows the effects of
departure from normality on the convergence of the method. The matrices in these
examples have the form

(6.1) A U(D + aF) Un,
where

(6.2) D diag (1, 2, 3, 4, 5),

(6.3) U

.0216 -.1466 -.9195 .0316]
.7020 -.1795 .5282 -.3735 -.2378|
.4062 .7709 -.4325 -.0806 -.2169/
.3440 .0179 -.0949 -.0882 .9298|
3039 -.6105 -.7095 -.0271 -.17561

It is closely related to the measure introduced by Henrici in [4].

JACOBI-LIKE ALGORITHM FOR SCHUR DECOMPOSITION 863

and

(6.4) F

.3269 .0614 -.1891 .42501
0.0000 0.0000 -1.7158 .1023 -1.2859/

/

0.0000 0.0000 0.0000 -.4575 -.6453|.
/

0.0000 0.0000 0.0000 0.0000 .9182|
/

0.0000 0.0000 0.0000 0.0000 0.0000_]

Table 6.1 shows the convergence of the algorithm for various values of a. The columns
labeled tr contain the Frobenius norm of E after the double sweep numbered in the
first column. The columns labeled 19 contain the ratios of the current sigma to the
previous oneman estimate of the rate of linear convergence.

TABLE 6.1
Convergence and normality.

SWEEP 0.01

1.7e+00
3.0e-02
4.2e 10

1.8e-02
1.4e-08

0.1

tr p

1.7e+00
5.9e-02 3.5e-02
1.3e-05 2.2e-04
3.3e-09 2.5e-04

1.0

tr p

2.1e+00
3.3e-01 1.6e-01
1.4e-02 4.2e-02
1.9e-03 1.4e-01

10.0

tr p

8.2e 13 2.5e 04 2.9e-04 1.5e-01
4.4e-05 1.5e-01
6.6e-06 1.5e-01
9.9e-07 1.5e-01
1.5e-07 1.5e-01
2.2e-08 1.5e-01

1.5e+01
7.3e-01 4.8e-02
1.9e-01 2.6e-01
1.0e-01 5.5e-01
7.1e-02 6.8e-01
5.3e-02 7.5e-01
4.3e-02 8.0e-01
3.6e-02 8.4e-01
3.1e-02 8.7e-01
2.8e-02 8.9e-01

The first example, with a 0.01, almost exhibits the quadratic convergence typical
of the Jacobi algorithm for symmetric matrices. The third iterate (not shown) is well
below the level of rounding error. The convergence of the second example (a 0.1)
is quite satisfactory, even though the matrix deviates quite a bit from symmetry. The
numbers t9 settle down to 2.5 10-4, demonstrating the linear convergence established
in 5. The convergence is also satisfactory for the decidedly nonsymmetric matrix in
the third example (a 1.0), or at least satisfactory for a parallel implementation. It is
linear with a ration of about 0.15. Only when a 10.0 does the convergence become
intolerably slow. Note that this is not a nice matrix: a perturbation of order 0.015 can
make it defective.

The last example is intended to demonstrate that defectiveness alone is not
necessarily disastrous. The matrix A is generated according to (6.1) but with

(6.5) D diag (1, 2, 3, 3, 4)

and a 0.1. Although the matrix has a nonlinear elementary divisor corresponding to
the eigenvalue three, the convergence shown in Table 6.2 is quite satisfactory, being
only seven times slower than the corresponding nondefective matrix in Table 6.1.

Since the algorithm proposed in this paper "is a variant of the Jacobi algorithm,
it cannot compete with the QR algorithm in a serial implementation. However, the
fact that a full double sweep can be implemented in O(n) time on a grid-connected

864 c;. w. STEWART

TABLE 6.2
A defective matrix.

SWEEP 0.1

tr p

1.3e + 00
9.8e -02 7.4e- 02
9.5e -05 9.7e -04
1.8e -07 1.9e- 03
3.4e 10 1.9e 03
6.2e 13 1.8e 03

system of processors makes it a serious candidate for the parallel solution of eigenvalue
problems. It has the advantage over algorithms that seek a diagonal form that it is
very stable; and it shares with them the drawback that it must be implemented in
complex arithmetic, even when the original matrix is real. The major objection to the
algorithm is its slow convergence for strongly nonnormal matrices. However, the QR
algorithm itself converges slowly for defective matrices, and, as we noted in the
introduction, the Eberlein-like algorithms tend to produce ill-conditioned transforma-
tions. The choices among the alternatives will become clear only with further
experimentation.

REFERENCES

[1] R. P. BRENT AND F. T. LUK, A systolic architecture for almost linear-time solution of the symmetric
eigenvalue problem, Tech. Rep. TR-CS-82-525, Dept. Computer Science, Cornell Univ., Ithaca, NY
1982.

[2] P. J. EBERLEIN, A Jacobi-like method for the automatic computation of eigenvalues and eigenvectors of
an arbitrary matrix, SIAM J. Appl. Math., 10 (1962), pp. 74-88.

[3] P. HENRICI, On the speed ofconvergence ofcyclic and quasicyclic Jacobi methodsfor computing eigenvalues
of Hermitian matrices, J. Soc. Indust. Appl. Math., 6 (1958), pp. 144-162.

[4], Bounds for iterates, inverses, spectral variation andfields of values of nonnormal matrices, Numer.
Math., 4 (1962), pp. 24-40.

[5] C. B. MOLER, MATLAB Users’ Guide, Dept. Computer Science, Univ. New Mexico, Albuquerque, 1981.
[6] O. P. O’LEARY AND G. W. STEWART, Data-flow algorithms for parallel matrix computations, Computer

Science Tech. Rep. 1366, Univ. Maryland, College Park, 1984.
[7] A. RUHE, On the quadratic convergence of a generalization of the Jacobi method to arbitrary matrices,

BIT, 8 (1968), pp. 210-231.
[8] H. RUTISHAUSER, The Jacobi method for real symmetric matrices, Numer. Math., 9 (1966), pp. 1-10.
[9] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Oxford Univ. Press, Oxford, 1965.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 4, October 1985

1985 Society for Industrial and Applied Mathematics
O05

PRACTICAL USE OF POLYNOMIAL PRECONDITIONINGS
FOR THE CONJUGATE GRADIENT METHOD*

YOUCEF SAADt

Abstract. This paper presents some practical ways of using polynomial preconditions for solving large
sparse linear systems of equations issued from discretizations of partial differential equations. For a symmetric
positive definite matrix A these techniques are based on least squares polynomials on the interval [0, b].
where b is the Gershgorin estimate of the largest eigenvalue. Therefore, as opposed to previous work in the
field, there is no need for computing eigenvalues of A. We formulate a version of the conjugate gradient
algorithm that is more suitable for parallel architectures and discuss the advantages of polynomial precon-
ditioning in the context of these architectures.

Key words, conjugate gradient method, polynomial preconditionings, parallel algorithms, vectorization

1. Introduction. When combined with a suitable preconditioning, the conjugate
gradient method constitutes one of the most powerful techniques for solving large
sparse symmetric positive definite linear systems of equations. However, most of the
preconditionings have originally been designed for scalar computers and much work
must be done to reformulate them or develop new ones that are more suitable for the
new generation of computers. One attractive possibility considered by several authors
[1], [3], [5], [8], [10], [19] is the use of polynomial preconditionings. Given a symmetric
system Ax :f,, the principle of polynomial preconditioning, which goes back to Rutish-
auser [16], consists in solving the (preconditioned) linear system s(A)Ax s(A)f, where
s is some polynomial, usually of low degree. The polynomial s is chosen so that the
matrix s(A)A has an eigenvalue distribution that is favorable to the conjugate gradient
method, i.e. so that the conjugate gradient method applied to the preconditioned system
converges rapidly. In the classical context of scalar computers, there is little reason
for using polynomial preconditionings because the conjugate gradient method is an
optimal process and the total number of matrix by vector multiplications required by
the conjugate gradient method applied to the preconditioned system s(A)Ax s(A)f
will be higher than that of the nonpreconditioned system Ax =f. The loss incurred by
a larger number of matrix-vector multiplications may in some cases be offset by the
smaller number of inner products required when polynomial preconditioning is used
but the overall performance is not likely to be much different in those cases. Moreover,
incomplete factorization based preconditionings are then quite effective, and are usually
preferred to polynomial preconditionings.

Jordan [10] reports some experiments on the CRAY-1 showing that polynomial
preconditionings are competitive on vector computers. He concludes that more work
is needed to simplify the derivation of "good" polynomials. One of our main goals is
to propose a class of effective polynomials that are easy to derive and that do not
require eigenvalue estimates.

In addition to their importance for vector computers polynomial preconditionings
are attractive for parallel architectures. As will be seen, when A is block tridiagonal,
a great deal of parallelism can be achieved when computing s(A)Av. A few ideas
describing how to take advantage of polynomial preconditionings in this particular
context will be seen in 3.

* Received by the editors December 28, 1983, and in final revised form August 1, 1984. This work was
supported by the Office of Naval Research under grant N000014-82-K-0184 and by the National Science
Foundation under grant MCS-81-06181.

f Computer Science Department, Yale University, New Haven, Connecticut 06520.
865

866 YOUCEF SAAD

In the first part of this paper we focus on the problem of choosing a good
polynomial s. The classical choice is to take s(A) so that the residual polynomial
g(A) -= 1 As(A) minimizes R(A)II over all polynomials R of degree not exceeding
k so that R(0) 1, where I1" I1 is the infinity norm on some interval [a, b] containing
the spectrum of A, with 0 < a < b 16]. This leads to the well-known Chebyshev iteration.
In this paper we suggest using a polynomial s that minimizes the L2-norm IIR(A)IIw
with respect to some weight function w defined on an interval [a, b] that contains the
spectrum of A. The idea of using the LE-norm instead of the infinity norm goes back
to Stiefel [20] and was recently suggested for polynomial preconditioning by Johnson,
Micchelli and Paul [8]. An important observation made by Stiefel is that a and b need
not be accurate estimates of the smallest and the largest eigenvalues of A as long as
[a, b] contains the spectrum of A. Indeed, while it is necessary for Chebyshev iteration
that 0 < a b, for the L2-norm there is no such restriction and one can simply use the
interval which is provided by Gershgorin’s theorem. For example, we may use an
interval of the form [0, b] when it is known that A is positive definite and that b is an
upper bound for the largest eigenvalue provided e.g. by Gershgorin’s theorem. The
Gershgorin bounds can be obtained as the matrix A is built and therefore there is no
need for an adaptive scheme which may considerably slow down the flow of computa-
tions in vector or parallel machines.

One might ask whether we lose efficiency when using least squares polynomials
instead of Chebyshev polynomials since we require less information, i.e. since we
require Gershgorin values instead of eigenvalues. In fact, an interesting revelation
from the numerical experiments is that the usual optimum parameters a-A1---the
smallest eigenvalue ofA and b Arv the largest eigenvalue of A, used in the Chebyshev
iteration, do not in general minimize the total number of conjugate gradient iterations
required for convergence. If these values were used, then our experiments show that
the least squares polynomial approach performs better, not worse as might have been
expected, than the more complicated Chebyshev polynomial approach. The above
optimal parameters are known to minimize the condition number of the iteration matrix
As(A), as was proven by Johnson, Micchelli and Paul [8]. However, the condition
number does not matter as much as the overall distribution of eigenvalues. For this
reason it is clear that it will be difficult to compute the best parameters, i.e. the
parameters a and b that maximize the rate of convergence. This constitutes the main
drawback of Chebyshev polynomial preconditioning. The numerical experiments indi-
cate that the least squares polynomials perform quite well in spite of the fact that they
do not require eigenvalue estimates.

The second part of this paper will discuss the practical implementation of poly-
nomial preconditionings in parallel computation. Although there are many possible
implementations, our idea rests on the simple principle, which is not completely new,
that when A is block tridiagonal then one can perform the products Av, Av, , Akv
concurrently.

2. Polynomial iteration and polynomial preconditioning.
2.1. Basic theory. Consider the linear system

(1) Ax =f,

where A is symmetric positive definite. An efficient technique for solving (1) is the
conjugate gradient method applied to the preconditioned system

(2) Q-lAx=Q-If,

PRACTICAL POLYNOMIAL PRECONDITIONINGS 867

where Q-1 is some approximate inverse of A, for which systems of the form Qy z
are easy to solve.

The matrix Q is referred to as the preconditioning matrix and a classical example
is the incomplete Choleski factorization of A 12]. Although the preconditioned system
(2) is no longer symmetric, symmetry can be recovered by using the inner product
(x, Y)o =(Qx, y) instead of the Euclidean inner product in the conjugate gradient
method [12]. It is assumed that Q-1A is self-adjoint and positive definite for this inner
product.

Incomplete factorization preconditionings are very powerful techniques in scalar
machines but do not vectorize well and may not be the best choice for supercomputers.
Some newly developed preconditionings do, however, vectorize fairly well. Among
them let us mention the vectorizable version of the incomplete Choleski factorization
proposed by Van der Vorst [21]. In 10] a few ways of adapting classical preconditioners
to vector and parallel computers are compared.

Several authors have suggested using polynomial preconditionings, that is taking
Q- s(A), where s is some polynomial; see [5], [8], [10]. The simplest such polynomial
suggested by Dubois et al. [5], is given by the Neuman series

s(A)= I+ N+ N2+ .+ Nk

where N I-A is assumed to be such that [INII -< 1, which is often verified.
More efficient polynomials can be obtained if one knows good estimates a and

b of the smallest and the largest eigenvalues of A. Indeed, let r(A)= {Ai}i=,....N be
the spectrum of A with A-<A2<= --<AN. Let s(A) be any polynomial of degree not
exceeding k- 1 and consider the matrix Q-A s(A)A of the preconditioned system
(2). The purpose of the preconditioning is to transform the eigenvalue distribution
into one that is more favorable to the conjugate gradient method. For example, we
could choose the polynomial s so that III-s(a)al] is minimized, where I1" represents
the 2-norm. Noticing that

(3) III- s(a)all max 11 A,s(A,)I,
A/Co’(A)

it is clear that a good polynomial s(A) would be one for which

(4) max 11 As(A)I
xla,bl

is minimal over all polynomials of degree <-k-l, where [a, b] is an interval that
contains o-(A) with 0 < a < b. It is then well known that the best such polynomial is
such that 1- As(A) is an appropriately scaled and shifted Chebyshev polynomial of
degree k of the first kind, see [2]. This constitutes the foundation of Chebyshev iteration
[6] and was also considered for polynomial preconditioning [8], [10]. In fact it can be
shown [8] that when a A1 and b AN, the resulting preconditioned matrix minimizes
the condition number of the preconditioned matrices of the form As(A) over all
polynomials s of degree <= k- 1. However, an interesting numerical observation is that
when used in conjunction with the conjugate gradient method the best polynomial,
i.e. the one which minimizes the total number of conjugate gradient iterations is far
from being the one that minimizes the condition number. The behaviour of the polynomial
preconditioned conjugate gradient is not simple to analyse. Thus, if instead of taking
a A and b AN we took [a, b] to be slightly inside the interval [A1, AN] we would
achieve faster convergence in general. Unfortunately, the true optimal parameters, i.e.
those that minimize the number of iterations of the polynomial preconditioned conju-
gate gradient method, are not known and we do not know of any way to obtain them.

868 YOUCEF SAAD

Several authors have also considered instead of (4) a L2-norm over the interval
[a, b] with a A1, b AN with respect to some weight function w [8], [17], [18], [20].
Johnson, Micchelli and Paul [8] have experimentally shown that the resulting precon-
ditionings may lead to faster convergence than the Chebyshev based ones.

A further disadvantage of the approaches described above is that the parameters
a and b which approximate the smallest and largest eigenvalues of A are usually not
available beforehand and must be obtained in some dynamic way. This slows down
the process and makes it unattractive for supercomputers where one should avoid
halting the flow of computation.

In order to overcome the difficulty of computing the parameters a and b, Stiefel
suggested using for a and b the values provided by an application of Gershgorin’s
theorem. Thus, the parameter a which estimates the smallest eigenvalue of A may be
nonpositive even when A is a positive definite matrix. However, when a _-< 0 the problem
of minimizing (4) is not well defined, i.e. it does not have a unique solution. This is
due to the nonstrict-convexity of the uniform norm. Stiefel then suggests using the
L2-norm on [a, b] with respect to some weight function w(A).

Consider the inner product on the space Pk of polynomials of degree not exceeding
k:

(5) (p, q)= p(A)q(A)w(A) dA

where w(A) is some nonnegative weight function on (a, b). We will denote by
and call w-norm the 2-norm induced by this inner product.

From the above discussion, we seek the polynomial s_(A) which minimizes

(6) IIl-s(A)llw

over all polynomials s of degree <-k-1. We will call Sk-1 the least squares iteration
polynomial, or simply the least squares polynomial and will refer to Rk(A)=
1--ZSk_(Z) as the least squares residual polynomial. A crucial observation made by
Stiefel is that, as opposed to the classical approach using the infinity norm, the least
squares polynomial is now well defined for arbitrary values of a and b. As will be
shown, Sk-l(A) will constitute a good approximation to A-1 as the degree k-1
increases. Computing the polynomial Sk_(;t) is not a difficult task when the weight
function w is suitably chosen. This will constitute the object of the next section.

2.2. Computation of the least squares polynomials. There are at least three ways
of computing the least squares polynomial defined in the previous section:

1. By using the kernel polynomials formula [20]:

(7, Rk(A)=[q’(O)q’(A)]/[,=o

in which the q’s represent a sequence of polynomials orthogonal with respect to the
weight function w(A).

2. By generating a three term recurrence satisfied by the residual polynomials
Rk(;t) [20]. Indeed, it is known that the residual polynomials are orthogonal with
respect to the new weight function ,w(A). For more details see Stiefel [20].

3. By solving the corresponding normal equations [17]:

(8) (1-ASk_I(A),AQ(A))=O, j=O, 1,2, k-1

where Q, j 1,. k 1 is any basis of the space Pk- of polynomials of degree _<- k 1.
See [17] for the treatment of a similar problem in a slightly more general context.

PRACTICAL POLYNOMIAL PRECONDITIONINGS 869

Each of these three approaches is useful in a different context. Approach 1 is
general and is useful for computing explicitly least squares polynomials of low degree.
For high degree polynomials the last two approaches are to be preferred for numerical
stability. Approach number 2 is restricted to the case where a->_ 0, while approach
number 3 is more general. We should point out that the degrees of polynomial
preconditioners are often low, e.g. not exceeding 5 or 10 so we will describe the first
formulation in more detail.

Let qi(A), i= 0, 1,. -, n,. be the orthogonal polynomials with respect to w(A).
It is known that the least squares residual polynomial Rk(A) of degree k is determined
by the kernel polynomials formula (7). To get Sk-l(A) simply notice that

Sk-’(A)=(1-Rk(A))/A=[q’(O)t(A)]/[=o

with
t,(A) (q,(0)- q,(A))/X

which allows one to compute Sk_ as a linear combination of the polynomials t(A).
Thus from the orthogonal polynomials q one can compute the desired least squares
polynomials. The polynomials qi satisfy a three term recurrence of the form

/3+,q,+,(A) (A a,)q,(A)- ,qi_,(A), i=1,2,...,

from which we derive the following recurrence for the ti’s

fli+t,+l(A) (A t,)ti(A)- fl,t,_(A) + qi(0), i= 1,2,....

The weight function w will be chosen so that the three term recurrence of the
orthogonal polynomials q is explicitly known and/or is easy to generate. One interesting
class of weight functions that satisfy this requirement is considered next.

2.3. Choice of the weight functions. In this section we assume that a 0 and b 1.
Consider the Jacobi weights

(9) w(A)=A-I(1-A) wherea>O and /3=>-.
For these weight functions, the recurrence relations are explicitly known for the
polynomials that are orthogonal with respect to w(A), Aw(A) or A 2w(A), thus allowing
the use of any of the three methods described in the previous section for computing
Sk_(A). Moreover, from a result of [8], the matrix Ask(A) is known to be positive
definite when A is positive definite and a 1 ->/3 ->_ -1/2.

The following explicit formula for Rk(A) can easily be derived from the explicit
expression of the Jacobi polynomials [4] and the fact that {Rk} is orthogonal with
respect to the weight Aw(A):

k

KJk) k-j) <k) ()i__ok-i+fl(10) Rk(A)= E (l-A) (-A where K
=o i+l+a

From (1) it is easy to derive the polynomial Sk_(A)=(1-Rk(A))/A "by hand" for
small degrees.

As an example, when a -1/2 and/3 -1/2 we get the following first four polynomials:

s,(A) 4- (16/5)A,

s2(A [28 56A + 32A 2],

s3(A) [60-216A + 288A 2-128A3].

870 YOUCEF SAAD

.8

.7

OEGREE 2, DEGREE 3, DEGREE

FIG. 2.1. Residual polynomials R for k 2, 3 and 4.

,’"

..’" /,’-.

LRMBDR

DEGREE 5, DEGREE B, DEGREE

FIG. 2.2. Residual polynomials R for k 5, 6 and 7.

.5

,")q
,;/.,,..,,\ .._.
/.,. . ., ..i.:--:;<- ’..,"V,

LAMBDR

DEGREE DEGREE DEGREE I0

FIG. 2.3. Residual polynomials R for k 8, 9 and 10.

PRACTICAL POLYNOMIAL PRECONDITIONINGS 871

Recall that the above polynomials correspond to the interval [0, 1]. For a more
general interval of the form [0, b], a change of variable must be applied to map the
variable in [0, b] into [0, 1], i.e. the kth best polynomial for the interval [0, b] is
(1/b)Sk_l(h/b). The plots of the residual polynomials Rk(h), k 2, 3,. , 10, for the
above weight functions are presented in Figs. 2.1, 2.2, 2.3. The interval considered is
[a, b]=[0, 10]. The polynomials Sk(,)k= 1,2,’’’, 10 have been computed by the
method of the previous section and are listed in the appendix.

Note that we have taken a 1/2 and/3 =-1/2 as an example only because this choice
leads to a very simple recurrence for the polynomials qi, which are the Chebyshev
polynomials of the first kind. We will also use this selection for the numerical experi-
ments in 4. Johnson, Micchelli and Paul [8] have taken as an example a 1, and
/3 0 which corresponds to the Legendre weight. An interesting problem from the
practical viewpoint is to determine what is a "good" choice for a and/3.

2.4. Theoretical considerations. An interesting theoretical question is whether the
least squares residual polynomial will become small in some sense as its degree
increases. Consider first the case 0 < a < b. Since the residual polynomial Rk minimizes
the norm IIRII associated with the weight w, over all polynomials R of degree -<k
such that R(0)= 1, the polynomial (1-A/c)k where c=(a+b)/2 satisfies

R, --< I1(1 x / c) _-< II[(b a)/(b + a)] [(b a)/b + a)]k,

where K is the w-norm of the function unity on the interval [a, b]. Hence, the (known)
result that the norm of Rk will tend to zero geometrically as k tends to infinity.

Consider now the case a 0, b 1 and the Jacobi weight (9). Then for this choice
of the weight function, the least squares residual polynomial is known to be pk(h)/pk(O)
where Pk is the kth degree Jacobi polynomial associated with the weight function
w’(h)=h"(1-h), [20]. Consider the 2-norm of such a residual polynomial with
respect to this weight. From [4] and after a change of variable that maps the interval
[-1, 1] into [0, 1] we obtain

p(0)

where F represents the F function, and

r(k+a+)
r(k+ 1)r(a +)

iiPll
_

1 F(k+a+l)F(k+/3+l)
’-2k+a+fl-I- 1F(k+ 1)r(k+/ + a + 1)"

Hence,

iiP/p(O)ll
r(c + 1)r(k+/3 + 1) r(k+ 1)

w, (2k+a++l)F(k+a++l)F(k+a+l)"

For the case a 1/2 and/3 =-1/2 this becomes

[r(312)]2

(2k+1)(k+1/2) 2(2k + 1)2"

Therefore, the w’-norm of the least squares residual polynomial will converge to
zero like 1! k as the degree k increases. This is not as fast as when a > 0 but we must
remember that the condition p(0)= 1, implies that the polynomial is large in some
interval around the origin.

872 YOUCEF SAAD

The case a < 0 < b is more difficult to study. Clearly, the problem is to analyse
the numbers

min [p(A)lwo(1) dl
p Pk,p(O)

as k increases to infinity, where Wo is some weight function. By the change of variable
/x (A-a)(b-a), these numbers are transformed into

min [p(/x)12w(/./, d/x,Kk(Y)
ppk,p(/)=l

where w(/x)= Wo(A) and y=-a/(b-a) is inside [0, 1]. A detailed analysis by Nevai
[14] has shown that this function of y, called the Christoffel function, decreases to
zero like l/k, when w is a Jacobi weight.

3. Polynomial preconditionings and parallel processing.
3.1. Parallel computation of p(A)v. Consider a linear system Ax =f issued from

the discretization of a partial differential equation in two or three dimensions. With a
suitable ordering of the nodes, the matrix A is block-tridiagonal and often of very
large size. We would like to show how to exploit the polynomial preconditioning
discussed in the preceding sections to solve these linear systems. A critical part in the
realization of the conjugate gradient method lies in the computation of s(A)Av for
any given vector v, where p(A) As(A)= s(A)A is the polynomial preconditioned
matrix. Because of the particular structure of A, a great deal of parallelism can be
achieved in the computation of p(A)v. In the following description we will assume
that the degree of p is 3. We will call u the block dimension of A and m the dimension
of each block, i.e. we have N urn.

Let v be any vector and let w Av, z A2v Aw, A3v Az. We partition all
the vectors according to the block structure of A and denote by vi, wi, zi, ti, 1, , ,,
the block entries of v, w, z, and respectively. Notice that the computation of any
block entry w of w Av, requires only the knowledge of the block entries vi_], vi and
V+l. Then a key observation is the following: while we compute w from vi-1, v and
v+] we can at the same time compute zi_2 from w_3, w-2, w_ and ti_4 from zi_5, zi_4,

z_3. This is illustrated in Fig. 3.1 where we assume that we perform the computations

v=Av Z=A2v =k3v

1 1 Zl 1
v2 2 Z2 "->2
3 3 Z3 3
V4 4 -->Z4 4
v5 5 Z5 5
V6 v6 Z6

FIG. 3.1. Simultaneous computation of Av, A2v and A3v.

PRACTICAL POLYNOMIAL PRECONDITIONINGS 873

from top to bottom. These three computations can obviously be performed indepen-
dently from each other by three different processors. This simple idea is not completely
new as a similar principle was already used in a different context in 1963 by Pfeifer
15] who suggested performing simultaneously several steps of the three line cyclically
reduced SOR method.

Concerning the entries of the matrix A, note that in order to compute wi we only
need the blocks Ai, B and Bi+l. Likewise, we need Bi-2, Ai-2 and Bi_ to compute
z-2 and we need Bi_4, Ai-4 and Bi_3, to compute ti-4. Hence, the computation can be
pipelined by holding 4 blocks in each processor and moving everything to the left by
two blocks (A and B+I) at each time step as is shown in Fig. 3.2. Although only three
of the four blocks in each processor are used, this organization simplifies the data flow
of the matrix entries. Meanwhile, the vectors move only by one block at a time. Figure
3.2 illustrates two successive steps of the process. Note that the computations in each
processor are identical but use three different sets of data. Processor P1 has the task
of computing w Av, processor P2 computes z Aw, and processor P3 computes Az.
As soon as a component is computed, it is sent to the processor on its left. For example,
as the figure shows, when the computation of w6 is completed, w6 is moved to processor
P2, where it will be used in the next step together with w4 and w5 to produce Zs.
Simultaneously, z4 is moved to P2 and t2, the final result, is moved to some host
processor that will complete the conjugate gradient step as will be discussed shortly.

sep

Ml M2 M3

A1, B2. A2. B3 A3. B4, A4, B5 A5, 86. A6, B7,
v5, v6. v7

st,ep

Ml H2 M3

A2, B3, A3, B4 A4. B5, A6, B6 A6, B7, A7, BS,
z2, z3 z4. w4, 5, v6 v6. v7. v8

-I z5 -----7

FIG. 3.2. Parallel processing for computing p(A)v.

In the network described by the figure, the processors P1, P2, P3 may represent
vector or array processors with their own memories M1, M2, M3 sufficiently large to
hold four blocks of A. In [11] Jordan describes a technique for computing w Av that
only requires two blocks of A at a time, namely A and B+I to get one corresponding
bloc of w. This amounts to separating the computation of W Bft)i_ +Ail) + Bi+lVi+l
i= 1,2, ,into

(11) Wi i -- Ail)i + Bi+l /)i+1,

(12) ffi+l Bit+, vi,

with ffl =0. With such a technique we would only need two blocks of A in each
processor. The vector ff+l is not moved to the left but will remain in the same processor
to compute w+l by (11) in the next time step.

874 YOUCEF SAAD

The advantages of the approach outlined in this section are the following:
1. A high degree of parallelism is reached. The processors are idle only during a

very small portion of the total time spent to compute p(A)v, namely at the beginning
and at the end of the computation.

2. The computation involved in each of the processors is a highly vectorizable
process. Thus, each processor can represent a vector or array processor and this can
be quite important for very large problems, e.g. those issued from finite difference
discretizations of three-dimensional PDE’s.

3. The data communication required is regular. Moreover, a large part of the data
transfer can easily be overlapped with computation.

We have just described how to compute the vectors Av, A-v, A3v but in reality
we need to compute the vector t-p(A)v where p is some polynomial of the form
p(A)-aa[Aa+ozEA2+alA+ao]. Therefore, we will not compute the vectors w--Av,
z Aw, Az, but rather the vectors:

(13) w:=a2v+Av,

(14) z:=alv+Aw,

(15) := aoV+ Az,

(16) t:=a3 t,

which result from the application of Horner’s scheme for evaluating a polynomial.
The resulting modification to the above scheme requires the transfer of the additional
vector v through the three processors, and is straightforward.

3.2. Application to the conjugate gradient method. We now turn to the implementa-
tion of the polynomial preconditioned conjugate gradient method a classical version
of which can be described as follows.

ALGORITHM 1.
1. Start" Choose x() and compute r() := s(A)(f-Ax)). Set v) := r), pO):=

r(), r).
2. Iterate: For j 1, 2, until convergence do

(17) t(): s(A)Av();
(18) a(): p()/(t(j), v(J))
(19) x

(20) r(+) r(j)- ol(J)t(J);

(21) p(+ := (r(+), r(J+l)
(22) fl() := pO+)/p();

(23) vO+l r+l) +

The inner products in (18) and (22) constitute two bottlenecks in the above
algorithm. Indeed, as the algorithm is presented, we must proceed as follows. As the
blocks of the vectors v and emerge from the pipeline of Fig. 3.2 we must compute
the partial inner product in (18) corresponding to these blocks. The blocks are then
stored back into memory awaiting for the completion of the partial inner products.
After the v partial inner products have been computed and added up, the vectors

PRACTICAL POLYNOMIAL PRECONDITIONINGS 875

and v are then recalled one block at a time and the scalar by vector products (19),
(20) will be performed.

A similar remark holds for the computation of the inner product (22). However,
an interesting observation is that there is an alternative way of computing/3 (j) which
avoids this second bottleneck. Indeed, let ru/) and r(j be two successive residual
vectors, and (j) p(A)v(j), Ol.

(j) (r(j), r(J))/(t(j), v(J)) where v(j) is the conjugate direc-
tion at step j. Since the two vectors r(j) and r(/) are known to be orthogonal, we have
from (20)

r/+), r(/+)) + r(j), r(j)) a (j)]2(t(j), t(j)).

Hence, another way of obtaining the inner product (r(j+), r(j+l)) is through the formula

(24) (r(J+l), r(+’))=[o(J)]2(t(J) t(i))-(r(i), r()).

As a consequence (r(+), r(+)) is available from (r(), r(j)) and (t(), t()). The funda-
mental difference with the usual way of computing (r+), ru/)) is that (t(), ()) can
be computed simultaneously with (t(j), v()), i.e. it can be accumulated as the blocks
of the vectors () come out of the network of Fig. 3.1 one by one. A similar observation
was made by Johnsson [9] while Van Rosendale [22] studied the inner product data
dependencies in the conjugate gradient method in a more general and theoretical way.

The following algorithm implements the above approach.

ALGORITHM 2.
1. Start: Choose x) and compute r() := s(A)(f- Ax()). Set v() := r(), p(O):=

r(), r()).
2. Iterate: For j 1, 2, until convergence do

a) Compute in parallel:

(25) () := s(A)Av(

b) Compute in parallel:

(26) (t (j), v()),
(27) (t(j), t(J)),

then compute

(28) a(): p(J)/(t (j), v(J)),
(t (j), (j))

p(j+l) :__ p(j)(j).

c) Compute in parallel:

(29) xU+) := x() +

(30) rU+) := r(J)- c(2)t(),

(31) vu+) := ru+)+/3()v().

Note that because of roundoff, the equation (28) could lead to a negative value
for fl(. The effect of roundoff can be reduced by a periodic application of the less
effective formulas of Algorithm 1. In any case the sign of/3(should be checked before

876 YOUCEF SAAD

applying the result to the next equations and if this sign is negative then fl(J) should
be recomputed by the classical formulas of Algorithm 1.

This second form of the conjugate gradient algorithm is also to be preferred on
vector computers such as the CRAY-1. Indeed, in that situation the expressions "in
parallel" in the above algorithm should be interpreted in the sense that the presence
of the operands in the vector registers must be exploited to perform the desired
computations at once thus economizing vector "load" and "store" operations. Practi-
cally, this can be achieved in FORTRAN by having a single DO loop for (26) and
(27) and another single DO loop for (29), (30) and (31).

Fig. 3.3 shows a network of processors for realizing the above conjugate gradient
algorithm. The first part represents the pipelined module described in Fig. 3.2 consisting
of k linearly connected processors P1,’", Pk. The second part is a host processor,
denoted by H in the figure, which realizes steps 2b and 2c of Algorithm 2. Processor
H need not hold the matrix A but only the vectors x, r, v and t. It may itself consist
of one or more array processors.

Clust, of rrI processors
Compute t=p (A) v==As(A)

Host processor
Computes , x:=x-av,

=r-at,, :=r-#v.

FIG. 3.3. A parallel architecture for the polynomial preconditioned conjugate gradient method.

An interesting question is how does this compare with the conjugate gradient
algorithm without preconditioning. The following is a rough estimate of the time spent
to execute one step of the polynomial preconditioned conjugate gradient method.
Assume that H and each of the Pi’s are similar and that all can perform the product
of two vectors of length m, or the product of a vector by a scalar, in an average time
of zlm, and an inner product in an average time of r2m. These times are assumed to
include data transfers. Furthermore, assume that A is a 5-point discretization matrix.
Taking into account the combinations (13)-(15), the computation of each block of
p(A)v can be achieved in time 6mr in each processor. Since the time to make the first
block available, i.e. the start up time, is k(6mr) and since we have v blocks to treat,
p(A)v can be computed in time 6’lmk+6’]m,=[6z+ k/u]N.

After computation of each block of the vector =p(A)v is completed, this block
is sent to H to begin computing the inner products (t, v) and (t, t) of (26) and (27).
Each partial inner product costs m’2. However, assuming that this time is not larger
than 6mzl, we see that the computation of the inner products can be overlapped with
the computation of t. The only time that is really spent is the start up time in H, which
is mz2 for each of the inner products (26) and (27), i.e. 2m’2 altogether. The rest of
the conjugate gradient calculations (29), (30), (31) consumes a time of3p N. Therefore,
an estimate of the time spent to perform one iteration of the polynomial preconditioned
conjugate gradient algorithm is

"r= N[(9+ k/,)’r + (2/,)’:].

With a single processor, a conjugate gradient step would require 5rN (for the
matrix by vector product)+ 2r2N (for the inner products (18), (22))+ 3’lN (for (19),
(20), (23)) which sums up to 8rN+2z2N. This is slightly larger than the previous

PRACTICAL POLYNOMIAL PRECONDITIONINGS 877

case when k << v and "/’1 and rE are of the same order. Hence the speed up is of the
same order as the ratio of the total number of preconditioned conjugate gradient steps
over that of the nonpreconditioned conjugate gradient steps. Although it is difficult to
a priori estimate this ratio, we can say that it is of the form y(k + 1) where y is a scalar
larger than one. Often y will be between I and 2, sometimes close to one. In an example
shown in 4, y is around 1.2.

The above comparison uses a very simple model. An advantage of the multipro-
cessor described above and not stressed in the comparison is that the matrix is accessed
only once to perform k matrix by vector products, and then moved in a uniform way.
With a single processor we would have to access the matrix k times to perform k
similar matrix by vector products. This will be reflected by smaller times zl and ’2 in
a multiprocessor environment than in a single processor environment, and this was
not taken into account in the above simplistic comparison.

4. Numerical experiments. In this section we describe a few numerical experiments
in order to point out some additional facts about polynomial preconditionings. All
tests have been performed in double precision on a VAX-11-700 computer for which
the double precision mantissa is 56. The least squares polynomials referred to in this
section are those associated with the Jacobi weight with a 1/2 and fl =-1/2 given as an
example in 2.

4.1. Varying the degree k. The purpose of the first experiment is to illustrate the
behaviour of the polynomial preconditioned conjugate gradient method as the degree
of Sk-1 varies. Consider the 1200 x 1200 block tridiagonal matrix"

A Block-Tridiag [B’f, Ai, Bi+ 1], 1, v

with Ai Tridiag [- 1, 4, 1 and Bi Diag (- 1),

resulting from the 5-point discretization of the Laplacian operator on a rectangle. The
dimension of each of the blocks is m 40, i.e. the block-dimension of A is v 30. We
tested the polynomial preconditioned conjugate gradient method on the system Ax =f
and have used for a and b the Gershgorin values a- 0, b 8. The right-hand side is
chosen to be f-Ae, where e- (1, 1, 1,... 1)r. The initial vector is a random vector.
The algorithm is stopped as soon as the approximate solution x(j) satisfies

DEGREE

[TERRTISNS PRBBLEM

DEGREE

FIG. 4.1. Iterations versus degree ofpreconditioning.

878 YOUCEF SAAD

Ilf-Ax)ll/llf-Ax)ll<=e, where e= 10-5. These residual norms are actually com-
puted at each (preconditioned) conjugate gradient step. Note that in a realistic
implementation we need not compute these actual residual vectors because we can
either use the generalized residual vectors r(J)= Sk(A)(f-Ax)) or use a classical
implementation of the preconditioned conjugate gradient algorithm in which both the
actual residual and the generalized residual are available, at the expense of a little
more storage, e.g. see [12]. The plot of Fig. 4.1, shows the number of iterations for all
values of the degree k of pk(A) =- ASk_l(A) between 1 and 10. Note that k 1 means
that Sk-1 is a constant and corresponds to the nonpreconditioned conjugate gradient
algorithm.

On the same figure we have plotted the total number of matrix by vector multiplica-
tions needed for convergence, i.e. the numbers k(IT+ 1) where IT is the number of
iterations. Note that except for the first 3 degrees, the total number of matrix by vector
multiplications changes relatively little which is why the number of iterations drops
like 1/k as k increases. The polynomials Sk-1 have been determined by the kernel
polynomial formulation described in 2.2.

4.2. Varying the parameter a. In the next experiment we illustrate the behaviour
of the polynomial preconditioned conjugate gradient method as the parameter a varies.
It is known that the performance of the Chebyshev iteration algorithm [6], [7] depends
critically on a being an accurate approximation of the smallest eigenvalue A 1. We
would like to show that the number of steps ofthe polynomial preconditioned conjugate
gradient method depends very little on the accuracy of a as an approximation to the
eigenvalue A1. The linear system tested is the same as above, and so are the tolerance
e and the initial vector Xo. The value of the parameter b is fixed to 8 and a is varied
from 0.0 to 1.3. The larger values of a are more widely spaced than the first ones. We
have tried three different degrees: k 3, k =/3 and k 10. The results are shown in
Fig. 4.2 in which we plot the total number of CG iterations to achieve convergence.
Notice that around the smallest eigenvalue which is A1 1.613 10-2, there is little
change in using different values of a. Amazingly, even for quite large values of a, the
performance is little affected. For k- 3, for example, there is hardly any difference in
performance for a 0.0 through a 1.3. We attribute this phenomenon to the fact that

32

-
PFRFIMETER

DEGREE

FIG. 4.2. Behavior of the least squares polynomial preconditioning as the parameter a varies.

PRACTICAL POLYNOMIAL PRECONDITIONINGS 879

the polynomials change very little when the parameter a moves around the origin to
its right. We believe that this phenomenon will also be verified for other choices of
the Jacobi weights such as the Legendre weight although this remains to be verified.
This would mean that we expect the preconditionings suggested here to perform as
well as those of [8] in spite of the fact that they require no eigenvalue computation.

4.3. Comparison with Chebyshev polynomial preconditionings. The next experiment
compares Chebyshev polynomial preconditionings with the least squares polynomial
preconditionings and reveals an interesting phenomenon which does not seem to have
been pointed out in the literature. Let us consider the problem tested in 4.1 with the
same dimension N- 1,200, the same right-hand side f and initial vector Xo and the
same stopping criterion. If we try the Chebyshev polynomial preconditioning with
a 0.016 ’1 and b 7.984 AN, we find that for a polynomial As(A) of degree 5, the
method converges in a total of 165 matrix by vector multiplications versus 120 for the
least squares polynomial preconditioning using a =0, b-8 as is reported in 4.1.

170

i.
PPIRtIIETER

DEGREE

DEGREE

FIG. 4.3. Behavior of Chebyshev polynomial preconditioning as the parameter a varies.

Redoing the experiment with several different values for the parameter a, b being
fixed, we find, to our surprise, that a A1 is not the best possible value for a. Indeed,
Fig. 4.3 shows that as a increases the performance improves drastically in the beginning
and then starts deteriorating slowly as a becomes too large. In the plot the value of
the parameter b is fixed to be 7.984 throughout and a is varied from 0 to 1. The best
value for a is around a 0.2 which yields convergence in a total of 110 matrix by
vector multiplications. This phenomenon can be explained as follows. By taking a
slightly larger A, we obtain a matrix As(A) that has a few "large" eigenvalues around
one but the remainder of the eigenvalues are smaller than with a- A1. This situation
is more favourable for the conjugate gradient method than when there are no "large"
eigenvalues but the whole spectrum is wider; this occurs when a moves towards the
origin. The same experiment is repeated for the degree k- 10. The conclusions to be
drawn from these experiments are the following:

1. The usual optimal parameters a- A1 and b- AN used in Chebyshev iteration
are no longer optimal in Chebyshev polynomial preconditioned conjugate gradient
method. When b is fixed, the true optimal parameter a is likely to be larger than A1.
We do not know of any way of determining the actual optimal parameters a and b.

880 YOUCEF SAAD

2. The least squares polynomial preconditioning with the simple parameters a -0,
b- 8 given by a Gershgorin argument performs nearly as well as the best performing
Chebyshev polynomial preconditionings using the parameters a- 0.2 for k-5 and
a-0.1 for k- 10.

Note that these observations are not isolated. Therefore, not only is the Chebyshev
polynomial approach difficult to optimize but even when optimized, the result is not
significantly better than the simpler least squares polynomial approach. Using the
eigenvalues A1 and Av as optimal parameters for Chebyshev preconditioning may yield
poor convergence.

Finally we would like to close this section by mentioning that G. Meurant [13]
recently performed some interesting experiments on the CRAY-1 and CYBER 205
vector machines which show that polynomial preconditionings of the type proposed
in this paper compare quite well with other vector machine oriented preconditionings.
His final conclusion, however, is that there is no winner as performances depend
heavily on the architecture as well as the data. An important advantage of polynomial
preconditionings is that whereas classical preconditionings must start by computing
an approximate factorization, polynomial preconditionings do not require any sort of
preprocessing. It should be pointed out that in most cases the computation of an
incomplete factorization is not a vectorizable process, and can take a substantial portion
of the overall computing time. The timings reported in [13] do not account for
preprocessings. Two other advantages of the least squares polynomial preconditionings
described in this paper are their simplicity and their generality.

5. Allendix. This appendix gives the least squares polynomials up to the degree
10, when we use the Jacobi weights with a- 1/2 and/3--1/2. We chose to develop the
formulas for the interval [0, 4] as they are simpler to write down. Moreover, we rescaled
the polynomials for simplicity. More precisely the kth degree polynomial in the list
below must be multiplied by the factor 4/(3 / 2k) to obtain the least squares polynomials
Sk as defined in 2. Note, however that a scaling factor is unimportant if one wants
to use these polynomials for preconditioning. The polynomials have been obtained by
a simple FORTRAN program based on the kernel polynomial approach described in

2.2. Finally, recall that a change of variable is necessary if b 4 to map the interval
[0, b] into [0,4], i.e. for a general interval one must take the polynomial Sk(4h/b).

s_(h) 14-7 + h,

s3(A)=30-27A +9Ag--h 3,

s4(h)=55-77A +44hE-11ha+h4,
Ss(h) =91- 182A + 156AE-65h3+ 13A4-h5,

S6(/) 140-378A /450AE-275Aaw90A4- 15A5/ A 6,

S7(A) 204- 714h + 1122h 2_ 935h / 442A4- 119A + 17A6- h7,

s8(A 285- 1,254A + 2,508A2-2,717A / 1,729A4_ 665A + 152A6_ 19A 7 //8,

S9(A 385 2,079A + 5,148A 2 7,007A / 5,733A4_ 2,940A + 952A 6 189A 7

+21A8-A 9,
Slo(A 506 3,289A + 9,867A 2 16,445A / 16,744A 4 10,948A + 4,692A 6

-1,311A7+230A8-23A9+A.

PRACTICAL POLYNOMIAL PRECONDITIONINGS 881

Acknowledgments. The author has benefited from valuable discussions with Prof.
Martin Schulz, Prof. Stan Eisenstat and Dr. Gerard Meurant.

REFERENCES

[1] L. M. ADAMS, Iterative algorithms for large sparse linear systems on parallel computers, Ph.D. thesis,
Applied Mathematics, Univ. of Virginia, Blacksburg, 1982. Also available as NASA Contractor
Report # 166027.

[2] C. C. CHENEY, Introduction to Approximation Theory, McGraw-Hill, New York, 1966.
[3] P. CONCUS, G. H. GOLUB AND G. MEURANT, Block preconditioningfor the conjugate gradient method,

Technical Report LBL-14856, Lawrence Berkeley Lab., 1982; this Journal, 6 (1985), pp. 220-252.
[4] P. H. DAVIS, Interpolation and Approximation, Blaisdell, Waltham, MA, 1963.
[5] P. F. DUBOIS, A. GREENBAUM AND G. H. RODRIGUE, Approximating the inverse of a matrixfor use

on iterative algorithms on vectors processors, Computing, 22 (1979), pp. 257-268.
[6] G. H. GOLUB AND R. S. VARGA, Chebyshev semi-iterative methods, successive overrelaxation iterative

methods and second order Richardson iterative methods, Numer. Math., 3 (1961), pp. 147-168.
[7] A. L. HAGEMAN AND D. M. YOUNG, Applied Iterative Methods, Academic Press, New York, 1981.
[8] O. G. JOHNSON, C. A. MICCHELLI AND G. PAUL, Polynomial preconditions for conjugate gradient

calculations, SIAM J. Numer. Anal., 20 (1983), pp. 362-376.
[9] L. JOHNSSON, Highly concurrent algorithms for solving linear systems of equations, in Elliptic Problem

Solvers II, Proceedings of the Elliptic Problem Solvers Conference, Monterey CA, Jan. 10-12,
1983, G. N. Birkhoff and A. Schoenstadt, eds., Academic Press, New York, 1983, pp. 105-126.

10] T. L. JORDAN, Conjugate gradient preconditioners for vector and parallel processors, in Elliptic Problem
Solvers II, Proceedings of the Elliptic Problem Solvers Conference, Monterey CA, Jan. 10-12, 1983,
G. N. Birkhoff and A. Schoenstadt, eds., Academic Press, New York, 1983, pp. 127-139.

11], A guide to parallel computation and some Cray-1 experiences, in Parallel Computations, Garry
Rodrigue, ed., Academic Press, New York, 1982, pp. 1-50.

12] J. A. MEIJERINK AND H. A. VAN DER VORST, An iterative solution methodfor linear systems of which
the coeJficient matrix is a symmetric M-matrix, Math. Comp., 31 (1977), pp. 148-162.

[13] G. MEURANT, Vector preconditioning for the conjugate gradient on the CRAY-1 and CDC Cyber 205,
in Proceedings of the 6th International Colloquium on Scientific and Technical Computation,
Versailles, France, 1984, INRIA ed., North-Holland, Amsterdam, 1984.

[14] P. G. NEVAI, Distribution of zeros of orthogonal polynomials, Trans. Amer. Math. Soc., 249, 2 (1979),
pp. 241-261.

[15] C. J. PFEIFER, Data flow and storage allocation for the PDQ-5 program on the Philco-2000, Comm.
ACM, 6 (1963), pp. 365-366.

[16] H. RUTISHAUSER, Theory of gradient methods, in Refined Iterative Methods for Computation of the
Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems, Institute of Applied
Mathematics, Zurich, Basel-Stuttgart, 1959, pp. 24-49.

17] Y. SAAD, Iterative solution of indefinite symmetric systems by methods using orthogonal polynomials over
two disjoint intervals, SIAM J. Numer. Anal., 20 (1983), pp. 784-811.

[18] D. C. SMOLARSKI, Optimum semi-iterative methods for the solution of any linear algebraic system with
a square matrix, Ph.D. thesis, Technical Report UIUCDCS-R-81-1077, Univ. Illinois, Urbana-
Champaign, 1981.

[19] So CHENG CHEN, Polynomial scaling in the conjugate gradient method and related topics in matrix

scaling, Ph.D. thesis, Technical Report CS-82-23, Pennsylvania State Univ., University Park, 1982.
[20] E. L. STIEFEL, Kernel polynomials in linear algebra and their applications, U.S. NBS Applied Math.

Series, 49 (1958), pp. 1-24.
[21] H.A. VAN DEr VORST, A vectorizable version ofsome ICCG methods, this Journal, 3 (1982), pp. 350-356.
[22] J. VAN ROSENDALE, Minimizing inner product data dependencies in conjugate gradient iteration, Tech-

nical Report 172178, ICASE-NASA, 1983.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 4, October 1985

1985 Society for Industrial and Applied Mathematics
006

AUXILIARY STORAGE METHODS FOR SOLVING
FINITE ELEMENT SYSTEMS*

ALAN GEORGEt AND HAMZA RASHWAN"

Abstract. In this paper we consider the direct solution of the system of linear equations Ax b, where
A is a large, sparse, symmetric and positive definite matrix. This system is solved using the Cholesky method
by factoring A into RTR, where R is an upper triangular matrix, and then solving R 7-y b and Rx y. We
are particularly interested in the case where A is so large that auxiliary storage must be used to store the
Cholesky factor R.

The approach we use, which fully exploits the sparsity of A, is based on partitioning the given system
into subsystems, each of which is sufficiently small that it can be processed in a relatively small amount of
main memory. We give a detailed analysis of the input/output (I/O) traffic generated when our method is
applied to a model n by n grid problem. The grid is partitioned using an incomplete nested dissection, which
is a minor modification of the standard nested dissection ordering. Our analysis shows that if we have O(n2)
main memory, then the total I/O traffic is O(n21og n). This result implies that the 0(//3) numerical
computations dominate the I/O traffic. A widely used method for solving such large linear systems is the
band method, in which zeros outside the band of A are exploited. The I/O traffic and arithmetic operations
in this case are given by O(n3) and O(n4), respectively.

We also consider an improvement for our basic strategy which reduces the I/O traffic to the extent that
it is dominated by writing the Cholesky factor alone. This enhancement reduces the I/O traffic associated
with storing intermediate results from O(n log n) to O(n loglog n). Numerical experiments are also
provided to illustrate the performance of our algorithms.

Key words, sparse linear equations, auxiliary storage methods, sparse Gaussian elimination, finite
element systems

1. Introduction. In this paper, we consider the direct solution of the system of
linear equations

(1.1) Ax b,

where A is an N by N, sparse, symmetric and positive definite matrix. The system
(1.1) is solved using Cholesky’s method, by factoring A into A R TR, where R is an
upper triangular matrix. The solution vector x is then found by solving the two triangular
systems: R Ty b, and Rx y.

When the factorization of a sparse matrix A is carried out, it usually suffers fill-in
that is, R + R has nonzeros in positions which are zero in A. It is well known (George
and Liu [1981a], Rose [1972]) that a judicious permutation of the rows and columns
of A may dramatically reduce the amount of fill-in suffered by A. Thus, we might
consider solving the equivalent system

(1.2) (PAP)Px Pb,

where P is a permutation matrix chosen to achieve some combination of the following
objectives"

i) To reduce the amount of fill-in suffered during the factorization step.
ii) To reduce the" number of arithmetic operations required during the factoriz-

ation and solution steps.
iii) To permute the matrix A into a form which enables the efficient use of auxiliary

storage.

* Received by the editors November 30, 1983. Research supported in part by Canadian Natural Sciences
and Engineering Council grant A8111.

Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

882

AUXILIARY STORAGE METHODS FOR FINITE ELEMENT SYSTEMS 883

When the matrix A is so large that its Cholesky factor cannot be stored entirely
in the main memory of the computer, external storage is used to extend the main
memory so that such large problems can be solved.

A nested dissection ordering (George [1977]) is effective in reducing fill-in and
arithmetic computation in solving sparse positive definite linear systems arising in
finite element and finite difference problems. Such nested dissection orderings are not
commonly employed in conjunction with auxiliary storage despite their desirable low
fill-in and low arithmetic operation counts. The main reason for this seems to be that
the Cholesky factors corresponding to these orderings tend to have their nonzeros
scattered, and therefore require complicated data structures and do not seem to be
appropriate in connection with the use of auxiliary storage (Tinney [1969], Reid [1974]).

Our approach is based on partitioning the given system into subsystems, each of
which is sufficiently small that it can be processed (factored) in a relatively small
amount of main memory. The partitioning we use in this paper is provided by an
incomplete nested dissection, which is a minor modification of the standard nested
dissection ordering. In this paper we consider the analysis and implementation of
methods which utilize such a partitioning, without compromising the low operations
count of nested dissection orderings. For a model grid problem, we show that the
arithmetic computations dominate the input/output (I/O) traffic.

An outline of the paper is as follows. In 2 we review nested dissection and
incomplete nested dissection orderings and partitionings for a model n by n grid
problem. In 3 we describe a method which uses nested dissection partitioning to
solve large sparse linear systems. A detailed analysis of the I/O traffic generated by
this method is given in 4, and the results show that the numerical computations
dominate the I/O traffic for the model n by n grid problem. In 5 we consider an
important enhancement over the scheme of 3. This method achieves a low amount
of I/O traffic, which is dominated by that required to write out the Cholesky factor
alone, and hence it seems to be a near-optimal method. Numerical experiments are
provided in 6, and further extensions are considered in 7.

2. A review of nested dissection orderings and partitionings. Following George
[1977], let V be the set of vertices of the n by n mesh, where for convenience we
assume n 2k- 1 for some integer k. Let So S be the set of vertices on the vertical
mesh line which divides the mesh into two equal parts R and R2, where V-So
R U R12 R1. Numbering the vertices in R followed by those in R21, followed finally
by those in So, induces the block structure in the associated matrix A as shown in
(2.1). Here we assume there is a one variable Xr associated with each vertex of the
mesh, and ars # 0 if variable r and variable s are associated with vertices of the same
small square in the mesh. For more details, see George [1977].

(A011 0 A13
(2.1) A A22 A23/.

\AI Af3 A33]

The Cholesky factor of A is given by

Rll 0 R13)(2.2) R R22 R23
R33

where A1 RR1,, A2 rr, R,3 R-(ITA13, R23- Rf2TA23, and R3R33-" fl33"-

884 ALAN GEORGE AND HAMZA RASHWAN

A33 T -1 T -1-A13A11A13-A23A22A23. Note that the blocks All and A22 are independent; that
is, the factorization of AI has no effect on that of A22, and vice versa.

Now choose vertex sets S c R,j 1, 2, consisting of vertices lying on the horizon-
tal mesh line that divides R into two equal parts. If we number the variables associated
with the vertices in R-S before those associated with S, j 1, 2, and then the
remaining vertices as before, we induce the structure shown in (2.3).

11 A15
A22

A33 A36
(2.3) A A44 A46

A5 A2 A55
a3 a4 A66

\AI a2 a7 a4 a a7

317\
A27\
A37
A47].
A57!
A67/
A/

We may continue this process until no further dissection can be accomplished,
obtaining a nested dissection ordering with the associated vertex partitioning S, where
j 1, 2, , 2i, 0, 1, ,21, k- 1 and S1/2 Rt. A detailed analysis of the fill-in
and operation counts of this nested dissection approach may be found in George and
Liu [1981a]. We state the main result in the following theorem.

THEOREM 2.1. The number of nonzeros in the Cholesky factor R associated with a
regular n by n grid which is ordered by the nested dissection algorithm is given by
n2 log2 n + O(n2), and the number ofarithmetic operations required during thefactoriz-
ation is given by -49r13- O(/2 log2 n).

These bounds were proven optimal in the asymptotic sense; that is, the order of
magnitude in these bounds cannot be reduced (George and Liu [1981a], Hoffman et
al. [1973]).

An incomplete nested dissection ordering and partitioning is obtained when
1< k-1. An example with k =4 and l-2 is given in Fig. 2.1.

In the following we do not distinguish between vertices of the grid and variables
in the associated linear system, since there is a 1-1 correspondence between them.
Thus, the set (block) S refers to a set of variables which are eliminated together, and
i> i implies that variables in S are eliminated before those in S. Sets S having the
same subscript will be said to be "at the same level i," and we make no assumptions
about the order in which sets at the same level are eliminated.

Blocks for which 21 will be called "last-level blocks," and those for which
< 21 will be called "separator blocks", for obvious reasons. The ordering ofthe vertices

in the last-level blocks is unspecified, and we assume that they are ordered as though
the dissection has been completed, i.e., by nested dissection. It should also be clear
that both last-level blocks and separator blocks can be classified into corner, side, and
interior blocks in a natural way. For example, in Fig. 2.1 there are 4 last-level corner
blocks, 8 last-level side blocks, and 4 last-level interior blocks. There are no interior
separator blocks because is too small. Fig. 2.2 shows the structure of the block
columns of the Cholesky factor for different types of blocks. For more details, see
(George, Poole and Voigt [1978]).

A rooted separator tree is naturally associated with a nested dissection partitioning
as follows" the internal nodes of the tree are the separators, and a node sk+ has the

Here, we consider the standard Cholesky algorithm. However, if the method of Strassen [1969] is

used, we may achieve an O(nlg7) operation count (Rose and Whitten [1976]).

AUXILIARY STORAGE METHODS FOR FINITE ELEMENT SYSTEMS 885

FIG. 2.1. An incomplete nested dissection partitioning ofan n by n grid, where 2, n 2 1, and k 4.

FIG. 2.2. The block structure of the Cholesky factor corresponding to different types of blocks.

node S as its father if and only if Rk+ c__ R. The tree is rooted at So, and its leaves
are the last-level blocks (Gilbert [1980]).

3. Factorization of partitioned matrices using auxiliary storage. In this section, we
present an algorithm which uses sequential access auxiliary storage files for the solution
of the linear system of equations Ax b, where A is an N by N, sparse, symmetric
and positive definite matrix. Most of our discussion will be centered around the
factorization step, since this is usually the most expensive and time consuming part
of the overall solution process.

886 ALAN GEORGE AND HAMZA RASHWAN

Some of the basic observations about the factorization of partitioned sparse
matrices are best illustrated using the following simple example. Consider a block 2
by 2 matrix

(3.1) A- Vr
where B and C are r by r and s by s respectively, and r + s N. The Cholesky factor,
correspondingly partitioned, is given by

(3.2) R=(Rn W)0 Rc
where R and Rc are the Cholesky factors of B and C respectively, with
C - VTB-lV and W RT V.2 The submatrix C (- VT"B-IV - WTW is
often referred to as the Schur complement of B in A. Note that the submatrices R, W
and WT"W can be computed in the absence of (or parts thereof). This is the
fundamental observation upon which the frontal method (Irons 1970]) and the general-
ized element method (Speelpenning [1978]) are based. In the context of sparse matrices,
the submatrix V usually has only a few nonnull columns (say/z), hence the effective
size of ((i.e., the actual size of the change WTW) will be only

We now describe how these basic observations are exploited by our method. Let
A be a p by p partitioned matrix, with submatrices (blocks) A0, 1_<-i,j<-p. This
partitioning induces an ordered partition I on the set X of vertices of the corresponding
graph G GA (X, E), namely,

where t_J f= Y X and Y f’l Y for # j, and Y is the set of vertices corresponding
to the rows and columns of A,. The factorization of A is carried out block by block,
and we use Ak to denote the part of the matrix remaining to be factored after the
variable sets Y, Y2, "’’, Yk-1 have been eliminated, where A A. The submatrices
of Ak are as shown in (3.3).

A(kk.k --(k) A(k)

A(k)

symmetric .ik) /

At step k, when variables Yk are to be eliminated, we denote by 0 Yk the set of
columns of Ak which are not in Yk, but have nonzeros in rows corresponding to Yk.
This set 0 Yk, usually referred to as the boundary of Yk, has a simple graph theoretical
interpretation: the set 0 Yk is the set of ,ertices adjacent to the set Yk in the graph GAk.
This notation is illustrated in Fig. 3.1. For example, cgY ={8, 10, 11, 12}, since a2.8,
a3,10 a5,12 and a6,11 are nonzero in A A. The set 0Y2- {11, 12}, because a8,1 and

a8. become nonzeros in A2; that is, after the elimination of the variable set Y.
Now consider the 3 by 3 example in Fig. 3.2, which is intended to illustrate in

general how the computation proceeds. We assume that initially the rows of A are
stored on a sequential access file, which will be usually called the input file. At the
first step, rows corresponding to Y and 0 Y1 are read from the input file, yielding a

Note that we usually do not compute inverses" instead we solve the appropriate linear system. For
example to compute D B-IV, we solve BD V.

AUXILIARY STORAGE METHODS FOR FINITE ELEMENT SYSTEMS 887

0

FIG. 3.1. Example of a partitioned matrix.

AI=

FIG. 3.2. Block factorization of a 3 by 3 partitioned matrix.

matrix A, which is a "cornpressed form" of A (= A):

(3.4) A= 1r

The first YI variables are then eliminated, yielding the first YI rows of R which
can be output on an R-file". Note that the last 10 YI columns of R are compressed

ct(1) () We also assume that in thein the same manner as A is with respect to
process of reading the data from the input file in order to create the compressed form
of A shown in (3.4), that the rows in the matrix

() (])
(3.5)

k23 33

which correspond to O Y] are modified_ to reflect the fact that pa of its rows and
columns have been placed in A]. We denote this new matrix by A. The method of
managing files to be described later shows that this is easy to accomplish.

__T(1)-’ having [OY[rows and columns, must beThe matrix =A ,
"expanded" and added into A, producing A: so that the next major step of the
factorization involving the elimination of the variables Ya can proceed. In practice we

888 ALAN GEORGE AND HAMZA RASHWAN

defer incorporating these modifications until the block to be modified is about to be
factored. The matrix ,11 is written onto the end of the file containing 1, as indicated
in Fig. 3.2. The second and third steps of the factorization are carried out in a similar
fashion as depicted in Fig. 3.2.

In general, for a partitioning /with]1-/]- p, we will have p major steps similar
to those depicted in Fig. 3.2, and will have to process a sequence of progressively
smaller matrices A1, A2, Ap. Four sequential access files are used, and their names
and functions are now described.

1. R-file" accepts the rows of R as they are computed.
2. A-file" at the beginning of the kth major step of the computation, this file

contains the rows of the matrix Ak in arbitrary order. This file will
occasionally be referenced as the input file.

3. A’-file" during the kth step of the computation, this file contains the matrix

A.
4. A-file: at the beginning of the kth step, this file is empty. The A-file is

read, A, is written on the A’-file, and k is written on the/-file.
After the computation of Rkk is done, the rows of Akk are written
on this file, and it then becomes the A-file in preparation for the
next major ste,p of the factorization.

The reader is reminded that Akk and k are not explicitly combined (or assembled)
until such time as the rows they share appear in some A’r, with r > k. This fact must
be accounted for in determining the I/O traffic generated during each major step of
the factorization algorithm.

With the roles of the files in mind, we now give a step by step description of the
factorization algorithm.

ALGORITHM 3.1.
For k=l,2,...,pdo
1. Rewind the A-file, A’-file, and the A-file. Read the rows of Ak from the A-file

one by one and for each do the following:
1.1 If the row is in Yk, write it on the A’-file.
1.2 If the row is in 0 Yk, write its elements that are in Yk 0 Yk as a row on the

A’-file, and write the remaining elements as a row on the ,-file.
1.3 If the row is not in Yk (-J 0 Yk, write it on the A-file.

2. Using the A’-file as input, eliminate the variables in Yk. Then write the rows
of Rkk on the R-file, and those of Akk on the A-file.

3. Reverse the names of the A-file and the A-file.

If the above algorithm is executed successfully, we terminate with the rows of the
Cholesky factor R stored on the R-file, and they may be used in the forward and
backward substitution steps to obtain the solution vector x.

The above algorithm is similar to that described in George et al. [1981b] in
connection with solving large sparse linear least squares problems. Note that our
algorithm may be viewed as a particular implementation of the generalized element
method of Speelpenning [1978], where the elimination of variables is carried out one
block at a time, instead of one variable at a time. Moreover, the auxiliary storage files
are assumed to allow only sequential access. The use of sequential access is preferable
to random access, since the facilities for random access in programming languages are
usually machine dependent. Also note that no particular partitioning is assumed. This
algorithm may very well be used in conjunction with any good partitioning, provided

AUXILIARY STORAGE METHODS FOR FINITE ELEMENT SYSTEMS 889

that the partitioning is sufficiently fine that each block fits in the available amount of
main memory. In the following section we consider one such partitioning which is
provided by incomplete nested dissection. Note that the I/O traffic generated in step
1 of Algorithm 3.1 is relatively large, since in each factorization step we read the whole
input file.

4. Analysis of the I/O traffic.
4.1. Preliminaries. In this section we give a detailed analysis of the amount of

data that must be transferred between main memory and auxiliary storage when
Algorithm 3.1 is applied to a linear system of equations associated with the model n
by n grid problem. We assume that the mesh vertices (and the related matrix) are

partitioned using an incomplete nested dissection partitioning. The coefficient matrix
A is n2 by n2 and has approximately 9n2 nonzeros. However, since A is symmetric,
we need only store its diagonal and upper triangular part, yielding about 5n nonzero
elements. In what follows we assume that the rows of the upper triangular part of A
(including the diagonal) are stored in arbitrary order on a sequential access file, and
that for some integer l, a 2/-level incomplete nested dissection partitioning and ordering
is provided, as described in 2. A simplified version of the analysis given here may
be found in George and Rashwan [1982].

The following assumptions are made:
i) The access to the files on auxiliary storage is sequential. This implies that for

each partition member processed, we have to read the whole input file, picking up
those rows which play a role in the current elimination step.

ii) The elimination process is carried out one block at a time irrespective of the
block size. This will have the obvious etiect of increasing the I/O traffic compared to
what might result from eliminating more than one of the smaller blocks at a time
(recall that in the nested dissection partitioning of 2, the size of the separators varies
widely across the levels). More important is the implication that we must have enough
main memory to carry out the elimination of the largest block (this is the block
corresponding to a separator at level one, as can be easily verified by the reader).
Thus, we require O(n2) main memory, i.e., an amount of main memory proportional
to the number of variables in the problem.

iii) The I/O traffic will .be measured by the number of nonzeros transferred
between main memory and auxiliary storage.

iv) Block elimination is carried out in a level-by-level fashion. Blocks at level 21
(last-level blocks) are eliminated first, followed by blocks at level 21-1,..-, and
finally block So (the top-level separator block) is eliminated. This is just one possible
order for block elimination among others which are equivalent as far as storage
requirements and operation counts are concerned.

It should be clear from the description of Algorithm 3.1 that one of the crucial
factors in determining the I/O traffic caused by the elimination of Yk will be the size
of the set 0 Yk. In order to see how this is done, consider Fig. 4.1, which is intended
to denote part of the n by n grid.

A full explanation would take us too far afield here, but given Yk, the set 0 Yk is
precisely the set of vertices which can be reached from a vertex in Yk via paths in the
mesh having vertices numbered less than any of those in Yk. Thus, in Fig. 4.1,
0 Yc Z t_J Zb because one can reach vertices in Z or Zb via paths in Y or Yb. For
a complete explanation of this "recipe," see George and Liu [1981a]. The matrices
and the I/O traffic generated by the elimination of the vertex sets Y, Yb and Y are
depicted in Fig. 4.2.

890 ALAN GEORGE AND HAMZA RASHWAN

Zb

c)’o: YcUZo aye: ’uz Y: zouze
FIG. 4.1. A subgrid showing the "boundaries" of several sets to be eliminated.

written on the written on the

fth,,e,o " file after the
elimination of Yb

(a) (b)
Elimination of Yo E liminotion of Yb

y,: written on the
,-file after the
elimination of Yc

(c) (d)
Structure of the matrix retrieved from Fliminotion of Yc.
the A-file in preparation for the
elimination of Yc.

FIG. 4.2. Elimination of vertex sets Ya, Yb and Y of Fig. 4.1.

Note that the elimination of Yc may proceed even if the rows corresponding to
c Yc Za LJ Zb are not retrieved from the input file as shown in Fig. 4.3(a), since the
rows corresponding to Y alone need be fully assembled.

It may be seen that the elimination of a block Y in the way shown in Fig. 4.2(c)
allows for the immediate assembly of the modification submatrix (Schur complement)
resulting from the current elimination step with corresponding submatrices resulting
from previous elimination steps. On the other hand, the elimination of Y in the absence

AUXILIARY STORAGE METHODS FOR FINITE ELEMENT SYSTEMS 891

to ,q- file

to ,- lie

Data retrieved from the input Data written back to the ,q’-file

file prior 1o the elimination and the ,-file after the
of Yc" elimination of Yc"

FIG. 4.3. An alternati2e way to eliminate Yc.

of rows corresponding to 0 Yc will eventually result in an input file having the three
full submatrices corresponding to Za, Zb, and a Yc stored separately. Thus, using the
approach outlined in Fig. 4.2 seems to be advantageous in reducing the size of the
input file, and consequently the I/O traffic. It is also interesting to note that the analysis
of the I/O traffic becomes much harder and less transparent in the other case, since
we have to remember not only the results of eliminations in the proceeding level, but
also those resulting from all previous levels.

Also observe that the input file is regenerated at each level. This may be seen as
follows. Consider the elimination of blocks at level j. As each block is eliminated, the
related Schur complements from eliminations at level j 4-1 are deleted from the input
file, and subsequently replaced by a new Schur complement. Thus, when all level j
blocks have been eliminated, the input file will consist entirely of new Schur comple-
ments which have been generated at level j. Note that this observation is not true
unless we use the approach indicated in Fig. 4.2.

The above observation is useful in estimating the size of the input file at each
level. From now on we will assume that when a block Yc is to be eliminated, the rows
corresponding to a Y are retrieved from the input file in addition to those corresponding
to Y.

In order to establish our results about the I/O traffic, we need to estimate the size
of the input file as the block elimination proceeds. To this end we study the changes
in the size of the input file due to the elimination of different types of blocks.

It is helpful to have some notation for certain quantities which are used throughout
this section.

Finthe size of the input file (= number of nonzero elements) before eliminating
any block at level i.

Vnthe volume of traffic generated due to the elimination of all blocks at level i.

Kithe change in the size of the input file (i.e., the A-file) resulting from the
elimination of a block at level i.

/3--the size (i.e., number of vertices) of the separator block at level i.

r/the number of blocks at level i.
It is well known that the blocks in the Cholesky factor corresponding to separators

are full (George [1977]). In this connection we note that the number of nonzeros in

892 ALAN GEORGE AND HAMZA RASHWAN

the upper triangular part of a full symmetric submatrix (i.e., a clique) of size d is given
by 7(d)=1/2d(d / 1).

In Lemma 4.1 we give an estimate of the change in the input file size due to the
elimination of a separator block.

LEMMA 4.1. The elimination of a separator block Y of size h, which is bordered by
boundary segments of size hi, and A2 (as shown in Fig. 4.4(a)) will cause the input file
to change in size by K (A, A 1, /2, d 3/(A + A 1) ’(/ / /2) / "(d), where d

Proof. Recall that two full Schur complement matrices corresponding to YU Z1
and YU Z2 have already been created and stored in the input file before block Y is
about to be eliminated. The elimination of Y is preceded by retrieving and deleting
these two submatrices in Fig. 4.4(b) from the A-file. After the elimination of Y, the
full submatrix in Fig. 4.4(c) is appended to the end of the A-file. Hence the input file
shrinks by 3,(A + A) + 3,(A + A2), and grows by 7(d), where A =lrl, A1 [ZI,
and d -l0 Y[. This establishes our result.

Note that d # A / A2, even though 0 Y Z U Z, because the sets Z1 and Z are
not disjoint. The points denoted by in Fig. 4.4(a) are common to Z1 and Z2. These
are the points of intersection of Y and 0 Y. The result of Lemma 4.1 is useful, since it
depends only on the size of block Y and the sizes of the associated boundary segments.

For a 2/-level incomplete nested dissection partitioning, we have 2 x 221-1 blocks,
22 of which are last-level blocks, and 2l- 1 are separator blocks. The following

Block Yond associated boundary a Y:ZIu Zz-

(b) (c)
Data which is retrieved and deleted Elimination of Y is followed by
from the A-file before the writing a ’Schur cornjlement’
elimination of Y. submatrix into the A-file.

FIG. 4.4. Data transfer between main memory and auxiliary storage due to the elimination of Y.

AUXILIARY STORAGE METHODS FOR FINITE ELEMENT SYSTEMS 893

observations about the blocks at different levels can be easily established"
a) The last-level blocks (those at level 2/) are of size a by a, where a=

(n+ 1)/2-1, and there are 221 such blocks. These blocks are classified into corner,
side, and interior blocks. There are 4 corner blocks, 4(2!- 2) side blocks, and (2- 2)2

interior blocks.
b) The separator blocks at level 2i+1, i=1, 2, ..., l-l, are of size

/32i/1 (n + 1)/2i/1 1. These blocks are classified into corner, side, and interior blocks.
The side blocks are further classified into two types denoted by S and $2, respectively.

TABLE 4.1
Basic characteristics of different types of blocks.

TTTTTI

d= qo+4 d= o+2 d=2o+l

:(2L2) :4(2L2) 4

Ineio block Side block one block

Last level blocks of a size cz by a.

X=Xz=3Bzi++4 X=3BZi++ k=kz= 2Bzi++2
XZ= 2Zi+l+ 2

d=6Zi+ +6 d= 5Zi+l + d= Zi+l +3

2(2;-2)(2LI) =4(2i-I) 2(2i-2)
Interior block Side block (S Side block (S2)

Separator blocks at level 2i +1.

L_ L

X =/2i +1

hi =22i+1 +2
)12= 2i+1 +1
d= 3/zi+ + 2

Corner block

Separator blocks at level

3
hz=Bzi+l kz= BZi+

d= 4z +4 d= 3zi+ 2 d= 3Zi+2 d= 2z +1

(2’-)z = 2(2i-2) =2(2i-2) q= 4
Interior block Side block (S) Side block (5z) Corner block

894 ALAN GEORGE AND HAMZA RASHWAN

c) The separator blocks at level 2i, 1, 2, , 1 are of size fl2i (n + 1)/2 1.
These blocks are classified in the same way as those at level 2i / 1.

The relevant features of the different types of blocks are summarized in Table 4.1,
where solid lines are used to represent separators and broken lines are used to represent
the associated boundary. Here, and elsewhere, we use the letter C to denote corner
blocks, the letters $1 and $2 to denote the two kinds of side blocks, and finally I to
denote interior blocks. Note that the separators at levels 0 and 1 do not follow the
above classification, hence they are treated separately.

4.2. The I/O traffic. In this section we give a detailed analysis of the I/O traffic
generated during the execution of Algorithm 3.1. The size of the input file plays an
important role in deriving a bound on the I/O traffic. To this end, we give an estimate
of the size of the input file before eliminating blocks at any level.

LEMMA 4.2. The size of the input file before eliminating separator blocks at levels
2i + 1 and 2i is given by

(4.1) Fzi+l --8n2-7n22-i/ n22-2i + 4n2i+ O(n), i=l-l,l-2,. .,0,

and

(4.2) FEi =9n2 21 2n22_:, 2--- n22-’ + + 3 n + O(n), i=l-l,l-2,...,1.

Proof Recall that the input file at level 2i consists entirely of those Schur comple-
ments resulting from the elimination at level 2i + 1. Hence, F2 is given by

C C S S S SFEi /2,+lv(d 1) + ,2,+ly(d2,+l)+ /_,+,),(d2,+1)+ ,+ T(d,+I)2i+ T

Here, y(d)=1/2d(d+l). Simplifying this using the symbolic computation system
MAPLE (Geddes et al. [1982]) as an aid, we obtain (4.2). The estimate for F2+1 is
obtained in a similar fashion. [3

The expression for Fo is obtained separately, and is given by Fo 2y(n) =/12 //1.

Before proceeding further, it is interesting to note that the above result suggests
that the size of the input file is O(/12) at all levels. This means that the total auxiliary
storage required by our algorithm is dominated by that required to store the Cholesky
factor R, which is O(n2 log n).

In the following we count only the number of nonzeros which are read during
the execution of step 1 of Algorithm 3.1. Recall that this was the largest portion of
the input traffic. Results similar to the ones given here may be similarly established
for the output traffic.

The input traffic generated at any level is given by assuming the current sizes of
the input files before the elimination of each block in the level under consideration.
It should be obvious that the order of block elimination at each level will have some
effect on the volume of the I/O traffic generated. It can be easily verified that the
volume of the I/O traffic may be reduced if we eliminate corner blocks first, followed
by $2 side blocks, followed by S1 side blocks, followed finally by interior blocks. An
account of the input traffic generated during the elimination of separator blocks is
given by Lemma 4.3.

AUXILIARY STORAGE METHODS FOR FINITE ELEMENT SYSTEMS 895

LEMMA 4.3. The input traffic generated from the elimination of separator blocks at
levels 2i + 1 and 2i is given by

V2i+l 17n22i- 21n22 + 13nE-tn22- +nE2--n23(4.3)
/ O(n22’),

V2, n222’- 14n22’ + 11 n2-tnE2-’ + 7n22-2’ +n23’(4.4)
/ O(n22i), l- 1, l- 2, ", 1.

Proof. Let F2.x be the size of the input file at level 2i before eliminating any block
of type X, where X C, $2, S, or I. Carrying the elimination in the order indicated
earlier, we have F2i c F2i, F2i s2 F2i c c s2T2i Kc, F2i,s F2i,s2 2i Ks2 and finally FEi,sFE,S- 2iKs, where r is given by Lemma 4.2. The input traffic is then given by the
following summation:

V2, ’. E F,.x + (j 1 rx).
X C,S2,SI,I

The expression for V2i+l is obtained in the-same manner. [3

V0 and V are computed separately, and are given by V0 n 2 + n, and V (n + n).
Lemma 4.3 has the following simple and intuitive interpretation. The input traffic

generated at any level is roughly proportional to the product of the number of blocks
in that level and the average size of the input file in the same level. It may also be
seen that Vz+ > V2i, i= 1-1,..., 1. In particular, note that the leading term in the
I/O traffic is halved as we move from one level to the next level down in the elimination
process. This is mainly because the number of blocks is also halved as we move down
the levels. This implies that most of the I/O traffic is generated during the elimination
ofthe small separators. Hence, a substantial reduction in the I/O traffic may be achieved
by combining more than one of the small separators together, and effecting their
elimination as one block.

The input traffic due to the elimination of all separator blocks is given by adding
up the contributions from all levels, and is given by

(4.5)
Vsep n222/-- 35n22t +n2+ 41 n22-t + 24n21

19 23!-n22-2t+n + O(n22t).
Now, we turn our attention to the elimination of last-level blocks. Let g(tl, t2)--

53132-3(c1 / 32)/ 2 be the number of nonzeros in the upper triangular part (including
the diagonal) of the symmetric matrix corresponding to an 31 by a2 grid. Using this
fact, we can derive results similar to those established for the separator blocks.

LEMMA 4.4. The change in the size of the input file due to the elimination of a
last-level block of size a by 012, whose boundary is 0 Y, is given by

(4.6) r(a, t2, d)= -g(c, c2)+ y(d),

where d IO YI.
LEMMA 4.5. The input traffic generated during the elimination ofall last-level blocks

is given by

(4.7) V n222t- 14n22 +n2-49n22- + 46n22-2t

n23!+ O(n22t+24).
The total input traffic generated during the factorization process may be obtained

by adding V2i and Vsep. The result is stated as the following theorem.

896 ALAN GEORGE AND HAMZA RASHWAN

THEOREM 4.6. The total input traffic generated during thefactorization ofthe matrix
associated with an n by n grid which is partitioned by a 21-level incomplete nested dissection
partitioning is given by

Vtot 15n2221 49n22 + 24n1+n 8n-2-t + n:2-21

(4.8) +4n2, + 0(n22l + 24,)
It may be seen that the total input traffic is roughly divided between the last-level

blocks and the separator blocks, which might be expected, since the blocks are roughly
divided among the last-level and the rest of the levels. Observe that the total input
traffic is 0(n2221) O(n2p), where p- [ll[is the number of partition members.

It is evident from equation (4.8) that using a partitioning which is finer than
necessary will increase the I/O traffic substantially. Consider the case of complete
nested dissection, where/=log (n+ 1)-1. We can see that the I/O is O(n4), which is
an order of magnitude higher than the O(n3) arithmetic operations. Hence, it is
imperative to have (or equivalently p) as small as possible, consistent with the
available amount of main memory. We will shortly see that using O(n2) main memory
allows us to achieve an O(n2 log n) bound on the I/O traffic.

The I/O traffic generated during the execution of Algorithm 3.1 consists of the
following components"

a) I/O generated during step 1, which may be considered as a block identification
step, where the data belonging to a single block is retrieved from the input file and
stored separately on the A’-file in preparation for the factorization. The output traffic
generated during this step is equal to the input traffic we have been studying so far,
and is thus O(n222t).

b) I/O generated during the execution of step 2, that is the elimination step. In
this step, the A’-file is read twice, once to carry out the ordering, and a second time
to carry out the actual numerical factorization of the block. It can be shown that the
total I/O generated during the execution of this step is O(n21), in addition to that
required to write out the Cholesky factor, which is O(n2 log n).

From the above discussion, we may conclude that Vtot as given by (4.8) is in fact
a reasonable indication of the total I/O overhead of our algorithm (aside from the
I/O associated with storing the Cholesky factor R). Also note that even though the
expression for Vtot has a significant negative lower order term, the contributions from
this and other low order terms diminish as increases. Hence, it seems reasonable to
consider only the asymptotic behavior when we "theoretically" compare this algorithm
against others. In a practical setting, however, such a comparison should be based on
the results of an actual computer implementation.

We now show that the total I/O traffic generated is O(n2 log n), provided that
the main memory available is O(n2). The storage required to factor a separator block

c)Y Y - YI + laYl-"

full

FIG. 4.5. Elimination of a separator block at level one.

AUXILIARY STORAGE METHODS FOR FINITE ELEMENT SYSTEMS 897

of size (n-1)/2 at level 1 is given by),((3n-1)/2)n2, as shown in Fig. 4.5. Note
that no other separator block requires more storage to process.

An estimate of (which measures the fineness of the partitioning), under the
O(n2) main memory assumption is given below.

LEMMA 4.7. A last-level block of a 21-level incomplete nested dissection partitioning
of the n by n grid may be eliminated in n- main memory, provided that l>=
1/2 log log n + O(1).

Proof. Using the approach of George and Liu [1981a], it can be shown that the
number of nonzeros in the Cholesky factor of the matrix associated with a bordered
grid of size a by a is given by a: log a-4a2+ O(a log c), where the grid vertices
are ordered using nested dissection. Hence, to factor a last-level block in main memory,
the following inequality must be satisfied.

(4.9) 31 2 2
4 o log a 4a + O(a log a) _-< n2.

We are interested in finding the largest a (or equivalently, the smallest 1), which
satisfies (4.9). Using a- n/2 and ignoring lower order terms in (4.9), we obtain the
following inequality"

221 _->- log n; hence, l_-> 1/2 log log n + O(1).

FIG. 4.6. A bordered grid of size a by a.

It follows immediately that the total input traffic is roughly given by Cn2 log n,
where C 3___0, which is of the same order as that required to write out the Cholesky
factor, namely n2 log n + O(n2), but with a much larger constant.

5. An "optimal" method for file management.
5.1. Introductory remarks. In this section we consider two simple, but ettective

enhancements for file management. Recall that Algorithm 3.1 was not specifically
designed for a nested dissection partitioning, since it can handle any partitioning.
Thus, a substantial reduction in the I/O traffic can be achieved by exploiting certain
features of a nested dissection partitioning.

Consider the elimination of the blocks in a level-by-level fashion. When a block
at level is eliminated, the resulting Schur complement submatrix plays no role in
subsequent eliminations in the ith level. Thus, writing this Schur complement into the
input file, as done by Algorithm 3.1, results in the unnecessary transfer of such a
submatrix between main memory and auxiliary storage during subsequent eliminations
in the ith level. Hence, using a separate file, which we call the S-file, to store the Schur
complements may considerably reduce the I/O traffic. At the end of eliminations in
the current level the input file is empty and the S-file will contain all the data required
for the elimination of blocks in the next level.

Our second enhancement is motivated by the following discussion. Recall that
the largest fraction of the I/O traffic of Algorithm 3.1, apart from writing the Cholesky
factor R, was generated during the block identification step. This involves reading the

898 ALAN GEORGE AND HAMZA RASHWAN

whole input file to identify one block before its elimination. This raises the following
question" can we identify the elimination block without reading the whole input file?
To answer this question, we look at the reasons behind reading the whole input file
in the first place. Apparently, there are two reasons:

1. The rows of the input file were assumed to be stored in arbitrary order. This
assumption was necessary because the given matrix is usually re-ordered before elimina-
tion (to reduce fill-in and arithmetic operations), and the structure of the re-ordered
matrix hardly resembles that of the original one. Thus, the matrix elements were used
in an order different from their order of storage.

2. The order of block elimination in each level was also assumed arbitrary, since
all orderings are known to be equivalent in the sense that they produce the same fill-in
and operations count.

In the following section, we address these problems and show that using a particular
order of block elimination in each level, coupled with a corresponding re-organization
of the data in the input file allows us to achieve our goal of eliminating the reading
of the whole input file before the elimination of each block.

5.2. The new algorithm and its I/O traffic. Consider the four-level incomplete
nested dissection partitioning of the n by n grid, and the associated separator tree of

25

3 9 II

4 I0

C 22

5 7

.) 31 C 30

-28 (24

14 16

level

0

FIG. 5.1. A 4-level incomplete nested dissection partitioning of the n by n grid and the associated
separator tree.

AUXILIARY STORAGE METHODS FOR FINITE ELEMENT SYSTEMS 899

Fig. 5.1. Note that in a nested dissection partitioning, a node of the tree is labeled
before its father. The labeling shown in Fig. 5.1 is obtained using breadth-first search
starting at the root of the tree, and then reversing the node labels. This produces a
so-called breadth-first nested dissection partitioning (Sherman [1975]). This is a special
case of the level-by-level labeling of the tree.

We now show how to make use of this particular labeling scheme in the elimination
process. Let f Y1, Y2, , Y31) be the ordered partition corresponding to the above
mentioned tree. Suppose the rows of the input file are sorted so that rows belonging
to Y LJ a Y appear before those belonging to Y/I (-J a Y/I, 1, 2, , 15. We will
refer to the set of rows belonging to one set Y U a Y as "segment i." Fig. 5.2 shows
the input file with the reading head positioned at the beginning of segment + 1.

segment i-1 segment segment +1

eoding heod

FIG. 5.2. The input file with the reading head positioned after the elimination of the ith last-level block.

The elimination of the ith last-level block leaves the reading head of the input
file positioned at the beginning of the (i+ 1)st segment. Hence, when we are about to
eliminate the (i+ 1)st block, we find that the reading head of the input file is in the
correct position, and we may proceed to read the (i + 1)st segment without the need
for doing any search. The same argument applies to all last-level blocks. For this
conclusion to be valid, we must use a separate file to store the resulting Schur
complements. Fig. 5.3 shows this separate file (S-file), with its reading head in the
initial position.

l, 2,2 5,zsI 6,6/

reoding heod in its initi01 position

FIG. 5.3. The S-file before starting elimination in the third leveL

When all last-level blocks have been eliminated, the S-file becomes the input file
for the third level. The elimination of blocks in this level may proceed as before, with
one basic difference, namely, two consecutive segments rather than one must read to
effect the elimination of each block. The eliminations in all other levels are similar.

The preceding discussion suggests that Algorithm 3.1 should be modified to accept
a breadth-first nested dissection partitioning. To simplify our presentation, we assume
that the input file has been already sorted and that a breadth-first nested dissection
partitioning is provided. These issues and the extension to irregular grids will be
considered in some detail in the following section. Four sequential files are required,

That is, no additional search apart from the initial sorting of the input file, which we have ignored
so far.

900 ALAN GEORGE AND HAMZA RASHWAN

and they are described below.
1. R-file: accepts the rows of R as they are computed.
2. A’-file: at the kth elimination step this file contains the rows of A,, which

is the current elimination block.
3. S-file: this is a separate file to store the Schur complements. At the

beginning of elimination in each level, this file is empty. It receives
the rows of the Schur submatrices resulting from the current level.
The roles played by this file and the A-file are interchanged after
processing each level.

4. A-file" at the beginning ofthe kth step ofthe computation, this file contains
the rows corresponding to the remaining blocks in the current level.
These rows are already distributed into sorted segments according
to the order of block elimination. To effect the elimination of a
block, one (or two) segments are copied from this file into the
A’-file. This file becomes empty when a whole level is eliminated.

ALGORITHM 5.1.
1. kstop O.
2. For each level i, i=21, 21-1,...,0 do

2.1 Rewind the A-file, and the S-file.
Set kstart kstop + 1, and kstop kstart + 2i- 1.

2.2 For k kstart, kstart + 1,. ., kstop do
2.2.1 Rewind the A’-file.
2.2.2 If 21 then number-of-segments 1

else number-of-segments 2.
2.2.3 Copy number-of-segments consecutive segments from the A-file into

the A’-file.
2.2.4 Using the A’-file as an input file, eliminate the variables in Yk. Then

write the rows of Rkk on the R-file, and those of Akk on the S-file.
2.3 Reverse the names of the A-file and the S-file.

The main difference between this algorithm and Algorithm 3.1 is that the block
identification step is now trivial. The data in the input file are organized so that when
a block is about to be eliminated, the read/write head is in the correct position to
allow us to copy the segment(s) corresponding to the elimination block directly from
the A-file to the A’-file.

The estimation of the I/O traffic generated when Algorithm 5.1 is applied to our
model n by n grid problem is straightforward. Once again, we only consider the input
traffic generated during the block identification step (step 2.2.3). The I/O traffic
generated during the other steps may be found in a similar fashion (indeed, it is given
by the same expressions shown here).

The input traffic generated in each level is equal to the size of the input file before
eliminating any block in that level. Thus, using Lemma 4.2, and summing over all
levels, we obtain the following result.

THEOREM 5.1. The total input traffic generated during thefactorization of the matrix
associated with an n by n grid using Algorithm 5.1, is given by"

(5.1) Vtot 17n21-n2 + 35n22-t -4n22-2 + O(n2 + 22/).

This estimate compares quite favorably with that of 4. The leading term of Vtot
is reduced from 15 n222 to 17n21. Note that the I/O traffic is "optimal" in the sense

AUXILIARY STORAGE METHODS FOR FINITE ELEMENT SYSTEMS 901

that each block of the input file is read as few times as possible (basically, each block
is initially copied from the A-file to the A’-file, and then the A’-file is read twice, once
to provide the matrix structure, and once to provide the actual numerical values).
Furthermore, the total I/O traffic generated is dominated by that associated with storing
the Cholesky factor alone.

An alternative approach which is beneficial in further reducing the I/O traffic is
motivated by the following discussion. Our bounds were derived under the assumption
that we only eliminate one block at a time in a level-by-level fashion. This implies that
after the elimination of a block we write out the rows of the corresponding Schur
complement into the S-file. We can save these intermediate results in main memory
provided that we use a depth-first nested dissection, and only output them to auxiliary
storage when their volume exceeds the memory area allocated for that purpose. In
this way we can effectively eliminate a whole subtree without writing any data other
than the rows of the corresponding Cholesky factor and the Schur complement
corresponding to the root of the subtree. (We assume that the last-level blocks have
been eliminated in the usual manner, otherwise our memory requirement may have to
be increased.) The price paid for this reduction in the traffic is an additional overhead
resulting from a complex storage management and the shuffling of intermediate data
in main memory.

5.3. Block re-ordering and input file pre-processing.
5.3.1. Block re-ordering. In this section we describe an algorithm for re-ordering

the blocks resulting from a nested dissection partitioning of an irregular grid, so that
Algorithm 5.1 may be generalized to handle such a problem as well. Throughout this
section we assume that the reader is familiar with some basic graph theory notation,
e.g. as described in George and Liu [1981a]. The basic idea here is to shuffle the blocks
so that they correspond to a breadth-first traversal of the underlying separator tree.
To simplify our discussion, we assume that the matrix A is irreducible; thus, the
associated graph G- (X, E) is connected. The block reordering algorithm may be
considered to consist of the following three basic steps:

1) Build the quotient graph G/ (l-l, E) corresponding to the given partitioning
I’- Y1, Y2, Yp).

2) Identify (construct) the separator tree associated with ft.
3) Find a permutation i, i2, ’’’, ip of the integers 1, 2, ..., p, where p Ilql, so

that (Y,, Y2, ", Yp) corresponds to a breadth-first traversal of the tree.
In what follows, we provide three algorithms to implement the above steps. An

example illustrating the application of the algorithms is also provided. Our first step
is to form the adjacency structure of the quotient graph G/I-I- (gl, E) from that of
G (X, E) as follows.

ALGORITHM 5.2.
1. For each node Y, i= 1, 2, ..., p do

1.1 Set Adj, f.
1.2 For each vertex y Y do

1.2.1 For each vertex z Adj,(y) do
1.2.1.1 Let Yk be the node containing z.
1.2.1.2 If Yk Adjo/(Y)

then Adj/t(Y) Adj/(Y) (3 Yk.

In Algorithm 5.3, we analyze the structure of the quotient graph G/f in order to
identify the underlying tree structure. Note that in this algorithm and in Algorithm 5.4

902 ALAN GEORGE AND HAMZA RASHWAN

the only graphs which are used are quotient graphs, and for convenience we use the
index to refer to the node Y. The basic fact exploited by Algorithm 5.3 is that the
separator subtree associated with a connected component of G/I) is rooted at the
node whose label is largest in this component. Moreover, when such a node is deleted,
the corresponding component splits into two or more connected components. The
separator tree is represented using a FATHER vector oflength p, where FATHER(i) k
means that node k is the father of node i.

ALGORITHM 5.3.
1. Z={1,2,...,p};Z’=.
2. While Z do

2.1 For each connected component Ci in the quotient graph G/f(Z) do
2.1.1 Let ri be the node in Ci of largest label.
2.1.2 For each node x Ci -{ri} do

Set FATHER(x) ri, and Z’= Z’LI {x}.
2.2 Z=Z’; Z’=.

In the above algorithm the connected components of G/12(Z) in step 2.1 may be
found using breadth-first-search. In step 2.1.2, the node ri is considered the "father"
of all nodes in the connected component Ci. When the algorithm terminates, the
FATHER vector contains the right information.

Algorithm 5.4 applies breadth-first-search to the separator tree in order to find
the required permutation of the members of f/= (Y1, Y2, Yp).

ALGORITHM 5.4.
1. 7r p mark p "new".
2. While there exists a node x r marked "new" do

2.1 Mark x "old".
2.2 Insert the sons of x at the end of 7r, and mark them "new".

3. Reverse the order of the elements in r.

The order in which the sons of a given node x are found and inserted in the
ordered list r is immaterial as long as they are added at the end. The order of the
elements in r is eventually reversed, since nodes found first are to be eliminated last.

The three phase block reordering algorithm can be easily implemented to run in
O(IEI+ N+ hlEl) time, where h is the height of the separator tree. This bound is
typically O(IEI).

(o) {b)
A skeleton of o groph G, showing the Underlying seporotor tree.
portition members Y/,i 1,2, 12.

FIG. 5.4. A dissected graph and its corresponding separator tree.

AUXILIARY STORAGE METHODS FOR FINITE ELEMENT SYSTEMS 903

The following example illustrates the application ofthe block reordering algorithm.
Consider the partitioned graph of Fig. 5.4, with f (Y, Y2, ", Y2). Also shown in
the same figure is the separator tree which we want to identify.

The corresponding quotient graph G/f is shown in Fig. 5.5, along with a few
steps of Algorithm 5.3.

The quotient graph 6"/,Q. {,Q.,[)

(R)(R)

FATHER vector at
end of algorithm 5.3.

2 3 4 5 6 7 8 9 I0 12

(b)
Some steps of the opplicotion of olgorithm ,.5.3 to the quotient

groph obove.

FIG. 5.5. Construction of the father vectorfrom the quotient graph.

FIG. 5.6. Separator tree with all leaves moved down to the last-level.

904 ALAN GEORGE AND HAMZA RASHWAN

Note that some of the leaves do not lie in the last-level of the separator tree. By
moving these leaves down to the last-level of the tree as shown in Fig. 5.6, we may
simplify the input file preprocessing step which follows.

5.3.2. Input file preprocessing. In this section, we consider the problem of reor-
ganizing the rows of the matrix A on the input file. Our goal here is to have the rows
which belong to a particular last-level block appear consecutively in one "segment"
and the order of these segments in the input file to be compatible with the order of
block elimination, as described in the previous section.

The input file preprocessing consists of two steps. In the first step, we split rows
which span more than one last-level block among their respective blocks. In the second
step, the rows of the input file are sorted into the required order.

Recall that the rows of the upper triangular part of A are stored on a sequential
access file, and without loss of generality, we assume that the following format is used:

nsubs; rowindex; (column subscripts); (corresponding numericalvalues).

Here, nsubs is the number of nonzeros in the row. For example:

5; 7; (8, 7, 17, 18, 16); (-1.0, 4.0,-1.2,-1.5,-1.1),

is the way to store the 7th row which has five nonzeros, namely:

a7,8 1.0, a7,7 4.0, a7,17 1.2, a7,18 1.5 and a7,16 =-1.1.4

In the first step, we solve the problem illustrated in the following example. Consider
Fig. 5.7, which is a part of an n by n grid partitioned into (Y1, Y2, ", Y7), with
Y1, Y2, Y3, and Y4 being the last-level blocks.

FIG. 5.7. A portion of a partitioned grid.

Our purpose here is to associate each row (or subrow thereof) of the input file
with one and only one set Y LJ c Y, i= 1, 2, 3, or 4. Clearly, a row whose row index
belongs to a last-level block poses no problem since it already belongs to one set. On
the other hand, a row whose row index belongs to a separator block may have to be

split among those last-level blocks that share the same separator as a part of their
common boundary, as exemplified by the following row:

9; 1; (1,2,3,4,5,6,7,8,9); (a,a2, a3, ala, a5, a6, al7, a8, a9).

4 Incidentally, the nonzero elements belonging to one row need not be stored as one entity (record).
Hence, it is quite legitimate to have two records which have the same row number.

AUXILIARY STORAGE METHODS FOR FINITE ELEMENT SYSTEMS 905

This row should be split into four subrows, each of which belongs to one last-level
block. A possible splitting is given by:

4;1; (1,4,5, 6); (all, a14, als, a16)E YlUOY1
2; 1 (7, 8) (a17, a18) E Y2 U 0 Y2
2; 1 (2, 9); (a12, a9) E Y3 U t9 Y3
1; 1; (3); (a,3) Y4UcgY4.

Ties might arise during this splitting; e.g., a2 may be considered as belonging to

Y3 U 0 Y3 or Y4 U 0 Y4. Such ties are broken arbitrarily. In Algorithm 5.5, the rows of
the input file are read one row at a time, and are split (if necessary) among the last-level
blocks. On output, each row is tagged by an additional field (key) to identify its block
number. This key is used by the soing algorithm which will follow.

ALORH 5.5.
1. Rewind the input and output files.
2. Read the rows of the input file one by one and for each do the following:

2.1 If the row index belongs to a last-level block, Yg say, then write the
row into the output file, with a key identifying it as belonging to block
number k.

2.2 If the row index does not belong to a last-level block, then split it into
subrows, each of which have elements belonging to one set Yk U 0 Yk, for
some k, and write each subrow into the output file, after tagging each by
its appropriate key.

3. Reverse the names of the input and output files.

The cost of the above algorithm in I/O trac is essentially reading and writing
the input file once. We now turn our attention to the second step in preprocessing the
input file. In this step, the rows of the input file are soed so that the rows which
belong to one last-level block appear in sequence as one segment, and that the order
of these segments in the input file is the same as the order of block elimination. Our
soing algorithm is a minor modification of radix sorting (also known as "bucket"
soaing, Aho et al. [1983]). For our purpose here, the buckets are replaced by auxiliary
storage files.

We assume that k scratch files fo, f, "’’, fk-, k 2 are at our disposal. Let p’
be the number of last-level blocks, and for convenience, we assume that p’= k t, for
some integer t. Recall that a key is associated with each row to identify its block
number. We use block-number-1 as our key, in which case all the keys lie in the
range 0... k’-1. The basic idea of radix soing is to consider the keys associated
with the rows as t-digit integers in a base-k representation: d,dt_." d, where
Odk-1, i= l,2,. t.

The input file will be soed in passes. In the first pass, the rows of the input
file are read one row at a time, and are distributed among the k scratch files. A row
whose associated key has its right most digit d equal to j is written into . When the
input file is exhausted, the scratch files f,f,... ,fk-1 are copied (concatenated) to
the end of fo. The roles of and the input file are reversed at the end of each pass.
All subsequent passes are similar, except that on the ith pass the rows are distributed

For our sorting to be correct we must append (write) the rows to the end of their respective destination
files.

906 ALAN GEORGE AND HAMZA RASHWAN

among the destination files based on the value of di. Algorithm 5.6 formalizes this
sorting process.

ALGORITHM 5.6.
1. For i=l,2,...,tdo

1.1 Read the input file row by row, and for each row do
1.1.1 Let di be the ith digit of the key associated with the current row.
1.1.2 Write the current row into f, j di.

1.2 Concatenate f, j 1, 2, , k 1 to the end of fo.
1.3 Reverse the names of the input file and fo.

Note that the algorithm works correctly, even if p’ is not a power of k, in which
case some of the scratch files would be empty. It can be easily shown that the I/O
traffic for preprocessing the input file is O(n21), which is the same order as the I/O
traffic generated during the actual factorization.

We will briefly discuss the modifications required in Algorithm 5.1, so that it can
handle irregular grids. Note that, in the case of irregular grids, the resulting separator
tree is not necessarily a complete binary tree. In Fig. 5.8, the separator tree of Fig. 5.6
is redrawn with the node labels changed to reflect their order of elimination.

FIG. 5.8. Separator tree of Fig. 5.6, with node labels changed.

The following remarks are useful in arriving at the required modifications:
1) The elimination of all last-level blocks is unchanged, since we still have to

read one segment from the A-file to effect the elimination of each block.
2) The fact that the tree is no longer a complete binary tree leads to the following

situations"
i) When we eliminate blocks at levels other than the last-level, we may encounter

certain segments of the A-file which do not contribute to the elimination in the level
under consideration. For instance, the segments corresponding to the Schur comple-
ments of blocks (nodes) 1, 6, and 7 in Fig. 5.8 are not used in the second-level. Hence,
these segments should be copied directly from the A-file to the S-file as soon as they
are encountered, preserving their relative order.

ii) Some nodes may have more than two sons. Thus, when such a node is to be
eliminated we have to read an equal number of segments from the A-file. For example,
node 11 of Fig. 5.8 has three sons; so we have to read three segments from the A-file
to effect the elimination of this node.

The incorporation of the above mentioned changes into Algorithm 5.1 is straight-
forward.

6. Numerical experiments. In this section we present the results of some numerical
experiments performed on n2 by n2 linear systems resulting from the application of

AUXILIARY STORAGE METHODS FOR FINITE ELEMENT SYSTEMS 907

the standard 9-point finite difference operator to an n by n grid. The linear systems
were solved using an implementation of Algorithm 3.1 and Algorithm 5.1. As a basis
of comparison, the given systems were also solved in main memory without partitioning
them into smaller subsystems. Many of the subroutines used were taken from SPAR-
SPAK, the University of Waterloo Sparse Linear Equations Package (George and Liu
[1979], George, Liu, and Ng [1980]). All the experiments were carried out on an IBM
4341 computer, using the Fortran VS optimizing compiler. The times reported are in
seconds, and the storage in single precision words.

The labels used in the tables have the following meaning.
Smthe maximum storage used during the factorization (including overhead

storage for pointers, permutations, ..., etc.),
rFmthe factorization time, including ordering and storage allocation times,
rT---the total execution time, including I/O processing time, in addition to rF

and related overhead times (e.g. times to record the structure of each block,
and to store the actual numerical values in the data structures),

’id--I/O processing time for the block identification step,
rpre--input file preoprocessing time (for Algorithm 5.1),
rstime for the forward and backward substitution steps, including reading

the R-file,
pRthe number of blocks in the partitioning.

Table 6.1 summarizes the results obtained when the problem is solved in main
memory without partitioning. The grid points were ordered using nested dissection.
The times required to read the input matrix and to write the Cholesky factor into
auxiliary storage are included in the total execution time.

TABLE 6.1
Problems are solved without partitioning.*

N--n

400
625
900
1600
2500
3600
5625
8100
10000

11,613
19,703
29,939
58,453
98,121
147,771
243,000
368,000
465,000

TF

.96
1.82
3.07
7.15
13.59
23.12
45.41
77.35
102.73

3.16
5.48
8.46

17.33
29.79
48.14
86.00
138.00
17.00

2.68
4.53
6.85
13.14
21.82
32.93
60.18
92.65
114.00

* The entries in the last three rows of the table are estimates, since We do not have enough storage to

solve these large problems without partitioning them.

The entries in Table 6.1 are a clear indication why most people would like to
avoid using auxiliary storage if at all possible. Note that the amount of I/O activity
is minimal, and we do not expect any of our methods to do any better. However, the
picture is not so gloomy, as we will see shortly. The solution time rs is very large,
relative to the factorization time (rF), since almost all of it is spent in I/O.

Our next experiment involved solving one "large" problem, using different levels
of partitioning. We used a system with N n2= 2500, and gradually increased the
number of partition members (thus, we were able to use less storage).

The information in Table 6.2 shows that our scheme is effective in reducing the
storage requirements. The price paid for this is a (large) increase in the total execution

908 ALAN GEORGE AND HAMZA RASHWAN

TABLE 6.2
Solving for N 2500, using different levels ofpartitioning.

Algorithm 3.1 .Algorithm 5.1

S ’rid

98,121
32,148 20.03
29,014 51.23
20,536 82.03
14,675 105.14
13,121 127.43
12,420 174.41

"rT "rid/P S "rid "rpre "rT

29.79 98,121 29.79
56.67 2.86 31,907 10.51 17.57 50.39
98.87 3.42 27,330 15.92 19.64 67.10
138.31 3.57 20,001 19.29 27.59 78.63
166.52 3.63 14,748 23.39 29.48 85.73
192.42 3.64 12,938 24.57 30.73 93.79
246.60 3.71 12,371 27.32 33.65 106.01

rid/lOg P

3.74
4.08
4.27
4.81
4.79
4.92

time. Note, however that by partitioning the matrix beyond a certain level, the increase
in execution time outweighs the marginal reduction in storage, as indicated by the last
three rows in the table. We also note that the block identification time (rid) for Algorithm
5.1 is much less than the corresponding values for Algorithm 3.1. Our analysis shows
that the ratio "rid/P for Algorithm 3.1 converges to a constant, and indeed this is
supported by our experiments. The convergence is very slow due to the existence of
large subdominant terms. Similar conclusions may be drawn for Algorithm 5.1, where
p is replaced by log p.

In Table 6.3, we illustrate the performance of our algorithms by solving a sequence
of problems of increasing size.

TABLE 6.3
Solving a sequence ofpartitioned linear systems.

Algorithm 3.1 Algorithm 5.1

N n p S "rid "rT S "rid "rpre

400 19 3,089 11.92 22.26 3,126 3.32 5.02 12.48
625 23 4,712 22.29 38.07 4,747 6.03 7.84 20.87
900 25 6,644 33.73 55.79 6,658 8.13 10.96 29.10
1600 27 10,736 63.23 101.31 10,854 13.08 19.09 50.76
2500 29 14,675 105.14 166.52 14,748 23.39 29.48 85.73
3600 31 19,100 157.45 248.86 19,045 31.77 42.30 127.79
5625 33 30,935 284.64 448.55 30,736 49.77 70.75 217.18
8100 35 44,051 433.06 685.68 43,739 71.96 101.78 332.78
10000 37 55,299 560.80 879.59 54,824 86.30 121.36 414.97

Few comments need be made about the information in Table 6.3. The storage
requirements of both algorithms are quite modest; in particular, a few vectors of length
N n2 are used. Algorithm 5.1 seems quite successful in reducing the I/O overhead
as attested to by the substantial reduction of Zid and zT- over the corresponding entries
for Algorithm 3.1. Unfortunately, the preprocessing time ’/’pre is relatively large, hinting
that our external sorting procedure is not very efficient. Finally, we note that even
though the numerical experiments reported here are for the model n by n grid, our
subroutines are not specifically designed for that special problem, and indeed results
similar to those presented here were obtained for irregular finite element problems.

AUXILIARY STORAGE METHODS FOR FINITE ELEMENT SYSTEMS 909

7. Concluding remarks and further extensions. In this paper we have analyzed and
compared two schemes for the solution of very large sparse linear systems of equations
using auxiliary storage. A detailed analysis of the I/O traffic generated when our first
method is applied to a model n by n grid problem, where the grid is partitioned using
incomplete nested dissection, shows that a substantial reduction in memory require-
ments can be achieved without compromising the low fill-in and operation counts of
the standard nested dissection ordering. In particular, we have shown that using a few
vectors of length N r/2 allows us to achieve an I/O traffic of O(n2 log n), which is
dominated by the O(r/3) arithmetic computation. We also considered an important
enhancement to our basic strategy, which results in reducing the traffic to O(/12 log
log n), apart from storing the Cholesky factor itself. This further reduction in the I/O
traffic is achieved by modifying our algorithm to exploit a certain tree structure
associated with nested dissection.

The work presented here can be extended in several directions (Rashwan [1983])
to include:

i) The methods described in this paper assume that O(/12) main storage is
available. This assumption might limit the size of the largest problem that can be
handled. We may relax this assumption by trading a reduction in main memory for
some increase in the I/O traffic, and at the same time maintaining the dominance of
the O(/13) arithmetic computation. This can be achieved as long as the main storage
available is not less than O(n).

ii) Our analysis can be easily extended to sparse linear systems associated with
regular three-dimensional grids. We have also considered linear systems whose graphs
are planar or almost planar, which are partitioned and ordered by the generalized
nested dissection algorithm of Lipton et al. [1979].

iii) Throughout our discussion, we have assumed that the partitioning of the linear
system is given. This might be a reasonable assumption if we were only concerned
with simple and regular meshes. In certain engineering and structural design applica-
tions, a problem partitioning might arise in a natural manner. A possible solution (the
one we used in our implementation) is to perform the partitioning in main memory,
since we only require a few integer working vectors of length N, in addition to the
storage of the sparsity structure of the given system. This approach may be applicable
if N is not too large, in which case we have the additional benefit that more than one
integer data item can often be packed in one floating point word. This is also possible
if extended precision is used during the actual numerical processing. It would certainly
be very useful if we can generate the required partitioning using a limited amount of
main memory without an unduly high level of I/O traffic. Note that in applications
where several systems have the same matrix structure, the cost of the partitioning step
is "shared" among all of the systems to be solved, and thus it may be affordable even
if its I/O traffic turns out to be relatively large.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN [1983], Data Structures and Algorithms, Addison-
Wesley, Reading, MA.

[2] K. O. GEDDES, G. n. GONNET AND B. W. CHAR [1982], MAPLE user’s manual, second edition,
Research report CS-82-40, Dept. Computer Science, Univ. Waterloo, Waterloo, Ontario.

[3] J. A. GEORGE [1977], Numerical experiments using dissection methods to solve n by n grid problems,
SIAM J. Numer. Anal., 14, pp. 161-179.

[4] J. A. GEORGE, W. G. POOLE JR. AND R. G. VOIGT [1978], Incomplete nested dissection for solving n
by n grid problems, SIAM J. Numer. AnaF., 15, pp. 662-673.

910 ALAN GEORGE AND HAMZA RASHWAN

[5] J. A. GEORGE AND J. W. H. LIU [1979], The design of a user interface for a sparse matrix package,
ACM Trans. Math. Software, 5, pp. 134-162.

[6] J. A. GEORGE, J. W. H. LIu AND E. G. Y. NG [1980], User’s guide for SPARSPAK: Waterloo sparse
linear equations package, Research report CS-78-30 (revised), Dept. Computer Science, Univ.

Waterloo, Waterloo, Ontario, Canada.
[7] J. A. GEORGE AND J. W. n. LIU [1981a], Computer Solution ofLarge Sparse Positive Definite Systems,

Prentice-Hall, Englewood Cliffs, NJ.
[8] J. A. GEORGE, M. T. HEATH AND R. J. PLEMMONS [1981b], Solution oflarge-scale sparse least squares

problems using auxiliary storage, this Journal, 2, pp. 416-429.
[9] J. A. GEORGE AND H. RASHWAN [1982], Input/output traffic analysis of an auxiliary storage scheme

for solving finite element systems, Proc. 5th International Symposium on Computing Methods for
Applied Science and Engineering, Versailles, France, R. Glowinski and J. L. Lions, eds., North-
Holland, Amsterdam, pp. 3-25.

10] J. R. GILBERT 1980], Graph separator theorems and sparse Gaussian elimination, Report STAN-CS-80-
833, Dept. Computer Sciecne, Stanford Univ., Stanford, CA.

[11] A. J. HOFFMAN, M. S. MARTIN AND D. J. ROSE [1973], Complexity boundsfor regularfinite difference
and finite element grids, SIAM J. Numer. Anal., 10, pp. 364-369.

[12] B. M. IRONS [1970], A frontal solution program for finite element analysis, Int. J. Numer. Meth. in
Engng., 2, pp. 5-32.

[13] R. J. LIPTON, D. J. ROSE AND R. E. TARJAN [1979], Generalized nested dissection, SIAM J. Numer.
Anal., 16, pp. 346-358.

[14] H. RASHWAN [1983], Auxiliary storage methods for sparse positive definite linear systems, Ph.D. thesis,
Dept. Computer Science, Univ. Waterloo, Waterloo, Ontario.

[15] J. K. REID [1974], Direct methods for sparse matrices, in Software for Numerical Mathematics, D. J.
Evans, ed., Academic Press, New York, pp. 29-47.

16] D. J. ROSE 1972], A graph-theoretic study of the numerical solution of sparse positive definite systems of
linear equations, in Graph Theory and Computing, R. C. Read, ed., Academic Press, New York,
pp. 183-217.

[17] D. J. ROSE AND G. F. WHITI’EN [1976], A recursive analysis of dissection strategies, in Sparse Matrix

Computations, J. R. Bunch and D. J. Rose, eds., Academic Press, New York, pp. 59-84.
[18] A. H. SHERMAN [1975], On the efficient solution of sparse systems of linear and nonlinear equations;

Research Report 46, Dept. Computer Science, Yale Univ., New Haven, CT.
[19] B. SPEELPENNING [1978], The generalized element method, Tech. Report UIUCDCS-R-78-946, Dept.

Computer Science, Univ. Illinois at Urbana-Champaign.
[20] V, STRASSEN [1969], Gaussian elimination is not optimal, Numer. Math., 13, pp. 354-356.
[21] W. F. TINNEY 1969], Comments on using sparsity techniquesfor power system problem, in Sparse Matrix

Proceedings, R. A. Willoughby, ed., IBM Research Rept. RA1 3-12-69, pp. 25-34.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 4, October 1985

1985 Society for Industrial and Applied Mathematics
0O7

A NUMERICAL SIMULATION OF A BINARY ALLOY
SOLIDIFICATION PROCESS*

A. D. SOLOMONf, V. ALEXIADESt, AND D. G. WILSONt

Abstract. We describe the numerical implementation of a mathematical model of a binary alloy
solidification process introduced in [1]. The model takes into account the "mushy" zone of dendritic growth
between liquid and solid phase regions.

Key words, alloy solidication, mathematical model, coupled nonlinear conduction-diffusion system,
explicit finite differences

Introduction. Simulating the diffusion of solute and transfer of heat in the solidifi-
cation of an alloy is of key importance to developing control strategies for attaining
alloys of desired constitution. Current alloy solidification models are generally devoted
to one of two distinct viewpoints: 1) processes describable by spatially extensive
diffusion fields for heat and solute; or 2) interfacial processes, occurring locally and
accounting for the detailed molecular structures and energy transfers characterizing
the freezing process. Work stressing the former is typified by the treatment of Rubinstein
[5] or more recently, Tao [7]. The latter area is the focus of extensive work over the
last three decades, and is typified by [2], [3], [8].

In 1] we began to bridge the gap between the two approaches in a thermodynami-
cally consistent manner. Using the liquid fraction and the chemical potential in the
(possibly dendritic) "mushy" zone, the model in principle obviates the need for
empirical models of the mushy zone [6]. In the same sense it extends the earlier weak
solution formulation of [9].

The need for a model of the solidification process which admits the possibility of
a finite dendritic zone was noted in [10] where a classical Stefan type formulation was
shown to be incomplete. In the following lines we present an explicit numerical scheme
for the implementation of the model [1]. The scheme can be extended to two and three
dimensions; while some questions of convergence and numerical behavior remain, the
great diculties in its implementation lie in the absence of known values of the
thermophysical parameters used.

In 1 we recall the equations underlying the model; these are then used to generate
the finite difference model of 2. Finally in 3 we present a number of sample
calculations for a Cu-Ni binary system.

1. The mathematical model. Consider the solidification of a binary alloy consisting
of 2 components, A and B. We assume the solidification process to be governed locally
by an equilibrium phase diagram as shown in Fig. 1. Here C gs(T), C gL(T) are
the solidus and liquidus curves, respectively; C is the concentration, measured as the
mass fraction of component B. We wish to model the following solidification process.
Assume that the finite slab

0<x</

initially consists of liquid alloy at temperature

To(x), 0<x</,

* Received by the editors October 20, 1983. This research was sponsored by the Applied Mathematics
Sciences Research Program, Office of Energy Research, U.S. Department of Energy under contract W-7405-
eng-26 with the Union Carbide Corporation.

f Mathematics and Statistics Research, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831., Mathematics Department, University of Tennessee, Knoxville, Tennessee 37996.

911

912 A. D. SOLOMON, V. ALEXIADES AND D. G. WILSON

SOLID

CONC EN T RAT ION

FIG. 1. Equilibrium phase diagram.

and concentration
Co(x), 0<x</.

At x the slab is to be thermally insulated; similarly at x 0, l, there is no material
flux. Suppose that starting at time 0 the temperature at the face x 0 is set equal
to a constant value Ts low enough to induce a freezing process beginning at x 0. At
any later time > 0, material at points of the slab may be in one of three states" liquid
(L), solid (S) and mushy (or dendritic) (M).

The mushy zone represents a region of constitutional supercooling [2] in which
dendrites are separated by liquid zones. Through the width of the zone we may expect
liquid and solid fraction to vary--in a manner depending on the orientation and shape
of these dendrites.

We define the liquid fraction A (C, T) as

in the liquid (C =< gL(T)),
in the solid (C => gs(T)),

(1)

1

A(C,T)=
0

C-g(T)
--T-g(r) in the mush (gL(T) < C < g(T)).

As in [1] we introduce the mass and heat fluxes

(2) J=-{DCx-6Tx},

(3) G= -(KTx ,SCx},

where D is the material dittusivity, K the thermal conductivity, and 6 and/3 are the
Soret and Dufour coefficients. All these transport coefficients depend, in general, on
both temperature and concentration and may jump discontinuously from liquid to
solid. The primary effects are represented by D and K, while the cross effects coefficients

and fl are usually mtich smaller and are commonly neglected. A list of all the
thermophysical parameters entering the model appears in 3.

As it is shown in detail in [1], the conservation laws for mass and energy assume
the form

(4) C, -J,

NUMERICAL SIMULATION OF A SOLIDIFICATION PROCESS 913

p(C+ HAt)T, =-G,,-p(TIT-HAc)Jx-ptx.

Here, subscripts denote partial derivatives. The density, p, of the alloy is assumed to
be constant in order to eliminate material flow; c(C, T)= hcL+(1-h)cs denotes the
specific heat, H the latent heat of fusion, and the difference of the chemical potentials
of the two components, chosen here as

(6) /x(C, T)=RTln(T1C_c),
with R the gas constant and y the ratio of chemical activities (cf. [4]).

The partial differential equations (4) and (5) are valid globally over the region
occupied by the alloy, irrespective of phase. Of course since many of the quantities
may not be differentiable across the liquidus and solidus, these equations must be
interpreted in a weak (distributional) sense, as discussed in [1].

The boundary and initial conditions for the model are

(7) T(0, t)= T,

(8) (0, t)=0,

(9) G(l,t)=O,

(10) J(l,t)=O.

2. Finite difference scheme. For M a natural number, let

MAx=l,

and xj =jAx, j O, , M. Let At > 0, and t, nat, n 0, 1, 2, . For any function
f(x, t), we denote

f f(xj, t,).

The numerical scheme we use is explicit in time, updating the concentration vector

C’ and temperature vector T, j 0, , M at time step n, to their values C’+, T’+

at time step n + 1.
Assume C’, T}, j 0,..., M to be known. Following (1), we define the liquid

fraction array A, j 0, , M via

1 for (C’, T’) a liquid point on the phase diagram,

(11) A
0 for (C’, T’) a solid point on the phase diagram,

C;-gs(T;)
gc(T’)-g(T’)

for (C, T’) a mushy point on the phase diagram.

If (C’, T) is a mushy point on the phase diagram, then we consider the interval

x-1/2 Ax <x <x +1/2 Ax

to consist of intermixed solid and liquid, at a proportion determined by Aj, in thermal
equilibrium for the temperature T. Hence a liquid volume X Ax at temperature T
and concentration go(T’) and a solid volume (1- A’) Ax at the same temperature T’
and concentration g(T’) are assumed to fill the interval. We further assume that solid
and liquid concentration gradients induce diffusion from solid to solid regions and
from liquid to liquid regions in neighboring mesh intervals, while no material flow

914 A. D. SOLOMON, V. ALEXIADES AND D. G. WILSON

will occur between solid and liquid regions. Hence for j 0,. , M we define

(12)

(13)

C’ if h =0,

if A 1,

C; if A 1,

CL’ (T.) if 0 < A < 1,
if , O.

We define the effective solid and liquid material fluxes from node j to node j + 1 as

(14)
1-= cs;)- T;+, T7)},JSj+l/2 {Os(CS;+Ax

(15)
1

JLjn+I/2 ---{Dr(CL;n+l CL;) (L(Tjn+, T;)}.
ix

Hence we define the effective material flux from node j to node j + 1 as

(16) Jj+l/2 min (X, h.i+)JLj+i/z+min (1 hi, 1 Aj+1)Jsy+l/2

this corresponds to the assumption that min (h’, hj"+) is a measure of the degree of
direct liquid-liquid contact between node intervals j, j + 1, and similarly for the solid.
Thus the final discretization of (4) is

(17) C;+ C -{Jj%l/2- J;n---1/2}At Ax
j=I,.-.,M 1,

and updates the concentration to time step n + 1.
The discretization of the energy conservation equation (5) is carried out in a

similar manner. For j 0,. ., M let

where c yCL + (1 X)G.
Now rewrite (5) as

A; p(c + H,

(18) AT -G p(Ttzr Hhc tz)J p(tzJ).

Set
B p(Tp,T H,c p,);

for our present choice (6) of the chemical potential, T/r-/z 0 and from (1) we see
that

(19) B= -pH/(gL(T)-gs(T)).

Thus (18) becomes

(20) ATt=-G-BJ-p(p,J),

which upon discretization yields

(21)
A; T;+IJt- T;) (Gj%l/2...Gjn--1/21 (Jj%l/2_z?jn-1/21At Ax j

Bj Ax J
([d,j)jn+ 1/2 ([3,J)jn- 1/2/ j-1,...,M-1.

NUMERICAL SIMULATION OF A SOLIDIFICATION PROCESS 915

The terms Jj+l/2 are already known from (16). On the other hand we treat each of the
terms of G =-KTx + flCx separately as follows.

Considering the liquid and solid fractions of adjacent mesh intervals as indicating
the extent of solid-liquid, liquid-liquid and solid-solid contact, we define the thermal
conductivity Kjn+l/2 as

(22)

2KsKL
Kj+I/2 [Aj+I- X]Ks + KL

+ min (X;, h+l)KL+ min (1 Xj, 1 X"+I) Ks.
The first term on the right of (22) measures the contribution from the solid-liquid
contact and results by averaging the resistivities 1/Ks and 1/KL. Then we define

(23)

Similarly, let

(KT,))+,/2 Kj+,/ -1
(24) WL)+I/2 Ax{/3t(CL+, CL))},

1
(25) WS;+1/2 A’{s(CS;+l CS;)}

with CS, CL given by (12), (13).
Then

(26) (flC,)"+,/2=min (A7, Aj+I) WL"+l/2+min (1-AT, 1 A+I) WS%1/2,
whence G.+1/2 is completely defined"

(27)

The expression (#J)jl/2 is defined as

(28)
2

The initial conditions are

Ty= To(x;), Cy= Co(x)), j O,..., M.

On the other hand the boundary conditions yield updating equations at j 0 and
j M of the form

Ax
(29) (C+1- C)- -AtJ1/2,

(30) T T,

Ax
(31) (C-C)--=atJ_/,

(32)

Ax
+H" T-+I T)M T

At { GM_,/2+ P(TMtx T, HMA cM)JM-1/2 +-(tX-,- tZ’])JM-1/Z}.

916 A. D. SOLOMON, V. ALEXIADES AND D. G. WILSON

Theoretically, the values of all the thermophysical parameters entering the model
(c, H, D, K, 3,/3) can be determined experimentally as functions of the state (C, T),
at least in the liquid and solid regions. In practice, this is very difficult to do and the
available data are scarce. In particular, inside the mushy region it is essentially
impossible to measure quantities like D, K, etc., and therefore we have to amplify the
model by incorporating in it detailed descriptions of the transport processes in terms
of measurable quantities.

For simplicity in the presentation we shall assume that the physical parameters
c, D, K, 3,/3 have (possibly different) constant values in the liquid and solid denoted
by subscripts L and S. For real systems it is already difficult to find even such piecewise
constant values. If however one knows the full dependence of, say, Ds on concentration
and temperature, then one can replace Ds in (14) by, for example,

D 1/2[D(CS+,, T"+ 1) + D(CS7, TT)].

3. Some numerical experiments. A program implementing the scheme of 2 has
been run for a system based on a Cu-Ni alloy. As for many other binary systems, the
solidus and liquidus curves for Cu-Ni may be adequately approximated by parabolas.
Let " (T- TA)/(Tn- TA). Then we can approximate the solidus and liquidus curves
by quadratics of the form

C gL(T) [a + (1 a

C=g(T)=[3+(1-3)z]r.

The phase diagram of Cu-Ni is well approximated by choosing [11]

TA 1356 K, a .7956,

TB 1728 K, 3 1.555.

The thermophysical parameters about whose values we have some confidence are:

Parameter Name Value Units

CL liquid alloy specific heat .4 KJ/KG-K
cs solid alloy specific heat .4 KJ/KG-K
p density 8 x 103 Kg/m
Kt. liquid alloy conductivity .1 KJ/M-s- K
Ks solid alloy conductivity .3 KJ/M-s- K
H latent heat of alloy 200 KJ/Kg
TA copper melt temperature 1356 K
Ta nickel melt temperature 1728 K
a Phase diagram parameter .7956
/3 Phase diagram parameter 1.555

Thermophysical parameters about which we are less certain are"

Parameter Name Value Units

Ds solid material dittusivity ?
DE liquid material diffusivity ?
/3s coupling term in (3) (solid phase) ?
/3L coupling term in (3) (liquid phase) ?
s coupling term in (2) (solid phase) ?
E coupling term in (2) (liquid phase) ?
y chemical activity ratio ?

m2/s

KJ/m-s
ma/s2-- K
m3/s2-K

NUMERICAL SIMULATION OF A SOLIDIFICATION PROCESS 917

Let us describe two runs typical of those made thus far.
Run 1. In this case the coupling terms/3, are taken as zero. Values chosen were:

C CL .4 ICI/Kg- K
p 8 x 10 Kg/m3
KL .1 KJ/m-s- K
Ks .3 KJ/m- s- K
H 200 KJ/Kg
D x 10-6 mE/s
DL 10-5 mE/s
L= 0 m3/s2-- K
ts 0 m3/s2-- K
ilL=0 KJ/m-s
/3s =0 KJ/m-s

y=l

TA 1356 K
TB 1728 K
l= length of slab .25 m
Ax mesh width 0.1 m
At time mesh width .25
M number of space mesh intervals 25

Ti.it uniform initial temperature 1600 K
Twall =imposed (cold) wall temperature 100 K
Cinit uniform initial weight fraction .2

In Fig. 2 we see the phase change history over 570 s of simulated time. The mushy
zone (M) is expanding steadily; the anomaly at =495 s is due to slight reduction (at
the fourth decimal place) of liquid fraction.

600 1700

540

s
480

420

360

800
S

240

180

120

L
60

0
0.00 0.05 0.10 0.15 0.20 0.25

x. DISTANCE (In)

FIG. 2. Phase change history for Run 1.

1600

1500

uJ 1400

a. 1800

1200

1100

1000

TEMPERATURE
DISTRIBUTION

FOR 150
(C) FOR 300

a FOR 600--

@

O00B
O0

X, DlaTANCE (m)

FIG. 3. Temperature distributions for Run 1.

1700

1600

1500

1400

tu 1300

t-- 1200

1100

1000

eL

es s
ee

0000

0000000000000000000000
60 120 180 240 300 350 420 480 540 600

TIME (s)

FIG. 4. Temperature history at x .1 for Run 1.

918 A. D. SOLOMON, V. ALEXIADES AND D. G. WILSON

In Fig. 3 we see the temperature distributions at times 150, 300, 450 and 600 s.
Note that the temperature is essentially linear through the solid.

In Fig. 4 we see the temperature history at x-.1 over the first 570 seconds. We
again believe that numerical noise, typical for weak solution methods, is the reason
for the "jumpiness" of the values following solidification.

In Fig. 5 we see the final concentration profile (Ni) of the system at =637.5 s.
Note the slight rise of the concentration in position up to x .17. We note too that
mass is conserved in our code for all cases.

Fig. 6 shows the weight fraction history at x- .1. Similarly, Fig. 7 shows the state
history of the node at x- .1 at 30 s intervals.

0.23

0.22

0.21

0.20

0.1g

0.. 0.18
o
a:: 0.17

0.16

: 0.15
d

0.13

0.12

0.11

0.10

00 00 e O 0000
000 000000

0.00 0.0 0.10 0.15 0.20 0.25

X, DISTANCE (m)

FIG. 5. Final weight fraction distribution at time 637.5 for Run 1.

0.22

0.21

0.20

o.1

0.17

)-

30 60 go 120 150 180 210 240

TIME (e)

FIG. 6. Weight fraction history at x .1 for Run 1.

NUMERICAL SIMULATION OF A SOLIDIFICATION PROCESS 919

1500

1450

1400

1350

< 1300

1250

1200

,::"" * 150

180

e60 ,, ,-

1150

1100

1050

100o
0.00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.0 1.0

C, WEIGHT FRACTION

FIG. 7. History of state at x .1 for Run 1.

Run 2 was made with the same thermophysical parameters as those of Run 1,
except for the following:

Parameter Run Run 2

D x10-6 10-8

D x10-5 x10-6

;L 0 x 10-]2

(0 x 10-]2

flL 0 x 10-2

fl 0 x 10-2

Hence direct coupling is now introduced. The results obtained are shown in Figs. 8-13.
600

540

460

420

360

m 300

240

0.00 0.05 0.10 0.15 0.20 0.25

x, DISTANCE (m)

FIG. 8. Phase change history for Run 2.

920 A. D. SOLOMON, V. ALEXIADES AND D. G. WILSON

1700

1600

1500

1400

1300

1200

1100

150
300
45s
600

1700

TEMPERATURE
DISTRIBUTION

LLLeLL 1600

L LeL:Leo oo

LL -1 1500

L o L ." M/
LO n M),J

M M/Mo 8 8 nn_l : 1400
So [][] ::)

E]n
8o

8 . 1300

8o

00[]

O[]
_U OuO[]

1000
0.00 0.05 0.10 0.15 0.20 0,25

x, DI8TANCE (m)

FIG. 9. Temperature distribution for un 2.

1200

1100

TEMPERATURE HISTORY AT X 0.1

L

s
S
S
eS
eS

OO0 O0_

10oo
0 100 200 300 40(I 500

TIME (s)

FIG. 10. Temperature history at x .1 for Run 2.

0.205

FINAL WEIGHT FRACTION AT TIME

0.200 _eoO OoOo OOOOOOOO Ooo oo

0.195

0.190

0.185

0.180
0.00 0.05

0.202

0.201

0.200

0.199

0.198

0.197

O O 0

O

0.196
0.10 0.15 0.20 0.25 0 30 60 90 120 150 180 210 240

X, DI8TANCE (111) TIME

FnG. 11. Final weight fraction at time 625
for Run 2.

FIG. 12. Weight fraction history at x .1 for Run 2.

A comparison of Figs. 2 and 8 shows that decreasing Ds broadens the mushy zone
very much, as is expected. We note from Figs. 3 and 9 that the material cools more
slowly with Ds, DL 0.

4. Conclusions and future goals. In conclusion, we note that the model we have
proposed in [1] can be implemented in a direct fashion, and yields expected results
while conserving total energy and mass. Future developments ofthis model will include:
a) resolution of the steady state for the model; b) extension of the model to make

NUMERICAL SIMULATION OF A SOLIDIFICATION PROCESS 921

1600

1550

1500

1450

1400

1350

< 1300

1250

1200

1150

1100

1050

100o

I"0 ,

e60 ,,"

,,: "" e150

e180
210

240

e300

420
540

I,

0.00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5 0.0 1.0

C, WEIGHT FRACTION

FIG. 13. State history at x .1 for Run 2.

possible comparisons with available experimental data; c) analysis of the numerical
scheme; d) approaches to well-posedness of the underlying mathematical model, and
convergence of the numerical method.

Acknowledgments. The authors wish to express their gratitude to Dr. Rohit Trivedi
of the Ames Laboratory for his advice and encouragement of the work described.
Similarly we would like to express our deep appreciation to A1 Geist for programming
the scheme and obtaining the numerical results and to Tammy Reed for typing and
preparing this paper.

Note added in proof. An improved description of the basic model is to appear in
V. Alexiades, D. G. Wilson and A. D. Solomon, Macroscopic global modeling of binary
alloy solidification processes, Quart. Appl. Math.

Currently the model is being implemented on a mercury-cadmium-telluride alloy,
of which the thermophysical properties strongly depend on temperature and concentra-
tion. Results will be reported in a forthcoming ORNL Report.

REFERENCES

[1] V. ALEXIADES, D. WILSON AND A. SOLOMON, Modeling binary alloy solidification processes, Union
Carbide Corporation, Report ORNL/CSDoll7, 1983.

[2] J. CHRISTIAN, The Theory of Transformations in Metals and Alloys, Pergamon, Oxford, 1965.
[3] W. MULLINS AND R. SEKERKA, Stability of a planar interface during solidification of a dilute binary

alloy, J. Appl. Phys., 35 (1964), pp. 444-451.
[4] R. H. PARKER, An Introduction to Chemical Metallurgy, 2nd ed., Pergamon, Oxford, 1978.
[5] L. RUBINSTEIN, The Stefan Problem, AMS Translations, Vol. 27, American Mathematical Society,

Providence, RI, 1971.
[6] A. SOLOMON, D. WILSON AND V. ALEXIADES, A mushy zone model with an exact solution, Letters

in Heat and Mass Transfer, 9 (1982), pp. 319-324.
[7] L. TAO, On solidification of a binary alloy, Quart. Appl. Math., 33 (1980), pp. 211-225.
[8] R. TRIVEDI, Theory of dendritic growth during the directional solidification of binary alloys, J. Crystal

Growth, 49 (1980), pp. 219-232.

922 A. D. SOLOMON, V. ALEXIADES AND D. G. WILSON

[9] D. WILSON, A. SOLOMON AND V. ALEXIADES, A model of binary alloy solidification, Union Carbide
Corporation, Report ORNL/CSD-97, 1982.

[10], A shortcoming of the explicit solution for the binary alloy solidification problem, Letters in Heat
and Mass Transfer, 9 (1982), pp. 421-428.

[11] D. WILSON, A. LACEY AND A. SOLOMON, Composition of solidified binary alloy from a simple
solidification model, Union Carbide Corporation, Report ORNL/CSD-66, 1980.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 4, October 1985

1985 Society for Industrial and Applied Mathematics
008

STUDIES IN NUMERICAL NONLINEAR INSTABILITY I.
WHY DO LEAPFROG SCHEMES GO UNSTABLE?*

J. M. SANZ-SERNA"

Abstract. It is well known that leapfrog (explicit mid-point) discretizations of partial differential
equations may have unbounded solutions for any choice of mesh-sizes, (even for choices satisfying conditions
for linear stability). We provide a means for forecasting the qualitative behaviour of the computed leapfrog
points, thus explaining the dynamics of the nonlinear instability phenomenon.

Key words, nonlinear instability, leapfrog schemes, dynamical systems

1. Introduction. Leapfrog (explicit mid-point) schemes are often used in those
meteorological or oceanographic computations where the interest lies in monitoring
the global evolution of physical magnitudes over long periods of time. In these
circumstances, nondissipative leapfrog schemes may be more advisable than some
dissipative alternative methods 14]. However, the lack of dissipativity, while preventing
gross global losses of energy, vorticity, etc.,..., entails some disadvantages from the
stability point of view. Here the word stability must be understood to refer to the
behaviour of the numerical solution for fixed values of the mesh-sizes, as the number
of computed time-levels grows. (As distinct from the notions of Lax-Richtmyer stability
or Dahlquist stability [16], which provide conditions related to the concept of conver-
gence as the mesh-sizes tend to zero.)

In linear, constant coefficient problems with suitable boundary conditions, the
stability of leapfrog schemes is easily investigated, for in such cases the discrete
equations are solvable in closed form, via Fourier analysis. Often a relationship between
the various mesh-sizes (the so-called linear stability condition) can be derived which
ensures boundedness ofthe numerical solution as the number of computed levels grows.

In linear, variable coefficient or nonlinear problems describing wave phenomena,
it may happen that the leapfrog solution is unbounded for any choice of meshsizes
(even for choices which satisfy the linear stability conditions associated with all the
problems obtainable from the given one by linearizing and freezing the coefficients.)
This fact" was first noted by Phillips [17] in the nonlinear case and Miyakoda [13] in
the variable coefficient case. Phillips attributed this offending behaviour (the so-called
nonlinear instability) to the presence of aliasing. However Arakawa [1] constructed a
continuous-time difference scheme for the inviscid vorticity transport equation which
suffers from aliasing and yet exactly conserves vorticity, its square and kinetic energy,
thus ensuring boundedness of the computed solution. (See Morton 14] for an excellent
survey of the role played by quadratic conserved quantities and its relation with
Galerkin’s method.) When Arakawa’s scheme is discretized in time by means of the
leapfrog technique, the quadratic invariants are only approximately conserved and
nonlinear stability can arise, (cf. [19]). In practice, leap-frog schemes must be supple-
mented by filtering or artificial viscosity [12] in order to prevent the onset of nonlinear
instability. A modification of the leapfrog technique which is free from the occurrence
of blowups has been introduced and analyzed in [19], [21], [22].

In this paper we present a technique, whereby the qualitative behaviour of leapfrog
approximations can be forecast a priori (or explained a posteriori). In particular we
provide an explanation of the nonlinear instability phenomenon.

* Received by the editors October 10, 1983, and in revised form July 11, 1984.

" Departamento de Ecuaciones Funcionales, Facultad de Ciencias, Universidad de Valladolid, Val-
ladolid, Spain.

923

924 J.M. SANZ-SERNA

Our research was inspired by a paper by Ushiki [26].
Little is known concerning the qualitative behaviour, for fixed values of the

mesh-sizes, of discretizations of nonlinear evolutionary problems. In the ordinary
differential equation field, interest has been centered around the issue of contractivity
(see Dekker and Verwer [4] for a thorough summary). The experience gained by Ushiki
[26] and the contents of the present paper, appear to suggest that the investigation of
stability properties may benefit from an interaction with the field of dynamical systems.
However our study does not rely heavily on concepts of that field and the reader only
needs to be familiar with the basic elementary techniques in the qualitative study of
ordinary differential systems (see among others [7]).

Another useful connection is that between nonlinear instability in numerical
analysis and nonlinear stability in fluid mechanics, explored by Newell [15].

An outline of the paper is as follows. Section 2 contains the main idea. The linear
and nonlinear ordinary differential equation cases are described in 3 and 5, respec-
tively. Partial differential equations are investigated in 6. The fourth section is devoted
to some technical results and the seventh contains several concluding remarks.

2. The augmeated system. We consider initial value problems for the system

(2.1) y’ f(y),

where a prime denotes ditierentiation with respect to and f:Rd -> Rd is a smooth (Ca

say) function. The system (2.1) is discretized by means of the mid-point rule

(2.2) y.+, y. + 2hf(y,+l),

where the step-length h is positive. If we fix a solution y(t) of (2.1) and choose Yo, Yl,
close to y(0), y(h) respectively, then each point y,, n 2, 3, generated by (2.2) will
be "close" to the point y(nh), n 2, 3, . In more (but not too) precise terms, if we
consider a family yoh, yl

h of starting points, with h ranging in an interval (0, ho), ho> 0,
then [10, p. 22]

(2.3) lim y h, y(a y(nh),
h-0

provided that

(2.4) lim y0h lhimo ylh y(0)"
h-0

However, this convergence property does not imply that for a given, fixed value
of h, and given Yo, Yl (close to y(0), y(h), respectively), the sequences in d

(2.5) Yo, Yl, Y, ,Y,, ",

(2.6) y(0),y(h.’(2h),’",y(nh),’",

exhibit the same qualitative behaviour. In fact, it is well known [6, p. 241] that if (2.1)
is linear

(2.7) y’= Ay

and the spectrum of A is contained in {z: Re z < 0}, so that lim, y(nh) --0, the leapfrog
points y, will, in general, be unbounded no matter how close yo, yl are to y(0), y(h).

In this paper a method is given for describing the qualitative behaviour of (2.5)
for fixed h. We start by introducing the sequence in REd

(2.8) [Yo, Y,], [Y, Y],""", [Y,, Y:,/,],

NUMERICAL NONLINEAR INSTABILITY I. LEAPFROG SCHEMES 925

It is obvious that the knowledge of (2.8) implies that of (2.5) and vice versa.
Nevertheless (2.8) is more advantageous in that each "augmented" vector [y2,, Y2,/l]
is obtained from the previous vector [Y2,-2, Y2,-] by means of the one-step recursion

(2.9) [Y2,, Y2,+] T[y2,-2, Y2,-1],

where T" RTM --> R2a is the mapping

(2.10) Tip, q] =[p+ 2hf(q), q+ 2hf(p + 2hf(q))].

One iteration of (2.9) is equivalent to two iterations of (2.2). The main point of
this paper consists of the observation that (2.10) provides a stable, first-order consistent,
one-step method for the numerical study of the system in 2d,

(2.11) q’ f(q), q’ f(p),

which we call augmented system associated with the original system (2.1). More
precisely, if we fix a solution p(t), q(t) of (2.11), then

(2.12) lim T"[p0h, q]=[p(a), q(a)]
h-oo
2nh

provided that poh, qoh tend to p(0), q(0).
(The proof of this convergence result is trivial and will not be given here.) We

claim that the qualitative behaviour of (2.8) is governed by the qualitative behaviour of
sequences

(2.10) [p(0), q(0)], [p(h), q(h)],... ,[p(nh),q(nh)],...,

where p(t), q(t), is a solution of the augmented system (2.11).
Before we justify our claim, which concerns the fixed h, n-> o behaviour of the

computed solutions, let us examine the h--> 0, nh-fixed behaviour. We consider again
a family of step-lengths h, 0 < h < ho; fix a solution y(t) of the original system and
choose yoh, yh satisfying (2.4). This implies, after (2.3), convergence ofyh towards y(nh)
nh constant).

On the other hand, consideration of the augmented recursion (2.9), implies after
(2.12) that

lim yh,=p(a), lim y2h,+l=q(a)(2.13)
h-.oo heo
2nh=a 2nh=a

where p(t), q(t) is the solution of the augmented system satisfying p(0)=q(0)= y(0).
Now it is obvious that this solution is given by p(t) q(t) y(t), so that (2.13) is just
a restatement of (2.3). Thus, in the study of the h-->0, nh-fixed case the introduction
of the augmented system does not bring any new information. It can be proved that
this conclusion is not altered if orders of convergence are taken into account. Inciden-
tally, we note that only diagonal solutions of the augmented system (i.e. solutions with
p(t) =q(t)) have appeared in our argument: clearly there is a one-to-one correspon-
dence between diagonal solutions ofthe augmented system and solutions ofthe original
problem (2.1). It will turn out that in the study of the fixed h behaviour nondiagonal
solutions of the augmented system will play an important role.

We now fix a solution y(t) of (2.1), fix a "small" value of h and choose fixed
starting vectors Yo, Y "close" to y(0), y(h) respectively. Our aim is to describe the
qualitative behaviour of (2.5). We rely on the concept of local error, as employed in
the text by Shampine and Gordon [23, p. 22]. In these authors’ words, when y,, and
yn+ have been computed, the best that the method (2.2) can do is to yield a point

926 J.M. SANZ-SERNA

Yn+2 close to u(2h), where u(t) is the local solution defined by

u’ f(u), u(0) =Yn-

Now, upon Taylor expanding we find that

yn+2 u(2h) 2hf(yn+) 2hf(u(h)) + E,

where E can be bounded in the form IIEII _-< Ch3, with C independent of h. If we were
in the h-> 0 study, we would argue that yn+ is close to u(h) and therefore the next
computed point is close to u(2h), i.e. the computed points tend to follow approximately
the local solutions. (More precisely if y0 y(0) and yt is obtained by means of a one-step,
first order method, then yn+-u(h)= O(h2) and yn+E-U(2h)= O(h2).) However for
fixed h, n large, yn+ and u(h) can be significantly different and thus yn+2 may not
follow the local solution.

Let us consider what happens if we describe the computed points in terms of the
augmented iteration (2.9). When Yn-1, YEn have been computed, the method will attempt
to approximate the local solution v, w defined by

v’=f(w), w’=f(v),

v(O) y._, w(O) y,_,

and now Taylor expansion yields

Y2n -v(2h)= E,, Y2n-1-w(2h) E

with IIE, + IIEII <--ch, c constant independent of h. In other words, the computed
points will lie near the local solution of the augmented recursion. Note that these local
solutions are in general nondiagonal.

Admittedly the previous discussion has been merely heuristic and it is difficult to
see how a rigorous proof could be given when the term "qualitative" behaviour has
not been mathematically defined. We recall that it is possible to define precisely what
is meant by the statement "two differential systems have the same qualitative behaviour"
[3, p. 92]. This line of thought is not pursued in this paper. However the linear case is
rigorously treated in the next section.

3. The linear ease. In this paragraph we consider the linear system (2.7) and
assume for simplicity that A is real and can be diagonalized by a (possibly complex)
linear change of variables. Within this section vectors will be allowed to belong to the
complex space C d. We define qualitative behaviour as follows.

DEFINITION 1. Let (an), (bn) be sequences of complex numbers. We say that they
are linear with the same qualitative behaviour if they are both identically zero or if
they are of the form an r exp (nc), bn s exp (nd), with r, c, s, d complex numbers
r, s 0, sign Re c- sign Re d, sign Im c--sign Im d.

Note that if (an), (bn) are linear with the same qualitative behaviour then either
la.l’o, Ib.[’, or la,[=constant, [bn[=constant or [an[0, [bn[0. Also as n’o, the
arguments of an, bn are either both increasing or both constant or both decreasing.
There are nine possible qualitative behaviours for sequences other than the identically
zero sequence.

For sequences of vectors we resort to uncoupling changes of variables as follows.
(ei denotes the ith column of the identity matrix.)

DEFINITION 2. If (an), (bn) are sequences in C a, we say that they are linear with
the same qualitative behaviour, if regular matrices M, N can be found such that, for

NUMERICAL NONLINEAR INSTABILITY I. LEAPFROG SCHEMES 927

each i, 1 =< i-< d the sequences of components erMa,, efNb, are linear with the same
qualitative behaviour in the sense of the previous definition.

THEOREM 1. Let Yo, Y be given vectors in Ca and fix h such that Ih Im Ail< 1 for
each Ai in Spec (A), with A as above. Then there is a solution p(t), q(t) of the augmented
system associated with y’= Ay, such that the sequence (2.10) and the leapfrog sequence
(2.8) are linear with the same qualitative behaviour in 2d, and furthermore p(0)= Yo.

Remark. Note that here Yo, Y can be arbitrary. In practice Yo, Y approximate y(0),
y(h), with y(t) a solution of the original system, and therefore the starting augmented
vector [Yo, Y] will be close to the diagonal of d d, (i.e. Yo, Y will not be widely
different).

Proof. As usual, it is enough to consider the scalar equation

y’=Ay, AC, IhlmAl<l
with augmented system

p’= Aq,

After the change of variables in R2 given by

q’= Ap.

p+q=P, p-q=Q,

the solutions of the augmented systems are of the form P a exp (At), Q b exp (-At),
with a p(0)/ q(0), b p(0)- q(0). Therefore, in the P, Q variables, the sequence in
(2.10) becomes

(3.1) [a(exp (Ah))", b(exp (-Ah))"].

Now the theory of linear, constant coefficient difference equations shows that the
sequence of computed leapfrog points (2.5) is given by

y, cr" + d(-r-1)"
where c, d depend on r, yo, Y and r is related to h and A through a function r g(H),
H Ah given by

g(H) H + x/1 + n2.

Here / denotes the square root of z with argument in the interval (-r/2, 7r/2].
Double roots of the characteristic equation are ruled out by the condition h Im A I< 1.
For the nth term in the augmented sequence (2.8), we have

LY2n+I crr" dr-l(r-1)TM r -r-1

The matrix in (3.2) is regular. (The values r +i which render it singular are excluded
by the requirement IIm HI < 1.) Then a change of variables brings (3.2) to the "uncou-
pled" form [c(r2), d(r-2)"], which is compared with (3.1), after choosing p(0), q(0)
such that p(0) + q(0) 2c, p(0) q(0) 2d. For this choice p(0) c + d Yo.

We introduce the following subsets of C, in correspondence with the possible
nontrivial qualitative behaviours"

A, {0},

A2={bi: 0< b < 1},

A3 {bi: -1 < b < 0},

A4-- (a: 0< a < c},

928 J.M. SANZ-SERNA

As=(a’-oo< a <0},

A6 {a + hi" 0< a <, 0< b < 1},

A7-- (a+bi" 0<a <o0,-1 < b <0},

As={a+bi" -o< a <0, 0< b < 1},

Ag={a+bi:-< a <0, -1 < b <0}.

The proof is concluded if we show that

g(A) {1},

g(A2) {e’" 0< 0 < 7r/2},

g(A3) {e’" -zr/2 < 0 < 0},

g(A4)={a" l<a<

g(As)=(a’O<a<l},

g(A6)c (p e’"/9> 1, 0< 0< 7r/2},

g(AT) c {p e ’"/9 < 1, -zr/2 < 0 < 0},

g(A8) c {t9 e ’" p < 1, 0< 0 < 7r/2},

g(A9) {/9 e ’" p < 1, -7r/2 < 0 < 0}.

The conditions relative to Ai, i= 1- 5 are verified straightforwardly. For A6 note
that g is univalued and analytic in the closure A6, except for the branch point at H i.
It is therefore sufficient to investigate the behaviour of the boundary of A6 under the
mapping g(H). That boundary consists of A, A2, A4, already considered, and of the
half line L {a + i, 0< a < }. A simple computation shows that if z is in L then
Im z> 1, Re z>0. This accounts for A6. For A7 use the reflection principle. The
remaining subsets (i.e., As, A8, A9 are easily dealt with via the symmetry g(H)=
(g(-H))-’.

Remark. It is very important to emphasize that the solution [l(t), q(t)] given by
the theorem does not in general satisfy [l(0), q(0)]=[yo, y]. It is easily shown that
these two 2-dimensional vectors differ by O(h) terms for fixed, arbitrary Yo, Yl.

Before we close this paragraph, we describe some of the properties of linear
augmented systems.

THEOREM 2. Let A be as above. (i) If A 0 is an eigenvalue ofA with multiplicity
m, then A,-A are eigenvalues of the matrix of the augmented system with multiplicity m
each. If a is an eigenvector ofA associated to A O, then [a, +a] are eigenvectors of the
augmented matrix associated to + A.

(ii) If 0 is an eigenvalue of A with multiplicity m then 0 is an eigenvalue of the
augmented matrix with multiplicity 2m. If a 0 is in the null space ofA then [a, 0], [0,
a] are linearly independent and lie in the null space of the augmented matrix.

Proof. It is easy and will not be given.
It follows from this theorem that the origin is a stable equilibrium ofthe augmented

system if and only if the spectrum of A is purely imaginary. Theorem 1 implies then
that the mid-point rule is absolutely stable for small h and linear constant-coefficient
problems, if and only if these have purely imaginary spectra--a well-known result.

4. Some auxiliary results. We now turn our attention to general nonlinear aug-
mented systems (2.11). If Po, qo Rd we denote by p(t" Po, qo), q(t" Po, qo), the solution

NUMERICAL NONLINEAR INSTABILITY I. LEAPFROG SCHEMES 929

of (2.11) such that p(0; Po, qo)= Po; q(0; Po, qo)= qo. Then for fixed > 0 the mapping
Ft [Po, qo] [P(t; Po, qo), q(t; Po, qo)] is the t-timeflow ofthe system (2.11). It is defined
only at those vectors [Po, qo] such that the corresponding solution
[p(t; Po, qo), q(t; Po, qo)] is defined at time (i.e. has not reached infinity before that
time).

THEOREM 3. (i) For each fixed time t, the t-time flow Ft of any augmented system
preserves the volume in REd

(ii) The equilibria of the augmented system (2.11) are precisely the points [a, b],
with a, b equilibria of the original system. At a diagonal equilibrium [a, a] the eigenvalues
of the Jacobian matrix of the augmented system are given by +A, with A an eigenvalue
of the Jacobian matrix at a of the original system (2.1).

(iii) If the original system is a gradient system i.e. f grad V, for a scalar function
V, then the augmented system takes the Hamiltonian form

OH OH
Oq op

for the Hamiltonian function H(p, q)= V(p)- V(q). In this case H is a first integral of
the augmented system, i.e. H(p(t), q(t)) constant for solutions of (2.11).

(iv) If the original system has a quadratic first integral y(t)TMy(t)- constant, with
M a constant, symmetric matrix, then the augmented system has the first integral
p(t) TMq(t) constant.

Proof. (ii)-(iv) are easy. For (i) note that [f(q), f(p)] is a divergence-free field in
the [p, q] space [2, p. 69].

For the augmented recursion we have, similarly, the next theorem.
THEOREM 4. (i) The mapping T in (2.10) preserves the orientation and the volume.
(ii) The fixed points of T are of the form [a, b] with a, b equilibria of f.
(iii) T is one-to-one and onto.
(iv) If the original system has a quadratic first integral y(t)TMy(t) constant, with

TM a constant symmetric matrix, then the leapfrog points verify y Myn+l constant,
n=0, 1,.-..

Proof. Introduce the map

+hf(

so that T is the composition S S. It is clear that S is one-to-one and onto and this
implies (iii). Furthermore the Jacobian matrix of S takes the form

J=
I 2hDf

with Df the Jacobian of f(q) w.r.t.q. Then det (J)=-1 and the determinant of the
Jacobian matrix of T equals 1. This proves i), ii) and iv) are trivial.

5. Nonlinear problems. In this section we prove, by means of examples, that the
qualitative behaviour of the augmented sequence (2.8) is governed by the behaviour
ofthe neighbouring solutions ofthe augmented system, in the sense that when [y2, Y2n+ 1]
has been computed [Y2/2, Yah/3] lies near the corresponding local solution.

A. Our first example concerns the escalar equation y’- y2, whose nonequilibrium
solutions are monotonically increasing functions of t. The origin is the only equilibrium.
If y(0)< 0, then y(t) tends to 0 as tends to . If y(0)> 0, then y(t) reaches in finite
time.

930 J.M. SANZ-SERNA

The problem y’= y2, y(0) =-1, is solved by the mid-point method with h =0.1,
yo=-l, and Yl obtained by means of Euler’s rule. The computed values Yn do not
exhibit the monotonic behaviour of the points y(nh). Some values of yn are shown in
Table 1.

TABLE

n Yn

40 -0.308
41 -0.062
42 -0.307
43 -0.043

80 -0.220
81 0.267
82 -0.206
83 0.276

120 0.141
121 0.319

150 0.771
151 0.850

180 overflow

The augmented system is, according to Theorem 3, Hamiltonian with H(p, q)=
(p3_ q3). In the (p, q) plane, solutions of the augmented system are contained in the
level sets p3_ q3= constant (see Fig. 1). When the computed points are plotted in the

FIG.

NUMERICAL NONLINEAR INSTABILITY I. LEAPFROG SCHEMES 931

q x/zn-4

0,5 P= Yz.

FIG. 2

(p, q) space (p Y2,, q Y2,+1) it is clear (Fig. 2) that their behaviour mimics that of
solutions of the augmented system.

Note that while the points (Yzn, Y2n+l) remain near the diagonal, they roughly
move towards the origin. In this range of values of n, the behaviour is that of the
original equation y’ y2 (more precisely that ofthe diagonal solutions of the augmented
system). However the computed points move quickly away from the diagonal and
then, as discussed in 2, the dynamics of the augmented system takes over, leading
to a rapid increase of the magnitude of the values y,.

The fact that the blowup of leapfrog schemes is preceded by large discrepancies
between consecutive values y,, y,+l (i.e. nondiagonal behaviour) has been known for
a long time 11].

The following remark will be used later: Any choice of yo, y leads to a leapfrog
sequence with lim y, . Strictly speaking there is a curve in the (p, q)-plane so that
if (Yo, Yl) lies on C- then (Y2,, Y2,/) lie also on C and lim y, =0, provided that no
round-off is perpetrated.

The curve C- plays, in the difference case, the role played by the bisectrix of the
third quadrant in the augmented system (Fig. 1). Of course, in practice round-off is
always present and so computationally lim y, for every Yo, Yl.

The equation q b(p) for C- near the origin is readily obtained by assuming an
expansion

q= b(p) alp+ a2 p2+ a3 p3+"

and imposing the requirement that the coordinates T(1), T(2 of the transformed point
T(p, 4(P)) satisfy T2)= 4(Tl)). Thus, we find

(5.1) q=6(p)=p+hp2+h2p3+O(pS), p-O-.

932 J.M. SANZ-SERNA

In order to numerically investigate the role of C- the following experiment was
carried out.

For h 1/2, we took Yo -0.1 and successively set Yl equal to -0.1, -0.095, -0.09525.
This corresponds to choosing (Yo, Yl) on C- except for terms O(p2), O(p3), O(p5)
respectively. The smallest value of n for which y, is larger than zero is given in
Table 2.

TABLE 2

Yo Y N

-0.1 -0.1 49
-0.1 -0.095 164
-0.1 -0.09525 1,045

It is useful to observe that -0.095, -0.09525 are precisely the values of Yl furnished
by Euler’s rule and the second order Taylor expansion method, respectively.

Returning now to the flow in Fig. 1, it should be pointed out that, due to the
divergence-free/area conserving property the behaviour of the contours p3_ q3__
constant is similar to that of the streamlines in an incompressible flow. Thus these
contours are sparsely distributed in the neighbourhood of the equilibrium (stagnation
point) and converge near the diagonal of the first quadrant where the magnitude of
the velocity of the flow is large. Hence the diagonal p =q > 0 is an attractor of the
flow of the augmented system. Analogously for the mapping T, there exists a curve
C+ in the region p, q > 0 such that if (Yo, Yl) lies on C+ then for all integers n, T" (Yo, Yl)
lies on C/ with

lim T" (Yo, Yl) (oe, oo), lim T-"(yo, Yl)-- (0, 0),

and C* attracts the flow of the discrete recursion defined by T.
The expression q= O(p) near p=0 is again given by (5.1). Near p=, q= O(p)

1/2has an expansion in powers of p

q 2hp2
at- (2h)-l/2p 1/2 q- O(p-1/2),

Hence, we expect that for any choice of Yo, yl, h and large n

-1/2, 1/2y2,+l-2hy,+(2h)

In fact, when h =0.1, Yo Yl -1, we find that for n 36, Yzn--157.43, Y2,+1
4984.52 and the discrepancy between the right- and left-hand sides in the expression
above equals -0.937.

B. We now follow [26], [28] and consider the equation y’=y-y2. This has the
equilibria y 0 (unstable) and y 1 stable. Solutions with y(0) > decrease monotoni-
cally towards 1 and solutions with 0 < y(0) < 1 increase monotonically towards 1. When
y(0) < 0 the solution reaches -ee in finite time. (S.olutions in closed form are readily
available, but quantitative features are disregarded here.)

The problem y’= y_y2, y(O)=0.5 was integrated by the mid-point method with
h =0.1, Yo 0.5 and yl obtained by means of Euler’s rule. Some computed points are
shown in Table 3.

Initially the values y, grow and approach the equilibrium y 1. Then they oscillate
with increasing amplitude around that equilibrium. When the oscillations become large
enough, the computed points are "attracted" towards the unstable equilibrium y 0,
a surprising behaviour. Later, the y, recover the monotonic behaviour and eventually
(n 500, 501) a situation very similar to the initial (n 0, 1) is attained.

NUMERICAL NONLINEAR INSTABILITY I. LEAPFROG SCHEMES 933

TABLE 3

n y.

80 .99966
81 .99969

160 .99988
161 1.00013

240 .62801
241 1.31896

320 -.00320
321 .00262

360 -.00005
361 +.00005
440 .00286
441 .00316

500 .53534
501 .56013

The strange dynamics of the numerical solution is again readily explained by that
of the augmented system. Now, we have p’-q-q2, q,= p_p2, with four equilibria
O (0, 0), P (1, 1), C1 (0, 1), C_ (1, 0). According to Theorem 2, both O and P
are saddles, while a simple computation shows that C1 and C2 are centers.

The augmented system is Hamiltonian with H(p,q)=(1/2)(p--q2) (1/3)(
p3_q3). The contour H(p, q)=0 consists of the diagonal p=q and of the ellipse
3(p+ q)= 2(p2+ qE+pq). The latter comprises the unstable manifold of P and the
stable manifold of O. The phase portrait of the augmented system given in Fig. 3 can
now be compared with the plot of the points P=Y)_n, q =Y2n+l given in Fig. 3 (n=0,
5, 10,...,450).

We shall return to this example in 7.
C. First integrals. Our next example concerns the system yl) -Y)Y2; Y2 YI.

(Bracketed subindices denote components.) The system has the first integral YI) + Y2)
constant, implying that the origin is a stable equilibrium and that the solutions remain
bounded as increases. The points y =0, y)--r are equilibria, (stable for r=>0,
unstable for r < 0). In the (Y(1), y)-phase plane a nonequilibrium solution, is represen-
ted by a circular arc connecting the initial point (y(0), y2(0)) to the equilibrium"

Y(1) 0, Y(2) (yl)(0)+ y2)(0)) 1/2.

The augmented system

P) -qfl)q<_),

q2=P,),
inherits, according to Theorem 3, the first integral

(5.3) P(1)q(1) + P(2) q(2) constant.

934 J.M. SANZ-SERNA

q

FIG. 3

However the surfaces in the (p(), P(2), q(), q(2))-space whose equation is (5.3) are not
bounded: now the first integral does not guarantee boundedness of the solutions. In
fact, consider a diagonal point pO with coordinates PI)--q)Y O, P2)= q2). From the
theorem of continuous dependence on initial values, we conclude that solutions to the
augmented system with initial data near pO will reach the neighbourhood ofthe diagonal

)2 2 1/2equilibrium pe, p() q()--0, P(2) q(2) ((PI) + (P2))) Study of the linearization
of this equilibrium shows that, generically, solutions in the neighbourhood of pe leave
the regions

and enter the regions

and

{PI) > 0, P(2) > 0, ql) > 0, q2) > 0},

{P(1) > 0, P(2) > 0, q() < 0, q(2) < 0},

R {pa) > 0, P(2) > 0, q) < 0, q2)> 0}

R2 {P(1) < 0, P(2) > 0, q) > 0, q(2) > 0}.

Now, it is easily seen that R1, R2 are positively invariant for the flow of (5.1), i.e.
solutions of (5.1) cannot leave R or R2. We conclude that solutions of (5.1) which
start near the diagonal, generically enter R or R2 and remain there. However, it is
clear from the signs of the right-hand sides in (5.1) that solutions in R1 or R2 have
components whose magnitude grow unboundedly. (In fact they reach oo in finite time,
due to the quadratic interactions.) To sum up, solutions of (5.2) with initial data
arbitrarily close to the diagonal will generically reach infinity in finite time.

Once more we found that the augmented system provides a reliable indication as
to the dynamics of the mid-point rule solution to the original system. Some computed
values (h =0.1, yl)(0)=0.2, yt:)(0)= 1.) are shown in Table 4.

NUMERICAL NONLINEAR INSTABILITY I. LEAPFROG SCHEMES 935

TABLE 4

n Y(l)2n Y(2)2n Y(l)2n+l Y(2)2n+l

4 0.090 1.015 0.079 1.017
5 0.075 1.017 0.064 1.018

15 0.019 1.019 -0.002 1.020
16 0.019 1.019 -0.006 1.021

40 3.23 3.38 -4.63 4.74
41 7.64 7.68 -16.3 16.4

The dynamics is, for small n, that of the original system: Y(1), decreases towards
0 and Y(2), increases. In the neighbourhood of the equilibrium p the points enter the
region R1 and once there the behaviour is monotonic towards (c, oo,-, o).

As noted before, Theorem 4 (iv) ensures the conservation property (5.3). Therefore
an unbounded growth of the solution y, can only take place if one of the products
y().y().+ or y()y().+ is negative.

6. Application to partial differential equations. We now turn our attention to the
study ofschemes for the numerical solution ofevolutionary partial differential equations
based on the leapfrog time stepping. It is supposed that the space variables are
discretized first [20] (by means of finite differences, finite elements etc...) so as to
approximate the original equation or system by a system of ordinary differential
equations having the time as independent variable. The resulting system is in turn
discretized in time by means of the leapfrog technique to obtain the fully discrete set
of approximating equations.

For simplicity we restrict ourselves to the model equation [5]"

u, + UUx O, u(O, t) u(1, t),

although our study can be readily extended among others to problems associated with
the vorticity/stream-function formulation of the equations of inviscid, incompressible
flow.

Let r be a real parameter. The interval [0, 1] is divided into J intervals of equal
length Ax I/J, by means of a grid x =j Ax,j O, 1, , J and u(x, t) is approximated
by the solutions U U(t) of the system [5]:

(6.1)
U +(r/2Ax)Uj(Uj+ _,)+((1- r)/4Ax)(U2+, U_,) O,

j=l,...,J-l,

Error estimates for U(t) are given in [9]. The dynamics of the solutions of (6.1)
and of their leapfrog approximations is complicated indeed. A means of achieving
some insight is to restrict the attention to J-dimensional vectors [Uo,"’, Uj_]
representable as a superposition of a small number of discrete Fourier modes. The
relevant set of modes must be chosen in such a way that it is closed under the quadratic
interactions in (6.1), i.e. the product of two modes in the set must belong to the set.
This simplifying approach was first taken by N. A. Phillips [17] for the vorticity transport
equation. Later references include Richtmyer (reproduced in [18]) and Fornberg [5].

Here two sets of modes are considered:
(i) One mode solution. Assume that J is a multiple of 3.

936 J.M. SANZ-SERNA

Then [5] the system (6.1) has solutions

(6.2) U(t) a(t) sin (27rj/3),

where the amplitude a(t) satisfies

(6.3) a’(t) ca2(t), c= (1-3r).

Note that leapfrog discretization of the amplitude equation (6.3) yields, via (6.2),
a solution to the fully discrete leapfrog partial difference equations, i.e. Fourier analysis
and leapfrog differencing commute.

Fornberg [5] observed that if r 1/3 and a(0) and c are of the same sign, then
a(t) reaches infinity at a finite O(1/Ax) time. Hence he concluded that the correspond-
ing leapfrog approximations would grow unboundedly for increasing n. The condition
on the sign of a(0) means that, for a fixed value of r, only one among the sign patterns

in U0(0), UI(0)," ., Uj_(0) will lead to the blow up predicted by Fornberg. Upon
introducing the new variable y ca, the equation (6.3) reads y’= y2, so that from our
analysis in the previous section we conclude that the blowup in the leapfrog solution
will take place (if r 1/3) either if the signs of a(0) and c agree or not. In other words
both sign patterns in U(0), j =0, 1,..., J-1 lead to blowup.

(ii) Two modes solution. In the case r 1/3 the instability described above is
attributable to the space discretization.

Any method employed for the integration in time inherits that offending behaviour
and this is particularly so with the mid-point rule, which, as we have seen, enlarges
the class of initial conditions leading to blowup.

The value r= 1/3 is special in that it ensures the conservation law U](t)=
constant, and therefore forces the boundedness of U(t),j 1, , J, > 0. (See Morton
[14] or Kreiss and Oliger [8] for a discussion.) Hereafter we set r 1/3, assume that
J is multiple of four and look for solutions

U(t) a(t)(sin (Trj/2) + cos (Trj/2)) + b(t) cos 7rj.

The amplitudes a, b must satisfy

a’=(3-x)ab,
a system whose leapfrog discretization entails blowup as shown in the previous section.

The material in this section is covered in detail and expanded in [27].

7. Integrability. Concluding remarks. We now return to Example B in 5. It is
important to point out that the similarity between Figs. 3 and 4 is deceptive. In fact
the augmented system is an integrable Hamiltonian system [2], [25]. This simply means
that due to the first integral H(p(t), q(t))- constant, the integration of the system is
achievable by quadratures. (In systems with d degrees of freedom, d involutive first
integrals are required.) For the time h flow Fh, integrability implies that all the iterates
F(po, qo) of a point lie on a curve H(p, q)- constant. These curves are closed in the
region H(p, q)< 0. It may be conjectured from Fig. 4, that the mapping T, (which
approximates Fh) also defines an integrable system, i.e. a nonconstant function S(p, q)
defined in all RE exists so that the iterates T"(po, qo) are confined to lie on a level

NUMERICAL NONLINEAR INSTABILITY I. LEAPFROG SCHEMES 937

q=Yzn+4

FIG. 4

curve S(p, q)= constant. However Ushiki [26] has proved that this is not the case. In
fact he shows that the dynamics of T is chaotic in a sense made precise in his paper.
This remark does not invalidate our claim that (Y2,/2, Y2,/3) lies near the local solution
through (Y2,, Y2,/1); it only implies that the behaviour of the sequence (Y2,, Y2,/1),
n=0, 1,... may be far more complicated than that of sequences (p(nh), q(nh)),
n 0, 1,.... In this regard linear systems are exceptional as shown by Theorem 1.

We would like to recall that there are many available results concerning the
behaviour of area preserving mappings [24]. Some of them could be used in order to
ascertain the properties of the dynamics of T. It is expected that such a dynamics will
be highly involved. Some ofthe finer details will be numerically missed due to round-off.
Of particular significance is the study of T near center equilibria, since, as noted
before, these are the only nondegenerate equilibria in whose neighbourhood the
leapfrog technique is useful. This point will be the subject of a forthcoming paper.

Finally, we observe that theories similar to the one presented in this paper can
be constructed for any multistep method having rk- rk-2 as first characteristic poly-
nomial. (Nystrom and generalized Milne-Simpson methods, in the terminology of
[10].) For instance the dynamics associated with Milne’s method

h
+f,,),y,+- y,, =- (f,,+z + 4f,,+

would be governed by the enlarged system

p’=(p+2q), q’=(2p+q).

Note. Prof. M. N. Spijker has recently let us know that the idea of augmented
system had been considered by H. J. Stetter, Symmetric two-step algorithmsfor ordinary
differential equations, Computing, 5 (1970), pp. 267-280. However the subject of Stetter’s
paper is completely different from ours.

938 J.M. SANZ-SERNA

REFERENCES

A. ARAKAWA, Computational design for long-term numerical integration of the equations offluid motion:
two-dimensional incompressible flow. Part 1, J. Comput. Phys., (1966), pp. 119-143.

[2] V. ARNOLD, Mathematical Methods of Classical Mechanics, Springer, New York, 1978.
[3] ., Chapitres suppldmentaires de la thdorie des equations differentielles ordinaires, MIR, Moscow,

1980.
[4] K. DEKKER AND J. G. VERWER, Stability of Runge-Kutta Methods for Stiff Nonlinear Differential

Equations, North-Holland, Amsterdam, 1984.
[5] B. FORNBERG, On the instability of leapfrog and Crank-Nicolson approximations of a nonlinear partial

differential equation, Math. Comput., 27 (1973), pp. 47-57.
[6] P. HENRICI, Discrete Variable Methods in Ordinary Differential Equations, John Wiley, New York, 1962.
[7] M.W. HIRSCH AND S. SMALL, Differential Equations, Dynamical Systems and LinearAlgebra, Academic

Press, New York, 1974.
[8] H. O. KREISS AND J. OLIGER, Methods for the Approximate Solution of Time Dependent Problems,

GARP Publication Series, 10, 1973.
[9] P.-Y. Kuo AND J. M. SANZ-SERNA, Convergence ofmethodsfor the numerical solution ofthe Korteweg-de

Vries equation, IMA J. Numer. Anal., (1981), pp. 215-221.
[10] J. D. LAMBERT, Computational Methods in Ordinary Differential Equations, John Wiley, London, 1973.
11 D. K. LILLY, On the computational stability ofnumerical solutions oftime-dependent nonlinear geophysical

fluid dynamics problems, Monthly Wealth Rev., 93 (1965), pp. 11-26.
12] A. MAJDA AND S. OSHER, A systematic approachfor correcting nonlinear instabilities, the Lax- Wendroff

scheme for scalar conservation laws, Numer. Math., 30 (1978), pp. 429-452.
13] K. MIYAKODA, Contribution to the numerical weather prediction computation with finite difference, Japan

J. Geophys., 3 (1962), pp. 75-190.
[14] K. W. MORTON, Initial value problems by finite difference and other methods, in The State of The Art

in Numerical Analysis, P. A. H. Jacobs, ed., Academic Press, New York, 1977, pp. 699-756.
[15] A. C. NEWELL, Finite amplitude instabilities of partial difference equations, SIAM J. Appl. Math., 33

(1977), pp. 133-160.
[16] C. PALENCIA AND J. M. SANZ-SERNA, Equivalence theoremsfor incomplete spaces: an appraisal, IMA

J. Numer. Anal., 4 (1984), pp. 109-115.
17] N.A. PHILLIPS, An example ofnonlinear computational stability, The Atmosphere and the Sea in Motion,

B. Bolin ed., Rockefeller Institute, New York, 1959, pp. 501-504.
[18] R. D. RICHTMYER AND K. W. MORTON, Difference Methods for Initial-Value Problems, Wiley Inter-

science, New York, 1967.
[19] J. M. SANZ-SERNA, An explicit finite-difference scheme with exact conservation properties, J. Comput.

Phys., 47 (1982), pp. 199-210.
[20], Onfinite elements simultaneously in space and time, Int. J. Numer. Meth. Engrg., 19 (1983), pp.

623-624.
[21], Convergence of the Lambert-McLeod trajectory solver and of the CELF method, Numer. Math.,

to appear.
[22] J. M. SANZ-SERNA AND V. S. MANORANJAN, A method for the integration in time of certain partial

differential equations, J. Comput. Phys., 52 (1983), pp. 273-289.
[23] L. F. SHAMPINE AND M. K. GORDON, Computer Solution of Ordinary Differential Equations, The

Initial Value Problem, W. H. Freeman, San Francisco, 1975.
[24] C. L. SIEGEL AND J. K. MOSER, Lectures on Celestial Mechanics, Springer, Berlin, 1971.
[25] C. SIMtS, Integrability: a difficult analytical problem, Publicacions de la Secci6 de Matematiques,

Universitat Autonoma de Barcelona, 22 (1980), pp. 71-80.
[26] S. USHIK, Central difference scheme and chaos, Physica, 4D (1982), pp. 407-424.
[27] F. VADILLO, Estabilidad no lineal en ecuaciones en derivadas parciales, PhD. thesis, Universidad de

Valladolid, to appear.
[28] M. YAMAGUTI AND S. USHIKI, Chaos in numerical analysis ofordinary differential equations, Physica,

30 (1981), pp. 618-626.

SIAM J. ScI STAT. COMPUT.
Vol. 6, No. 4, October 1985

1985 Society for Industrial and Applied Mathematics
009

DESCRIPTION AND EVALUATION OF A STIFF ODE CODE DSTIFF*

GOPAL K. GUPTA

Abstract. The paper describes and evaluates DSTIFF, a set of subroutines for solving stiff ordinary
differential equations. The code is somewhat similar to the well-known packages LSODE, GEAR and
DIFSUB but the present set of subroutines are based on least squares multistep formulas rather than the
BDF. The paper describes the formulas used in the code, the structure of the code and the heuristics used,
and evaluates its performance. The code seems to be much more efficient than LSODE in solving stiff
equations which have Jacobians with eigenvalues having large imaginary parts.

On other problems, DSTIFF is as efficient as LSODE on larger tolerances and somewhat less efficient
than LSODE on stringent tolerances.

Key words, ordinary differential equations, stiff equations, mathematical software, multistep methods

1. Introduction. Several codes are now available for solving stiff ordinary differen-
tial equations. Enright, Hull and Lindberg (1975) and Enright and Hull (1976) have
tested codes for solving stiff equations and Shampine and Gear (1979) discuss some
ofthe available codes. Shampine and Gear also discuss why there is a need to distinguish
a special class of problems termed stiff and describe the common characteristics of
methods used for solving stiff equations. For a more recent survey of codes and
techniques used in them, we refer the reader to Gupta, Sacks-Davis and Tischer (1983).

Most of the codes available for solving stiff equations may be divided into the
following three classes"

(a) The BDF codes. The first code using the Backward Differentiation Formulas
(BDF) was designed by Gear (1971). This code, DIFSUB, uses formulas up to order
6. Several attempts have been made to improve this code and several variants of the
code are now available. The best known variants are GEAR by Hindmarsh (1974) and
EPISODE by Byrne and Hindmarsh (1975). GEAR and EPISODE themselves have
several versions. For example a version is available for solving problems with banded
Jacobians and another for linearly implicit equations of the form Ay’= g, A a square
matrix. A new version of GEAR called LSODE is now available from Hindmarsh
(1980). Several other variants are known to exist. Test results for the codes cited above
indicate that the BDF codes are the most efficient for solving stiff equations except
when the eigenvalues of the Jacobian of the differential equations have large imaginary
parts. For such oscillatory problems, the BDF codes become very inefficient because
of the poor stability properties of the 5th and 6th order BDF. To partly overcome this
problem, several BDF codes restrict the maximum order of the formula used to 5.

(b) The second-derivative codes. To overcome the stability problems of the BDF,
Enright (1972) suggested the use of the second-derivative formulas (SDF); linear
multistep formulas which include second-derivative terms. Enright designed the first
SDF code, SDBASIC, using formulas of orders up to 9. Other SDF codes have been
designed by Addison (1979) and Sacks-Davis (1980). Although the SDF used in the
above codes have much better stability than the BDF and therefore overcome the
problem of the BDF codes, they have three serious disadvantages. These are: require-
ment of analytic Jacobians, necessity of more linear algebra at each step than in the
BDF codes, and the difficulty in solving some problems with large coupling between
the equations. The last problem arises because the corrector iterations used in the SDF
codes assume that 02f/O2y terms for the given differential equations are negligible.

* Received by the editors November 13,. 1979, and in final revised form July 10, 1984.

" Department of Computer Science, Monash University, Clayton, Victoria 3168, Australia.

939

940 GOPAL K. GUPTA

Testing of the SDF codes indicates that they are not really very efficient when compared
to the BDF codes like GEAR except for solving small systems at stringent tolerances
or for solving problems with Jacobians having large imaginary parts for which the
BDF codes become very inefficient. As noted above, the biggest problem in using the
SDF codes is that the analytic Jacobian must be provided. However, if the Jacobian
is available, the SDF codes can also solve nonstiff equations efficiently because the
truncation error coefficients of the SDF of Enright (1972) are quite small.

(c) The Runge-Kutta codes. Implicit Runge-Kutta formulas (RKF) suitable for
solving stiff equations have been derived and some codes based on implicit RKF were
tested by Enright et al. (1975) and Enright and Hull (1976). The amount of linear
algebra required at each step in using a fully implicit RKF is so large, that these
formulas cannot be expected to be efficient even for small systems of equations. Progress
has recently been made in reducing the amount of linear algebra involved in using the
RKF and a code, STRIDE, has been designed by Butcher, Burrage and Chipman
(1979) based on singly-implicit RKF of Burrage (1978). The formulas used in STRIDE
are A(a)-stable, a => 83 (Widlund, 1967). To solve a system of N equations, STRIDE
needs to do about the same amount of O(N3) operations per step as a code based on
the BDF but several additional O(N2) operations per step must be performed. Kaps
and Rentrop (1979) take a different approach in designing two codes GRK4T and
GRK4A based on embedded generalized RKF (also called the Rosenbrock methods)
of order 4. The formula used in GRK4A is A-stable while that in GRK4T is A(89.3)
stable. These codes evaluate the Jacobian and then solve a linear system of order N
with four right-hand sides at each step. Preliminary testing by Addison (1980) and
results presented by Kaps and Rentrop (1979) indicate that the codes are reliable and
efficient in solving problems whose Jacobians have eigenvalues near the imaginary
axis. We therefore expect these codes to be useful in solving small systems of stiff
equations but the additional linear algebra involved at each step would make them
inefficient for large systems.

In addition to the above, a code based on cyclic formulas of orders up to 7,
STINT, has been designed by Tendler, Bickart and Picel (1978). Another code,
TRAPEX, based on extrapolation was tested by Enright et al. (1975) and Enright and
Hull (1976). Also Skeel and Kong (1977) have shown that blended formulas using the
Adams formulas and the BDF together are suitable for solving stiff equations. The
numerical testing has shown that TRAPEX is not an efficient code. Tendler, Bickart
and Picel (1978) show that STINT is reliable but not as efficient as GEAR. Only a
few test results of a blended formulas code are available. The blended formulas
approach does overcome one of the problems of the SDF codes in that it does not
require analytic Jacobians. Blended formulas however still need somewhat more linear
algebra per step than the BDF codes.

The present paper describes a code-based on linear multistep formulas derived
using least squares. The code, DSTIFF, overcomes the weakness of the BDF codes in
solving problems that have decaying highly oscillatory solution components and is
almost as efficient and reliable as the BDF codes on most other problems.

2. The formulas used. We have noted that the BDF codes like GEAR and LSODE
are very efficient for solving many stiff problems but have trouble on systems that have
Jacobian with eigenvalues close to the imaginary axis. This difficulty arises because of
the poor stability of the BDF of orders 5 and 6 near the imaginary axis. To overcome
this Wallace and Gupta (1973), Gupta and Wallace (1975) and Gupta (1975), (1976)
have derived linear multistep formulas having much better stability than the BDF. In

EVALUATION OF A STIFF ODE CODE 941

fact some formulas presented in Gupta (1975), (1976) are very close to being A-stable
even at orders 6 and 7. But these formulas with good stability are not very efficient
for solving stiff equations because the formulas have large truncation error coefficients
and tend to have roots close to unity at hA . This is in contrast to the BDF which
for orders 5 and 6 have poor stability near the imaginary axis, small truncation error
coefficients and zero roots at hA . There are, of course, a large number of formulas
somewhere between the two extremes and we have derived several sets in Gupta (1975).
We have chosen a set based on least squares to be included in DSTIFF. This set is
similar to Adams-Moulton formulas (AMF) but instead of interpolation we use the
least squares approximation. To clarify this, we first define the predictor corrector
method as

P,,(x) Pn_l(X) 4r nC((x-xn)/h)

where we want to compute a polynomial P, (x) of degree m at x, so that y, P, (x,)
may be computed. P,,_(x) is the polynomial approximation at X,_l and C is a fixed
polynomial of degree m characteristic of the particular multistep formula. For the
AMF of order m, C is such that

C(-1)-0, C’(-k)-0, k=l,2,...,m-1.

For the formulas we use for solving stiff equations, we require that C of order m
satisfy the condition C(-1)= 0 and C’ be a least squares approximation to points
(0, 1), (-1, 0), (-2, 0),. , (-N, 0) where N >- m- 1 and is so chosen that the formula
is stiffly stable and has small truncation error. These formulas were labeled FLS in
Gupta and Wallace (1975). We retain this name for them although the values of N
used for some formulas in the present set are different than those in that paper.

In Table 1, we present some of the characteristics of the formulas up to order 10.
Higher order formulas have been derived but their inclusion in the code did not seem
to affect the subroutine’s performance very much. We will show in the last section that
it may be desirable to further restrict the maximum order used to 7.

TABLE
Truncation error coefficients and stability offormulas FLS.

Modulus of
largest root Value of

Order a D km+ at hA c N

90.00 0.0 0.500 0.0
2 90.00 0.0 0.083 1.0
3 86.46 -0.075 0.242 0.32 3
4 80.13 -0.282 0.374 0.43 5
5 73.58 -0.606 0.529 0.567 7
6 67.77 -1.218 0.724 0.878 9
7 65.53 -1.376 1.886 0.898 12
8 64.96 -1.149 7.686 0.790 16
9 62.78 -2.086 16.737 0.989 19
10 63.74 -1.223 133.955 0.878 26

In Table 1, a is the angle defined by A(a)-stability (Widlund (1967)). D is the
most negative Re (hA) value on the stability curve, km+l is the truncation error
coefficient, and N is the parameter used in the least squares approximation above.

942 GOPAL K. GUPTA

3. Order and step-size changing. It is assumed that the reader is familiar with the
Nordsieck representation of the predictor-corrector methods. At any point xn, let an
be the vector of scaled derivatives of the approximating polynomial Pn(x) when a
step-size of hn is being used. We have (for example, refer to Gear (1971, p. 216))

a,,+ Aan + lw

where A is a pascal triangle, is a corrector vector depending on the multistep formula
being used and w is the correction necessary.

In DIFSUB, Gear (1971, 9.3) uses the following techniques in step-size and
order changing. Let the present order be q and the present step-size be h,.

(i) an has q + 1 elements. The last element an,q+-" hqny(q)/q! Therefore the local
truncation error, which is equal to kq+hq+yq+)+ O(hqn+2), can be estimated by

q+l" q!Van,q+l

(’an.q+ being the correction applied to the last element). Similarly, the estimate of
the local truncation error for order q- 1 is given by

and at order q + 1 by

kq" an,q+l" q!

ko+. q!"

Let us call these three estimates Eq, Eq_ and Eq+ respectively.
(ii) Let hn+l akhn where k q- 1, q, q + 1. New step-sizes for orders q, q- 1

and q + 1 are now calculated. If the user specified error tolerance is e, the ratios, ak, are

1 [e 11/(q+l)T5.2 w

1 [e] 1/(q+)

II .+l/wll
where for each member of the system there is a weight w and ll" is the L-norm.
The order to be used on the next step is selected corresponding to the largest of these
’S.

(iii) The following heuristics are also used.
(a) If the largest value is less than 1.1, the step-size is not increased.
(b) The step-size is not changed for q + 1 steps after the last change except

if a step fails.
(c) The order can not be increased if a step fails.
(d) If the step-size is not increased after computing ’s, the step-size and

the order is not changed for 10 steps except if a step fails.
(e) If a step fails three times, the order is set to one.
(D If the corrector iterations do not converge then the step-size is reduced

by a factor of 4.
In the main integrator of DSTIFF Eq, E_ and Eq+l are computed as above but

the a’s are computed as follows:
(i) If e > Eq, that is, after a successful step we have

1 [8q] 1/(q+l)

EVALUATION OF A STIFF ODE CODE 943

ll/q1 e_q_:!aq_,-
1.05 IIE-,/wll

I 11/(q+2)1 eq_2
q+l- 1.05 IIE +,/wll

where ek e/k1/2, k =q- 1, q, q + 1.
Instead ofthe L2-norm, we use the Lo-norm. The order is then selected correspond-

ing to the largest a. The main reason for changing the heuristics is that we want to
encourage the code to go to as high an order as possible. In the BDF codes, order 5
or 6 is reached quickly because the truncation error coefficients of the higher order
formulas are smaller. For the FLS formulas used in DSTIFF, the higher order formulas
have larger truncation error coefficients as shown in Table 1.

(ii) If e < Eq, then the unsuccessful step must be repeated and the new step-size
is based on

1 [eq] 2/(q+l)

1 eq_
1,05 II ? ll

This change is desirable because the need for reducing the step-size indicates that the
polynomials approximating the solutions are not very good approximations at the
present point. Therefore the step-size needs to be reduced by a larger factor than would
be reduced by formulas in (i) above.

(iii) The following heuristics are used:
(a) If the largest a value is less than 1.025 then the step-size is not increased.
(b) The step-size is not changed for q + 1 steps after the last change except

if a step fails.
(c) The order cannot be increased if a step fails.
(d) If a step fails twice and the order being used is more than 3, the order

is reduced by one.
(e) If a step fails three times, then the order is set to one.
(f) If the corrector iterations do not converge then the step-size is reduced

by a factor of 2 and the step-size and the order is not changed for the
next 10 steps (except if a step fails).

(g) DIFSUB, GEAR and LSODE use the fixed-step interpolation when the
step-size is varied. This means that the coefficients of the formulas do
not change when the step-size is changed. In DSTIFF also we use the
fixed-step interpolation most of the time, but we use a technique called
the "average-step interpolation" discussed by Gupta and Wallace (1979)
whenever the step-size is reduced. New coefficients of the formulas are
computed for (q/2)/3 steps after a step-size reduction takes place.

4. The corrector iterations. To compute the correction necessary so that the
approximating polynomial at the new point X,+l satisfies the differential equation, an
iterative procedure must be used. For stiff equations, the simple iterations do not
converge and the modified Newton’s iterations must be used. Using the Nordsieck
notation, the iterations may be expressed as follows (Gear (1971, p. 207))"

an+l,(m+l an+l,(m 1[-I + hloJ]-IF(a,,+l,(m)).
a.+.<,,) is the mth approximation to the vector a,+. is the corrector vector with first

944 GOPAL I. GUP’rA

coefficient lo. J is the Jacobian, and F is a function such that for a vector a, F(a)=
hf(ao)- a. F(a)= 0, if the vector a satisfies the differential equation.

As is common with other stiff codes, DSTIFF evaluates J only when necessary,
and the matrix -I+ hloJ is stored as its LU-decomposition. The present version of
DSTIFF does not have any sparse facilities to solve large problems efficiently.

An important part of the corrector iterations technique is the convergence test
used in terminating the iterations. In DIFSUB, the iterations are terminated if the
following test is satisfied:

Yn+l,(m+) Yn+l,(m)
w =)V(q+)"

w is a weight and the Lo-norm is used. e is the user-specified error tolerance and N
is the number of equations. The constant lo/2N(q+2) is empirical and used to ensure
that the implicit equations are solved somewhat more accurately then e.

Hindmarsh (1974) uses a slightly different convergence test in GEAR in an attempt
to reduce the number of iteractions. The test is based on the assumption that corrector
iterations converge linearly and the rate of convergence is almost constant. Let

d,,, Yn+ l,(m+ Y.+I,,.)
W

d,
C/1!

d,,,-1

w is a weight depending on the error criterion and the L2-norm is used in computing
d. c is the rate of convergence. The following convergence test is used:

elo
2cdmN2(q+2)"

2cd is an estimate of the correction at the next iteration. The rate of convergence,
c, is not available at the first iteration of each new step and the last value of c from
the previous step is used. DSTIFF also uses this test of corrector convergence. In
LSODE, the convergence test has been modified fuher, d is computed as above.but
the RMS-norm is used instead of the L2-norm. The convergence test seems to be the-
following:

1.5c (dqtk+ l)
2(q + 2)’

where kin+ is the truncation error coefficient of the formula being used and l,, is the
last coefficient of the formula vector /. In addition, if the rate of convergence Cm
becomes greater than 2 on the second or the third iteration, the code assumes that the
iterations are diverging.

Recently Shampine (1979), (1980) has discussed the problem of testing for correc-
tor convergence and pointed out some weaknesses of the tests discussed above.

5. The structure of DSTIFF. DSTIFF consists of eight subroutines, and the user
provides two subroutines and the calling program as discussed in Gupta (1979). Out
of the eight subroutines in DSTIFF, five subroutines (SDRIVE, DEC, SOL, PSET,
INTERP) are very similar to those used by Hindmarsh and Byrne in GEAR and
EPISODE. The remaining three subroutines (SSTIFF, METHOD, NEWHQ) are quite
different. We discuss the subroutines briefly.

EVALUATION OF A STIFF ODE CODE 945

(1) SDRIVE is the driver subroutine for the main integrator SSTIFF. SDRIVE
checks the parameters passed to it and calls SSTIFF repeatedly till the integration
reaches the end-point specified by the user. The calling sequence of DSTIFF is the
same as EPISODE and GEAR.

(2) DEC and SOL are subroutines for solving linear equations.
(3) SSTIFF is the main integrator. It takes one step and returns control to the

calling routine. On the first call, the subroutine sets the order to one and computes a
suitable step-size. At the end of one step of integration, the subroutine computes, if
necessary, new step-size and order to be used for the next step.

(4) METHOD specifies the coefficients of the formulas being used and the trunca-
tion error coefficients of the formulas. The three-dimensional array PERTST used in
DIFSUB and GEAR has not been used so that the subroutine is easier to understand.

(5) NEWHQ is called by SSTIFF when new step-size and order needs to be
computed. Separating the step-size and order changing techniques into a subroutine
makes it easier to understand and modify the package.

(6) PSET is called by SSTIFF to process the Jacobian. PSET numerically evaluates
the Jacobian if necessary and calls DEC to obtain a LU decomposition of the linear
equations.

(7) INTERP is an interpolation routine used when the user wants the solution at
intermediate points.

The overall structure of DSTIFF, therefore, looks like Fig. 1.

User’s
calling
program

Driver for
main integrator

SDRIVE

Main

Interpolation
program
INTERP

/ integrator

-"] ///T x"" The frmulasStep sze
and order / " used
selection

Solver for User User
Matrix suppliedlinear supplied

ecomposltlOn 6ieremiaequauun
EC

jacooan

equation

FIG.

946 GOPAL K. GUPTA

6. Performance evaluation of DSTIFF. Enright, Hull and Lindberg (1975), Enright
and Hull (1976), and Addison (1981) have tested several subroutines for solving stiff
equations. As we have noted, the BDF codes have been found to be the most efficient.
We therefore compare the performance of DSTIFF with LSODE, the most recent BDF
code. Tables 2 through 6 compare the performance of LSODE and DSTIFF in solving
the test problems in the testing package described in Enright (1979). The testing package
New Detest differs from the package used in Enright et al. (1975) in that the code
being tested does not need to be modified and normalised statistics, if required, are
provided. New Detest includes a set of 30 test problems consisting of 25 test problems
in five classes A, B, C, D and E used in Enright et al. (1975) and 5 additional chemical
kinetics problems in class F. We have presented the overall results for each of the six
problem classes. (New Detest was run on an IBM 3031/6 at the Asian Institute of
Technology, Bangkok.) Absolute error criterion was used in the testing.

TABLE 2
The total number offunction evaluations (overall results of each problem class).

Problem class A B C D E F Overall

DSTIFF
10"*-2 346 1,001 804 378 534 2,135 5,198
10"*-4 957 2,462 1,715 962 1,207 2,927 10,230
10"*-6 1,970 4,157 2,891 1,686 2,235 4,633 17,572

LSODE
10"*-2 250 3,613 528 300 381 1,198 5,820
10"*-4 535 3,672 1,028 623 712 2,086 8,656
10"*-6 1,007 4,622 1,711 1,267 1,375 3,634 13,616

TABLE 3
The total number of Jacobian evaluations and LU decompositions (overall results of each problem class).

Problem class A B C D E F Overall

DSTIFF
10**-2 61 72 78 60 59 159 489
10"*-4 88 90 104 96 82 145 605
10"*-6 106 98 118 130 101 217 770

LSODE
10"*-2 59 206 86 67 75 183 676
10"*-4 86 248 127 112 100 229 902
10"*-6 119 289 160 166 144 346 1,224

TABLE 4
The total time in seconds (overall results of each problem class).

Problem class A B C D E F Overall

DSTIFF
10"*-2 1.741 3.335 2.560 0.742 1.130 5.131 14.640
10"*-4 6.511 10.434 6.375 2.099 3.191 9.123 37.733
10"*-6 14.118 22.416 12.376 4.515 6.993 16.789 77.207

LSODE
10"*-2 1.664 18.288 2.159 0.930 1.261 3.969 28.271
10"*-4 3.765 21.490 4.355 1.958 2.499 7.032 41.100
10"*-6 7.100 26.282 7.331 4.169 5.049 12.678 62.609

EVALUATION OF A STIFF ODE CODE 947

TABLE 5
The total number of steps taken (overall results of each problem class).

Problem class A B C D E F Overall

DSTIFF
10"*-2
10**-4
10"*-6

204 484 390 173 250 918 2,419
620 1,176 866 467 607 1,349 5,085

1,189 2,139 1,526 869 1,180 2,364 9,267

LSODE
10"*-2
10"*-4
10"*-6

187 2,804 395 184 255 803 4,628
444 3,123 805 406 542 1,473 6,793
832 3,989 1,392 922 1,100 2,767 11,002

TABLE 6
The local error deception (overall results of each problem class).

Fraction of steps on which local error> tolerance

Problem class A B C D E F Overall

DSTIFF
10"*-2 0.000 0.004 0.010 0.006 0.020 0.024 0.014
10"*-4 0.000 0.006 0.016 0.004 0.013 0.020 0.011
10"*-6 0.004 0.008 0.006 0.000 0.011 0.019 0.010

LSODE
10"*-2 0.059 0.339 0.096 0.098 0.141 0.173 0.258
10"*-4 0.027 0.443 0.063 0.059 0.110 0.145 0.256
10"*-6 0.053 0.359 0.093 0.060 0.043 0.145 0.192

We note that LSODE and DSTIFF are similar codes in many ways. Both codes
use Nordsieck representation of the linear multistep formulas and both carry out about
the same amount of work per step. Therefore the statistics provided by New Detest
are a good basis for comparing the two codes.

We note that DSTIFF is very efficient, specially at larger tolerances. The main
reason for the much better overall performance of DSTIFF is the problem B5 which
is solved by DSTIFF very efficiently.

We note that DSTIFF failed to successfully integrate problem E5 at tolerances of
10-2 and 10-4. Problem E5 is a semi-stable chemical kinetics problem that can become
unstable if a computed solution becomes negative. Shampine (1981) and Enright and
Hull (1976) discuss the difficulty of solving such problems.

On the basis of the above testing we can say that:
(1) The code DSTIFF seems to be more reliable than LSODE since the deception

of DSTIFF is much smaller than for LSODE.
(2) The number of Jacobian evaluations are smaller for DSTIFF than for LSODE

because LSODE reevaluates Jacobians regularly even if there is no need for it.
(3) DSTIFF solved the problems in Class B much more efficiently than LSODE.

This is because the problem B5 was solved by DSTIFF in 134, 358 and 615 steps at
the three tolerances respectively, while LSODE took 2351, 2397 and 2620 steps respec-
tively. Problem B5 has eigenvalues very close to the imaginary axis (-10+ 100i).

(4) On problems other than those which have large imaginary eigenvalues, LSODE
is usually more efficient than DSTIFF, but is usually less reliable in keeping the local
error below the user specified tolerance.

(5) Somewhat surprisingly, in spite of the higher order formulas used by DSTIFF,
LSODE seems to be more efficient at stringent tolerances. This is partly because of

948 GOPAL K. GUPTA

the large truncation error coefficients of the higher order formulas. Also the roots at
infinity of the higher order formulas are close to 0.9.

(6) The average number of function evaluations per step is close to 2.0 for DSTIFF
while for LSODE, it is only 1.25. This is because of somewhat different stopping
criterion used in the codes. It also may be partly due to slightly larger leading coefficients
of the higher order formulas in DSTIFF. We note however that if the corrector tests
of both codes were to be changed to the test recommended by Shampine (1979) to
improve reliability, we expect both codes to take about two function evaluations per
step. Therefore the change probably will have much more impact on the performance
of LSODE than on the performance of DSTIFF.

(7) The CPU time taken per step on the average is close to 0.006 seconds for
LSODE while for DSTIFF, the times are 0.0060, 0.0074 and 0.0083 seconds for the
three tolerances respectively. The time taken per step is larger for DSTIFF because of
the larger number of function evaluations per step and, at stringent tolerances, due to
the higher order formulas used.

Another set of tests were run to evaluate the performance of DSTIFF in solving
stiff equations when analytic Jacobian is not available and the code must approximate
the Jacobian by finite differencing. Table 7 gives the overall results for DSTIFF and
LSODE. DSTIFF failed to complete the integration for Problem F4 at TOL 10-6 and
therefore results for the tolerance 10-6 for LSODE also do not include the cost of
solving F4.

TABLE 7
Overall results with numerically approximated Jacobian (* excluding cost of solving problem F4).

TOL Time Fcn calls Mat fact No. of steps

DSTIFF
10-2 14.884 7,244 488 2,417
10-4 37.833 12,804 605 5,085
10-6 64.714 16,884 648 7,522 (*)

LSODE
10-2 27.797 8,506 652 4,510
10-4 40.942 12,394 882 6,723
10-6 54.887 15,700 1,028 9,007 (*)

TABLE 8
Overall results when the maximum order in DSTIFF is set to 5, 7 and 10 (excluding class F).

Max order TOL Time Fcn calls Mat fact No. of steps

10-2 9.308 3,210 331 1,551
10-4 24.257 7,042 473 3,857
10-6 50.244 13,769 520 7,631

Overall 83.809 24,021 1,324 13,039

10-z 9.208 3,081 331 1,499
10-4 26.375 7,134 448 3,694
10-6 53.204 12,743 565 6,841

Overall 88.787 22,958 1,344 12,034

10

10-2 9.509 3,063 330 1,501
10-4 28.610 7,303 460 3,736
10-6 60.418 12,939 553 6,903

Overall 98.537 23,305 1,343 12,140

EVALUATION OF A STIFF ODE CODE 949

To evaluate the effect of the high order formulas on the efficiency of DSTIFF, we
conducted another set of tests. We used DSTIFF with the maximum order of formulas
restricted to 5 and then with maximum orders of 7 and 10 to solve the New Detest
stiff problems. The results obtained are summarised in Table 8.

For better comparison of results we have excluded class F problems from the
summary in Table 8. This has been done because for maximum order of 5 we had
three failures in Class F while maximum order 7 and 10 had only two failures. We
note that the results at TOL-10-2 are not affected very much by setting maximum
order to as low as 5. For the more stringent tolerances, maximum order of 7 seems to
be better than maximum order of 5 or 10 since the number of function evaluations
and the number of steps for maximum order 7 are the lowest.

7. Concluding remarks. The code DSTIFF has been shown to be a reliable and
efficient code. It is much more efficient than LSODE in solving problems which have
Jacobians with eigenvalues having large imaginary parts. On the other problems,
DSTIFF is almost as efficient as LSODE on larger tolerances and somewhat less
efficient than LSODE on the stringent tolerances.

The evaluation of DSTIFF using New Detest is only one indicator of its perform-
ance. For example, the Jacobians in New Detest are so cheap to evaluate that the fact
that one code takes smaller numbers of Jacobian evaluations is not really reflected in
the CPU time statistics provided by New Detest. We further note that if a code fails
on one or more of the problems in New Detest, comparison of codes becomes very
difficult. Also it is difficult to say how serious a failure should be considered when
some of the problems in the set are very difficult problems. Recently Shampine (1981)
has critically looked at the set of problems in New Detest (except class F) and it is
hoped that New Detest will be modified in line with Shampine’s comments.

We hope to further improve DSTIFF and are studying why DSTIFF does not
perform better at stringent tolerances. We are looking at the order changing algorithm
and are considering reducing the maximum order used in the code.

A copy of the code DSTIFF may be obtained by writing to the author.

Acknowledgments. I would like to thank Drs. Ron Sacks-Davis, Larry Shampine
and Peter Tischer and two anonymous referees for their comments on an earlier version
ofthis paper. Programming assistance ofKao Chung-Cheng is gratefully acknowledged.

REFERENCES

C. A. ADDISON (1979), Implementing a stiff method based upon the second derivative formulas, Technical
Report 130, Dept. Computer Science, Univ. Toronto, Toronto, Ontario.

(1980), Results of the 1979 ODE olympics, unpublished manuscript.
K. BURRAGE (1978), A special family of Runge-Kutta methods for solving stiff differential equations, BIT,

18, pp. 22-41.
J. BUTCHER, K. BURRAGE AND F. CHIPMAN (1979), STRIDE: Stable Runge-Kutta integratorfor differential

equations, Computational Mathematics Report No. 19, University of Auckland; BIT, 20 (1980)
pp. 326-340.

G. D. BYRNE AND A. C. HINDMARSH (1975), A polyalgorithm for the numerical solution of ordinary
differential equations, ACM-Trans. Math. Software, 1, pp. 71-96.

W. H. ENRIGHT (1972), Studies in the numerical solution of stiff ordinary differential equations, Technical
Report No. 46, Dept. Computer Science, Univ. Toronto, Toronto, Ontario.

W. H. ENRIGHT, T. E. HULL AND B. LINDBERG (1975), Comparing numerical methods for stiff systems of
ODE’s, BIT, 15, pp. 10-48.

W. H. ENRIGHT AND T. E. HULL (1976), Comparing numerical methods for the solution of stiff systems of
ODE’s arising in chemistry, in Numerical Methods for Differential Systems, L. Lapidus and W. E.
Schiesser, eds., Academic Press, New York, pp. 45-66.

950 GOPAL K. GUPTA

W. H. ENRIGHT (1979), Using a test package for the automatic assessment of methods for ODE’s in
Performance Evaluation of Numerical Software, L. D. Fosdick, ed., North-Holland, Amsterdam,
pp. 199-213.

C. W. GEAR (1971), Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall,
Englewood Cliffs, NJ.

G. K. GUr’TA (1975), New multistep methods for the solution of ordinary differential equations, Ph.D. Thesis,
Dept. Computer Science, Monash Univ. Clayton, Victoria, Australia.

(1976), Some new high-order multistepformulaefor solving stiffequations, Math. Comp., 30, pp. 417-432.
(1979), DSTIFF: A set ofsubroutinesfor solving stiffequationsmUser’s guide part 1, Technical Report
No. 3, Dept. Computer Science, Monash Univ., Clayton, Victoria, Australia.

G. K. GUPTA, R. SACKS-DAVIS AND P. TISCHER (1983), A review ofrecent developments in solving ODE’s,
Technical Report No. 24, Dept. of Computer Science, Monash University, Clayton, Victoria,
Australia, ACM Computing Surveys, to appear.

G. K. GUr’TA AND C. S. WALLACE (1975), Some new multistep methods for solving ordinary differential
equations, Math. Comp., 29, pp. 489-500.

(1979), A new-step-size changing technique for multistep methods, Math. Comp., 33, pp. 125-138.
A. C. HINDMARSH (1974), GEAR: Ordinary differential equation system solver, Tech. Report UCID-30001,

Rev. 3, Lawrence Livermore Laboratory, Livermore, CA.
(1980), LSODE and LSODI, two new initial value ordinary differential equation solvers, ACM SIGNUM
Newsletter, 15, 4, pp. 10-11.

P. KAPS AND P. RENTROP (1979), Generalized Runge-Kutta methods of orderfour with stepsize control for
stiff ordinary differential equations, Numer. Math., 33, pp. 55-68.

R. SACKS-DAVIS (1980), Fixed leading coefficient implementation of SD-formulas for stiff ODE’s, ACM
Trans. Math. Software, 6, pp. 540-562.

L. F. SHAMPINE (1981), Evaluation of a test set for stiff ODE solvers, ACM Trans. Math. Software, 7, pp.
409-420.

L. F. SHAMPINE AND C. W. GEAR (1979), A user’s view ofsolving stiffordinary differential equations, SIAM
Rev., 21, pp. 1-17.

L. F. SHAMPINE (1979), Evaluation of implicit formulas for the solution of ODE’s, BIT, 19, pp. 495-502.
(1980), Implementation of implicit formulas for the solution of ODE’s, this Journal, 1, pp. 119-130.

R. D. SKEEL AND A. K. KONG (1977), Blended linear multistep methods, ACM Trans. Math. Software, 3,
pp. 326-345.

J. M. TENDLER, T. A. BICKART AND Z. PICEL (1978), A stiffly stable integration process, ACM Trans.
Math. Software, 4, pp. 399-403.

C. S..WALLACE AND G. K. GUPTA (1973), General linear multistep methods to solve ordinary differential
equations, Aust. Comp. J., 5, pp. 62-69.

O. B. WIDLUND (1967), A note on unconditionally stable linear multistep methods, BIT, 7, pp. 65-70.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 4, October 1985

(C) 1985 Society for Industrial and Applied Mathematics
010

EXPANDED CONVERGENCE DOMAINS FOR NEWTON’S
METHOD AT NEARLY SINGULAR ROOTS*

D. W. DECKER AND C. T. KELLEY$

Abstract. We consider Newton’s method for a class of nonlinear equations for which the derivative is
nearly singular at the root. We show that there is a larger than expected domain of attraction for the Newton
iterates but that convergence appears to be only linear in most of this domain. We give a modification of
Newton’s method that improves this slow convergence.

Key words. Newton’s method, singularity, convergence rate, acceleration, bifurcation

1. Introduction. Newton’s method has long been widely used in the solution of
nonlinear, functional equations, which we denote in the form F(x)= 0, where F maps
some Banach space E into itself. Starting with some initial guess Xo, the Newton
iterates are defined as

(1.1) X,+l=X,-F’(x,)-lF(x,), i=0, 1,....

If x* denotes a root and the Fr6chet derivative F’(x) is Lipschitz continuous near x*
and is nonsingular at x*, then the iterates will converge quadratically to x*, provided
Xo is chosen sufficiently close [12]. That is, there is a K > 0, such that

(1.2) x, 0, 1, .
Recently, much attention has been directed at the situation where F’(x*) is singular

[2]-[11], 16], 18]-[21]. The convergence behavior demonstrated is quite varied and
depends on the precise singular structure of F’ and higher derivatives. Three features,
however, are common to these results:

(i) The initial Newton iterate cannot be chosen arbitrarily within a small ball
about x* but must be a member of a more restrictive set.

(ii) The overall convergence rate for the iterate error is reduced from quadratic
to linear.

(iii) The iterate error may be decomposed into two components:
(1) the error in the direction of the null space of F’(x*),
(2) the error in the remaining range space directions; with the second component

of smaller order than the first. (For example, the range space error proportional
to the square of the nullspace error is common [6].)

In light of the slower convergence for singular problems, work has been undertaken
to devise modifications of Newton’s method that will return quadratic or at least
superlinear convergence ([5], [7], [16], [18], [20], [21] and in particular see the excellent
survey [9]).

The purpose of this paper is to address the following question: Suppose F’(x*)
is not singular, but is nearly so; what convergence behavior may be expected of
Newton’s method? Before considering this question in detail we indicate why nearly
singular problems may be considered important. Path following techniques for the

* Received by the editors April 26, 1983, and in revised form June 5, 1984.

" Department of Mathematics, North Carolina State University, Box 5548, Raleigh, North Carolina
27650. The work of this author was supported by the National Science Foundation under grants MCS-81-
04254 and MCS-83-00841.

Department of Mathematics, North Carolina State University, Box 5548, Raleigh, North Carolina
27650. Supported by the National Science Foundation under grants MCS-79-02659A01 and MCS-83-00841.

951

952 D.W. DECKER AND C. T. KELLEY

solution of nonlinear equations form an important component of numerical computa-
tion in almost every scientific discipline. In such computations the determination of
intersecting solution branches is commonly required and hence nearly singular prob-
lems will arise naturally in the neighborhood of the branch (singular) points. In
addition, a disproportionate share of the computational expense is usually involved
in determining the solutions near the bifurcation points as a result of sensitivity to
initial guess and slow convergence. Hence improved information on convergence
domains and schemes for accelerating convergence for nearly singular problems could
prove especially worthwhile.

That such problems must blend regular and singular convergence behavior can
be seen in the following manner. Consider a sequence Xo, xl," of Newton iterates
for a singular problem. If we perturb the problem very slightly to nearly singular, the
initial iterates will be largely unchanged and hence will exhibit linear convergence.
However since F’(x*) is now nonsingular, the iterate behavior must become more
regular and quadratic convergence must eventually be achieved.

The present work describes a basic singular problem and its companion nearly
singular problem. These two problems, however, are intended to describe the conver-
gence behavior to be expected in the neighborhood of simple bifurcation points. Hence,
we first introduce the notation required to demonstrate this correspondence.

The general bifurcation problem may be formulated as

(1.3) F(x; e)-0

where e is a chosen continuation parameter and e- 0 denotes the bifurcation point.
We let x*(e) denote a solution arc through the branch point. For the singular problem
we make the following common assumptions [13], [22]. Let F’(x*(0);0) have a
one-dimensional null space No,

(1.4) No W(F’(x*(O); 0)) span {bo}, bol[1

and a range space Xo, which decompose the space E,

(1.5) Xo (F’(x*(0), 0)), E NoO)Xo.

Let Pvo denote a projection onto No parallel to Xo and Pxo I-PNo. With these
assumptions we see F’(x*(0); 0) is a Fredholm operator of index zero and hence will
remain so for e near zero. In this case it can be shown [2] that the structure of (1.4)-(1.5)
is also preserved for small e. That is, one may solve

(1.6) F’(x*(e); e)b(e)=/(e)th(e)

for a continuous eigenvalue-eigenvector pair ((e), b(e)) with (/z(0), 4)(0))= (0, 4o).
In addition there is a codimension one subspace X(e) which satisfies

(1.7) F’(x*(e); e)X(e)= X(e)

and

(1.8) E= N(e)O)X(e)

where

(1.9) N(e) =span {th(e)}, IIb(e)ll 1.

Hence one may define Pv(e) to be the projection onto N(e) parallel to X(e) and
Px(e)= I- P,,(e).

NEWTON’S METHOD AT NEARLY SINGULAR ROOTS 953

To simplify the notation we first assume /x(e)= e. (Alternately, one could view
this as choosing the small eigenvalue of the linearized problem as the new continuation
parameter near the branch point.) Second, when discussing the nearly singular problem
the explicit e dependence (x*(e), N(e), etc.) is suppressed, while the singular problem
is distinguished by a zero subscript (Xo*, No, etc.).

It is in this fashion that the two problems, singular and nearly singular, may be
employed to illustrate the convergence behavior to be expected in the neighborhood
of simple branch points. The following two sections determine the performance of
Newton’s method when applied to these two problems, which we now roughly summar-
ize. (The singular case has been analyzed previously and is included here for complete-
ness and comparison [6-1, [19].)

For the singular problem, if F is smooth, and a natural nondegeneracy condition
on F" is satisfied, an initial iterate chosen from a pair of truncated cones centered at

Xo* (with symmetry axes in the bo direction) will generate a sequence convering to Xo*.
The convergence is linear with overall rate 1/2. For essentially no additional computational
expense, an acceleration technique which modifies every other iterate can be shown
to converge superlinearly to Xo* [16].

For the nearly singular problem it is a simple matter to demonstrate a ball of
radius the order of e in which quadratic convergence to x* is achieved. It is shown,
however, that there is also a truncated cone in which convergence (although with
initially linear rate) can be assured. For small e this canonical region approaches one
of the cones of the singular problem and hence becomes dramatically larger than the
domain of quadratic convergence as e shrinks to zero. This situation is presented
pictorally in Fig. 1. Here we have a two-dimensional representation of the Banach
space E (with axes in the No and Xo directions) and the chosen solutions x*(e) are
then sketched in a neighborhood of the bifurcation point e =0 as a curve in e-E
space. (The second bifurcation branch is indicated by dashed lines and the following
construction could be applied to this curve as well.) It is expected that F’(x; e) will
also be singular away from the bifurcation point and in general the singular set will
be a smooth manifold through (x*(0), 0). Under the assumption made on F" in the
next section the e 0 slice of this surface is transverse to the No direction and such a
manifold is included in the figure. From the sketch it is then clear that a pair of cones
in E centered about No directions (the second indicated by dashed lines) are regions

FIG.

954 D. W: DECKER AND C. T. KELLEY

of invertibility of F’ for e 0; while for e # 0 only one cone may be chosen in order
to avoid the singular manifold. Finally the Newton iterate domain of attraction is then
composed as the union of this conical region and the usual quadratic convergence ball.

For acceleration of the Newton iterates, it is shown that starting in the conical
domain but well outside the quadratic ball the problem behaves like a singular problem
and the singular acceleration modification may be employed. As the convergence
proceeds the behavior becomes more regular and a test is presented which determines
from iterate information when modification should be terminated. When employed,
however, a modified step is assured to be an improvement, and the test is such that
in the limit of e-0 the modification is never terminated and overall superlinear
convergence is achieved.

The proofs of these results for the nearly singular problem are contained in 4.
In 5 an example is given which illustrates both the larger conical domain of attraction
and the improved convergence achieved in this domain with the use of the proposed
acceleration scheme.

2. The singular problem. The type of singular problem described in this section
has been considered by several authors [3], [6]-[8], [18], [19] with the present formula-
tion following that of [6].

We define the operators

A(x) PxoF’(x)Pxo, B(x) PxoF’(x)PNo,
(2.1)

C(x) PvoF’(x)Pxo, D(x) PrvoF’(x)Pvo,

with A(xo*) * -=PxoF (xo)Pxo /3 which is invertible when viewed as an operator from
Xo into itself. Then we have the following [6].

LEMMA 2.2. For p sufficiently small and IIx-Xo*ll--< p, F’(x) is nonsingular if and
onlyif

(2.3))(x) =- D(x)- C(x)A(x)-lB(x)

is invertible (viewed as an operator from No into itself). Further, for p sufficiently small
and D(x) invertible we have

F’(x)-’ Pxo(A(x)-’ + A(x)-’B(x)b(x)-’C(x)A(x)-l)Pxo
(2.4) PxoA(X)-’B(X)b(X)-’PNo

poi(x)-’C(x)A(x)-’Pxo+ PNob(X)-’Puo.

This result hence shifts the question of invertibility of F’(x) to that of/(x).
We set x- x* and define flk(X) as any operator on E, vector in E, or scalar

whose norm is at least O(llllk). A region that will prove to be a domain of attraction
for Newton’s method we define as

(2.5)

The singular structure and the convergence behavior for this problem then rests upon

(2.6) Ao6o PvoF"(X*o)(6o, 40)

for we have [6].
THEOREM 2.7. Assume Ao O. Then there is a po> 0, 0o> 0 such that F’(xo)- exists

for all Xo W(po, 0o). Further, all subsequent Newton iterates remain in this set and

NE’vVTON’S METHOD AT NEARLY SINGULAR ROOTS 955

converge to X*o with rate determined by

Pxo-, --< K, ,- ,(2.8)

and

some Kl > O, i_->l,

[[PNo, 1
(2.9) i.na I1iII "This result illustrates the three basic features of singular problems described in
the introduction. This result also provides an example of the convergence behavior at
a simple branch point when the bifurcation is transverse. (That is, both branches exist
for both e > 0 and e < 0 [22].) A second type of bifurcation, called super (sub) critical,
or pitchfork occurs when one branch exists only for e > 0 or e < 0. It is possible for
such branch points to be irregular singular points in the sense of Griewank and Osborne
[11] in which case the behavior of Newton’s method may be extremely complex.
On the other hand pitchfork bifurcation may occur when the problem is such that
F"(x*)(.,.)=O but PNF’"(x*)(Cbo, bo, bo)0, and in this case the conclusions of
Theorem 2.7 remain valid with 1/2 replaced by in (2.9) [6]. Note that F"(x*) 0 certainly
holds if F(x)=-F(-x).

For an acceleration scheme we first consider

(2.10)
y=x-F’(x)-F(x),

z=y-2F’(y)-lF(y).

If x W(po, 0o), then so is y and it is a simple matter to show IIP1[--/3(x). The
problem, however, is that z may not be in W(p, O) and hence a correction term (larger
than fl2(x)) is added to remedy this defect. This is contained in [16].

TqEOREM 2.11. Assume Ao 0 and a (0, 1) is given. Then if Xo W(po, 0o) for
Po, Oo sufficiently small and Yn, 6, and X,+l are given for n >= 0 by

(2.12) 6n=F’(yn)-lF(yn),

then Xn W(po, 0o) for all n and there is a K > 0 so that

n/, ----< K, n ’/, n 0, 1,...

3. The nearly singular problem. As outlined in the introduction, the structure of
the singular problem is assumed to be such that

(3.i)
F’(x*)ch- , I111- 1, N=sp{b},

F’(x*)X X, E NO) X,

with Pn a projection onto N parallel to X and Px I-P (and with the explicit e
dependence of the subspaces and projections suppressed). The operators A(x), etc.
are defined for this problem in the same fashion as (2.1) and hence Lemma 2.2 may
be applied as well.

We first estimate the radius of the ball about x* in which the Newton iterates can
be assured to converge. The standard requirement for an initial iterate Xo to generate
a convergent Newton sequence may be written as [12]

(3.2) ZllF’(xo)-’ll IIF’(xo)-’ f(xo)ll <

956 D.W. DECKER AND C. T. KELLEY

where L is a Lipschitz bound on F’(x) near Xo. From (2.3) we see D(x)= ePN + ill(X)
and setting r= I1 11 we have/(x) invertible and 11 5(x)- ll provided

(3.3) r < k2e,

for some constants kl, k2> 0 and some chosen g> 0. From this and the expression
(2.4) for F’(x)- we have

k3(3.4) IIF’(xo)-P <---, IIF’(xo)- P,, <= k4

for some k3, k4> 0 and any Xo with I1 oll--< r where r, e satisfy (3.3). Now

(3.5) F(xo) ePN,o+ Px’Px:o+/32(Xo)

and since

(3.6) IIF’(xo)-F(xo)ll <-IIf’(xo)-lP,,,ll IIP,,,F(xo)ll + IIF’(xo)-P,,ll IIPF(xo)ll
we see (3.2) is satisfied provided

(3.7)
1

ksr + k6 < 1

for some ks, k6 where r, e satisfy (3.3). The relation (3.7) is quadratic in r/e and is
satisfied provided r e < k7 for some k7 > 0. Hence there is a constant u > 0 such that
for all 0_-< e-<_ g the Newton iterates will converge quadratically to x* provided Xo is
chosen from

(3.8) Q(e)

For our purposes the constant u is unimportant, the desired conclusion being that the
radius of the quadratic convergence ball is O(e).

We now construct a region of invertibility (modeled after the singular region)
which for e small is much larger than Q(e). We first note that all operator norms, say
[IPNF"(x*)(, PN’)II are assumed to be the supremum over (the suppressed e for
0 < e <- g for some fixed g > 0. Defining

A PrvF"(x*)(, 0),

(3.9)

s sgn (eA),

we consider the conical region

(3.10) W(p,

From (2.3) we see

(3.11) /(x) ePu + Ol(X)+ O2(x)- C(x)A-l(x)B(x)+ fl3(x)

where Di(x) =- PuFI+I)(x*)(I, Pv"), j 1, 2,. (and similarly later for Aj(x), B(x),
etc.). With the definitions (3.9)

(3.12) D(x) (e +A/.,) + PvF"(x*)(Px;,) + fl2(x).

From this we see/(x) invertible would require]A/x] < e but if one chooses sgn (/x) s
the leading term of (3.12) will never vanish. Now since 1]11 -< (1 + 0)/x -< 2/x, for 0 < 1,
we have

(3.13)

NEWTON’S METHOD AT NEARLY SINGULAR ROOTS 957

for some constant Yl and IIl[p sufficiently small If we set

(3.14) K max IIPvF"(x*)(Px, PN"
PX

we see D(x) will be invertible provided

(3.15) le + h/x -(KOI/x +),l/z 2) > 0.

Now assuming that h S0 and x Ws(p, 0), then I +A ,I I I+IA ,I>_-IA ,I and hence
(3.15) can be assured provided

(3.16)
2

Notice that (3.16) places restrictions on p, 0 that guarantee invertibility of D(x)
independent of e =< g. Hence we may state the next lemma.

LEMMA 3.17. There exist p > O, 0 > O, independent of e <= g such that if h # 0 and
x Ws(p, 0),)(x)-1 exists and may be defined as

1
(3.18) D(x)-lb -=

(e + X/’-----
where X . x and satisfies

(3 19) < IX(x) l < 31; 1
2 2

From this lemma and Lemma 2.2 we have F’(x) invertible for x W(p, O) where
p, 0 are chosen to insure satisfaction of (3.13), (3.16). In this case the subsequent iterate

(3.20) y=x-F’(x)-lF(x)

is well defined and will satisfy [6]

(3.21) 37 1/2F’(x)-I{(AI(X) -1" BI(X) + CI(X) + Dl(x))+ fl3(x)}.

Lemma 3.17 and the expression (2.4) for F’(x)-1 can then be employed to show
y W(p, O) and hence the process may be repeated. This is contained in the following
theorem:

THEOREM 3.22. Assume A O, and 0<= e <-g. Then there are continuous functions
p=p(e)>O, 0= 0(e)>0, monotonically increasing as e,O such that if xo W(p, O)
then F’(xo)-1 exists and all subsequent Newton iterates remain in this set and converge
to x* x*(e). Further

(3.23) < It,
(3.24) IIPx ,+,II <= Kllx,[[2,

i=0, 1, , some K >0

and p(e), O(e) may be chosen such that p(O)= po, 0(0)= Oo where po, Oo are values for
which the conclusions of Theorem 2.7 hold.

Proof Contained in 4. [3

The above result hence provides an enlarged convergence domain in the neighbor-
hood of certain transverse bifurcations (see 2). For pitchfork bifurcations, the above
result does not apply when the underlying singular problem is irregular [11], and it is
expected that a quite different analysis would be required for this situation. The result,
however, may be directly extended to include those examples of super or subcritical
bifurcation where it is assumed the singular problem satisfies F"(x*)(.,.)-=O but

958 D.W. DECKER AND C. T. KELLEY

PNF’"(x*)(rbo, bo, b0)# 0. For this case the conclusions of Theorem 3.22 remain valid
with replaced with in (3.23).

We now turn to the question of acceleration of the Newton iterates in the expanded
domain Ws(p, 0). In [9], it is pointed out that the acceleration scheme described by
Theorem 2.11 will still give superlinear convergence in a sufficiently small ball about
a regular point, and numerical results are reported for a nearly singular problem using
this approach. However, as we show by example in 5, if Xo Ws(p(e), O(e)) and the
scheme (2.12) is employed, the iterates may converge to a root other than x*. The
following result, however, provides an expanded domain W(po, 0o), possibly smaller
than W(p(e), O(e)), but independent of e, in which the modified iterates of Theorem
2.11 remain. This result also presents a test which assures that acceleration is really
an improvement. First, for x W(p, O) we define 8(x) by

(3.5) (x) F’(x)-F(x).
THEOREM 3.26. Assume h 0 and 0 < e < . Let a (0, 1/2), 3’ (2a, 1) and C > 0

be given. Then there exists pa > O, Oa > 0 sufficiently small, independent of e, such that if
x W(p, Oa) and

(a)
(3.27)

(b)

where

II(y)-2(z)ll II(y)ll 1/,

(y)ll 11 (x) II,

(3.28)
y=x-6(x),

z=y-6(y),

then xa, given by

(3.29)

is in W(Oa, 0 and

(3.30)

x z-(2-

for some K > O.
As mentioned previously, the inequalities (3.27) act as a test to determine if

acceleration is worthwhile. When the inequalities hold, the conclusion (3.30) indicates
that it is an improvement over a regular Newton iterate. We note that for a singular
problem the tests (3.27) will always be satisfied (for sufficiently small p) for any 3’ < 1,
and acceleration will never terminate and superlinear convergence of{xn} with exponent
1 + a, a (0, 1/2), will be achieved. We point out however, that for this singular case,
the convergence is poorer than Theorem 2.11 provides. First, one rather than two
intermediate iterates are required, and second a (0, 1) is allowed in the singular
result. These changes are the result of the test (3.27), which were designed to measure
"singular" behavior of the iterates, and which hence perform this task in less than
optimal fashion. The design of a more efficient "singularity" test must therefore be
the object of further study. The above result, however, demonstrates two basic facts,
(1) acceleration of the Newton iterates in the enlarged convergence domain is possible,
and (2) that some test must be employed to terminate iterate modification when it is
no longer productive.

Finally, we note this acceleration result also may be extended to the particular
super (sub) critical bifurcation problem described previously by substituting 3 in place
of 2 in the acceleration step given by (3.29).

NEWTON’S METHOD AT NEARLY SINGULAR ROOTS 959

4. Proofs.
Proofof Theorem 3.22. Without loss of generality we handle the case e > 0, A > 0.

For x W+(p, O) we assume p, 0 are such that (3.13) and (3.16) are satisfied and hence
Lemma 3.17 holds. Using Xo-x and xl y, (3.21) and the definitions (2.1) yield

(4.1) =F’(x)-{1/2(A(x)+B(x)+C(x)+D(x))-1/2(+ePN)+3(x)}.
Using the expression (2.4) for F’(x)- and noting (x)-D(x) PN (x)-_(x)P
we have

(4.2) Pf=1/2[P-b(x)-I(epN+C(x)+2(x))]:
while

(4.3) nxf =1/2{Px-’A,(x)+ Px-’B(x)ff)(x)-’[(ePN + C(x)):+ 3(x)]+ 3(x)}.

Now from (4.2), using the definition of/(x)- given by (3.18) we find

I(1){,txP-C(x)-PIfl2(x)},.(4.4) P37

From (4.4) we have the upper and lower bounds

{-(4.5) 711_-,.PN..,,=2 e+.tz e+A/x

(4.6)

Here the term y_tz 2, for some constant)’2, represents the remainder term/3_(x) in (4.2).
Now if we further assume p and 0 so small that

(4.7) 0/x + "]/2j[a[,
2<

4

then since (3.19) is satisfied we see r0/x + y2tz
2 < i/z/2 and hence (4.5)-(4.6) becomes

(4.8)
4 + X P

<- P97 + X----
Turning to (4.3), since x W+(p, 0) there are constants a, b such that

(4.9) -’a,(x)ll =< aOla,2, -’n(x)ll--< b=

and hence

(4.10) IIP711-<- aOtz2+ (e/x -" 0j,2"" /3jlJ, 3)"" 4jJ,e+
Once again the terms y3/z and y4/z3 represent the two remainder terms in (4.3). Now
since /z/(e+ tz) decreases as]z decreases, we see from (4.8) and (3.19) that

1
(4.11) IIP,711 =4 (2e +
From (4.10-11) and ->_ A/2 we see IIP,,ffll-<-011P,ffll provided

2._____b (e +(4.12) 2 a0+2e + A/x =2e +A/z

960 D.W. DECKER AND C. T. KELLEY

First we note that since (1 0)/z =< p -< (1 + 0)/z, that smallness restrictions on/x, 0 are
equivalent to smallness restrictions on p, 0. Up to this point such restrictions were
made (i) to ,provide bounds for remainder terms as in (3.13) or (ii) to provide bounds
relating to D(x)-1 as in (3.16) and (4.7). Requirements of both type were independent
of e for 0 -< e <= g sufficiently small and precisely the same restrictions are made in
choosing po, 00 to satisfy the singular Theorem 2.7. In addition, for e 0, inequality
(4.12) provides the final determination of an allowable Po, 0o for this singular result.
For 0< e =< g sufficiently small, however, the requirement (4.12) can still be satisfied
for tz, 0 sufficiently small and one may choose the resulting p(e), 0(e) to be monotone
increasing as e decreases with p(0)= po and 0(0)= 00.

Finally we see from (4.8) that

and from (4.10) there is a K > 0 such that

(4.14) Px3711 g I111 =
thus providing the bounds (3.23), (3.24). [3

The proof of Theorem 3.26 rests on an elementary extension of a result from 16].
The perspective of this result is to view the parameter e as a perturbation of the
singular problem which may be varied with the current iterate x. The result answers
the question, how fast must the perturbation e shrink with the iterate x in order that
the asymptotic acceleration error estimates remain those of the singular problem? We
have

LEMMA 4.15. Let A # 0 and 0 < e <= g. Let Ko, C > 0 and a (0, 1), y (a, 1) be
given. Then there exist pa > O, Oa > O, independent of e, such that if x Ws (p, 0),

=< gollll ’/ and x is given by (3.29), then x, Ws(p,, Oa) and (3.30) holds. Moreover,
there exist K1, K2 > 0 such that

(4.16)

The proof of Lemma 4.15 is virtually identical to the e =0 case in [13] and is hence
merely sketched. If e fl+(x) then by (4.3)

(4.17)

and by (4.4)

Px o(llPll Pxll) + o(IIPI])
o13(x) +

(4.18)

Similarly

(4.19) Px-- o(11P971111 P=9711)+ o(IIP9711)+ z3(x)- 3=/(x)
and

(4.20)
PN 1/2PN.fi + O(Px.fil]) + O(e + ,82(x)

1/2PN + ,8,+,(x) 1/4PN + OPNfll(X) +
Hence, if w z 6(z)

(4.21)
6(z) - 1/2PN5+ PNI+.,/(X) -t--/02+,(x

P:+ OPNII(X) + Pufl,+v(x) + fl2+v(x).

NEWTON’S METHOD AT NEARLY SINGULAR ROOTS 961

Thus

(4.22)
clla(z)ll(z)+ -26(z)

Hence, since y> a, for p sufficiently small, say p<p,, (4.16) holds and so XaE
Ws(p,,, 0,,). (Here 0a may be chosen to be the value O(g) given by Theorem 3.21.)
Moreover, 6PN+ OPNl(x)+ l+,(x) and hence, for pa sufficiently small, [[ffl[>
I[.a and acceleration is an improvement. This completes the proof of the Lemma.

Now in Theorem 3.26 e is fixed, but the above lemma may be applied if we can
show the appropriate relationship between x and e is satisfied whenever acceleration
is employed. That is, we must show the existence of a constant Jo, independent of e,
such that whenever x Ws(p,,, 0,,) and the tests (3.27) are satisfied e -< Ko[[Xl[1+’/2 (and
hence e </31+(x)). Using the definitions ff - 6(z), Y. .- 6(y) and the conclusion
(4.14), which implies Pxf, PxY., Px are all/32(x), we have

(4.23)
(z) Pl,,- Pl,,, + :(x),

6(y) PIY- PuY. + fl2(x).

Now from (4.2) with x, y replaced by y, z we see

1 1 eAix(y)
(4.24) Pv Pv)7

e + IX(y) + t(x)

where we have used C(y))7 =/33(x) from (4.14). In the same fashion

1 1
(4.25) PN =:Pu-: - flz(X).

E" IX(Z)Z Z

Hence

1 1 eXix(y) e.ix(z)
(4.26) 6(y) 26(z) -PN+-
But from (4.24) we see (4.26) becomes

eXix(y) e.ix(z)
(4.27) 6(y)-26(z)

e +]ix(y) e + XIX(z) +/32(x).

From (3.12) (y) h +/3_(x),](z) h +/32(y) h +/32(x), and from (3.23) ix(z) _<-

ix (y). Hence

e2h(ix(y)-ix(z))
6(y)- 26(z)[I- +/3=(x)

(e + Aix(y))(e +
(4.28)

>
(e + AIX (y))2 + fl2(x).

Then the test (3.27a) provides a constant k such that

(4.29)
(e +

Now 6(x) :-= Pu:- Puf+ Px:- Pxf, and Pxf 2(x) and so IIP,- P,711-
IIP,,II--< II(x)ll + t=(x)_-< IIP- P,II + IIPxll. From the expressions (4.4)-(4.7)

962 O. W. DECKER AND C. T. KELLEY

we see

e + /x(x)/4
(4.30)

_< (e + 3X/z (x)/4)II P,II / Pxlle+x(x)

Now since I1’,,11--< 011’,Yll we have ColZ(x) <= II(x)ll-<- c(x) for some constants Co,

cl and the same is true with x replaced by y. Hence the test (3.27b) assures/z(x) =< c2/z (y)
for some constant c2 and the relationship (4.29) may be replaced by

(y)
< K(y)+(4.31)

for some constant K, which in turn implies

(4.32) e(1 Ktz(y) //2) <= Klx(y)+/2= +,/:(y) +,/:(x)

and hence e =< goll[[+/ for some constant Ko and Lemma 4.15 may be applied. This
completes the proof.

5. Examples. We define F:- R- by
(5.1) F(x) =((x-1)+(Y-3)

y e(y-3)+-(x-1)(y-3)+(y-3):Z+(y-3)3

Here

Oo)"
There are two roots near (1, 3),
(5.3) x+*_=(1,3), x*_=(1-n,3+n)
where 1-x/1 +2e. For this situation the region W+(p, O) will correspond to the
root, x+*. Here, Pv PloD, Px PXo and

(5.4) W+(p, o)={(Xy)lO<lx-l[+[y-3[<=p,+(y-3)>o, lx-ll<=oly-3l}.
For an initial guess Xo W+(p, 0), where p and 0 satisfy the requirements of

Theorem 3.22, the Newton iterates will converge to x.*. If the acceleration method of
[16] is employed, however, the convergence behavior of the Newton iterates is irregular
and initial guesses in W+ may give rise to iterates converging to either of x+* or x*.
Note that the radius of the ball about x* for which quadratic convergence is assured
is less than 2e for this example since IIx*+-x*-II <--2. In our calculations an initial guess
of Xo .9 and Yo 3.3 was used; e varied from 10-4 to 10-7, o varied from .05 to .47;
y was taken to be the midpoint of the range of allowable choices, (2a + 1)/2; C varied
from .5 to 3.5. The iteration was terminated when Ix,- x*+l < 10-7.

Table 1 gives, for various values of e, the number of iterates no required to obtain
termination for Newton’s method, the values of a and C that gave the best performance
for the modified scheme, the number, n, of iterates required for termination of the
modified scheme, the first iterate, n, for which the test was passed, and the number
of times, n3, the test was passed.

NEVv’TON’S METHOD AT NEARLY SINGULAR ROOTS 963

TABLE

e C n n n n

10-4 .4 .5 12 8 5
10-5 .3 1.0 15 7 4 2
10-6 .35 .5 17 7 4 2
10-7 .4 .5 19 8 5 2

In Table 2 we give nl for e 10-6 and several other values of C and a that were
considered.

TABLE 2
(e 10-6).

C a n C a nl

5 .1 13 2.0 .1 16
5 .4 13 2.0 .35 12
5 .47 14 2.0 .47 12

1.0 .1 16 3.0 .1 19
1.0 .35 11 3.0 .35 13
1.0 .47 13 3.0 .47 11
1.5 .1 16 3.5 .1 20
1.5 .35 11 3.5 .35 14
1.5 .4 8 3.5 .47 12
1.5 .47 12

Our second example is a discrete approximation to the Chandrasekhar H-equation
1]. This satisfies our hypotheses 14], 15], 17].

C X
H(t) dt F(H)=0.(5.5) H(x)- 1 -- x +

We approximated the integral by eight point Gaussian quadratures. Equation (5.5)
and the approximate equation are singular at c 1 [17]. When c 1 the null space of
F’(H) is spanned by b xH(x) and, forf LI[0, 1],

(5.6) PNf(X) 2 H-I(t)f(t) dt (x).

For c (0, 1), let L denote the integral operator in (5.5)

Clot x
of(t) dt.(5.7) LI(x) =- x +

It is known that F’(H) is Fredholm of index zero for c (0, 1], [17], and hence,
for c sufficiently near one, there is a unique eigenvalue e, least in absolute value,
having algebraic and geometric multiplicity one. We let u denote an eigenfunction
corresponding to the eigenvalue e, normalized so that u(x) dx 1, and use (5.5) to
obtain, as in [5],

(5.8) F’(H)u u H2Lu eu.

964 D.W. DECKER AND C. T. KELLEY

Now for c (0, 1), (5.5) has two solutions, only one of which is of physical
importance [17]. This solution, which we denote by H, is characterized by [14], [17],

(5.9) H(x) dx =-(1 -x/i- c).
o c

We set u Hv in (5.8), divide by H, and integrate to obtain

(1 e) v(x) dx =- n(x) x+ H(t)v(t) dt dx

H(t)v(t) n(x) dx- n(x) dx dt
2 x+t

(5.10) H(t)v(t)[(1-4i-c)+(H-l(t)-l)]dt

The normalization of u then implies that

(5. v(x ax l c.
o

Hence e and 1-c are of the same order.
In order to compute I, we set e 0, then, as in [5]

"((, =-xN(x.(5.12)

Hence, by (5.6),

() 4
(5.13) PNF"(H)(4,, b)= -4 x2 dx d=--.
Therefore, for e sufficiently small, A < 0. Hence our initial iterate should lie in W_.

This is not surprising in view of tle fact that the second solution to (5.5) is pointwise
greater than H [17]. We have observed that if the initial iterate is larger than H then
convergence can be to the nonphysical solution.

In Tables 3 and 4 we present data for (5.3) in a format identical to Tables 1 and
2, except that we vary x/1-c rather than e. In each case the norm used was the L
norm. The initial guess was chosen as Ho(x)=-1. This choice was made since H(x)
satisfies H(x) > Ho(x) for x > 0 and hence from (5.6) we have PN(Ho- H) =/zb with
sign (/x) negative, placing Ho(x) in W_(p, O) for some p and 0.

TABLE 3

10-4

lO-S

10-6

10-7

.45
.45, .46
.45, .46,
.47, .35
.45, .46

C n n n

1.0 15 8 3
.5 18 9 3
.5

21 11 3
(1.0 for a 35)

1.0 23 10 3

n3

2
2
2

(3 for a =.35)
3

NEVdTON’S METHOD AT NEARLY SINGULAR ROOTS 965

TABLE 4
(,f c 10-6).

.5

.5
1.0
1.0
1.0
1.0
1.5

.35

.4

.4

.45

.46

.47

.35

n C a n

13 1.5 .4
12 1.5 .47
16 2.0 .4
15 2.0 .47
15 3.0 .4
15 3.0 .47
14 3.5 .4

3.5 .47

13
16
13
12
17
15
18
16

From (4.22) we see that the dominant term in a is of order cl[(z)ll From
this one might expect that best performance would be achieved for very small C and
a very near 1/2. Our tables, in fact, indicate that the smaller values of C give more rapid
convergence. However, if C is too small the other terms in (4.22) may become dominant.
The effect of this will be that xa may well leave W and the iterates converge to a
solution not in Ws. This was observed in both of our examples. When C was on the
order of .1 quite rapid convergence to the nonphysical solution of the H-equation was
observed for several values of a. Values of C larger than .5 always gave iterates that
remained in Ws. Values of 2.0 or larger tended to slow down the convergence.

The proper choice of the parameter a is in general the largest allowable value for
which the test, (3.27a), can be passed at an early state in the iteration and passed
sufficiently many times. Values of a that are too large make the test difficult to pass
and hence many unmodified iterates might be needed before a modified step is allowed.
This .problem is especially pronounced in the first example. If a is too small, conver-
gence may be slowed.

The combination C .5, a .4 gave reasonable results in both examples.
Other rules for choosing T were tried with no qualitative changes in the results.

REFERENCES

[1] S. CHANDRASEKHAR, Radiative Transfer, Dover, New York, 1960.
[2] M.G. CRANDALLAND P. n. RABINOWITZ, Bifurcation, perturbation ofsimple eigenvalues, and linearized

stability, Arch. Rat. Mech. Anal., 52 (1973), pp. 161-180.
[3] D. W. DECKER AND C. T. KELLEY, Newton’s method at singular points I, SIAM J. Numer. Anal., 17

(1980), pp. 66-70.
[4], Newton’s method at singular points II, SIAM J. Numer. Anal., 17 (1980), pp. 465-471.
[5], Convergence acceleration for Newton’s method at singular points, SIAM J. Numer. Anal., 19

(1982), pp. 219-229.
[6] D. W. DECKER, H. B. KELLER AND C. T. KELLEY, Convergence ratesfor Newton’s method at singular

points, SIAM J. Numer. Anal., 20 (1983), pp. 296-314.
[7] A. O. GRIEWANK, Analysis and modification of Newton’s method at singularities, Thesis, Australian

National University, Canberra, 1980.
[8], Starlike domains of convergencefor Newton’s method at singularities, Numer. Math., 35 (1980),

pp. 95-111.
[9], On solving nonlinear equations with simple singularities or nearly singular solutions, submitted

for publication.
[10] A. O. GRIEWANK AND M. R. OSBORNE, Newton’s method for singular problems when the dimension

of the null space is >1, SIAM J. Numer. Anal., 18 (1981), pp. 179-189.
11] ., Analysis of Newton’s method at irregular singular points, SIAM J. Numer. Anal., 20 (1983), pp.

747-773.

966 D.W. DECKER AND C. T. KELLEY

[12] L. V. KANTOROVICH AND G. P. AKILOV, Functional Analysis in Normed Spaces, Pergamon, New
York, 1964.

13] H. B. KELLER, Numerical solution of bifurcation and nonlinear eigenvalue problems, in Applications of
Bifurcation Theory, P. H. Rabinowitz, ed., Academic Press, New York, 1977, pp. 359-384.

[14] C. T. KELLEY, Solution ofthe Chandrasekhar H-equation by Newton’s method, J. Math. Phys., 19 (1978),
pp. 500-501.

[15] C. T. KELLEY, Approximate methods for the solution of the Chandrasekhar H-equation, J. Math. Phys.,
23 (1982), pp. 2097-2100.

[16] C. T. KELLEY AND R. SURESH, A new acceleration method for Newton’s method at singular points,
SIAM J. Numer. Anal., 20 (1983), pp. 1001-1009.

[17] T. W. MULLIKIN, Some probability distributions for neutron transport in a half-space, J. Appl. Prob., 5
(1968), pp. 357-374.

18] L. I. RALL, Convergence of the Newton process ofmultiple solutions, Numer. Math., 9 (1961), pp. 23-37.
[19] G. W. REDDIEN, On Newton’s method for singular problems, SIAM J. Numer. Anal., 15 (1978), pp.

993-996.
[20] ., Newton’s method and high order singularities, Comput. Math. Appl., 5 (1980), pp. 79-86.
[21 R.B. SCHNABEL, Conic methodsfor unconstrained minimizationproblems and tensor methodsfor nonlinear

equations, Univ. Colorado Technical Report, Dept. Computer Science, Univ. Colorado, Boulder,
1982.

[22] I. STAKGOLD, Branching of solutions of nonlinear equations, SIAM Rev., 13 (1971), pp. 289-332.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 4, October 1985

1985 Society for Industrial and Applied Mathematics
011

SHAPE PRESERVING PIECEWISE RATIONAL INTERPOLATION*

R. DELBOURGOf AND J. A. GREGORYt

Abstract. An explicit representation of a C piecewise rational cubic function is developed which can
be used to solve the problem of shape preserving interpolation. It is shown that the interpolation method
can be applied to convex and/or monotonic sets of data and an error analysis of the interpolant is given.
The scheme includes, as a special case, the monotonic rational quadratic interpolant considered by the
authors in [1] and [5]. However, the requirement of convexity necessitates the generalization to the rational
cubic form employed here.

Key words, rational, shape preserving, monotonic, convex, interpolation

1. Introduction. The problem of shape preserving interpolation has been con-
sidered by a number of authors. Fritsch and Carlson [4] and Fritsch and Butland [3]
have discussed the piecewise cubic interpolation of monotonic data. Also, McAllister,
Passow and Roulier [6] and Passow and Roulier [9] consider the piecewise polynomial
interpolation of monotonic and convex data. In particular, an algorithm for quadratic
spline interpolation is given in McAllister and Roulier [7]. An alternative to the use
of polynomials, for the interpolation of monotonic data, is the application of piecewise
rational quadratic functions, as described by the authors in references [1] and [5].

In this paper we describe a piecewise rational cubic function which can be used
to solve the problem of shape preserving interpolation. The rational cubic includes
the rational quadratic function as a special case. However, the rational quadratic is
not necessarily applicable to the interpolation of convex data and this necessitates the
generalization to the rational cubic form employed here.

The paper begins with a definition and error analysis of the rational cubic
interpolant. The application of the interpolant to monotonic and/or convex sets of
data is then discussed in 3. It is shown that O(h4) error bounds can be expected
when exact derivative information is given at the data points. For the case where the
derivatives are not known, these have to be estimated and various schemes for this
are considered. Finally, in 4, examples of the rational interpolants applied with
various derivative schemes are given.

2. The rational cubic interpolant. Let (xi, f) i= 1,..., n be a given set of data
points, where xl < x_ < < x,. Let

hi xi+ xi,
(2.1)

Ai--(fi+l-fi)/hi.

A piecewise rational cubic function s C[Xl, x.] is defined as follows. For x
let

(2.2) O=(x-x,)/h,.

Then

(2.3) s(x) P,(O)/ Q,(0),

where

(2.4) Pi(O)=f+lO3+(r+l-h,di+l)O2(1-O)+(r + h,d)O(1-O)2+f(1-O)3,

Received by the editors November 23, 1983, and in revised form June 14, 1984.

" Faculty of Engineering, Science and Mathematics, Middlesex Polytechnic, London, England.
t Department of Mathematics and Statistics, Brunel University, Uxbridge, England.

967

968 R. DELBOURGO AND J. A. GREGORY

Q,(0) 03 + r,[02(1 0) + 0(1 0)2]+ (1 0)

l+(r,-3)o(1-0).

The rational cubic has the following interpolatory properties

s(x,) f,, s(x,+) =f+,
(2.6)

where s(1) denotes differentiation with respect to x and the di denote derivative values
given at the knots

The parameter r, is to be chosen such that

(2.7) ri>-I

which ensures a strictly positive denominator in the rational cubic. When r 3 the
rational cubic clearly reduces to the standard cubic Hermite polynomial. For our
purposes r, will be chosen to ensure that the interpolant preserves the monotonic or
convex shape of the data. This choice requires a knowledge of s(1)(x) and s(-)(x) which
are given in the relevant sections below.

Remark. It should be noted that the interpolant will define a nonlinear operator,
since the r will be dependent on the data. However the interpolant to the zero function
is zero. Also, the interpolant to the data K +f, 1,. ., n, where K is a constant, is
K + s(x), provided the r, are independent of such translations. This will be the case
for the choices of r, in this paper.

An error bound for the rational cubic is given by the following theorem.
THEOREM 2.1. Letf ca[x1, Xn] and let s be the piecewise rational cubic interpolant

such that s(xi) f(xi) and s(xi) di, i= 1,. ., n. Then for x [xi, Xi+l]

(2.8)

hiIf(x)- s(x)] <=-2-- max {1’)- d,I, 12,- d+,l}
,c

1

384ci
.{hllf(4)ll (1 +lr,-31/4)/41r,-31(h3llf(3ll + 3 h,2. IIf(II)},

where

[(l+r,)/4 if-1 < ri <3,(2.9)
1 if r, _>- 3,

and II" denotes the uniform norm on Ix,, x,+,].
Proof On [x, xi+] let x(0) x, + Oh, and F(0) =f(x(0)). Then

f(x) s(x) 5(0) P,(O)/ Q(O)

where 0-< 0-< 1. Consider

(2.10) iF,(O) Pi(O)/Q,(O)I <-[I F(0)Q,(0) P*(0) + IP,*(0)- P,(O)l]/lQ,(O)l,

where (cf. 2.4))

(2.11) P*(O)=f+,O3+(r+,-h.?,)O2(1-O)+(r+h.’))O(1-O)2+f(1-O)3.

Then P*(O) is the cubic Hermite interpolant to F,(O)Q,(O) on 0-< 0-< 1 and bounding

SHAPE PRESERVING PIECEWISE RATIONAL INTERPOLATION 969

the Cauchy remainder of the interpolant gives

1 d4

[F’()Q’(O)-P*’ ()I<-- o<-o<__max Fi(0)Q,(0)
1

-384 o=<m0a=<xl IF4)(O)Q’(O)+4F3)(O)QI)(o)+6FE)(O)Q2)(O)I

since Q(0) is quadratic. Now

IQ,(0)l_-< 1 +1r,-31/4,

and

FI)(0) hgllf<)ll
Hence

(2.12)

Also

(2.13)

1
IF(O)O,(o) P* o)l --(h4 llf4)ll(1

+ 4h,3. Ilf3)ll Ir, 31 + 12hllf)ll Ir,- 31}.

r(1). 1)IP* (O)-P,(O)I=IO(1-O)h,[O(d,+,-j,+,+(10)(f -d,)]l,

J,+l-max{] d],’ -.(1)

Finally

(2.14)
1 if ri->_3,

IQ’(O)I-Q’(O)>-
1-(3-r,)/4 if- 1 < r < 3.

Combining (2.12), (2.13) and (2.14) in inequality (2.10) completes the proof of the
theorem.

A direct consequence of Theorem 2.1 which is of relevance in the remaining
sections is the following corollary.

COROLLARY 2.1. Let x [x, Xi+I].
(i) If d,-f}1)= O(h,?)= d,+l-f}l+)l and r,-3= O(h,) then If(x)-s(x)l= O(h3).
(ii) If d, _fl)= O(h z-(l).) d+l-j+, and r-3 O(h2) then If(x) s(x) O(h).
The above theorem and corollary show that r should ideally be such that ri- 3

O(h). We now consider how r can be chosen to preserve the monotonic or convex
shape of the data, whilst maintaining this optimal O(h) requirement.

3. Shape preserving interpolation.
3.1. Monotonic data. For simplicity of presentation, we assume a monotonic

increasing set of data so that

(3.1) A<_-A -<’’ "<=f.,

or equivalently

(3.2)

(The case of a monotonic decreasing set of data can be treated in a similar manner.)
For a monotonic interpolant s(x), it is then necessary that the derivative parameters

970 R. DELBOURGO AND J. A. GREGORY

should be such that

(3.3) di=>0, i= 1,. ., n.

Now s(x) is monotonic increasing if and only if

(3.4) sl)(x)>=O

for all x [xl, x,]. For x [xi, Xi+I] it can be shown, after some simplification, that

(3.5) S(1)(X)

where

di+104+ oli03(1 [9)dl- [i02(1 0)2 -]- ")rio 1 0) - di(1 0)4

[l+(r,-3)O(1-O)]2

ci 2(riAi- d,),
2(3.6) fl, (r, + 3)A,- r,(d, + d,+l),

Yi 2(riAi di+a).

Thus sufficient conditions for monotonicity on [x, x+] are

(3.7) c >-_ 0, /3 >= 0,

where the necessary conditions d 0 and d+ 0 are assumed.
If A > 0 (strict inequality) then a sufficient condition for (3.7) is

(3.8)

In paicular, if

(3.9) r 1 +(d, +

then the rational cubic defined by (2.3)-(2.5) reduces to the rational quadratic form

(3 10) s(x) o:+a;(ai+a,+)o(_o)+(_o):

for wich d 0 and d+ 0 are necessary and sucient conditions for a monotonic
increasing interpolant. It should be noted that if i 0, then di d+ 0 and

(3.11) s(x) =f
is a constant on [x, x+].

The rational quadratic form (3.10) has been investigated in detail elsewhere by
the authors, see references [1] and [5]. It is woh remarking that (3.9) gives r-3
(d+d+l-2)/ and it can then be shown that

" O(h).r, 3 (d, f}) + d,+l -J,+,)/a, +

Thus, Theorem 2.1 and its corollary show that (3.9) is a good choice for r, since the
optimal O(h4) bound on the interpolation error can be achieved if d and d+ are
chosen with O(h3) accuracy.

3.2. Convex data. We assume a strictly convex set of data so that

(3.12) a <2 <" "< ,-.
(The case of concave data, where the inequalities are reversed, can be treated in a
similar way.) To have a convex interpolant s(x), and to avoid the possibility of s(x)

SHAPE PRESERVING PIECEWISE RATIONAL INTERPOLATION 971

having straight line segments, it is necessary that the derivative parameters should satisfy

(3.13) dl<Al<d2<"" "<Ai_l<di(Ai<" .<d,.

Now s(x) is convex if and only if

(3.14) s(2)(x)-> 0
for all.x [xl, xn]. After some simplification, it can be shown that for x [xi, xi/l]

(21 h,)[a,o + fl,o2(1 o) + %0(1 o)2 + 3,(1 o)3]
(3.15) s(E)(x)

[1 + (r_3)0(l_ 0)]

where

a,= r,(d,/- A,)- d,/ + d,,

(3.16)
fl, 3(d,+- A,),

t ri(Ai- d) di+ + d.
Hence, from (3.15), necessary conditions for convexity are

(3.17) as>-0 and s>=0.
These conditions, together with inequalities (3.13), are also sufficient since we have

/3>0 and yi>0

in (3.15). Thus, from (3.17), we have the condition that the interpolant is convex if
and only if

(3.18)

where

rs=>max d,+, -SI’ As ds j
l + M/ ms’

(3.19)
Ms max {ds+ As, A- d},

m min {ds+ As, Ai- ds},

and the necessary conditions (3.13) are assumed.
We have found two choices of rs which satisfy (3.18) and produce pleasing

graphical results. These are

(3.20) rs 2 + Ms/ms,

r, 3 + M,/ ms 1)2/ Ms/ m,)

(3.21) 1 + Ms/m, + m,/Ms

1 +(d,+,-A,)/(A,-d,)+(A,-d,)/(d,+l-As),

the latter being the smaller value. Their use is justified by Theorem 2.1 and its corollary
z’(1) O(h2as follows. Suppose ds-f O(h) and ds+l-Js+, s). Then it can be shown that

Ms/ms 1 + O(hs). Thus rs-3 O(hs) for (3.20) and r-3 O(h) for (3.21). In prac-
tice, therefore, we prefer the use of (3.21), since the optimal O(h4) bound on the
interpolation error can be achieved if O(h3) derivative values are given.

Remark. In the above we have assumed strictly convex data. Otherwise, if As A+
then on [xi, Xs+l] we must have ds ds/l A. As would be expected, the rational cubic

972 R. DELBOURGO AND J. A. GREGORY

then reduces to the straight line segment

s(x) (1- O)f + Of+l,

with an equivalent result on [Xi+l,

3.3. Convex and monotonic data. We now consider the possibility that the data
satisfy both the monotonic increasing condition (3.1) and the strictly convex condition
(3.12). The derivative parameters must then satisfy the inequalities

(3.22) 0-<_ dl < A < d2 <" < Ai_ < di < Ai <" < d,,.

Any convex interpolant must then also be monotonic. This result follows since

S(1)(X) S(2)(X) dx + s(’)(x,), s(2)(x) dx + d.

Hence d>-0 and the convexity condition s(Z)(x)>=O imply that s(1)(x)->0 for x
[x, x,]. Thus the convex interpolation method ofthe previous subsection is also suitable
for the interpolation of convex and monotonic data. This result is confirmed by the
fact that

1 + M,/m, >-(d, + d,+)/Ai

for data satisfying (3.22). Thus the convexity condition (3.18) is sufficient to ensure
that the monotonicity condition (3.8) is satisfied.

It should be noted that if the data is convex but not strictly convex, then the
interpolant can produce straight line (and hence monotonic) segments, as observed in
the previous subsection.

3.4. Approximations for the derivative parameters. In most applications, the deriva-
tive parameters di will not be given and hence must be determined from the data
(xi, f), i= 1,.-., n. An obvious choice is the O(h2) three point difference approxi-
mation

(3.23) di (hiAi- + hi-lAi)/(hi-1 + hi), i- 2,..., n 1

with end conditions

dl (1 + h/h)A1 (hi/h)A3,1, An,1 (f3 -fl)/(x3 x),
(3.24)

d,=(1 +hn_l/hn_E)-(hn_l/hn_E)An,n_2, An,n_2--(fn-fn_2)/(Xn-Xn_2).
These arithmetic mean approximations are suitable for the convex interpolation prob-
lem, since they satisfy inequalities (3.13). However, for the interpolation of monotonic
increasing data, (3.24) may give negative results, thus violating the necessary condition
(3.3). Also (3.23) does not define a continuous functional on the space of monotonic
C functions, since we can have lim d # 0 as either lim Ai_ =0 or lim A =0.

Alternative O(h-) approximations which avoid the above problems are the
geometric means

(3.25) di-- mhii--/(lhi-’+hi)mhii-/(hi-+h’), i-- 2,’’’, n- 1

with end conditions

d ml+hl/h2)A-hl/h2
’-3,1

(3.26)
’-n--1 n,n--2

These approximations, which are discussed in detail in Delbourgo and Gregory [2],

SHAPE PRESERVING PIECEWISE RATIONAL INTERPOLATION 973

are suitable for the interpolation of monotonic data. Furthermore, if the data is
monotonic and convex, then the geometric mean approximations are also appropriate,
since they satisfy inequalities (3.22). Reference [2] also considers the use of harmonic
mean approximations. However, we do not discuss these here.

The above O(h2) derivative approximations give O(h3) bounds on the interpola-
tion error, see Corollary 2.1. The use of O(ha) derivative approximations for monotonic
interpolation is discussed in detail in reference [2]. Unfortunately these approximations
do not necessarily satisfy the convexity constraints and the existence of O(h3) approxi-
mations which a priori satisfy such constraints is an open question. Finally it should
be noted that the rational quadratic (3.10) can be used to construct a C2 rational spline
which interpolates strictly monotonic data. This is discussed in detail in Delbourgo
and Gregory 1] where it is shown that the spline produces O(h3) derivative approxima-
tions.

4. Numerical results. We consider the application of the rational schemes to two
sets of data. The first is the monotonic and convex set defined by f(x)= 1Ix2 on
[-2,-0.2], with the interpolation points at x--2, -1, -0.3 and -0.2. This is the
example used by McAllister et al. [6]. Since few data points are given, this is a fairly
severe test of any scheme, particularly one where the derivatives are estimated from
the data. Also, we cannot expect the rational interpolants to reproduce 1/X2, because
of the nonlinear nature of the interpolation method.

Figure 1 shows that application of the rational cubic scheme of 3.2 to the above
data, where ri is defined by (3.21). The graphs (i) and (ii) are respectively the interpolants
with the arithmetic and geometric O(hE) derivative approximations of 3.4, and graph
(iii) is that with the known exact derivatives. As expected from the theory, all graphs
are convex but the graph with the arithmetic derivative approximations is not
monotonic. It can be seen that the graph with the exact derivative settings gives the
best result.

(i) Arithmetic derivative values. (ii) Geometric derivative values. (iii) Exact derivative values.

FIG. 1. Convex rational cubics forf(x)= 1Ix on [-2,-0.2].

Since the data is monotonic, the rational quadratic scheme of 3.1 is also appli-
cable. Figure 2 shows the application of this scheme with various choices of the
derivative parameters. These are (i) the O(h2) geometric approximations of 3.4, (ii)
the C2 spline approximations of Delbourgo and Gregory [1], and (iii) the known exact
derivatives. All curves are monotonic but (i) exhibits an inflexion. Curves (ii) and (iii)
give good results. It should be noted that exact end conditions have been used for the

974 R. DELBOURGO AND J. A. GREGORY

(i) Geometric derivative values. (ii) C spline derivative values. (iii) Exact derivative values.

FIG. 2. Monotonic rational quadratics for f(x)= 1Ix on [-2,-0.2].

C2 spline scheme. The alternative use of geometric approximations to the end deriva-
tives gives comparable results for this set of data. The curves illustrate that although
the monotonic rational quadratic schemes are not a priori convex, in practice they
might be so. An a posteriori test for convexity is the necessary and sufficient condition
(3.18).

Our second set of data consists of points uniformly spaced at 15 intervals over
a half or quarter circle. The half circle of points is a convex but not monotonic set
and the set of points on the quarter circle is convex and monotonic.

(i) Arithmetic derivative values. (ii) Geometric derivative values
(except dl 0).

(iii) Exact derivative values
(except dl =-50, d, 50).

FIG. 3. Convex rational cubics for circle data.

The results of applying the convex rational cubic schemes and the monotonic
rational quadratic schemes to the circle data are given in Figs. 3 and 4. Figure 3 shows
that convexity is assured for all choices of the derivative parameters, the arithmetic
settings being suitable for the convex half circle data and the geometric settings being
appropriate for the convex and monotonic quarter circle data. The choice of exact
derivatives has once more produced a good result, although here the end derivative
values +50, which replace the infinite gradients of the circle data, have been set by
trial and error.

It can be seen from Fig. 4 that the monotonic rational quadratic scheme with
geometric derivative approximations has a slight inflexion in the curve. The choice of
exact derivatives or the C2 spline approximations have again produced good curves,

SHAPE PRESERVING PIECEWISE RATIONAL INTERPOLATION 975

(i) Geometric derivative values
(except d =0).

(ii) C spline derivative values
(with d =0, d, 20).

(iii) Exact derivative values
(except dn 25).

FIG. 4. Monotonic rational quadratics for circle data.

where at the end, where the quarter circle has infinite gradient, we have set the derivative
dn by trial and error. Too large a value of dn creates an inflexion in the last interval
and it is of interest to compare the behaviour of the rational quadratic and rational
cubic schemes as the end condition d, is made large. Figure 5 illustrates this for the
case dn 1,000 with exact derivative settings elsewhere. Since the rational quadratic
has only to maintain monotonicity, the graph begins to behave in a step function
manner. However, the additional convex constraint on the rational cubic eliminates
this behaviour and instead produces a straight line almost vertical section at the end.

(i) Monotonic rational quadratic. (ii) Convex rational cubic.

FIG. 5. The effect of large end conditions for circle data.

5. Conclusion. A shape preserving piecewise rational cubic scheme has been
described which can be used to interpolate convex and/or monotonic data. The method
seems to produce visually pleasing C curves and good error bounds can be expected,
particularly when exact derivative information is given at the interpolation points.

REFERENCES

[1] R. DELBOURGO AND J. A. GREGORY, C rational quadratic spline interpolation to monotonic data, IMA
J. Numer. Anal., 3 (1983), pp. 141-152.

[2] R. DELBOURGO AND J. A. GREGORY, The determination ofderivativeparametersfor a monotonic rational
quadratic interpolant, TR/07/84, Dept. Mathematics and Statistics, Brunel University, Uxbridge,
England.

976 R. DELBOURGO AND J. A. GREGORY

[3] F. N. FRITSCH AND J. BUTLAND, A methodfor constructing local monotone piecewise cubic interpolants,
SIAM J. Sci. Stat. Comput., 5 (1984), pp. 300-304.

[4] F. N. FRITSCH AND R. E. CARLSON, Monotone piecewise cubic interpolation, SIAM J. Numer. Anal.,
17 (1980), pp. 238-246.

[5] J. m. GREGORY AND R. DELBOURGO, Piecewise rational quadratic interpolation to monotonic data, IMA
J. Numer. Anal., 2 (1982), pp. 123-130.

[6] D. F. MCALLISTER, E. PASSOW AND J. A. ROULIER, Algorithms for computing shape preserving spline
interpolations to data, Math. Comp., 31 (1977), pp. 717-725.

[7] D. F. MCALLISTER AND J. A. ROULIER, An algorithm for computing a shape preserving osculatory
quadratic spline, ACM Trans. Math. Software, 7 (1981), pp. 331-347.

[8] E. PASSOW, Piecewise monotone spline interpolation, J. Approx. Theory, 12 (1974), pp. 240-241.
[9] E. PASSOW AND J. A. ROULIER, Monotone and convex spline interpolation, SIAM J. Numer. Anal., 14

(1977), pp. 904-909.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 4, October 1985

1985 Society for Industrial and Applied Mathematics
012

ON OVERWHELMING NUMERICAL EVIDENCE IN THE
SETI’LING OF KINNEY’S WAITING-TIME CONJECTURE*

EUGENE F. SCHUSTERf

Abstract. The computer is often used as an exploratory tool in problem solving. This exploratory
analysis is very important in gaining insight into problems and theorems and often leads to new conjectures.
Heuristic reasoning may then lead from the conjecture to a formal theorem whose validity leads itself to

further numerical investigation. When these numerical investigations present overwhelming numerical
evidence that the proposed theorem is true, the researcher sets upon a search for a mathematical proof.
This note reports experience in this regard in the settling of Kinney’s waiting time conjecture on the
asymptotic logarithmic form of the expected value of the maximum of independent identically distributed
geometrics. The lesson learned is that overwhelming numerical evidence is not enough.

Key words, asymptotic mean, maximum of geometrics, weighing numerical evidence, Kinney’s conjec-
ture, waiting time

1. Introduction. Kinney (1978) considered the problem of tossing n coins simul-
taneously. Those coins which come up tails are tossed again. This process is continued
until each of the coins comes up heads. Kinney wondered how many (group) tosses
would be required on the average. If we let Yn max (X1," ’, Xn), where X1," , X
are independent identically distributed geometric random variables with probability
density function (pdf)

p(x)=pq’-1, 0<p<l, q= l-p, x= 1,2,3,...,

then the solution of Kinney’s problem is almost routine and is given by

where q is the probability of a tail on a single toss (see Schuster (1975), Kinney (1978)).
Schuster (1975) studied E(Y,) as the expected length of a ring tossing game and as
the waiting time until failure of a certain active redundant system of n components
connected in parallel.

Kinney noted that the formula (1.1) could be used to compute E(Y,) for small
values of n. However, for large values of n, the binomial coefficients (x") become very
large, whereas the factors (-1)x/l(1- qX)-i alternate in sign while rapidly approaching
a magnitude of 1. Thus roundoff error will quickly undermine the computing accuracy
of (1.1).

For a large value of n, say n 1,000, Kinney was forced to turn to simulation to
estimate E(Y,). However, for n_<-50, he used (1.1) to compute E(Y) to five decimal
places. A graph of n versus E (Yn) for this data led Kinney to conjecture that E(Y)
is asymptotically a logarithmic function. In Fig. 1 we display Kinney’s evidence for
this conjecture for q 1/2 in a Calcomp plot of select data pairs (n, E(Y)) for n-<_ 50
together with the graph of the simple least squares logarithmic fit to this data given
by Kinney as the estimator /(Y)=0.952575 log2 n+1.58995. Notice that, even for
small n, the data pairs (n, E(Y)) located at the x’s fall remarkably close to the graph
of the logarithmic curve.

* Received by the editors September 12, 1983, and in revised form July 19, 1984.

" Department of Mathematical Sciences, University of Texas at E1 Paso, E1 Paso, Texas 79968.

977

978 EUGENE F. SCHUSTER

/ Y.)-axis

n-axis. e. ’.

FIG. 1. The x’s show the proximity of select data pairs (n, E (Y,)) to the graph of the logarithmic curve

/(Yn) =0.952575 log2 n + 1.58995.

2. Formalizing Kinney’s conjecture. Let us consider the following formal version
of Kinney’s conjecture"

lim{E(Y,,)-alog(n)-b}=0 for somea=a(q), b=b(q).

We first argue for appropriate choices for a and b. The distribution function (cdf)
of Y, is easily seen to be

Fn(x) {(ol qk)n for k<-x < k+ l,
otherwise.

k{0, 1,2,...},

Let Y, be the continuous (exponential based) version of Y, having cdf F(x) (1
for x>_-0 and 0 otherwise (for continuous). Then one can easily establish the
distributional relationship Y, =[Y]+I, where [x] is the greatest integer function.
Now it is not difficult to see that

E(Y,) xd(1-q’)"= {1 (1 q’) "} dx

,,=1 x log (l/q) log (l/q)’

with S, E",=1 (l/x). Thus

lim {E (Y,) a log n b} O,

where a 1/log (l/q), bc= 3’/log (l/q), and 3,=0.577215 is Euler’s constant.
Since Y,]=< YT, + 1, the following weak version of Kinney’s conjecture is immediate:

LEMMA 1. lim,,_.{E(Y,,)/(alog(n)+b)} 1.
Note, however, that since Lemma 1 is true, we would have

lim,_ {E(Y,,)/(a log (n)+ b)} 1 for any choice of b and we could not immediately
deduce the strong asymptotic order of E(Y,) as conjectured. However, we can conclude
that a ac= I/log (I/q). Now to find b.

Since Y, =[Y,]+ 1 and Y,C, _-< Y, _-< Y, + 1, a first naive guess might put E(Y,)
asymptotically at E(Y,)+1/2. This guess is further reinforced by taking U to be a

KINNEY’S WAITING-TIME CONJECTURE 979

uniform over (0, 1) independent of Y. and then considering Z. =[Y,]+ U as an
approximation of Y,. In this case the cdf of Z., Fz., is a simple continuous piecewise
linear approximation to F that equals F at the integers. On any interval [k, k + 1],
both distribution functions would flatten out entirely and the difference between Fz.
and F, could be made arbitrarily small as n tends to infinity. This approximation
again leads to

E(Y.) E[Y,]+ 1 E([Y]+ U)+ 1-E(U)

11 +1 S. logl+-.=E([Y,]+U)+E(Y) 2-- q 2

Thus our version of Kinney’s conjecture becomes

lim {E(Y,,)-a log (n)- b} =0,
(2.1)

1 1 y 1
with a a and b b +-= +-.

log(l/q) 2 log(l/q) 2

Numerical evidence for this conjecture can be obtained by abandoning the finite
summation formula (1.1) in favor of the infinite series (2.2) derived from the expansion
for the mean of nonnegative integer-valued discrete random variables in terms of the
tail probabilities P(Y,, > x)"

(2.2) E(Y.)= Y P(Y.>x)= E {1-(1-q’)"}
=0 =0

Alternately, one can obtain this formula directly by substituting the geometric series
expansion for 1/(1-q’) in (1.1) and then interchanging the order of summation. Now
1 (1 q)" qX{ 1 + (1 q) + + (1 q’)"-} =< nq. Thus if we approximate E (Y,)
by the kth partial sum of the series in (2.2), our approximation error is less than
nqk+l/(1--q). Note that the infinite series in (2.2) is better than the finite sum in (1.1)
in the sense that it allows one to numerically solve Kinney’s problem of computing
E(Y). In Table 1 we present the numerical evidence for the conjecture (2.1) by
comparing the 50th^partial sum of the series in (2.2) for q 1/2 with the approximation
of E(Y,) given by E(Y,) a log (n)+ b+ a/2n, where a and b are given in (2.1). This
particular form of the estimate is used since the asymptotic result in (2.1) was obtained
by replacing S,=" (l/x) bylog(n)+y+l/2n (the error in this approximation isx=l

then O(1/ n)).

TABLE

n Computed E(Y.)* Approximate E(Y.) Error

10 4.72555932363 4.72680894779 -0.00124962416
20 5.69043836083 5.69074157177 -0.00030321094
30 6.26355131465 6.26368161382 -0.00013029917
40 6.67263307715 6.67270788376 -0.00007480661
50 6.99097790342 6.99102924105 -0.00005133763
100 7.98380153516 7.98381576584 -0.00001423068
200 8.98020421978 8.98020902824 -0.00000480846
400 9.97840328257 9.97840565944 -0.00000237687
800 10.97750224455 10.97750397504 -0.00000173049

* Truncation error 10-12.

980 EUGENE F. SCHUSTER

After reviewing Table 1 we can set about finding a mathematical proof of the
conjecture (2.1) with overwhelming numerical evidence that the conjecture is true.

3. Settling Kinney’s conjecture. We first note that for each positive integer n we
can write -logo (n) rn + dn, where r, is a nonnegative integer and 0 <= d, < 1. Our first
lemma indicates that the d,’s are dense in [0, 1].

LEMMA 2. For each d in [0, 1], there exists a subsequence {d,,} of {dn} with
lim i-.oo d,, d.

Proof. Suppose not. Then there exists some d in [0, 1] and an e > 0 such that
[d-e,d+e] does not contain any member of the sequence {d,}. Let [a,/3]=
[d-e, d + e] f’l[0, 1]. Then it follows that the interval [a*, *]=[(1/q)r+, (l/q) r+]
does not contain an integer for any integer r > 0. But this is a contradiction since the
length of [a*,/3*] tends to infinity as r tends to infinity.

Our biggest stumbling block in settling Kinney’s conjecture was in proving the
following Lemma 3. We were unable to find a proof of this lemma until we put on
our "statistician’s hat" and considered the d of the lemma to be a parameter of some
family of distributions. A mathematical proof is outlined in 4.

LEMMA 3. The function H(d)=

_
(y+ d -[y+ d]) d exp (--qY) is not constant

on [0, 1].
Proof. Take h(d)= H(d)-HI,O). Since G(y)=exp (-qY) is a distribution func-

tion, we see that

h(d) I_{y+d-[y+d]-H(0)} d exp (-qY)

f_ {y-[y]-H(0)} dG(y; d),

where G(y; d)= exp (_qy-d). Let G’(y; d)= g(y; d). Then the family of probability
density functions {g(y; d), d [0, 1])} is an exponential family and this exponential
family is complete (see Lehman (1959)). But this says that H(d) is not identically zero

on [0,1] since, by the completeness property, the only function g with
_

g(y)dG(y; d)--0 for all d [0, 1] must be the zero function, except possibly on

a null set N with G(y; d) probability zero for every d in [0, 1]. Clearly g(y)= y-[y]-
H(0) is not equivalent to the zero function, and so h(d) H(d) H(O) is not identically
zero on [0, 1], i.e., H(d) is not constant on [0, 1].

Using Lemmas 2 and 3 we can prove:
LEMMA 4. lim_, E(Y,-[Y]) does not exist.

Proof. Define G,(y) (1 qY/n) if y >_- logo n and equals 0 otherwise and G(y)
exp (-qY), -<y <. Choose d in [0, 1]. Using the notation of Lemma 2, we can

find a subsequence of the positive integers, say {hi}, with {dn,} converging to d. Noting
that x+ r-Ix+ r]= x-Ix] for any integer r, one can use Chung (1974, exercise 10,
p. 100) to see that

lim E(Y,-[Y,])=lim (y-[y])d(1-qY) ’’

lim (y logq n y -logq n])d 1
i- Ogq

limi_.oo I_oo (y+ d,,-[y +

KINNEY’S WAITING-TIME CONJECTURE 981

=limf-oo (y-[y])dG’’(y-d’’)

f_oo(y-[y])dG(y-d)= f_oo(y+d-[y+d])dG(y)=H(d).
The desired conclusion easily follows from Lemma 3 since we can find subsequences
which converge to different limits.

Suppose the strong form of Kinney’s conjecture is true and that lim,_.oo {E Y,)-
alogn-b}=O for some a=a(q), b=b(q). Then since Y,=[Y,]+I and E(Y,)=
S,/log (I/q), we can conclude that

{ S" } =lim{E(Y"-Y")-a*lgn-b*}=O,-lim E (Y,) a log n b E(Y,) +
log (q)

for some a* and b* depending on q. Since El Y. yc.I -< 1, a* must be zero. This means
that lim,_E([Y,]+l-Y,)=lim,_E(Y,-Y,) must exist, in contradiction to

Lemma 4. Consequently,

The strong form of Kinney’s conjecture is false.
Although Kinney’s conjecture is false, the following theorem indicates that both

the lim inf and lim sup of E(Y,) are asymptotically of logarithmic form"
THEOREM

lim {E(Y,)-alog(n)-b+H(a log (n))}=0,

where a=-l/log(q), b a 2’-1, 3’ is Euler’s constant, and H(d)
-o (Y+ d-[y+ d])d exp (-qY).

Proof Using the representation Y, Y]+ 1 of 2 and the notation of Lemma
4, we first define H,(d)= (y+d-[y+ d])dG,(y) and c, a log (n). Proceeding
as in the proof of Lemma 4, we see that

lim {E(Y,-E(Y,)+H,(c,))} lim {E([Y]+ 1-Y+H,(c,))}

1 + lim {H,(c,)- H,(c,)} 1.

In 2 we noted that E(Y,)=-S,/log (q), where S,==l(1/x). Hence
lim,_. {E(Y,) a log (n) ay} =0. Thus it suffices to show that lim,_. h, =0, where

h-In(c)-n(c)l. Since ly-[y]l-<l, it follows that lim,_ sup h,=a exists and
is finite. Let {hi} be a subsequence of integers with limi_. h, a. As in 3, we write

c,, r,, + d,,, where r,, is an integer and 0 _-< d,, < 1. Let { d,,k} be a subsequence of {d,,}
converging to a point d in [0, 1]. Using Chung (1974, exercise 10, p. 100), we can

proceed as in the proof of Lemma 4 to see that a 0, and the proof is easily completed.
Remark 1. For the original coin tossing game of Kinney, q 1/2. In this case,

lim {E(Y2i)-a log (2’)- b} 1 H(0),

where a =-I/log (q) and b ay. In fact, for any positive integer n, the subsequence
{E(Y,2i)} is asymptotically of logarithmic form with

lim {E(Y,2i)- a log (n2’) b} 1 H (log2 n).

Remark 2. According to extreme value theory, one cannot find sequences {a,},
{b,} so that (Y,-a,)/b, has a nondegenerate limiting distribution. However, it is not

982 EUGENE F. SCHUSTER

difficult to see that if { Y,,} is any subsequence with a,, =-logq (Hi) a positive integer
for every i, then Y.,+ logq (Hi) will have a limiting distribution with limiting cdf F(x)=
exp {_qtX}. In Kinney’s coin tossing game, Y2’-i would have limiting distribution
F(x) exp {_1/2txl}.

4. Why does the conjecture come so "close?" In Remark 1, we see that many
subsequences of E(Y.) are indeed asymptotically of logarithmic form. Moreover, we
have shown that the general asymptotic form of E(Y.) differs from a logarithmic
function a log (n)+ b only by H(-logq (n)). In the following we see that the function
H is remarkably close to the constant 1/2, at least when q 1/2.

Let G be a distribution function with characteristic function , and let h be a
bounded measurable 1-periodic function with (complex) Fourier coefficients { h.}. Then
H(x)=_h(x+y)dG(y) is also 1-periodic with Fourier coefficients {H,=
h,(27rn)}. As a corollary, if (27rn) never vanishes, then H can be constant if and
only if h, =0 for n S0, i.e. h is constant. Since the fractional function x-[x] is
nonconstant 1-periodic, this leads to a nice mathematical proof of Lemma 3. Now,
for the 1-periodic function H of the theorem in 3, one can show that Ho 1/2, and for
n SO, H, =-F(27rin/log q)/log q, which goes to zero extremely rapidly. Using the
well-known identity IF(ix)l=x/r/(x sinh (rx)) for x real, we see that even for Inl= 1
the modulus of H, is about 7.9 10 -7 when q 1/2. For nl 2, 3 the moduli are about
3.6 10-13 and 1.9 10-19, respectively.

Remark 3. Although we will continue to use the computer as an exploratory tool
in problem solving, we have learned the hard way that overwhelming numerical evidence
is not enough. The evidence in the present case did play an important but perhaps a
usual role. It fueled our stubborn persistence until we discovered the "truth."

REFERENCES

[1] KAI LAI CHUNG (1974), A Course in Probability Theory, 2nd. ed. Academic Press, New York and London.
[2] JOHN KINNEY (1978), Tossing coins until all are heads, Math. Magazine, 51, 3, pp. 184-186.
[3] E. L. LEHMANN (1959), Testing Statistical Hypotheses, John Wiley, New York.
[4] EUGENE F. SCHUSTER (1975), An integer programming handicap system in a "Write Ring Tossing

Game," Math. Magazine, 48, 3, pp. 134-142.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 4, October 1985

1985 Society for Industrial and Applied Mathematics
013

ON MINIMIZING A SET OF TESTS*

BERNARD M. E. MORETf AND HENRY D. SHAPIRO"

Abstract. Minimizing the size or cost of a set of tests without losing any discrimination power is a
common problem in fault testing and diagnosis, pattern recognition, and biological identification. This
problem, referred to as the minimum test set problem, is known to be NP-hard, so that determining an
optimal solution is not always computationally feasible. Accordingly, researchers have proposed a number
of heuristics for building approximate solutions, without, however, providing an analysis of their perform-
ance. In this paper, we take an in-depth look at the main heuristics and at the optimal solution methods,
both from a theoretical and an experimental standpoint. We characterize the worst-case behavior of the
heuristics and discuss their use in bounding. We then present the results of extensive experimentation with
randomly generated problems. While the exponential explosion suggested by the problem’s NP-hardness is
apparent, our results suggest that real world testing problems of large sizes can be solved quickly at the
expense of large storage requirements.

Key words, experimental results, greedy heuristics, minimum test set, NP-hard, single branch enumer-
ation, worst-case behavior

1. Introduction. Identification problems arise in almost all fields of scientific
research. We are concerned here with a special type of deterministic identification,
where an unknown (system state, animal species, location of a fault) must be classified
in one of a given set of categories, based on the outcome of a set of tests. Each category
is characterized by a vector of test outcomes, and an unknown object is classified in
that category if its vector of test outcomes matches the category’s characteristic vector.
The collection of all categories together with their characteristic vectors is known as
a diagnostic table. A diagnostic table with m categories and n tests can be represented
as an m n matrix, where the (i,j) entry is the result of test T applied to an object
in category Ci. Such formulation is common in testing and fault analysis [2], [4], [11],
biology [15], [22], [23] and pattern recognition [5], [13].

Given a diagnostic table, it is often the case that some tests are redundant. In
such a case, it is of interest to find the smallest suitable subset in order to minimize
the cost of identification. The minimum test set (also known as the test of minimum
length) is the smallest subset of tests which discriminates between all categories
distinguished by the full set of tests. Knowledge of the minimal test set can reduce
costs in applications where a rapid identification is needed, that is, in situations where
all the tests will be applied in parallel. Cost reduction will also occur in applications
where the capital costs (procurement of the test equipment) far exceed the running
costs, regardless of whether the actual testing is done in a parallel or sequential manner.
(This is the minimization of the acquisition cost in decision trees [12].) Applications
of the second type are to be found in most fields of human endeavor, including some
that do not explicitly include testing: servicing equipment under poor access conditions
(military equipment in the field, oil rigs at sea), where the cost of delivering service
personnel and apparatus must be minimized; remote sensing missions, where the cost
of the apparatus must be minimized subject to performing all the required tasks; and
fault diagnosis and design for testability, where, for instance, the number of checkpoints
added to a circuit must be minimized subject to retaining a prescribed level oftestability.

Unfortunately, the minimization problem is known to be NP-hard [6]. Accordingly,
researchers have developed a number of heuristics for building suboptimal test collec-

* Received by the editors August 5, 1983, and in final form June 11, 1984.

" Department of Computer Science, University of New Mexico, Albuquerque, New Mexico 87131.
t The work of this author was supported by the Office of Naval Research, under grant 0014-78-C-0311.

983

984 BERNARD M. E. MORET AND HENRY D. SHAPIRO

tions by using variants of a greedy algorithm where, at each step, the locally optimal
test is added to the partial solution. However, no analysis of those methods is offered
in the literature.

In this paper, we take an in-depth look at existing heuristics and how they can
be applied to develop optimal solutions. We show that existing selection heuristics
can exceed the optimal by a factor of at most log n and provide a generic example
where this factor is asymptotically reached. We then present and discuss the results
of extensive experiments with both artificial (randomly generated) and real-world
problems. While the exponential explosion suggested by the problem’s NP-hardness
is quite apparent in the artificial examples, our results suggest that real-world problems
of large sizes can be solved in reasonable time.

2. An analysis of proposed heuristics. Almost all proposed heuristics belong to the
class of greedy algorithms, in that they perform local, step-by-step optimization, using
a suitable selection criterion. Very few analytical results are available about the
minimum test set problem in general and the behavior of the proposed heuristics in
particular. A number of Russian researchers [8], [9], [21] have studied the expected
size of the minimum test set for randomly constructed tables; the analyses of the main
two heuristics discussed in [12] in the context of identification trees do not extend to
the minimum test set problem. In the following, we briefly define the four main heuristics
proposed in the literature and offer a partial analysis of their worst-case behavior.

2.1. Definitions. When a pair of categories is distinguished by only one test (that
is, the categories’ characteristic vectors differ in exactly one component), that test is
called essential and must be included in any complete set of tests. Thus, in a step-by-step
method, preincluding all essential tests is an optimal policy; all proposed methods [2],
[3], [18], [20] make use of this policy.

When all essential tests have been included, one can either attempt to extend the
notion of essentiality or resort to a measure of a test’s local optimality. The first
approach has been used by researchers in microbiology [16], [18], [20]: since a test is
essential when it is the only test to separate a pair of categories, a test is "nearly
essential" if it is one of only two (or a few) tests to separate a pair of categories. This
extension restricts the choice of the next test to one of those that separate that pair of
categories which is separated by the least number of tests--the least-separated pair.
An algorithm using this criterion will thus focus on category pairs; ties between tests
and/or between equally poorly separated pairs are broken by the use of a "second-level"
heuristics-one of the measures of local optimality described below. We shall call this
the least-separated pair criterion.

The second approach attempts to measure how well a new test will complement
those already chosen; in such an approach, all as yet unincluded tests are considered
for inclusion. An obvious choice is to count how many as yet unseparated pairs the
new test will distinguish and choose a test which maximizes this count" we shall call
this the separation criterion. This heuristic has been extensively used in fault analysis
[3], [4] and microbiology [16], [20]. The contribution of a test can also be measured
in terms of entropy (or, equivalently, of information), in which case the initial statema
single homogeneous group--corresponds to an entropy of 0 and the final statemm
distinct groups of one category each--to an entropy of log2 m; it can also be measured
in terms of permutations, where the initial state corresponds to a value of lfor there
is only one way to assign a label to the single initial set--and the final state corresponds
to a value of m !, the number of ways in which m distinct items can be labelled. The
information theory approach is found early in the literature and used extensively for
both the minimum test set and the related minimum identification tree problems [4],

MINIMIZING A SET OF TESTS 985

[12], [16]. Formally, the entropy of collection C of k clusters, of sizes s,..., Sk,

comprising m elements in all, is defined as

1 k

H(C) log2 m si" log2 si.

Applying a test to a collection of clusters yields a new collection, with larger (or equal)
entropy; the difference is the amount of information contributed by that test. The test
which brings about the largest increase will be selected. We shall call this approach
the information criterion. The combinatorial approach, described in [17] and used in
[14], considers how many possible distinct partitions of the size used could exist; the
logarithm of this quantity is used as a measure, called repartment [17]. However, the
repartment of a partition of m objects is equal to m times the entropy of the partition
(within an additive factor of log2 m), so that the two approaches are essentially
equivalent.

Thus, we have four main heuristics: least-separated pairs with separation used to
choose among the candidate tests (at the "second level"); least-separated pairs with
information used at the second level; separation alone; and information alone. The
first two restrict the choice of tests before applying a local measure of optimality, while
the last two apply such a measure to all remaining tests.

2.2. Aaalysis. Examples are easily constructed that show that no heuristic is
uniformly better than the other three. The four heuristics are rather similar: the effect
of restricting the choice to those tests separating the least-separated pair does affect
the order in which the tests are selectedmwhich is of no consequence with regard to
the final subset selected; it also affects the composition of the final subset, since a
different order of selection may modify the local measures of optimality ofthe remaining
tests. Typically, we found that these indirect effects are minor. Moreover, the measures
of local optimality are all convex functions, the minima and maxima of which all occur
at the same points.

It is easily shown that, in the worst-case, no heuristics will yield a solution with
a cost that is at most a constant away from the optimal. Indeed, staying within a fixed
constant around the optimal is itself an NP-hard problem (our proof uses a technique
that has become standard in the field: see [6, pp. 138-139]). We show that this problem
is NP-hard by showing that, if a heuristic existed that produced a solution that had
at most k more tests than the optimal, then we could use it to construct the optimal
solution (and thus solve a NP-hard problem). The idea is to scale our problem up,
solve it with the heuristic, and then scale it down, so that the error margin will shrink
to zero by truncation. Specifically, given a problem, we "multiply" it by some factor
a, by making t copies of each object (regard each copy as a coordinate in a a-tuple)
and thus a copies of each test (one copy for each coordinate); since the various
coordinates may not be separable with the eisting tests, we also add log a well-splitting
tests for that purpose. Notice that the optimal solution for this problem has at most
a times plus log c the number of tests of the optimal solution for the original problem.
The heuristic solution will fall within k of the optimal for the larger problem; now
pick as solution for the original problem the smallest of the test sets obtained by
retaining from the heuristic solution only those tests that apply to the same coordinate
(and discarding any of the log a tests, which give a uniform result for any one
coordinate). That set has no more than 1 / t the number of tests ofthe heuristic solution;
thus it has at most (log a / k)/a more tests than the optimal solution; but all quantities
must be integer, so that for an appropriate choice of t, independent of the problem,
we have in fact obtained the optimal solution.

986 BERNARD M. E. MORET AND HENRY D. SHAPIRO

Furthermore, another standard technique can be used to show that staying within
an arbitrarily small ratio of the optimal is also NP-hard (i.e., no fully polynomial time
approximation scheme [6] exists for the problem): it is an immediate consequence of
the corollary on page 141 of [6] and of the fact that our problem is strongly NP-hard.
Thus the best possible algorithm is one that produces solutions, the size of which stays
within afixed ratio of the optimal (of course, we have no guarantee that such a heuristic
exists).

None of the four heuristics discussed above comes close to this bound; in fact,
all four can produce solutions, the size of which exceeds the optimal by a ratio of
log n, for n objects. This ratio is also pessimal: it describes the worst-case behavior of
the heuristics. The proof that log n is the worst-case ratio and an example that shows
that such a ratio is attainable can both be derived by considering the closely related
set covering problem [1], [6], [10]. A set covering problem is given by a family of sets,
the goal being to find the smallest number of sets in that family that cover the family,
i.e., such that their union is equal to the union of all sets in the family. We shall use
s to denote the number of sets in the family and e to denote the total number of
elements in the union. A minimum test set problem with n tests and m objects can be
considered as a set covering problem with e- m. (m- 1)/2 elements (all distinct pairs
of objects) and a family of s- n sets (each set is composed of all pairs distinguished
by the corresponding test). Distinguishing all objects is then equivalent to covering all
pairs. Conversely, given a set covering problem with e elements and s sets, we can
construct a corresponding minimum test set problem with m --2e objects (two objects
for each element; one could think of a male and a female representative) and n-
s + [log e] tests. The [log e] tests are even splitting tests that distinguish each male-
female pair from all other pairs, but do not make any distinction between the male
and the female representatives of a set element; they are all essential (since no other
tests will differentiate the males of the pairs). The s tests correspond to the s sets" they
return true only for objects that are female representatives of elements of the corre-
sponding set; selecting some of these tests to complement the [log e] tests is then
equivalent to picking a set cover. Note that each transformation creates a bigger
problem; in particular, the two transformations are not inverses of each other.

Johnson [7] has shown that the selection of covering sets by the greedy heuristic
(pick that set which covers the largest number of not-yet-covered elements) must
produce solutions that do not exceed the optimal by more than a ratio of log e. Since
the greedy heuristic based on separation picks that test which separates the largest
number of not-yet-separated objects, we immediately get the desired upper bound on
the worst-case behavior of the separation heuristic: a ratio of log (m. (m-1)/2) or
approximately 2 log m. Moreover, Johnson also provided a set covering problem where
the log e factor is reached. The example has 3.2k elements and k + 4 sets. The k + 4
sets are in two groups: 3 disjoint sets of 2k elements each, which form the optimal
cover; and k + 1 disjoint sets of sizes 3 2-, 3 2k-2, ", 3 2, 3, and 3, which will
be picked by the greedy heuristic. The situation is illustrated below.

123 3 6

TABLE
3 2 elements in all.

3- 2k-2 3.2k-1

k + sets of respective size

set of 2

set of 2

set of 2

MINIMIZING A SET OF TESTS 987

The ratio of the greedy solution to the optimal solution is (k+ 1)/3, or about
1/2 log e. While a direct translation (by the construction described above) of this example
yields a problem where our four heuristics behave well (staying within a ratio of 2),
the problem can be "multiplied" in a fashion similar to that used above for our
NP-hardness reduction so as to produce a worst-case example with a logarithmic ratio.
Specifically, we duplicate it k2 times, then use the direct translation, giving rise to a
collection of m k2. 3 2k+l objects. Thus the optimal cover has 3 k2 sets, giving rise
to a minimum test set of 3. k2+ [log (m/2)] tests, while the greedy heuristic derives
a cover of k2" (k / 1) sets, corresponding to a test set of k2" (k + 1) / [log (rn/2) tests.
Hence for large k, the ratio becomes k/3, which is approximately log m. (Duplication
by a factor of k would be sufficient and lead to more rapid convergence, but the
asymptotic ratio would only be log m.)

The example and the proof can be modified to account for the other three heuristics
as well as for similar heuristics with finite look-ahead. Thus all heuristics based on
local measures of a test’s power of discrimination have a poor worst-case behavior:
they can yield solutions that are arbitrarily far from optimal. However, the worst-case
construction is rather elaborate and produces large ratios only for very large problems.
(Our worst-case construction has a logarithmic asymptotic ratio with a constant factor
of ; other constructions may converge to a ratio with a larger constant, since our
proof merely shows that the largest constant factor is 2. Also, other constructions may
converge faster than ours. Nevertheless, observe that, in our construction, we need
over 10,000 objects in order to produce a ratio larger than 2; with k 10 and 614,000
objects, the ratio is still only 3.5.) In consequence, we would expect the heuristics to
behave rather well on problems of practical size (less than a thousand objects).

3. Bounding methods. Exhaustive search algorithms that find the optimal sol-
utionmsuch as branch-and-bound or depth-first search--require both upper and lower
bounds on the size of the optimal solution in order to run efficiently. The bounds are
used in pruning, i.e., in eliminating, fruitless directions of search (pruning occurs
whenever the local lower bound reaches or exceeds the global upper bound); they can
also be used in guiding the selection of that portion of the search space to explore
next. A global upper bound is trivially provided by the size of the best solution found
so far; from our previous discussion, we know that this bound can be arbitrarily loose,
but would expect it to be fairly tight in most cases.

Any measure of a test’s discriminating power that gauges distances on the way
from the initial to the final partition can be used to derive lower bounds. At any step,
we compute the distance from the partition determined by our partial solution to the
final partition. We also determine the local contribution of each available testmi.e.,
those not yet chosen nor eliminated. We then sort the available tests’ contributions in
decreasing order and, assuming no interaction between tests, find by repeated summing
how many tests are needed to complete the partial solution. Since the contribution of
a test does not increase as the partial solution is expanded, this gives us a safe lower
bound.

The separation-derived function gives us a lower bound on the number of addi-
tional tests needed to distinguish the remaining unseparated pairs, assuming that no
two tests separate the same pair. The information-derived function finds a lower bound
on the number of additional tests needed to increase the entropy to the final partition’s
value, assuming no cross-information between tests. We note that, whenever there is

There is cross-information between two tests if the amount of information which they contribute
together is less than the sum of the amounts which they contribute individually.

988 BERNARD M. E. MORET AND HENRY D. SHAPIRO

cross-information between two tests, there will be some pairs that they both distinguish,
but that the converse is false. For instance, if rn is a power of 2 and log2 rn of the tests
perfectly complement each other, then those tests have no cross-information, yet any
two of them distinguish m2/8 common pairs. Thus we expect the information bound
to be better than the separation bound.

A simple example will illustrate our point. Consider a problem with m (an even
number) categories, where all tests effect an even split, m/2 vs. m/2. The tightest
possible lower bound on the size of the optimal solution is [log2 rn], an achievable
size. Now, each test separates (m/2). (m/2)= m2/4 pairs and brings an increase in
entropy of 1 bit, so that the separation-derived bound is

[m" (.m_._l.)/2] =[2" (m-1)] =2,m2/4 | m

while the information-derived bound is

[lg2m]=[lg2m]’l
The information-derived bound is as tight as possible; the separation-derived bound
is off by an unbounded factor.

In fact, the information-derived bound can also be arbitrarily smaller than the
size of the optimal solution, although the factor cannot grow as large as for the
separation-derived bound. Clearly, the worst possible behavior for the information-
derived bound is to indicate the need for a logarithmic number of tests (close to the
theoretical minimum) while the problem in fact requires a linear number of tests (close
to the theoretical maximum). Such a behavior can be observed in a square diagnostic
table where the 1 entries are disposed so as to make the table into a lower triangular
matrix: the tests in the middle columns are well-splitting but closely correlated, thereby
misleading both bounding methods. Thus, for rn object categories, the information-
deriv.ed bound can be off by a factor of O(m/log2 m), while the separation-derived
bound can be off by a factor of O(m).

However, information-derived bounds are probably much preferable to separation-
derived ones, since, the better the tests are, the poorer the separation-derived lower
bounds become. In fact, since well-splitting tests are far more likely than others in
randomly chosen test collections, the example discussed above is essentially the average
case for random problems. Thus the separation-derived bounds will be practically
useless in problems that have a large number of tests relative to their number of
categories (a "wide" diagnostic table). Even for "square" or "tall" diagnostic tables,
those bounds will be effective only if the tests are rather poor.

4. Experimental results and discussion.
4.1. Goals and methodology. The goals of experimentation were three-fold: to

verify our deductions about the selection criteria and bounding functions; to determine
how much work was expended on finding the optimal solution (as opposed to verifying
its optimality); and to obtain an estimate of the size of the largest problems that could
be solved in a reasonable amount of time by these techniques.

Faced with a problem of subset search, the algorithm designer usually has a choice
of four techniques: dynamic programming, cutting plane techniques, branch-and-
bound, and depth-first search. The minimum test set problem has no apparent formula-
tion in the framework of dynamic programming. Cutting plane algorithms require that
the minimum test set problem be formulated as an integer linear programming prob-

MINIMIZING A SET OF TESTS 989

lem--by transforming it into a set covering problem as described earlier. While cutting
plane techniques have proved very effective for the set covering problem (see [1]), the
quadratic growth in problem size resulting from the transformation results in excessively
large systems of equations. The last two methods are more attractive for our purposes
since they both perform an explicit search of the state space as guided by selection
criteria and bounding functions. An estimate of the amount of storage needed for the
intermediate solutions in a straighforward implementation of branch-and-bound tech-
niques shows that memory requirements are too large to allow the solution of problems
of useful size.

Therefore we chose the depth-first search technique (also known as single branch
enumeration). It has the advantage of requiring only the storage of a single path in
the search space (whereas branch-and-bound techniques may require an exponential
number). Also, since the first solution produced by the depth-first search algorithm is
the greedy solution, the chosen algorithm has the added advantage of allowing immedi-
ate comparisons between selection criteria. Finally, the two methods based on the
least-separated pair should work very well in most cases, as the restriction on the
choice of candidate tests should drastically diminish the size of the search space. We
wrote four Pascal programs, each implementing one of the four selection methods
described earlier with its matching bounding function. The global upper bound is
provided by the size of the best solution found so far; our discussion lets us hope that
this bound is fairly tight for problems of reasonable sizes. The lower bounds are derived
from the local contributions of each remaining test and the distance to the solution"
by assuming that the tests do not interact, a lower bound on the number of tests needed
to complete the partial solution can be found by repeated summing of the tests’
contributions.

All four programs preinclude essential tests whenever such are to be found.
Although only those tests that are essential with the initial partition must appear in
any solution, the backtracking process may give rise to "locally essential" tests, since
the process of removing a test from consideration in the subtree may make other tests
essential in that region of the state space. As a result, an efficient implementation
requires a data structure oriented towards object pairs, keeping track of which available
tests distinguish each unseparated pair, so that the search for locally essential tests
can be performed by incremental readjustments of the data structure.

More specifically, the data structure consists of a collection of small records,
referenced by two list structures. By traversing one type of list, all the tests which
separate a given pair of objects are found; traversing the other type of list gives access
to all the pairs of objects which a given test distinguishes. There is one list of the first
type for each object pair, with direct access to the head of each list provided by an
array organization; similarly, there is one list of the second type for each test, again
organized as an array. A third array maintains a sorted index to the array of object
pairs, used for the least-separated pairs heuristics and for identifying essential tests"
its ith entry is a list of all currently unseparated pairs that can be distinguished by
exactly of the available tests. This sorted array is maintained by incremental sorting
(bubbling changed entries up or down), which is much more efficient than sorting the
entire array at each step in the search. When the information heuristic is used, a list
of clusters (each cluster being in turn represented as a list) is also maintained, which
shows the current breakdown of objects. (In addition, the data structure reflects the
availability of tests and the coverage of object pairs; in two of our programs, this was
done by means of flags, while the other two kept the data structure tailored to the
subproblem at hand.) With this data structure, locally essential tests are identified

990 BERNARD M. E. MORET AND HENRY D. SHAPIRO

instantly; similarly, the selection heuristics can operate in time linear in the number
of tests (separation-based) or linear in the size of the input (information-based). This
data structure can grow very large (the array of pairs has m. (m-1)/2 lists for m
objects and each list can have up to n entries) and its memory requirements--rather
than the time needed to maintain it--turned out to be the main limiting factor in real
world examples. Updating the data structure itself can require time proportional to its
size, although it is usually much faster; in particular, the worst-case behavior occurs
only near the root of the search tree, that is to say, rarely. The trade-off seems favorable,
as a search for locally essential tests would, in absence of the data structure, require
time proportional to n. m. (m-1)/2.

All four programs were run on randomly generated problems and those two
programs based on the separation measure were also run on real world examples
excerpted from the microbiology literature (in which test sets are regularly published).
Nearly all real world examples included variable outcomes (i.e., undefined or incon-
sistent test values) and a few had multiple-valued (as opposed to binary) tests. All
artificial examples had binary tests only, with all entries defined. When the number of
tests was small for the number of objects, the randomly generated tables often did not
distinguish between all objects; in such a case, a solution was defined as a subset of
tests that eitected as much discrimination as the full set of tests. The random generator
was set so that the two possible outcomes would be exactly balanced over the whole
table. (Such problems appear to be harder than those where one outcome is favored,
presumably because the even balance introduces a bias in favor of well-splitting tests,2

which offer more potential for hidden interaction--thereby favoring looser boundsw
and also lie in a region where the selection functions have little sensitivity--intuitively,
the larger the difference in separation or information there is between the greedy choice
and the other available tests, the more likely it is that the greedy choice is in fact
globally optimal. We also ran a number of experiments with various skews; all proved
noticeably easier to solve than their evenly balanced counterparts.)

The data collected included the size of the greedy solution and of the optimal
solution, the initial lower bounds, the number of backtracks needed to reach the
solution, the total number of backtracks used, and the total CPU time required. A
backtracking step is defined as a reduction in the size of the current partial solution,
from size i/ 1 to size i; the backtracking results in making available again all those
tests that were children of the test included at level i, in the exclusion of the test at
level i, and in the inclusion of the test’s right sibling (if any), where the siblings are
ordered left to right by the chosen selection criterion. (If no right sibling exists, or if
it can be boundedmin which case all further right siblings are bounded as well,
backtracking will be repeated.)

We decided to use the number of backtracks as a measure of work because this
number depends only on the problem and the algorithm, therefore avoiding hardware
or software dependencies. However, there clearly is a trade-off between the chosen
heuristics with their backtracking behavior and the work needed to maintain a data
structure that supports the heuristics. Of course, poor bounding or poor selection can
easily lead to an exponential increase in the amount of work, while reasonably complex
bounding or selection methods only add another linear (in the size of the input) factor.
Our two bounding criteria provide a good example. In the case ofthe information-based
heuristics, the work is concentrated in the selection and bounding steps" each available

In view ofour previous discussion about bounding, this bias may in fact have favored information-based
bounding over separation-based bounding.

MINIMIZING A SET OF TESTS 991

test must be evaluated, which requires that the breakdown induced by the test be
computed. The time needed to construct the new partition is proportional to the number
of objects; thus the bounding and selection step requires time proportional to the
product of the number of objects and the number of available tests. In the case of the
separation-based heuristics (which we argued should prove weaker for bounding),
only simple look-ups of data already in the data structure are required and both
selection and bounding can be done in time proportional to the number of available
tests. Thus experimentation with both methods should yield valuable insight in the
trade-off between the work required at each step and the total amount of work needed.

4.2. Artificial examples. In order to study the influence ofthe number of categories
and that of the number of tests on the behavior of the algorithms, four series of
experiments were run. In two of the series, the number of categories was kept constant
while the number of tests was varied; in one series, the process was reversed; and in
the last series, all problems were square with increasing sizes. The sizes varied from
6 to 64, with varying resolution. Twenty-five examples were generated for each size in
each series and their results averaged; in all, nearly 2500 examples were run.

The results are presented in graphical form in Figs. 1-7. In all graphs, data points
marked with a triangle correspond to results obtained with the information-derived
bounding and selection functions; those marked with a square correspond to results
obtained with the separation-derived bounding and selection functions; those marked
with a cross () correspond to results obtained with the least-separated pair heuristics;
those marked with a plus sign (+) correspond to results obtained with the single level
heuristics; and those marked with a diamond indicate the average size of the solution.
Each of the first four figures displays the data collected in one series of experiments
in the form of four graphs: the top two show the average total number of backtracks
required as well as the average size of the solution, while the bottom two show the
percentage of work that was devoted to finding the optimal solution (as opposed to
verifying it). The two graphs on the left display the data obtained with the least-
separated pair heuristics and those on the right are concerned with the other two
heuristics. Fig. 5 illustrates the performance of the greedy methods (it displays the
average and largest values of the ratio of the size of the greedy solution to that of the
optimal solution) while Fig. 6 illustrates the performance of the bounding methods (it
shows the average and largest values of the ratio of the initial lower bound to the size
of the optimal solution). Finally, Fig. 7 illustrates the value of the trade-off between
local and global work discussed above, showing the ratio of the total CPU time required
by the separation-based programs to that required by the more complex information-
based programs. Curves were passed through the points in order to make the graphs
more legible. (Those curves should not be taken as an accurate depiction of the
heuristics’ behavior: the data are intrinsically discrete.)

In the first series, all problems had 16 categories, while the number of tests varied
from 8 to 64 in steps of 2. Since 16 is a power of 2, it is a transition point for the size
of the best possible test set: although problems of that size could admit a solution of
4 tests, such a solution would be hard to find, since it must be composed of 4 perfect
tests with no cross-information. For such a solution to exist, a rather large choice of
tests must be provided. Thus a solution of 5 tests (if it exists) will be optimal in most
cases. Figure 1 shows the experimental results. We note that the average size of a
solution stayed above 5 until the number of tests grew large, then decreased slowly;
optimal solutions of size 5 were quickly found, presumably because they exist in large
numbers. While the information-based bounding did very well (and thus stopped the

992 BERNARD M. E. MORET AND HENRY D. SHAPIRO

MINIMIZING A SET OF TESTS 993

994 BERNARD M. E. MORET AND HENRY D. SHAPIRO

2

MINIMIZING A SET OF TESTS 995

996 BERNARD M. E. MORET AND HENRY D. SHAPIRO

MINIMIZING A SET OF TESTS 997

998 BERNARD M. E. MORET AND HENRY D. SHAPIRO

MINIMIZING A SET OF TESTS 999

search shortly after the solution was found), the separation-based one did very poorly--
because, when the choice is large, many of the tests are well-splitting. Since information
bounds were tight, the reduced branching factor associated with the least-separated
pair heuristics did not play a significant role, while that role is clearly exemplified by
the two programs using the separation bounds.

In the second series, all problems had 22 categories; other parameters were as in
the first series. With 22 categories, the best possible test set has size 5; such a solution
is not as difficult to realize as in the first series, since it is well above log2 22- 4.46.
On the other hand, the bounding can be decisive only if a solution of 5 tests is reached;
the test interactions that make a 6-test set optimal will not be reflected strongly enough
in the bounds. Of course, solutions of size 6 abound, so that all heuristics will find
one almost instantly, while solutions of 5 tests will be considerably more difficult to
find until the choice of tests becomes sufficiently large. Experimental results are shown
in Fig. 2. We note that, as expected, all heuristics perform similarly when the choice
of tests is small; a solution of 6 tests is found almost immediately, but bounding is
ineffective. As the choice grows, all four heuristics find a solution of 5 tests early; the
information-bounded programs then stop shortly, while the separation-bounded ones
go on and explore nearly the full tree. The role of the reduced branching factor of the
least-separated pair heuristics is as in the first series, minor for the information-bounded
programs and major for the other two.

In the third series, the number of tests was kept at 16, while the number of
categories was varied from 8 to 64 in steps of 2. As the number of categories increases,
so does the size of the theoretically minimal solution; the size of the best realizable
solution increases even faster, since the choice of tests becomes relatively small. With
a large number of objects, the tests interact significantly, thereby impairing the effective-
ness of our bounding methods. On the other hand, the probability that a pair is
separated by only one or two tests significantly increases. Finally the tests, with so
many entries in each column, are well differentiated (the probability of any two tests
being identicalmor even having the same number of ones and zerosnis very low).
The results are shown in Fig. 3. Since the average number of tests separating a pair is
low, the least-separated pair heuristics did much better than the other two in keeping
the amount of search low. No significant difference can be observed between informa-
tion-based bounding and separation-based bounding, presumably because the large
amount of interaction between tests renders bounding ineffective. For small to medium
numbers of categories, the situation is more complex. We conjecture that the observed
behavior is a version of the trade-off between bounding and finding solutions that the
fourth series of experiments brought to light.

The fourth series had square problems, with a size increasing from 6 to 60. (Only
the best of the four heuristics was used for the larger sizes; indeed, 40 40 appeared
to be the practical limit for the separation-bounded heuristics.) Since, in a square
problem, the choice of tests is relatively restricted, we would expect a behavior similar
to that exhibited in the first half of Fig. 3. Experimental results are shown in Fig. 4.
Least separated pair heuristics hold a slight edge over the other two and the information-
guided heuristics vary in performance between much better than the separation-
guidedmwhen the solutions become harder to find and this provide for better bound-
ing--and almost as poormwhen the solutions become easier to find and thus cause
much looser bounds. The graphs dramatically illustrate the trade-off between tight
bounding and ease in finding solutions: the harder a solution is to find, the easier it
will be to prune the remaining branches, yet, if the solution is too hard to find, most
of the tree will be explored just looking for it.

1000 BERNARD M. E. MORET AND HENRY D. SHAPIRO

The data collected about the size of the greedy solutions confirmed that all four
heuristics are good selection criteria. No greedy solution ever exceeded the optimal
by more than 50% on the average, greedy solutions were only 6% to 7% larger than
optimal. As expected from our discussion of the separation and information measures,
the two performed equally well (the average ratios were always within one percent of
each other, which is not a statistically significant difference over 25 experiments); the
two methods relying on the least-separated pair heuristic showed a slight advantage,
presumably due to the narrower focus they impart on selection. Fig. 5 presents the
results (the average ratios of the size of the greedy solution to the size of the optimal
solution) in the form of four graphs (one for each series of experiments).

We chose to illustrate the behavior of the bounding methods by collecting statistics
on the ratio of the size of the optimal solution to the initial lower bound (as derived
by using separation or information measures). The average and worst-case values of
this ratio are plotted in Fig. 6 in four graphs (one for each series of experiments). As
expected from our discussion, the lower bounds based on information are consistently
better than those based on separation. In particular, while the separation-derived
bounds worsen with increasing number of objects, no such trend is apparent for the
information-derived bounds.

While Figs. 1-4 and Fig. 6 demonstrate that information-based bounding is superior
to separation-based bounding, they do not allow us to decide whether the better
bounding was worth the added complexity. Fig. 7 provides the necessary information,
showing the ratio of the total CPU times required by the two types of heuristics for
the four series of problems. (Ratios are used because they minimize the influence of
programming style--an important feature since the two programs using least-separated
pair heuristics were written by one author and the other two by the other author; in
this context, it is reassuring to note that the two curves in each graph are always
consistent.) In all cases, despite their simplicity (and consequent speed of execution),
the separation-based programs took much longer than the information-based ones for
all but the smallest problems, allowing us to conclude that the trade-off is clearly in
favor of more local work. As might be expected, the single level heuristics, relying
exclusively on bounding, benefitted more from the added local work than the least-
separated pair heuristics, which can count on reduced branching factors.

Overall, the experimental results confirmed our evaluation of the selection criteria
and the bounding functions. All four selection criteria appear equal. Least separated
pair heuristics are vastly superior to the other two when efficient bounding is not
possible (as when the number of categories grows large with respect to the number of
tests), due to their small branching factor. Information-bounded heuristics are much
better than the other two when the optimal solution is found early and efficient bounding
can be done (as when the number of tests grows large with respect to the number of
categories). In all cases, the most efficient program used the least-separated pair
heuristic with information-based bounding. The largest solvable problems had sizes
of around 40 by 40, although a single parameter could be increased well beyond that.

4.3. Real world examples. In view of the results obtained with artificial examples,
a certain optimism is justified as regards real world problems. Such problems tend to
have many essential tests; moreover, they are often composed of a small number of
well-splitting tests and a large number of rather poor (possibly simple) tests. With
such a structure, selection criteria should perform well, as several microbiology
researchers have found [16], [19]. Moreover, many pairs will be separated by only a
few tests, so that the least-separated pair heuristics should keep the branching factor
quite low.

MINIMIZING A SET OF TESTS 1001

We used the separation criterion only, as the information criterion is not easily
adapted to problems with variable test outcomes. (Being based on clusters, it requires
that the size of all clusters established by the inclusion of tests be recorded. Since
variable outcomes require that some objects be placed in more than one cluster, the
composition of each cluster must also be recorded, in order to eliminate common
subsets. All of this adds up to excessive bookkeeping and enormous storage require-
ments.) Table 2 presents a synopsis of the results on eight examples from the micro-
biology literature; in that table, LSP stands for the least-separated pair heuristic with
separation bounding while SEP stands for separation as a single level heuristic. The
data presented include the size of the problem, the size of the optimal solution and
that of the greedy solutions found by each heuristic, the number of essential tests, the
total number of backtracks used by each heuristic in obtaining the optimal solution,
and the percentage of work used to discover--as opposed to verifymthe optimal
solution (again, work is taken to be the number of backtracks used to obtain the
optimal solution after having obtained the greedy solution, so that the work turns out
to be zero if the greedy solution proved optimal). Several remarks are in order. First,
many of the tests incorporated in an optimal solution were essential, showing how
important it is for an algorithm to include essential tests whenever possible. Secondly,"
the optimal solution was almost always found immediately, confirming the power of
the greedy heuristics in real world examples. Third, some of the problems run were
four times larger than the largest artificial examples attempted, yet ran almost a hundred
times faster. Finally, the program using the least-separated pair heuristic with separation
bounding never used more than a minute of CPU time running on a VAX11/780
computer. (For comparison, the greedy heuristic used in [14] on the Pseudomonas
example took 2.8 minutes on an IBM360/50, while our program took 1.9 seconds to
guarantee an optimal solution for the same problem--an enormous difference that we
attribute mostly to our careful choice of data structures.)

TABLE 2

Isolates

Actinomadura
Cyanobacteria
Enterobacteria
Pseudomonas 14]
SMA12 kit
Streptococci
Streptococci 18]
Yeasts

Problem size
Categories Tests

11 32
106 19

7 20
27 21
142 12
36 32
50 122
98 56

Solution Number Backtracks % Work to sol.
Opt. LSP SEP Ess. tests LSP SEP LSP SEP

5 5 7 7 20 0.0 67.2
16 16 16 15 16 16 0.0 0.0
7 7 7 4 7 7 0.0 0.0
8 9 8 2 16 21 21.7 0.0

12 12 12 12 12 10 0.0 0.0
25 25 25 25 25 25 0.0 0.0
36 36 36 31 43 43 0.0 0.0
16 16 17 5 144 1556 0.0 0.2

1M. Goodfellow et al., Numerical taxonomy of Actinomadura and related Actinomycetes, J. Gen.
Microbiol., 112 (1979), pp. 95-111.

R. Rippka et al., Generic assignments, strain histories and properties ofpure cultures of cyanobacteria,
J. Gen. Microbiol., 111 (1979), pp. 1-61.

E. W. Rypka, Private communication, Lovelace Medical Center, Albuquerque, NM, 1981.
j. M. Belin, Identification ofyeasts and yeast-like fungi I: taxonomy and characteristics of new species

described since 1973, Can. J. Microbiol., 27 (1981), pp. 1235-1251.

Overall our results confirmed our optimism about real-world problems and justify
an even more positive attitude: with a judicious trade-off between time and space, it
will be possible to solve even larger examples without major modifications. If some
better bounding method can be developed--and preliminary research indicates that

1002 BERNARD M. E. MORET AND HENRY D. SHAPIRO

this is within reach, using linear programming with merged constraintsmthen the time
traded ott will easily be regained. In fact, this indicates that a hybrid algorithm,
partaking of both depth-first search and branch-and-bound techniques, may be best.

5. Conclusion. We have reviewed the methods proposed in the literature for
dealing with the minimum test set problem. We have evaluated the proposed selection
heuristics and characterized their worst-case behavior. We have presented the results
of extensive experimentation with four backtracking algorithms. Our results confirm
that existing selection heuristics are quite satisfactory; they also indicate that the best
backtracking method involves a heuristic which uses the information criterion for
selecting tests and deriving bounds and relies on the least-separated pair heuristic to
keep branching factors low. Experimentation with real world problems showed the
importance of preinclusion of essential tests; it also gave grounds for optimism since,
despite the known NP-hardness of the general problem, an inferior version of our
programs solved large problems in a very short time.

Much work remains to be done. Better bounding methods must be sought, which
apply even when variable outcomes are present. An extension of the information
criterion is the obvious first step. Beyond that, the use of the linear programming
subproblem for deriving bounds (as used for the set covering problem in [10]) appears
promising; although the size of the linear programming problem grows faster than
that of the original problem, one can diminish it by merging some conditions, thereby
relaxing the constraints (indeed, merging all conditions into one gives us the separation
criterion). In addition, the integer linear programming approach with cutting plane
methods is worth investigating, despite the size of its formulation. Most importantly,
ways of incorporating measured amounts of redundancy into the solution must be
sought: the minimum test set is, by definition, a fragile entity. While redundancy can
easily be incorporated through simple methods (such as insisting that each pair be
separated by at least two tests, whenever possible), the more complete risk model of
pattern recognition [5] provides a suitable framework for more sophisticated methods.

Acknowledgments. The authors wish to thank the referees for many helpful
comments; in particular, we are heavily indebted to the second referee for correcting
our intuition on the worst-case behavior of the heuristics and suggesting the use of
Johnson’s results on set covering.

REFERENCES

[1] E. BALAS AND A. HO, Set covering algorithms using cutting planes, heuristics, and subgradient optimiz-
ation: a computational study, Math. Programming, 12 (1980), pp. 37-60.

[2] L. W. BEARNSON AND C. C. CARROLL, On the design of minimum length fault tests for combinational
circuits, IEEE Trans. Comp., TC-20 (1971), pp. 1353-1356.

[3] H. Y. CHANG, An algorithm for selecting an optimum set ofdiagnostic tests, IEEE Trans. Electr. Comp.
EC-14 (1965), pp. 706-711.

[4] n. Y. CHANG, E. MANNING AND G. METZE, Fault Diagnosis of Digital Systems, John Wiley, New
York, 1970.

[5] P.A. DEVIJVER AND J. KITTLER, Pattern Recognition: A StatisticalApproach, Prentice-Hall, Englewood
Cliffs, NJ, 1982.

[6] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman, San Francisco, 1979.

[7] D. S. JOHNSON, Approximation algorithms for combinatorial problems, J. Comp. System Sci., 9 (1974),
pp. 256-278.

[8] A. D. KORSHUNOV, The length of minimum tests for rectangular tables I, Cybernetics, 6 (1970), pp.
723-733.

[9], The length of minimum tests for rectangular tables II, Cybernetics, 7 (1971), pp. 1-14.

MINIMIZING A SET OF TESTS 1003

[10] C. E. LEMKE, H. M. SALKIN AND K. SPIELBERG, Set covering by single-branch enumeration with linear
programming subproblems, Oper. Res., 19 (1971), pp. 998-1022.

11] P. N. MARINOS, Derivation of minimal complete sets of test-input sequences using Boolean differences,
IEEE Trans. Comp., TC-20 (1971), pp. 25-32.

[12] B. M. E. MORET, Decision trees and diagrams, Comp. Surveys, 14 (1982), pp. 593-623.
[13] P. M. NARENDRA AND K. FUKUNAGA, A branch-and-bound algorithm for feature subset selection,

IEEE Trans. Comp., TC-26 (1977), pp. 917-922.
[14] S. I. NIEMELA, J. W. HOPKINS AND C. QUADLING, Selecting an economical binary test battery for a

set of microbial cultures, Can. J. Microbiol., 14 (1968), pp. 271-279.
[15] R. W. PAYNE AND D. A. PREECE, Identification keys and diagnostic tables: a review, J. Royal Statist.

Soc. A, 143 (1980), pp. 253-292.
[16] R. W. PAYNE, Selection criteria for the construction of efficient diagnostic keys, J. Statist. Planning &

Inf., 5 (1981), pp. 27-36.
17] A. RESCIGNO AND G. A. MACCACARO, The information content ofbiological classifications, in Informa-

tion Theory: Fourth London Symposium, C. Cherry, ed., Butterworths, London, 1961, pp. 437-445.
18] E. W. RYPKA, W. E. CLAPPER, I. G. BROWN AND R. BABB, A modelfor the identification of bacteria,

J. Gen. Microbiol., 46 (1967), pp. 407-424.
[19] E. W. RYPKA, Truth table classification and identification, Space Life Sciences, 3 (1971), pp. 135-156.
[20] E. W. RYPKA, L. VOLKMAN AND E. KINTER, Construction and use of an optimized identification

scheme, Laboratory Medicine, 9 (1978), pp. 32-41.
[21] V. A. SLEPYAN, Minimal test length for a certain class of tables, Discretnyi Analiz, 23 (1973), pp. 59-71.

(In Russian.)
[22] W. R. WILLCOX AND S. P. LAPAGE, Automatic construction ofdiagnostic tables, Comput. J., 15 (1972),

pp. 263-267.
[23] W. R. WILLCOX, S. P. LAPAGE AND I. HOLMES, A review ofnumerical methods in bacterial identification,

Antonie van Leeuwenhoek, 46 (1980), pp. 233-299.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 4, October 1985

1985 Society for Industrial and Applied Mathematics
014

COMPUTING ENVIRONMENTS FOR DATA ANALYSIS I.
INTRODUCTION*

JOHN ALAN McDONALD,- AND JAN PEDERSENf

Abstract. This is the first in a series of papers on aspects of modern computing environments that are
relevant to statistical data analysis. We argue that a network of graphics workstations is far superior to
conventional batch or time-sharing computers as an environment for interactive data analysis. The first
paper in the series provides a general introduction and motivation for more detailed considerations of
hardware and software in subsequent parts.

Key words, data analysis, interactive graphics, workstations, programming environments

1. Introduction. Statistics has long been thought of as applied mathematics. Certain
parts of it, especially data analysis, could easily be viewed as applied computation. In
this context, different research issues assume importance, in particular, the design and
implementation of computing environments for data analysis.

Analyzing data requires computing, whether with paper-and-pencil or with a Cray
super computer. The computing environment determines what sorts of statistical methods
are practical. More importantly, the statistician’s unconscious assumptions, or mental
model of the computing environment determines the kinds of new statistical methods
that are likely to be invented.

Most current research in statistical computing is based on a batch processing model
of computing environments that was appropriate twenty years ago. With a few excep-
tions, statisticians have not addressed the implications of current and future develop-
ments in scientific computing environments.

Although no single number can be a complete summary, it is probably fair to
say--for purposes of discussionmthat the performance per dollar of computing equip-
ment has increased by a factor of a thousand over the past twenty years. The large
quantitative change implies a qualitative change in how computers can be used. For
comparison, the magnitude of the difference is larger than that between walking and
flying--if one could fly for the same price as one could walk.

This is the first part of a series of papers that discuss local networks of graphics
workstations as environments for statistical computing. In this, the first part, we provide
general background and motivation. Future parts (see this issue, pp. 1013-1021 for
part II) will describe relevant aspects of computing hardware and software, in particular
present and future scientific programming environments.

2. Trends in scientific computing environments.
2.1. Pencil and paper. Most statistical methods originated in the pencil-and-paper

computing environment of 50 years ago (perhaps we should say the pencil-paper-
statistical-table-hand-calculator environment) and were designed with its particular
constraints and limitations in mind. Although some statisticians were prodigiously
good at arithmetic, there was an obvious practical limit on the volume of computation
feasible for a given analysis. This implied statisticians were restricted to fairly small

* Received by the editors June 5, 1984. This research was supported by the National Science Foundation
under a Mathematical Sciences Postdoctoral Research Fellowship, the Office of Naval Research under
contract N00014-83-K-0472, and grant N00014-83-G-0121, and U.S. Army Research Office under contract
DAAG29-82-K-0056.

t Department of Statistics and Computation Research Group, Stanford Linear Accelerator Center,
Stanford University, Stanford, California 94305.

1004

COMPUTING ENVIRONMENTS FOR DATA ANALYSIS 1005

data sets and simple methods requiring relatively little computing, by today’s standards.
The result was an emphasis on idealized models for data whose primary motivation
was the availability of closed form solutions or convenient asymptotic approximations.

Balanced against these shortcomings was the flexibility of the pencil-and-paper
environment. Since the statistician was immediately involved in every stage, the analysis
could be easily adapted to take advantage of contextual information and common
sense. In addition, the time between the conception of a qualitatively new method and
its implementation was essentially zero.

2.2. Batch processing. Twenty years ago, when computing machinery was a scarce
resource, great effort went into making efficient use of machine time at the expense of
the time of those who used it. A university computer center would typically have a

single mainframe computer (e.g. an IBM 360), which could easily be in the million
dollar range. To use the computer, users submitted programs, usually in the form of
decks of punched cards, to the computer’s job queue. A batch operating system
controlled the execution of jobs, typically processing one job at a time, from start to
finish. The results appeared, hours or days later, on reams of awkwardly sized line-

printer paper. We will refer to this type of computing environment as batch processing.
Although batch computing environments are, fortunately, nearly extinct (at least

for scientific computing), it is important to keep the batch processing model (punch
card to batch processor to line printer) in mind. Not only are the standard statistical
packages cast in this form, for example SAS, BMDP, and SPSS; much of state-of-the-art
statistical computing has this model as an implicit underlying assumption.

The batch processing model limits the sort of software that can be developed. The
two most confining aspects of batch processing are the long turn-around time for the
simplest computations and the even longer time to make minor changes to a program.
The result is a style of data analysis based on the concept of a statistical package, a

program, or collection of programs, implementing a small set (10 to 50) of fixed

operations that can be applied to sets of data.
Because the time to modify a program is so long, each operation is essentially

fixed, with perhaps a few options that can be set before execution. The set of provided
operations in a package is usually small and new operations are difficult or impossible
to add. There is, therefore, a tendency to force data sets of great individuality into
models that are not really appropriate, just because they happen to be in the available
packages. Prior knowledge, both about complex internal structure and about the
external context of the data, must often be ignored. The lack of flexibility is pervasive
and imposes severe limits on the creativity in solving the new problems posed by each
new data set.

Because the execution turn-around time is so long, each operation is designed as
a more-or-less complete analysis. Intermediate choices in an analysis must be auto-
mated; they cannot be based on interpretations of intermediate results. These automated
decisions are often a poor substitute for straightforward interactive methods. As a

result, it is not uncommon for packaged routines to attempt to anticipate every possible
contingency, generating volumes of output of which only some small part is actually
relevant.

An argument can be made that data analysis has regressed by entering the computer
age. Although the computing constraint has been largely eliminated, statisticians have
lost the flexibility inherent in the pencil-and-paper mode of analysis. John Tukey drives
this point home in the postscript to EDA, a book written almost entirely from the
pencil-and-paper point of view.

1006 JOHN ALAN McDONALD AND JAN PEDERSEN

This book focusses on paper and pen(cil)--graph paper and tracing paper when you can get
it, backs of envelopes if necessary--multicolor pen if you can get it, routine ballpoint or pencil
if you cannot. Some would say that this is a step backward, but there is a simple reason why they
cannot be right: much of what we have learned to do to data can be done by handmwith or
without the aid of a hand-held calculatormLONG BEFORE one can find a computing system--to
say nothing of getting the data entered. Even when every household has access to a computing
system, it is unlikely that "just what we would like to work with" will be easily enough available.
Nowmand in the directly forseeable future--there will be a place for hand calculation (Tukey
(1977, p. 663)).

The challenge before us is to recover the flexibility that has been lost, but also to
augment it with the considerable computing power that should be available at our
finger tips.

2.3. Time-sharing. As computer prices dropped there was less concern for efficient
use of machine time and more concern for the efficient use of people time. This led
to the development of time-sharing operating systems and a trend towards smaller
computers (which were often only smaller in the sense that they were owned and used
by a smaller number of people).

A time-shared mainframe communicates with its users through many remote
terminals and provides a few centralized peripheral devices (e.g. a line printer, disk
drive, tape drive, etc.). The mainframe runs a multi-user operating system and users
rent time, sharing the central processor.

Some statistical packages, e.g. Minitab, take advantage of time shared computing
to provide some degree of interaction, but most statistical computing has changed only
to the extent that it is easier to submit batch jobs.

Statistical programming languages, like S (Becker and Chambers (1984a), (1984b))
and ISP (Donoho, Huber, Ramos, and Thoma (1982)), make better use of the
possibilities of interactive computing. A statistical language provides tools for combin-
ing primitive functions and data structures to create new, higher-level functions and
data structures. A statistical language is therefore extensible, in a way that a statistical
package is not. That is, new operations can be defined and easily integrated into the
language. In a package the procedures stand alone and communication between
procedures is awkward or impossible, while in a language the operations are designed
to work together.

2.4. Networks of graphics workstations. Networks of graphics workstations are the
logical next step in providing a friendly and more powerful computer environment.

We begin with a few definitions:
A workstation is a complete computer that is used by a single person. The

workstations discussed in this paper may be thought of as roughly equalmin speed of
computation, amount of memory, and so forthmto a VAX (somewhere in the range
covered by the 11/730 to 11/790). In other words, they do not have the limitations
that one might associate with present day personal or home computers.

A graphics workstation includes, in addition, a high resolution bitmap display and
graphical input devices (e.g. mouse, trackerball, joystick) as integral parts (Beatty (1983),
Foley and Van Dam (1982), Newman and Sproull (1979)). This combination permits
a natural, graphical language for communication between user and computer, which,
in turn, leads to the design of computing environments that are more powerful, more
sophisticated, and easier to use.

Examples are workstations built by Apollo, Sun, Chromatics, Symbolics, Ridge,
and Masscomp, which are discussed in more detail in part II of this paper. Briefly,
some of the properties of a graphics workstation appropriate for use in statistics are:

COMPUTING ENVIRONMENTS FOR DATA ANALYSIS 1007

Hardware.
--A central processor equivalent to a Vax (500,000 to several million instructions

per second).
mFast floating point equivalent to a Vax (500,000 to several million floating

point operations per second).
--Several megabytes of physical memory (RAM).
mvirtual memory (a large address space).
mTens to hundreds of megabytes of disk storage.
--Bitmap graphics display(s), at a resolution of approximately 1,000 x 1,000, in

black-and-white and/or color.
mAuxiliary processors, including array processors for rapid numerical computa-

tion and graphics processors for fast picture drawing.
mGraphical input devices such as a mouse.
mBoth hardware and software to support communication over a high speed

(several megabits per second) local network (usually some flavor of Ethernet).
Programming environment. A user controls the action of a computer through a
set of (software) tools--the programming environment. We are intentionally
blurring the distinction between direct, interactive (interpreted) commands and
the more complex deferred instructions produced by writing, compiling, linking,
and loading a program. The basic alternatives in graphics workstations are a
conventional operating system, such as Unix (Deitel (1983), Kernighan and
Mashey (1981), UNIX (1978)), or an integrated programming environment,
such as Interlisp-D (Sheil (1983), Teitleman and Masinter (1981)) or Smalltalk
(Goldberg (1983), (1984), Goldberg and Robson (1984), Krasner (1983)).
Examples of facilities provided by a programming environment are (Deutsch
and Taft (1980)):
mProgramming languages.
--A file system.
mAn (intelligent) display editor.
--Interactive debugging tools.
mA windowing system for effective use of the bitmap display.
--Support for graphical interaction.

A network is a combination of hardware and software that permits independent
workstations and their users to communicatemin other words, transfer data--rapidly
and share resources (such as tape drives, printers, etc.) (Green (1982), Tannenbaum
(1981a), (1981b)). We are most concerned here with local networks (connecting com-
puters within a building or a campus), in contrast to wide area networks (connecting
machines across the country or around the world).

In addition to graphics workstations, the network might include some of the
following:

Small personal computers, such as the Apple Macintosh.
Several-user midi-computers, such as a VAX 11/750.
Many-user mainframes, such as DEC 20.
Special purpose number crunching engines, such as a Floating Point Systems
array processor.
Super computers, such as a Cray.
Printers.
Fileservers--computers with large amounts (at least several gigabytes) of disk
storage used to store files and databases shared by some or all the machines in
the network.

1008 JOHN ALAN McDONALD AND JAN PEDERSEN

Tape drives.
Gateways to other local networks.
Gateways to wide-area networks, such as Arpanet.

The distinction between personal computers, graphics workstations, and midicom-
puters may disappear as graphics workstations become more powerful than midicom-
puters and no more expensive than personal computers.

It is important to emphasize that this series of papers describes computing environ-
ments that will not be fully realized for five to ten years. Although graphics workstations
are commercially available, they range in price from $15,000 to $150,000, which is too
expensive for there to be one on every desk. Also, even if the hardware is available,
software for statistical applications has yet to be written.

Another serious problem is the lack of standardization of network protocols and
internal software that is necessary to allow communication and portability of software
between machines of different manufacturers.

There are good reasons to expect the situation to change rapidly. For example,
the recently announced Apple Macintosh has many ofthe desirable features of graphics
workstations. However, it has a list price of only $2,500 (and is available in many
universities for about $1,000).

3. Why workstations?
3.1. More for the money. If, over the past twenty years, the price of computer

hardware has dropped by a factor of 1,000, then we should be able to get 1,000 times
more computing for our dollar. There are two basic alternatives for taking advantage
of the price decline: make the central mainframe 1,000 times as big or make 1,000
copies of the central mainframe. Each has advantages for different purposes.

For example, a single super computer can handle very large problems--in ways
that 1,000 smaller ones cannot.

On the other hand, the change in price is not as simple as a uniform 1,000 fold
drop in the cost of all aspects of computers. Nonlinearities in price/performance give
smaller computers great advantages for many uses.

The primary reason for the drop in the price of computer hardware has been the
development of cheap large-scale integrated circuits, which, in particular, has led to
cheaper processors and memory. A single-user workstation is less complex and can
take greater advantage of VLSI technology than a multi-user machine, resulting in
more instruction cycles per dollar. Furthermore, the drop in memory prices has made
the combination of workstation and high quality, bitmap graphics displays affordable.

Single user machines also tend to have less software overhead; the effort normally
committed to managing the complexity of a multi-user system can instead be invested
in enriching the programming environment for the single user.

3.2. Graphical interaction. A basic premise of research in computing environments
is that using a computer should be a natural activity, in the same sense that driving a
car is natural.

An important advantage of workstations is the possibility of a natural, graphical
language for control of the computer. Bitmap displays and graphical input devices
provide a "high bandwidth channel" (rich and fast information transmission both
ways) for communication between person and machine.

Graphical interaction permits the design of sophisticated programming environ-
ments that are both easier for the novice and more powerful for the expert. We will
discuss programming environments in more detail in a future part of the paper.

COMPUTING ENVIRONMENTS FOR DATA ANALYSIS 1009

Acceptable graphical interaction is difficult to achieve on anything but a single
user graphics workstation because it requires

computing power on demand,
high speed data transfer between cpu and display

to have guaranteed fast response. On a multi-user machine, the response time will vary
as the operating system varies the size of the time-slice given to each user. Multi-user
machines typically communicate with graphics terminals at rates of about 10,000 bits
per second; required communication speeds may be one or two orders of magnitude
higher.

3.3. Local control. We expect to see a graphics workstation on the desk of every
statistician who wants one--in five to ten years. At present, the type of workstation
we are considering is too expensive ($15,000 to $150,000) for that, but it is reasonable
to expect a Statistics department to be able to buy one or more. There are a number
of advantages that come from having a computer that belongs to a small group of
people with similar interests and serves only one person at a time.

A single user computer has its total computing power available on demand. Among
other benefits, this permits guaranteed response time for interaction. On a large
mainframe the central processor’s attention is divided among several users in a round-
robin fashion so that in any given second no one user receives more than a fraction
of a second of processing time, and that fraction depends on the numbers of other
users currently active on the system.

The owner(s) of a workstation decides how to use its resources, not a large
bureaucracy. This makes it possible to provide essentially free computer time for
computer intensive methods; once the machine is paid for the owner(s) need not worry
about incremental charges for cpu time.

Since a workstation is dedicated to a single user, it can be tailored to a specific
application, e.g. data analysis, rather than maintaining compromises unavoidable in a
general purpose computing environment.

3.4. New statistical methods. We have mentioned above two measures of perform-
ance of computing environments: execution turn-around time and program modifica-
tion time. The quantitative change in program modification time (from hours or days
in batch environments to seconds in sophisticated, integrated programming environ-
ments) has great implications which we will explore more fully in future parts of this
paper.

In this section, we give some examples of how quantitative change in execution
turn-around time leads to qualitatively new statistical methods.

Consider the length of time it takes to draw a scatterplot, with a line fit to the
data by least squares. With pencil-and-paper, it might take days for moderate sized
(500 observations) data sets. In a batch processing environment, it will take hours. In
a timesharing environment, it will take minutes. On a graphics workstation, it need
only take 1/10 of a second.

The fact that a new plot can be drawn in fractions of a second makes possible
two new methods for data analysis that have been explored with prototype data analysis
systems:

Prim-9 (Fisherkeller, Friedman, and Tukey (1974)).
Prim-H (Donoho, Huber, and Thoma (1981), Donoho, Huber, Ramos, and
Thoma (1982)).
Orion I (Friedman and Stuetzle (1982c), Friedman, McDonald, and Stuetzle
(1982), McDonald (1982a), (1982b), (1982c)).

1010 JOHN ALAN McDONALD AND JAN PEDERSEN

3.4.1. Three-dimensional scatterplots. There are a variety oftechniques for drawing
three-dimensional scatterplots (Nicholson and Littlefield (1982), Littlefield and Nichol-
son (1982)). The Prim and Orion systems use the human ability to perceive shape from
motion. Essentially, a two-dimensional orthogonal projection of the three-dimensional
point cloud is displayed on the graphics screen. Rotating the point cloud in real-time
allows the user to view from any direction and gives a convincing and accurate
perception of the shape of a three-dimensional scatterplot from the apparent parallax
in the motion of the points. This is demonstrated in the Prim-9 and Orion films (Prim-9
(1974), McDonald (1982a), (1982b), (1982c)).

Real-time motion is a demanding task. As is in the cinema, the apparently moving
picture is actually composed of a sequence of static frames. Conventional movies are
shown at 24 frames per second; television at 30 frames per second. Three-dimensional
scatterplots can be successfully displayed somewhat more slowly--down to perhaps 3
frames per second. However, shape is perceived with more comfort at rates closer to
24 or 30 frames per second.

The rate at which motion graphics can be displayed is determined by:
the time it takes to compute a new frame,
the time it takes to erase the old frame and drawn the new one.

To display three-dimensional scatterplotsmor other type of motion graphics--at
30 frames per second, all the computations associated with each frame must be
completed in roughly 1/60 of a second, to allow time for drawing and erasing the
frames. Rotation about an arbitrary axis with perspective (Foley and Van Dam (1982),
Newman and Sproull (1979)) requires at least nine multiplications, nine additions,
and two divisions--20 arithmetic operations per point. Therefore, for smooth rotation
of a scatterplot with 1,000 points, the computer may need to do 1,200,000 arithmetic
operations per second. Orthogonal rotation about either the vertical or horizontal axis
takes 3 multiplies and 2 adds per point; at a minimal rate of 5 frames per second,
1,000 points demands about 50,000 arithmetic operations per second.

Moving scatterplots are usually displayed by drawing and erasing a small symbol
for each point. Such symbols may consist of from 1 to 100 pixels (picture elements).
For five pixel symbols, erasing and re-drawing a frame with 1,000 points in 1/60 second
requires a graphics device that can do 600,000 pixel writes per second. Changing a
pixel typically means sending 32 bits of address and 8 bits of data--a total of 5
bytesmfrom the computer to the graphics device. Therefore smooth rotation may
require the computer to be able to communicate with the graphics device at 3 megabytes
per second.

This type of real-time motion is impractical on a time-shared computer, since one
cannot rely on a sufficiently large timeslice to do the necessary computing. In contrast,
a workstation is dedicated to a single user, so the timing constraints are more easily
satisfied. Also, real-time motion is inhibited in time-shared systems by slow data transfer
between a central processor and a remote graphics terminal.

3.4.2. Interactive model fitting. Suppose we want to fit a model with several
parameters to a set of data. Also suppose we can draw a picture that shows how well
the model fits for any given values of the parameters. Then it may be useful to be able
to vary some or all of the parameters interactively, with a graphical input device (such
as mouse, touchpad, trackerball, joystick).

A simple example is linear regression with power transformations. That is, we
approximate observed data {xi, Yi}, with the model:

y=a+b.x.

COMPUTING ENVIRONMENTS FOR DATA ANALYSIS 1011

For fixed values of 0, t(0) and/(0) are fit by least squares. On a graphics workstation,
we can use a dial, or some equivalent graphical input device to control the value of 0.
We would display a scatterplot of Yi versus zi x with the least squares line" y
(0) + f(O).z. The picture must change smoothly as we move the dial that controls 0.
To do this the graphics system must be able to compute the transformation, zi- x,
the least squares fit, and erase and redraw the picture about 30 times a second.

A still more demanding example is Interactive Projection Pursuit Regression,
which is described by Friedman and Stuetzle (1981b), (1982a), (1982b) and McDonald
(1982a) and demonstrated in the film by McDonald (1982c).

4. Stay tuned till next week. This has been an introduction to a series of papers
on research in computing environments for data analysis. It is intended to provide an
overview and motivation for what follows.

There are two important aspects to computing environments. The more funda-
mental and limiting of the two, Hardware, will be reviewed in detail in part II (this
issue, pp. 1013-1021). The other aspect, Programming Environments, is perhaps of
more immediate interest as an area of research for statisticians. It will be the basis for
parts III through V of this paper:

Issues in the Design of Programming Environments for Data Analysis.
Conventional Programming Environments" Unix.
Integrated Programming Environments: Lisp and Flavors.

REFERENCES

D. R. BARSTOW, H. E. SHROBE AND E. SANDEWALL, eds. (1984), Interactive Programming Environments,
McGraw-Hill, New York, 1984.

J. C. BEATTY (1983), Raster graphics and color, American Statistician, 37, pp. 60-75.
R. A. BECKER AND J. M. CHAMBERS (1984a), Design of the S system for data analysis, Comm. ACM, 27,

pp. 486-495.
(1984b), S: An Interactive Environment for Data Analysis and Graphics, Wadsworth, Belmont, CA.

H. M. DEITEL (1983), An Introduction to Operating Systems, Addison-Wesley, Reading, MA.
P. DEUTSCH AND E. TAFT, eds. (1980), Requirementsfor an experimentalprogramming environment, Xerox

PARC Report CSL-80-10, Palo Alto, CA.
D. DONOHO, P. J. HUBER AND n. THOMA (1981), The use ofkinematic displays to represent high dimensional

data, Computer Science and Statistics: Proc. 13th Symposium on the Interface, W. F. Eddy, ed.,
Springer-Verlag, New York.

D. DONOHO, P. J. HUBER, E. RAMOS AND n. THOMA (1982), Kinematic display of multivariate data, Proc.
Third Annual Conference and Exposition of the National Computer Graphics Association, Inc.,
Vol. I.

M. A. FISHERKELLER, J. H. FRIEDMAN AND J. W. TUKEY (1974), Prim-9, An interactive multidimensional
data display and analysis system, Proc. Pacific 75, ACM Regional Conference.

J. D. FOLEY AND A. VAN DAM (1982), Fundamentals of Interactive Computer Graphics, Addison-Wesley,
Reading, MA.

J. H. FRIEDMAN, J. A. MCDONALD AND W. SrUErZLE (1982), An introduction to real time graphical
techniques for analyzing multivariate data, Proc. Third Annual Conference and Exposition of the
National Computer Graphics Association, Inc., Vol. I.

J. H. FRIEDMAN AND W. STUETZLE (1981b), Projection pursuit regression, J. Amer. Statist. Assoc., 76, pp.
817-823.

(1982a), Smoothing ofscatterplots. Dept. Statistics Tech. Rept. Orion 2, Stanford Univ., Stanford, CA.
(1982b), Projection pursuit methods for data analysis, in Modern Data Analysis, Launer, R. L. and
Siegel, A. F., eds., Academic Press, New York, 1982.

(1982c), Hardware for kinematic statistical graphics, Computer Science and Statistics: Proc. of the
15th Symposium on the Interface.

A. GOLDBERG (1983), The influence ofan object-oriented language on the programming environment, reprinted
in D. R. Barstow, H. E. Shrobe and E. Sandewall, eds. (1984).

(1984), Smalltalk-80: The Interactive Programming Environment, Addison-Wesley, Reading, MA.

1012 JOHN ALAN McDONALD AND JAN PEDERSEN

A. GOLDBERG AND D. ROBSON (1983), Smalltalk-80, The Language and Its Implementation, Addison-
Wesley, Reading, MA.

P. E. GREEN, ed. (1982), Computer Network Architectures and Protocols, Plenum Press, New York.
B. W. KERNIGHAN AND J. R. MASHEY (1981), The UNIX programming environment, Computer, 14, pp.

25-34.
B. W. KERNIGHAM AND O. M. RITCHIE (1978), The C Programming Language, Prentice-Hall, Englewood

Cliffs, NJ.
G. KRASNER, ed. (1983), Smalltalk-80, Bits of History, Words of Advice, Addison-Wesley, Reading, MA.
R. J. LITTLEFIELD AND W. L. NICHOLSON (1982), Use of color and motion for the display of higher

dimensional data, Proc. 1982 DOE Statistical Symposium.
J. A. MCDONALD (1982a), Interactive graphics for data analysis, Ph.D. thesis, Dept. Statistics, Stanford

Univ., available as Dept. of Statistics Tech. Rept. Orion 11, Stanford Univ., Stanford, CA.
(1982b), Exploring data with the Orion workstation, a 25 minute, 16mm sound film, which
demonstrates programs described in McDonald (1982a). It is available for loan from: Jerome H.
Friedman, Computation Research Group, Bin # 88, SLAC, P.O. Box 4349, Stanford, CA 94305.

(1982c), Projection pursuit regression with the Orion workstation, a 20 minute, 16 mm color sound
film, which demonstrates programs described in McDonald (1982a). It is available for loan from:
Jerome H. Friedman, Computation Research Group, Bin # 88, SLAC, P.O. Box 4349, Stanford,
CA 94305.

W. M. NEWMAN AND R. F. SPROULL (1979), Principles ofInteractive Computer Graphics, 2nd ed., McGraw-
Hill, New York.

W. L. NICHOLSON AND R. J. LITTLEFIELD (1982), The use ofcolor and motion to display higher dimensional
data, Proc. Third Annual Conference and Exposition of the National Computer Graphics Associ-
ation, Inc., Vol. I.

PRIM-9 (1974), Prim-9, a 30 minute, 16 mm sound film. It is available for loan from: Jerome H. Friedman,
Computation Research Group, Bin # 88, SLAC, P.O. Box 4349, Stanford, CA 94305.

B. A. SHEIL (1983), Power toolsforprogrammers, reprinted in D. R. Barstow, H. E. Shrobe and E. Sandewall,
eds. (1984).

A. S. TANNENBAUM (1981a), Computer Networks, Prentice-Hall, Englewood Cliffs, NJ.
(1981b), Network protocols, ACM Comput. Surveys, 13, pp. 453-489.

W. TEITLEMAN AND L. MASINTER (1981), The Interlisp programming environment, reprinted in D. R.
Bartsow, H. E. Shrobe and E. Sandewall, eds. (1984).

J. W. TUKEY (1977), Exploratory Data Analysis, Addison-Wesley, Reading, MA.
UNIX (1978), special issue on Unix, Bell System Tech. J., 57.

SIAM J. ScI. STAT. COMPUT.
Vol. 6, No. 4, October 1985

1985 Society for Industrial and Applied Mathematics
015

COMPUTING ENVIRONMENTS FOR DATA ANALYSIS II.
HARDWARE*

JOHN ALAN McDONALDf AND JAN PEDERSENf

Abstract. This is the second in a series of papers on aspects of modern computing environments that
are relevant to statistical data analysis. We argue that a network of graphics workstations is far superior to
conventional batch or time-sharing computers as an environment for interactive data analysis. The second
paper in the series discusses the hardware of graphics workstations in detail.

Key words, data analysis, interactive graphics, workstations, programming environments

1. Introduction. The purpose of this paper is to list important features to consider
when evaluating and comparing graphics workstations to be used for data analysis
research.

The workstations described here cannot be used for data analysis "off the shelf";
they are at present useful primarily for research. We expect a minimum of 5-10 years
of development before one will be able to buy both a workstation and statistical
software to use on it.

The computer graphics market changes rapidly; new, better, cheaper machines
are announced every few months. In the course of this paper, we will mention features
of six specific machines--chosen somewhat arbitrarily out of the hundreds that are
available--as concrete examples. Four of these, Apollo, Chromatics, Iris, and Sun, are
representatives of a large class of graphics workstations based on versions of the
Motorola 68000 microprocessor. This type of workstation typically costs $40,000 to
$60,000 in configurations appropriate for statistical applications. The fifth machine,
the Ridge 32, has a reduced-instruction-set central processor that is a bit more expensive
and considerably more powerful than a 68000. The architecture of the sixth machine,
the Symbolics 3600, is specially designed for efficient execution of programs written
in Lisp; it is both more powerful and more expensive (both by a factor of 2-3) than
th 68000 based machines.

We emphasize that this is by no means an exhaustive list; these are machines
which have been, are being, or will be used for research in data analysis systems.
Apollo is used by the Statistics Department at Harvard University; Chromatics by the
Statistics Departments at Stanford and Berkeley University; the Iris will be used by
the Statistics Department at Stanford; the Ridge 32 will be used by Statistics Depart-
ments at Stanford, Berkeley, and the University of Washington; Sun hardware was
the basis of the Orion I workstation at Stanford; the Symbolics 3600 is used by the
Statistics Departments at Stanford and the University of Washington, and by groups
at Bell Laboratories.

A reference for microcomputer architecture is Kraft and Toy (1979). Foley and
Van Dam (1982) discuss the architecture of microcomputer graphics systems.

2. The central processor.
2.1. Single-chip microprocessors. One or two dozen companies make graphics

workstations based on the Motorola 68000 microprocessor (Motorola (1982)).

* Received by the editors June 5, 1984. This research was supported by the National Science Foundation
under a Mathematical Sciences Postdoctoral Research Fellowship, the Office of Naval Research under
contract N00014-83-K-0472 and grant N00014-83-G-0121, and the U.S. Army Research Office under contract
DAAG29-82-K-0056.

" Department of Statistics and Computation Research Group, Stanford Linear Accelerator Center,
Stanford University, Stanford, California 94305.

1013

1014 JOHN ALAN McDONALD AND JAN PEDERSEN

Examples are Apollo, Chromatics, Iris, and Sun. In the future, other 32 bit micropro-
cessors will be important competitors (for example, the National Semiconductor
NS16032 and NS32032, the Hewlett-Packard HP-9000, Bell Laboratories Bellmac 32,
Zilog ZS0,000), but there are few available workstations based on these processors (as
of April 1984).

The 68000 is sometimes described as a 16/32 bit machine; internally it is a 32-bit
machine; it communicates with the outside world with 16-bit data words and 23-bit
address words. Motorola has recently released a version called the 68010, which
supports virtual memory (the plain 68000 does not). Iris and Sun, and possibly also
the Apollo will use the 68010; the Chromatics uses the 68000. A fully 32-bit version
of the 68000 (the 68020) is promised for the future.

2.2. Bit-sliced processors. Bit-slicedprocessors are an alternative to one-chip micro-
processors like the 68000. Bit-sliced processors are made by combining chips which
perform standard operations on a slice of a machine word. Slices are commonly four
bits wide; so, for example, eight 4-bit adders would be combined to make a 32-bit
adder, which would be combined with other 32-bit parts to make a complete processor.
Bit-sliced processors usually execute a micro-coded instruction set. That is, each
assembly language instruction calls a small, fast program written in a simpler microcode
language, which is executed directly by the bit-slice hardware.

Bit-slice components are often used for special purpose processors; the flexible
hardware and the micro-coded instruction set make it possible to design and construct
a new processor without the capital investment needed to produce a new micropro-
cessor. Bit-slice processors are usually faster (and more expensive) than general-
purpose, single-chip microprocessors because they are designed to be particularly
efficient at special tasks and also because they typically use faster transistor technology.

2.2.1. Reduced instruction set machines. The Ridge 32 is a graphics workstation
with a bit-sliced central processor that is roughly equivalent to a VAX 11/780, or 2-3
68000’s, for a price that is no more than that of typical 68000 based workstations. The
low price and high power of the Ridge is due, in part, to the fact that it is a reduced
instruction set computer (RISC). This means that it has a relatively simple instruction
set, which is executed directly by the hardware, rather than going through micro-code
translation first.

2.2.2. Lisp machines. The Symbolics 3600 (Symbolics (1983), Bawden et al.
(1979)) is another graphics workstation with a bit-sliced central processor. The 3600
is a LISP machine, that is, its architecture is designed for fast execution of programs
written in LISP. This has, obviously, implications for the 3600’s software properties,
which will be discussed below. The 3600 is equivalent to 1 or 2 VAX 11/780’s, or 2-5
68000’s and it is about 3 times the price of a typical 68000-based workstation.

Other Lisp machines are:
Lisp Machine, Inc.’s Lambda and Texas Instruments’ Explorer which are very

similar to the 3600.
Xerox has its D- or 1100-series, which includes the Dolphin, the Dandelion, and

the Dorado (Dorado (1981)) machines.

2.3. Clock speed and wait states. The clock speed of a 68000 is its basic cycle time
and, therefore, determines how fast it executes instructions. The clock speed is a

property of the computer in which the 68000 chip is placed. It is also a property of
the chip, in the sense that not all chips will run successfully at high speeds. Typical
speeds range from 4 to 20 megahertz. A 16 mhz machine is, not surprisingly, about 4

COMPUTING ENVIRONMENTS FOR DATA ANALYSIS II 1015

times as fast as a 4 mhz one. Every 16 mhz machine is not exactly 4 times as fast as
every 4 mhz one because the speed of memory and the bus that connects the 68000 to
the memory can make a considerable ditterence to the effective speed of the processor.
Bus and memory speed are reflected in the number of wait states in a given machine,
which are processor cycles lost while the processor waits for the bus. As a rough guide
to the power of 68000 machines, the Sun workstation contains a 10 mhz 68010 with
no wait states and is roughly comparable to a VAX 11/750 (for nonfloating computa-
tions).

3. Auxiliary processors and memory.
3.1. Bus architecture. The bus is used by the central processor to communicate

with memory and other I/O devices, in particular, the graphics display. A common
standard bus used in 68000 based machines is the MULTIBUS (Boberg (1980)), used
in Sun and Iris. It is an advantage to have a machine with a standard bus architecture,
because it is then easier to add peripherals, such as floating point boards, array
processors, printers, or additional input devices.

Some machines (Sun and Iris, for example) are designed so that the RAM is either
on the same board as the 68000 or is connected with a separate, private bus. This
allows the 68000 to access memory without using the main (MULTIBUS) bus, avoiding
delays that result when the bus must be shared with auxiliary processors, such as a
floating point board or array processor.

Another reason that some workstations add a second, private bus is that the
MULTIBUS is not fast enough for a 68000 run at high clock speeds. In the future,
workstations will be provided with faster 32-bit buses, to keep up with 32-bit processors
run at high clock speeds.

Many workstations increase their computational power by adding auxiliary pro-
cessors which may be more efficient at specialized tasks and execute in parallel with
the central processor.

3.2. Scalar floating point. The 68000, like most other microprocessors, does not
include floating point operations in its instruction set. A machine with only a 68000
therefore executes floating point operations as small programs, slowly. Efficient soft-
ware floating point operations take 50-100 microseconds on a 10 mhz 68000 with no
wait states. The same operations require closer to one microsecond on a VAX. One
solution is to add an auxiliary floating point processor to a 68000-based machine. A
floating point board is included in the Apollo and is available (from Sky Computers,
Inc., for example) for the Chromatics, Iris, and Sun.

The Ridge 32 and the 3600 bit-sliced central processors do not have floating point
operations as primitives. However, software floating point is efficient enough to give
about half the speed of a VAX 11/750 for the Symbolics and speed about equal to
the 11/750 on the Ridge. Both Ridge and Symbolics plan to add hardware floating
point processors in the future.

3.3. Vector floating point. Many graphical and statistical computations can be
efficiently done in parallel. So it is useful to have a workstation with an array processor.
The Iris workstation includes an array processor based on a chip called the Geometry
Engine (Clark (1982)), which is specially designed for graphical computations and
should be able to perform about 10 million floating operations per second--the
equivalent of 10-20 VAX 11/780’s. General purpose array processors (from Sky
Computers, Inc., for example) can be added to Chromatics, Sun, and Iris.

The other machines have nonstandard bus architectures, which makes it difficult
to add array processors that can communicate quickly with the cpu.

1016 JOHN ALAN McDONALD AND JAN PEDERSEN

3.4. I/O processors. Some workstations contain special processors for input and
output, which free the central processor to do other work. I/O processors may, for
example, control the keyboard, handle data transfers between disk and memory
(DMA’s), buffer communications with a network, or speed communication with the
graphics device (see below).

3.5. Random access memory. Graphics workstations are usually provided with
from 1/2 to 2 megabytes of RAM (random access memory). The speed of the memory
places a constraint on the effective speed of computation. Slow memory will require
the processor to have some number of wait states (lost cycles, mentioned above).

3.6. Memory caches. Some workstations gain additional processing speed by
including high speed caches (Clark, Lampson and Pier (1981), Smith (1983)), instruction
pre-fetch caches and/or data stack caches. A cache is a limited amount of high speed
memory; by keeping the next instructions to be executed and/or currently relevant
data in a cache a computer can increase its effective rate of computation. The Apollo
has an instruction cache; the 3600 has both instruction and data caches.

3.7. Virtual memory. Virtual memory allows a computer to run programs and
manipulate data sets too large to fit in its physical memory. It is a property of the
computer’s operating system as well as its hardware. Some processors cannot run
virtual memory operating systems (because they cannot recover from page faults). The
original 68000 cannot run a virtual memory operating system. The more recent 68010
can. The Chromatics uses the 68000 and does not have virtual memory; Iris and Sun
use the 68010. Older versions of Apollo use two 68000’s to support virtual memory in
a somewhat clumsy way; future Apollos should use the 68010. The Ridge and 3600
cpus support virtual memory.

3.8. Disk storage. Graphics workstations usually include a disk for long term data
storage; most manufacturers offer a range of disk sizes, typically from 10 to 500
megabytes. Workstations use Winchester disk technology, which permits disks to be
physically much smaller and less expensive than traditional disk technology. 50 mega-
bytes is adequate for statistical applications; 500 megabytes is not an unreasonable
size. A 500 megabyte disk will cost two or three times a 50 megabyte onewfrom $15,000
to $30,000.

4. Graphics device.
4.1. Bitmap graphics. All of the graphics workstations that we are considering

here use a bitmap graphics display which is also called a raster graphics display or a

frame buffer. For a fuller discussion of bitmap graphics devices see: a survey paper
aimed at statisticians by Beatty (1983) and texts by Foley and Van Dam (1982) and
Newman and Sproull (1979).

4.1.1. Resolution. In a bitmap graphics device, the picture is made up of an array
(a raster) of dots, called pixels. The resolution of the device is the number of pixels
on the screen. Common resolutions are either approximately 512 x 512 or 1,024 1,024.
For many kinds of statistical graphics 512 512 is enough. A 1,024 x 1,024 bitmap is
needed for realistic images of solid objects, scatterplots in which small symbols (glyphs)
are used to code additional variables, or if the screen is used to display several plots
at once.

4.1.2. Depth. The color of each pixel is determined by the part of the refresh
memory associated with it. The number of bits of refresh memory associated with each

COMPUTING ENVIRONMENTS FOR DATA ANALYSIS II 1017

pixel is the depth of the bitmap. This is also referred to as the number of bitplanes in
the graphics device. Typical depths are 1, 4, 8, 16, 24, or 32, with 1 and 8 being the
most common.

The depth of the bitmap determines the number of different colors that can be
displayed simultaneously. A device with a single bitplane can diplay only two colors
(e.g. black and white) depending on whether the single bit of refresh memory corre-
sponding to a pixel is 0 or 1. A device with eight planes can display 256 colors at once.

Obviously, the more planes a bitmap has the better. Adding planes increases the
price of a system; for a 1,024 x 1,024 bitmap, each additional eight planes requires an
additional megabyte of refresh memory. The refresh memory must be fast enough to
permit its entire contents to be read 30 times per second (60 times a second for
noninterlaced monitors). It is therefore more expensive than ordinary RAM; refresh
memory prices are $7,000-$20,000 per megabyte as compared to $2,000-$7,000 per
megabyte of RAM.

For most statistical applications, eight planes is enough. Bitmaps with more depth
are useful for drawing realistic solid objects and for image processing applications.
Extra bitplanes are also useful for double buffering, drawing multiple independent
images, and color map animation.

4.2. Refresh cycle. A bitmap graphics device maintains a picture on the screen
by going through the refresh cycle fast enough to avoid flicker (typically either 30 or
60 times per second).

In a bitmap device, the electron beam scans over the screen in a regular fashion,
modulating the intensity of the beam as it goes to determine the brightness and color
of each pixel. A raster line is usually drawn as the beam scans from left to right. With
the intensity set to zero, the beam then moves back quickly, from right to left, to the
start of the next raster line (the horizontal blanking or retrace part of the refresh cycle).
When the beam reaches the bottom of the screen, it quickly moves back to the top,
with the intensity at zero (vertical retrace). Some devices scan every other raster line
in one pass from top to bottom, getting the missed lines in a second pass (see section
on interlacing below).

When the electron beam strikes a point on the screen, the phosphors emit light
with a brightness that depends on the intensity of the beam. In color systems, there
are small dots of red, green, and blue phosphors, whose emissions mix to produce
pixels that are perceived as having arbitrary colors. The brightness of the phosphors
decays rapidly after the electron beam leaves. To produce a stable picture, the electron
beam must return before the decay in brightness is noticeable.

The picture on the screen is determined by the contents of the refresh memory.
With a 1,024 1,024 8 bitmap and a 30 hz monitor, the refresh memory must be read
at about 32 megabytes per second (to allow time for horizontal and vertical retrace).
The 8 bits per pixel is decoded into, typically, 8 bits each of red, green, and blue
intensity by a color map (next section). Digital-to-analog conveters translate the color
intensities to voltages that modulate the intensity of the electron beam.

4.3. Color maps. Color maps (also called color look up tables) are used to make
bitmap displays more flexible.

A primitive bitmap display with, say, eight planes might assign a fixed color to
each of the possible pixel values (0-255). However, it is often convenient if the color
associated with each pixel value can be changed. This is done using a color map.
Typical color maps are 8-bits-in 24-bits-out; they can be thought of as three arrays,
one each of red, green, and blue; each array has 256 entries, indexed from 0 to 255;

1018 JOHN ALAN McDONALD AND JAN PEDERSEN

the pixel value is used as an index into these arrays to determine the relative intensities
(from 0-255) of red, green, and blue.

4.3.1. True color. True color is an alternative to a color map. True color may be
used, for example, on a system with 24 bitplanes. A 24-bit-in 24-bit-out look up table
is impractical, because it would require 3 * 224 bytes of very high speed memory.
Instead, the 24 bit (3 byte) pixel values are used to hold 8 bits of intensity for red,
green, and blue. True color is available for the Iris and the 3600.

4.3.2. Double buffering. Graphics systems often use extra (more than 8) bitplanes
for double buffering. A 16 plane frame buffer can hold two independent 8 plane pictures;
in some machines (Chromatics), it is possible to quickly change which 8 planes are
displayed on the screen. Double buffering is useful in motion graphics; a new picture
is drawn into the 8 planes that are invisible, the buffers are swapped so that the new
picture is visible and the old picture is invisible, and the invisible 8 planes are erased.
This eliminates distracting beating or aliasing effects that arise when the drawing-erasing
cycle is visible and interferes with the refresh cycle.

4.3.3. Synchronization of refresh and color map changes. A slightly subtle consider-
ation is whether changes to the color map are synchronized with the refresh cycle. The
color map should only be changed when the screen is in the blanked part of the refresh
cycle. Otherwise there will be contention between the refresh and the cpu for access
to the color map, which can cause disturbing effects on the display.

4.4. Graphics speed. Many statistical applications require motion graphics, so the
time required to modify the bitmap--the time required to erase an old picture and
draw a new onemis important. The time required to change a picture should simply
be the time required to change a single pixel times the number of pixels that have to
be changed. However, the time to change a pixel can vary greatly depending on how
it is changed. Common modes for writing to a bitmap are: single pixel change, vector
drawing, rectangular area fill, polygonal area fill, and an operation on rectangular
blocks of pixels called RasterOp or BitBlt (Bechtolsheim and Baskett, 1980). Typical
speeds are 0.1 to 2 million pixels per second in single pixel write, 0.1 to 16 million
pixels per second in vector drawing, and up to 200 hundred million pixels per second
in area fill (a special area fill mode on the 3600). For comparison, to redraw an entire
screen in real-time requires drawing 1 million pixels 30 times a second, or 30 million
pixels per second. To draw a rotating three-dimensional scatterplot containing 1000
points, in which each point is represented by a symbol composed of, say, 5 vectors 10
pixels long, would require a vector drawing speed of at least 3 million pixels per second.

4.4.1. Graphics processors. The wide range in drawing speeds is in part due to
the fact that some devices have special graphics processors to speed up some drawing
tasks.

For example, to draw a vector, it must be rasterized, that is, some processor must
decide which pixels have to be written to connect the vector’s two endpoints. On the
Sun, for example, this computation is done by the 68000, which makes vector drawing
slow. The Chromatics, in contrast, contains a special vector processor, which rasterizes
the vector and modifies the necessary pixels, freeing the 68000 for other computation.

The Iris is an extreme example of a machine with auxiliary graphics processing.
The Iris includes the VLSI Geometry System (Clark (1982)) a powerful, general purpose
graphics processor which will generate linear vectors, quadratic and cubic curves, all
conic sections, rotate, scale, clip, do the perspective computation, etc.

COMPUTING ENVIRONMENTS FOR DATA ANALYSIS II 1019

4.4.2. Communication between central processor and bitmap. The speed of picture
drawing is limited by the speed and intimacy of communication between the cpu and
the bitmap. On some systems (Chromatics and 3600, for example) the refresh memory
is on the cpu bus and is in the cpu’s address space; in other words, the pixels in the
bitmap can be accessed by the cpu as though they were bytes of ordinary RAM. This
makes communication between the cpu and the bitmap fast and flexible. In a less
desirable alternative, the cpu talks to the bitmap by sending graphics commands to a
special interface (this was the case on Orion I), which is relatively slow and awkward.

4.5. Monitor. A 19-inch color monitor is standard on graphics workstations. A
monitor may run 30 hz interlaced, which means that all the even scan lines are drawn
in 1/60th of a second and the odd scan lines are drawn in the next 1/60th of a second,
so that the entire screen is refreshed 30 times a second. A better but more expensive
alternative is a 60 hz noninterlaced monitor, which draws all the scan lines on the
screen, in one pass, 60 times a second.

Another consideration in the choice of a monitor is the persistence ofthe phosphors.
Each point on the screen is hit by the electron beam 30 or 60 times a second. The
brightness of a point decays exponentially after the electron beam leaves it. The
phosphors must be persistent enough so that the screen does not flicker noticeably in
the 1/30 of a second between refreshes. On the other hand, if the phosphors are too
persistent, moving pictures (rotating scatterplots) will produce distracting streaks.

60 hz noninterlaced monitors are less likely to have objectionable flicker, making
shorter persistence phosphors practical. With 30 hz interlaced monitors, flicker may
not be a problem, depending on room lighting and a variety of other factors. In some
machines (Chromatics), the refresh is synchronized with the 60 hz cycle in the wall
outlet’s alternating current. Thus the monitor is synchronized with the 60 hz oscillation
in the brightness of fluorescent room lighting, which helps minimize flicker.

4.6. Miscellaneous features. Graphics devices come with a variety of additional
features which are not critical to statistical applications, but are often useful nonetheless.
Among these are:

Zoom--magnify the bitmap so that a fraction (J, , 6 etc.) of it fills the screen.
Panmtranslate the bitmap after zooming, so that a different portion is visible.
Blink planes--are used to make pixels blink; this is often done by alternately
masking and not masking the blink bit, which causes the pixel value to alternate
between two address in the color map.
Overlay planes--are used to write text nondestructively over the bitmap.
Hardware cursormdraws and moves a small pointing symbol or cursor nonde-
structively over the bitmap.

5. Input devices. In the preceding sections we have discussed the display, the
workstation’s output device. One advantage of graphical workstations is use of graphical
input devices, which can make using a computer a natural activity, in the same way
that driving a car is natural.

Foley and Van Dam (1982) define five logical input devices: the locator, which
indicates position and/or orientation, the pick, which selects an object displayed on
the screen, the valuator, which chooses a real number, the button(s), which select from
a finite set of alternatives, and the keyboard, which inputs a character string.

Graphics workstations are usually provided with keyboards and some number of
other graphical input devices, such as" joystick (Chromatics), mouse (Iris, Sun, 3600),
and touchpad (Apollo). Each of these physical input devices, including the keyboard,

1020 JOHN ALAN McDONALD AND JAN PEDERSEN

can be used to implement any of the five logical input devices, but the implementation
will be much more natural in some cases than others.

6. Networking. Because graphics workstations are single-user, stand-alone com-
puters, it is important for them to be able to communicate quickly and easily with
other computers--other workstations or mainframes. Computers communicate better
if they are linked in a network (Green (1982), Tannenbaum (1981a), (1981b)). A
network can be used simply to transfer files between machines, or it can be used in a
more sophisticated fashion to distribute computing tasks among machines in the
network.

A common standard is Xerox’s Ethernet, which is supported by Iris, Sun, and the
3600. Apollo supports its own, idiosyncratic network. The Chromatics has no network-
ing support.

An example of more sophisticated use of a network is the Sun’s option for diskless
workstations. These diskless stations use the Ethernet to simulate a virtual disk which
is physically part of a large disk maintained by a special fileserver station. A network
of diskless stations provides more computing power for less initial expense and less
maintenance, at the cost of somewhat slower disk access and potential bottlenecks
when many stations need to use the central disk at the same time.

7. Benchmarks. Many factors, software as well as hardware, determine the effec-
tive speed of computation. To get a more valid comparison of machines, it is useful
to run one or several benchmark programs. A simple benchmark used to test floating
point speed is to sum up the harmonic series (suggested by Peter Huber).

To sum 100,000 terms of the harmonic series (in single precision) takes approxi-
mately:

1 second on a Ridge 32 (with software floating point).
1 second on a quiet (single user) VAX 11/750 (with floating point accelerator).
2 seconds on a Symbolics 3600 (without floating point accelerator and without
high speed instruction pre-fetch cache). On a Symbolics 3600 with floating point
accelerator and high speed cache it would presumably take much less than one
second.
10 seconds on a Apollo (with hardware floating point and high speed cache).
35 seconds on a Sun (software floating point).
80 seconds on a Chromatics (software floating point).

$. Sources. The best way to survey the computer graphics market is to attend
annual meetings, such as the COMDEX convention, the NCC meeting, the National
Computer Graphics Association (NGCA) meeting, usually in June, and the annual
ACM SIGGRAPH meeting, usually in July.

The next best way is to review journals that carry advertisements and announce
new computing and graphics products, such as Electronics magazine, IEEE Computer,
IEEE Computer Graphics and Applications, Computer Graphics World, etc.

The manufacturers of the workstations mentioned in this paper are:
Symbolics, Inc. (3600), 845 Page Mill Road, Palo Alto, California 94304; (415)

494-8081.
Chromatics, Inc. (CGC-7900), 2558 Mountain Industrial Boulevard, Tucker, Geor-

gia 30084; (404) 493-7000.
Silicon Graphics, Inc. (Iris), 630 Clyde Court, Mountain View, California 94043;

(415) 960-1980.

COMPUTING ENVIRONMENTS FOR DATA ANALYSIS II 1021

Sun Microsystems, Inc., 2550 Garcia Ave., Mountain View, California 94043;
(415) 960-1330.

Ridge Computers (Ridge 32), 586 Weddell Drive, Sunnyvale, California 94089;
(408) 745-0400.

REFERENCES

A. BAWDEN, R. GREENBLATT, J. HOLLOWAY, T. KNIGHT, D. MOON AND D. WEINREB (1979), The
LISP machine, in Artificial Intelligence: An MIT Perspective, vol. II.

P. H. WINSTON AND R. H. BROWN, eds., Artificial Intelligence: An MITPerspective, MIT Press, Cambridge,
MA.

J. C. BEATrY (1983), Raster graphics and color, American Statistician, 37, pp. 60-75.
R. W. BOBERG (1980), Proposed microcomputer system 796 Bus standard, Computer, 13, pp. 89-106.
J. H. CLARK (1982), The geometry engine: A VLSI geometry system for graphics, Proc. 1982 SIGGRAPH

Conference, published as Computer Graphics, 16 (3), pp. 127-133.
DORADO (1981), The Dorado: A high performance personal computer, Three papers Xerox PARC Report

CSL-81-1. Palo Alto, CA.
J. D. FOLEY AND A. VAN DAM (1982), Fundamentals of Interactive Computer Graphics, Addison-Wesley,

Reading, MA.
P. E. GREEN, ed. (1982), Computer Network Architectures and Protocols, Plenum Press, New York.
G. D. KRAFT AND W. N. ToY (1979), Mini/Microcomputer Hardware Design, Prentice-Hall, Englewood

Cliffs, NJ.
MOTOROLA (1982), MC68000, 16-Bit Microprocessor, User’s Manual, 3rd ed., Prentice-Hall, Englewood

.Cliffs, NJ.
W. M. NEWMAN AND R. F. SPROULL (1979), Principles of Interactive Computer Graphics, 2nd ed.,

McGraw-Hill, New York.
SYMBOLICS, INC. (1983), 3600 technical summary, Symbolics, Inc., 5 Cambridge Center, Cambridge, MA

02142.
A. S. TANNENBAUM (1981a), Computer Networks, Prentice-Hall, Englewood Cliffs, NJ., 1981.

(1981b), Networks protocols, ACM Comput. Surveys, 13, pp. 89-106.

SIAM J. Scl. STAT. COMPUT.
VOI. 6, No. 4, October 1985

(C) 1985 Society for Industrial and Applied Mathematics
016

ASSESSMENT OF LINEAR DEPENDENCIES IN MULTIVARIATE DATA*

V. E. KANEf, R. C. WARDS AND G. J. DAVIS

Abstract. A procedure to identify the linear dependency structure in multivariate data is presented. The linear
dependency analysis (LDA) provides a method for assessing the number of dependencies using the eigenvalues of
the sample correlation matrix. The dependency structure is then identified from the right singular vectors from a

singular value decomposition of the centered and scaled data matrix. An algorithm to identify competing dependencies
is given along with procedures for estimating and testing the dependency coefficients. Example data sets from
regression, factor analysis, discriminant analysis, and principal component analysis are analyzed.

Key words, multivariate dependencies, correlations, linear dependency analysis, factor analysis, LDA

1. Introduction. The importance of statistical dependencies in multivariate data is
easily seen by noting the widespread use of correlation measures in applied data analyses.
Yet, as emphasized by Belsley, Kuh and Welsch (1980, p. 92), the standard correlation
matrix examines only pairwise relationships, which can be negligible when more complex
dependencies are present. Occasionally, it may be possible to use multiple or canonical
correlations if pre-specified groups of variables are known. However, in the general case
dependencies are thought to exist within a data set, but their number and the variables
involved are unknown. When confronted with this dependency problem, the analyst may
resort to factor analysis. The linear dependency analysis (LDA) discussed in the following
sections is somewhat less general than factor analysis, but eliminates some of the ambiguity
associated with matrix rotations and estimation problems in factor analysis.

The problem considered in LDA arises when the random observational vector X(p 1)
is partitioned into X(p 1) and X_(p2 1) where

(1.1) X2--- o +/3’X, +
with fl(p p2) (t,’",p,)’ a matrix of unknown coefficients and random error
uncorrelated with X. The X values represent predictor variables and the X2 vector estimated
variables. The purpose of LDA is to: (1) determine a "meaningful" number of dependencies
(p), and (2) make assignments of variables to the predictor or estimated variable subsets.
The first problem is the same as is encountered in standard principal component or factor
analysis problems, but formulating dependencies by (1. l) produces a patterned covariance
matrix which can be usefully exploited. The solution to the second problem is unique in the
sense of minimizing residuals and an algorithm is given to find this solution.

When multivariate dependencies can be formulated as (1.1), several applications are
apparent. (1) Dimensionality reduction. Principal component analysis is often used to reduce
the number of "variables" considered in large multivariate problems. The retained principal
components are sometimes difficult to interpret in terms of the measured variables. Also,
there is no data reduction in terms of the measured quantities. (2) Modeling. The dependency
structure is an important component in many multivariate problems since modeling variable
interrelationships is important. Factor analysis focuses on unobserved underlying "factors"
generating the dependency structure. The LDA model (1. l) directly addresses "observable"
linear dependency relationships. (3) Redundancy. A question which arises in many large

*Received by the editors November 21, 1983. This research was sponsored by the Applied Mathematical
Sciences Research Program, Office of Energy Research, U. S. Department of Energy under contract DE-AC05-
840R21400 with Martin Marietta Energy Systems, Inc.

Ford Motor Company, Box 1517A, NAAO Building, Dearborn, Michigan 48121.
:l:Mathematics and Statistics Research, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830.
Department of Mathematics, Georgia State University, Atlanta, Georgia 30303.

1022

LINEAR DEPENDENCIES IN MULTIVARIATE DATA 1023

multivariate data sets is determination of how many variables are really necessary. Variable
reduction could reduce storage or analysis costs of current data and "optimize" the collection
of future data. Also, LDA provides a method to determine dependencies which cause singular
covariance matrices in the extreme redundancy case. McCabe (1982) addresses the above
variable selection problem considering different selection criteria than are considered here.

2. Preliminaries. Let X have a multivariate distribution with mean I and covariance
matrix EL. The partitioning of X into (Xt X2) and assumption (1.1) give rise to a EL of
special structure. The submatrices making up EL will provide insight into the LDA model.
If the mean of Xt is E(X1)= Ixt and the full rank covariance matrix of X is Var(Xt)= W,
then

I, /3’/3 + A(2.1) E(X)=t= Io+
where t is assumed to have mean 0 and covariance matrix A with Cov(X,)= 0. Several
identities are now apparent. First, note that

(2.2) I,1 I1 [a[,
which implies that E, is rank deficient if A is rank deficient. Also,

(2.3)
E* + A*

FF’ + A*

where F’ "kI3’1/2 (I/3). Since the eigenvalues of the p p matrix FF’ are the eigenvalues of
the p p matrix F’F and P2 zero eigenvalues, rank (Z*) p. Thus, since rank (q)=p,
the additional dimensionality of Z, is due to A. Note that rank (A) =< P2 and hence p
rank(Z,) =< p. For the LDA model A is associated with error variation and will be assumed
diagonal with possibly some zero diagonal elements. Other patterned A error covariance
matrices could be considered.

The covariance matrix from standard factor analysis (Rao (1973, p. 587)) is,, ’ + II,

where 1 is a p rn matrix of factor loadings and II is a diagonal matrix of the variances
of the specific factors. Comparison of the covariance matrices from LDA and from factor
analysis reveals two significant differences. If the number of factors rn is p, then ’FA has
p(p + 1)/2 more parameters than EL, indicating that LDA is somewhat simpler, but less
general. LDA is based on a simple partitioning of the "observed" X vector as opposed to

assuming the existence of "unobserved" factors, indicating that LDA is somewhat less
ambiguous.

Letting the observations consist of n random samples collected as rows in the n p
matrix X (X X2), the matrix version of (1.1) for the observed data becomes

(2.4) X e I’o + X, /3 + R
P2 XP2 xPl Pl P2 P2

where R (r,..., rn)’ is a matrix of residuals and e (1,..., 1)’. The standardized data
matrix is Z HXD where H I- n-ee’ is the n n idempotent centering matrix with I the
n n identity matrix. The p p scaling matrix D diagonal(si. 1/2) is obtained from the

1024 v.E. KANE, R. C. WARD AND G. J. DAVIS

diagonal elements of the p p sample covariance matrix S (n 1)- X’HX. If Z (Z Z2)
is partitioned the same as X, then corresponding to (2.4) is the centered and scaled problem

(2.5) z
where denotes the centered and scaled parameterization.

3. Specification of the number of dependencies. An indication of the number of
dependencies P2 in the data will be obtained by considering eigenvalue relationships in the
correlation matrix ,. AELA. Here A is a diagonal matrix with diagonal elements
(E,)i-:-. Partitioning A into a p p Ai and a P2 P2 A2, we see that

(3.1) ,.
\A/3’,I,A, A(/3"Iq3+ A)A/

If we let AIA, /= A-’/3A2and AAA, it is evident that , has the same
structure as EL in (2.1). Since relationships among the eigenvalues ofL and its submatrices
will be the same as those for E,., we drop the notation and assume that EL is scaled for
the remainder of the paper, except for {}5 on parameter estimation and inference.

Partition EL as in (2.3) and denote the eigenvalues of E,. by r _-< o’ -<_.-.-< %; those
<-..< <...< Ap*; andof E* by 0 0,... ,0 -< r;*/ rp*, those of A* by 0 0,..-,0 -< Ap*, /

those of by Ol -<

_
--<"" -< Op,. Now since E,. E* + A*, it is true that (Parlett (1980,

p. 192))

(3.2) ri>_-- o5* fori 1,---,p,

and further (Parlett (1980, p. 14))

(3.3) o-p2 _-<

< A <... < Ap2 of A are its diagonalFor the diagonal error model, the eigenvalues A
elements implying Ap* Ap. Cauchy’s interlace theorem (Parlett (1980, p. 186)) gives

(3.4) q _<- o’p+ t,

so it will be true that

(3.5) o-p _--<

It should be noted that generally is unknown, and a reasonable guess is probably not
even possible. However, an estimate for Ap may be given, and the first inequality in (3.5)
can be used to estimate p2. In applications, it is not unreasonable to express a bound on the
maximum proportion of unexplained error variation which is acceptable. Calling this factor
v, in terms of standard deviations, we have

1/2

(3.6)
(,)pp/

For our rescaled model, (fl’fl)pp + ,p 1, so that a useful bound on o), is

(3.7) O-p _--< Ap2--< (1 + v-) -’.
Thus, given the eigenvalues of EL and a maximum tolerated error variance, the value of p2
can be determined. Our algorithm provides for any nonnegative choice for v, and some
sample upper bounds on o-p for various v are summarized in Table 1.

Other methods can and have been used to indicate reasonable choices for P2. A procedure

LINEAR DEPENDENCIES IN MULTIVARIATE DATA 1025

TABLE

Maximum % error
tolerated (100v) Upper bound on crp2

10 0.010
30 0.083
50 0.200
70 0.329
100 0.500

1.000

sometimes used in factor analysis is to find P2 where o-p2 < (Harman (1976, p. 86)) which
corresponds to , in the LDA model where A is a diagonal matrix. Hakstian, Rogers
and Cattell (1982) discuss several methods for determining P2 in a factor analysis setting.
For nondiagonal A, the user can look for large gaps between the eigenvalues of the sample
covariance matrix S. A theorem by Golub, Klema and Stewart (1976) states that the distance
between the range of Z and the range of the best arbitrary (i.e., not restricted to columns
of Z) rank p approximation to Z is bounded by h2/. Letting y denote q/hp, "), should
then be as large as possible, certainly greater than 1, which implies hp < . Since an upper
bound for y is o’p:/ /o’p, the quantity YN Y[trp2/ /Op2] - will be used as a normalized
measure of y that is bounded above by 1. Note that r,/ /o’p: is independent of the variable
assignments. The above arguments imply that selection of P2 corresponding to a large gap
in the eigenvalues has the potential for a good rankp approximation to Z. The effectiveness
of the approximation can be evaluated by yN and y.

4. Identification of dependency relationships. Consider the number of dependencies
P2 fixed with the problem now being determination of the "best" P predictor variables. The
assignment of a variable to the predictor or estimated variable subset corresponds to choosing
column permutations of Z. Thus, (2.5) can be rewritten as

(4.1) R ZP

where P is p x p permutation matrix with PP’= I. Let the singular value decomposition of
Z be given by

(4.2) Z= U W V’
nxp pp pp

where W= diagonal (wl, ..., w,) is the matrix of singular values of Z with w ->-.._-> w,
and U’U I, V’V I. Since P’V forms an orthonormal basis for R’, there exists a p x P2
matrix C such that

Thus, if we combine (4.1), (4.2), and (4.3), the residual matrix becomes

(4.4) R= UWV’P[-Ifl] UWC.

A natural criterion for selection of the best permutation matrix P is to minimize the
sum of squares of the residuals, which can be written in terms of the Frobenius norm

1026 v.E. KANE, R. C. WARD AND G. J. DAVIS

(4.5)
P2 P P2

r Ilell r trR’R trC’W2C w c.
i=lj=l i=lj=l

The problem of determining the permutation matrix P such that r is minimal results in
a combinatorial optimization problem, that is, trying all possible combinations of estimated
and predictor variables. We attack the problem by using a sequential variable deletion process
which may reduce the cost of trying particular permutations by detecting permutations that
result in a large r early in the calculations. Our algorithm examines all possible permutations,
eliminating computations whenever possible and producing all potential dependency struc-
tures resulting in small residues. An outline of the procedure is presented below with specific
details found in Ward et al. (1982).

Assume that a permutation matrix P. is given. Then the/3, that minimizes r is given
by

where

/3.=[w v.,]/[w v.],

V’P. V, V.2
pXPl PP2

and the superscript + denotes the Moore-Penrose inverse. Other equivalent formulations
are]3. =Z,+Z2 where ZP. [Z Z2] and 13. E’2, using (2.4) and (3.1) with P. applied
to X. Thus,

Since the computation of/3. and r. is relatively expensive, it is not practical to compute
them for many permutation matrices. Instead, we note that those matrices [-8] corresponding
to small residuals will have strong components in the subspace spanned by the columns of
V2, the last P2 columns of P’V, and weak components in its orthogonal complement (see
Golub et al. (1976)). Using this p-dimensional subspace, (4.3) becomes

yielding

(4.6) C2 V, /3 V2 Vl, r IIw= v;lll
where

Vispxp, W=
0
W2 W2 is pxp.

The effect of this restriction of the basis space for C will be examined in the examples. It
is shown that (4.6) approximates the full residual (4.5) with sufficient accuracy to enable
determining reasonable choices of predictor variables. The computational saving can be
appreciable if a large number of subsets is being evaluated.

Analogous to selecting variables in linear regression problems, a permutation which
produces a residual close to the optimum can be found by attempting to maximize the
determinant ofV. Techniques which have been proposed in the past are Gaussian elimination
on V2 with full pivoting and QR elimination on V2 with row pivoting. We use the latter

LINEAR DEPENDENCIES IN MULTIVARIATE DATA 1027

method to determine a permutation matrix Po such that its residual ro is close to optimal.
For subsequent reference, the matrix Po will be said to establish a "benchmark" permutation.
By sequentially selecting variables to be estimated, computing a residual corresponding to
the current subset of estimated variables, and comparing this residual to the benchmark
residual ro, the permutations corresponding to the poor choices for estimated variables can
frequently be eliminated before the computations for those permutations are completed. By
ordering the variables so that the most likely variables to be classified as predictor variables
are eliminated first, the total number of permutations that must be tried in analyzing all
possible subsets of predictor and estimated variables may be significantly reduced. For
example, ifp2 4 and variables 2 and 3 are important as predictor variables, all permutations
involving these variables can be eliminated if the residual from just choosing these two as
estimated variables is significantly larger than ro.

The user has the option to compute the benchmark solution and eliminate the com-
putations associated with trying all possible subsets. This option may be attractive when
there are a large number of variables or to obtain an initial assessment of the problem.

5. Parameter estimation and inference. The predictor and estimated variables are
now considered known since X is now ordered, and standard estimation methods, such as
those in Rao (1973, Chap. 8), can be used. Consider the sample covariance matrix S to be
partitioned the same as , with

Standard moment estimation gives

(5.) s?, s,,
--1 S $22., S S’S,, , ,,

where A is assumed a full matrix with P2(Pz + 1)/2 parameters. The maximum likelihood
(ML) estimates correspond to (5.1) ifX is assumed to have a multivariate normal distribution.
This follows directly by noting that XI N(I,) and X2IX x N([$o +/3’x,, A).
Thus, the likelihood function can be partitioned and the ML estimates obtained directly.

It may often be of interest to test whether A is a diagonal matrix since the interpretation
of the LDA model is more appealing and the relationship (3.7) becomes useful. If A is
assumed diagonal, the ML estimator is

(5.2) hd diagonal (S22 Stl2Sl S12).

The hypothesis test of interest is

Ho: A a diagonal matrix;
H: A a full matrix.

The likelihood ratio test (Anderson (1958, p. 230)) is

bo, +,
(5.3) LR 2 log Lno(Iz’’

where Lno and Ln, are the likelihoods under the null and alternative hypotheses, respectively.
After some algebra, (5.3) simplifies to

1028 v.E. KANE, R. C. WARD AND G. J. DAVIS

(5.4) LR n

Computation of (5.4) uses (2.2) and

Since there are p(p + 1)/2 parameters in A under H and p parameters under Ho, LR has
an asymptotic X distribution with p(p- 1)/2 degrees of freedom.

It is of interest to determine which variables are important in each of the dependencies.
Corresponding to regression analysis, testing o and fl should be accomplished by condi-
tioning on X,. The asymptotic distribution of the ML estimates o, ,,’", p, given X, is
normal with mean o, ,’", I, and covariance matrix

(5 6) 19 n-’ A (R) + g, S’ X Xl 11

-S S
which is obtained from the information matrix (Rao (1973, Chap. 5)). The unconditional
asymptotic distribution of the I’s is the same as the conditional distribution, but with
and replacing and St in (5.6). The resulting asymptotic 95% confidence intervals are

-’ ,).1"n-(5.7) [o + 1.96[(1 + X’ISII
I +- 1.96 []’n-’%

-! From (5 6) as the dependencieswhere replaces A in (5.6) and 6; is the ith diagonal ofS
become less variable the diagonal elements of A decrease, and the variation of the I’s
decreases. Also, as the predictors become more variable the diagonal elements of S
decrease, and the variation of the I’s decreases.

6. Competing dependencies. An important feature of LDA is that various sets of
estimated variables having small residuals are considered. Each set of variables corresponds
to a different "competing" dependency structure. Note that the confidence intervals given
in 5 enable the user to set certain/3’s to zero to simplify a particular dependency.

A simple example illustrates the competing dependencies concept. Ignoring the error
term, consider an example where p 6 and P2 2.

Case 1. Estimated variables x and x6.

X =X + 2X + X4,

X6 X2 5X4.
Case 2. Estimated variables X and x3.

X 5X4 "4- X6,

X -X -X4 3!" -X
Case 3. Estimated variables x4 and x6.

X4 X 2X "4- X5,

X6 5 X + X + 10X --5X5.

Each of these cases is a different formulation of the same dependency structure, and
each has a different residual. The user may wish to select a particular set of estimated
variables even if the residual is slightly larger. The criteria influencing these choices can

LINEAR DEPENDENCIES IN MULTIVARIATE DATA 1029

often be quite subjective. Usually one wishes to select the dependency structure which lends
itself to the most meaningful physical interpretation, but other factors may be involved. For
example, in data collection, some variables may be easily observed while others may be
difficult and/or expensive to obtain. The user may wish to estimate the more difficult variables
to obtain even at the cost of a larger, but acceptable, residual. Another consideration is the
"simplicity" of a dependency structure, i.e., the number of zero coefficients. In our example
above, the formulations in cases and 2 would be considered simpler than that in case 3.
Simplicity is often the key in meaningfully describing particularly large data sets.

As our algorithms can be used to identify and analyze all such competing dependencies,
the user is able to choose the formulation most appropriate to any given application.

7. Examples. The LDA model is appropriate for various types of multivariate analyses.
Four examples are considered. The first example deals with the collinearity problem in
regression analysis. Beaton, Rubin and Barone (1976) considered the Longley data set where
p 6 independent variables and n 16 observations. In this example there are a number of
simple dependencies since there are several correlations greater than 0.99. The eigenvalues
of the correlation matrix are 4.6, 1.2, 0.02, 0.015, 0.0026, 0.00038. A case could be made
for selecting P2 to be 3 or 4, but P2 3 was selected to compare the LDA approach with
Beaton’s subjective selection of variables 2, 5, and 6 for elimination. The results of the
variable selection considering all permutations of three variables appear in Table 2. The
benchmark set of variables selected by the method described in 4 was the minimum residual
variables 1,5, and 6. However, this example illustrates that selecting competing dependencies
can be useful. The second set of predicted variables 1, 2, and 5 is probably a better choice
than the first set since the multiple correlation coefficient (i.e., considering the dependent
variables and 3 predictor variables) is somewhat higher. The condition number k() does
not change appreciably.

TABLE 2
LDA results for Longley’s example.

Reduced
Predicted space
variables Residual residual / "N LRta R K(xIt)

5 6* .545 .546 9.94 .73 11.5 .948 10.6
2 5 .608 .609 8.15 .60 21.2 .982 13.7
2 6 .789 .796 3.75 .28 49.6 .974 12.2

2 5 6 .927 .944 2.47 .18 73.2 .979 12.7

Asterisk denotes benchmark solution, taChi-square 95% critical value is 7.8.

TABLE 3
LDA results for Harman’s factor analysis example.

Reduced
Predicted space
variables Residual residual / / LRta

2 4 2.378 2.430 3.28 .39 4.3
2 3 4* 2.384 2.427 3.48 .42 4.5
3 4 5 2.619 2.746 2.08 .25 6.3

4 5 2.654 2.788 1.70 .20 6.8

Asterisk denotes benchmark solution, taChi-square 95% critical value is 7.8.

1030 v.E. KANE, R. C. WARD AND G. J. DAVIS

The second example considers a factor analysis problem with p 5 and n 12 given
in Harman (1976, Table 2.1). The eigenvalues of the correlation matrix are 2.9, 1.8, 0.21,
0.10, 0.015 and Harman chooses P2 3 which corresponds to about a 50% error LDA model.
The LDA results appear in Table 3 where it is apparent that the diagonal error matrix A
seems appropriate. The first two sets of predicted variables appear to give similar results.
Using the confidence interval procedure discussed in 5 gives the dependencies shown in
Table 4 (where * denotes a nonzero/3 term in the dependency):

TABLE 4

Variable
Predicted
variable Intercept 3 5

*
2 *
4 * * *

Variable
Predicted
variable Intercept 5

2 *

4 * *

Either set of competing dependencies seems to give an equally simple model. The high
correlations corr(X2,Xs) 0.86 and corr(X,X3) 0.97 appear to play an important role. Note
that the minimum residual does not correspond to the benchmark solution. The rotated factor
pattern matrix using a varimax rotation in a factor analysis appears in Table 5. While factor
2 is dominated by the high XI and X3 correlation, the information is different in the two
analysis approaches.

TABLE 5

Variable Factor Factor 2

0.02 0.99
2 0.94 -0.01
3 0.14 0.98
4 0.82 0.45
5 0.97 -0.01

The third example is application of LDA to a linear discriminant analysis problem
involving Fisher’s (1936) iris data where p 4 and n 150 with 3 groups present. The 150
observations were centered by their respective group means so that a common mean and
correlation matrix would be appropriate for all observations. The eigenvalues of the cor-
relation matrix are 2.5, 0.73, 0.58, and 0.19; P2 was selected. The results of the LDA
procedure appear in Table 6. Note that elimination of variable (sepal length) gives 3
misclassified samples which remains unchanged when all 4 variables are used. Typically,
the last two cases would not be considered since /< 1.

LINEAR DEPENDENCIES IN MULTIVARIATE DATA 1031

TABLE 6
LDA results for Fisher’s discriminant analysis example.

Reduced
Predicted space Number
variable Residual residual / "N misclassified

7.21 7.91 1.40 .46 3
3 7.38 8.29 1.22 .39 6
2 9.51 18.79 .38 4
4 9.83 21.62 .34 5

The final example is an application of LDA to a principal components analysis problem
given in Ahamad (1967) where p 18 and n 14. The eigenvalues of the correlation matrix
are 10.0, 3.1, 1.3, 1.1, 0.94, 0.80, 0.30, 0.22, 0.14, 0.031, 0.016, 0.012, 0.0045, 0, 0,
0, 0, 0. A value of P2 9 seems appropriate. The benchmark predicted variables are 2, 4,
5, 6, 7, 8, 9, 11, and 12 which has a residual of 1.81. For p2 9 there are 48,620 possible
subsets which would require excessive computational time. The benchmark case would
probably be considered adequate by most users even if the minimum residual has not been
obtained.

Considering p 5 enables the user to retain the maximum number of variables. Table
7 gives a partial list of variables that all result in a residual of essentially zero. There are
over 8,000 such formulations. Note that ranking the competing dependencies by the computed
residual is done for convenience only since all sets have comparable residuals. The benchmark
subset is 2, 7, 8, 11, 12 which has a residual of 1.68 10-

TABLE 7
LDA results for Ahamad’s principal component example.

Predicted
variables Residual (10-

7,8,11,12,13 1.54
5,7,8,11,13 1.57
7,8,9,11,12 1.58
4,7,11,12,13 1.58
3,7,8,11,12 1.61
7,10,11,12,13 1.62
5,7,8,9,11 1.62
6,7,8,11,12 1.62
7,9,11,12,13 1.63
7,8,9,11,18 1.65

8. Conclusion. Dependencies can play an important role in almost any type of mul-
tivariate analysis. The LDA procedure provides a framework in which these dependencies
can be determined. Computation of the benchmark solution is straightforward and can be
performed easily on modern computers. However, the user may wish to determine the
competing dependencies, which is a combinatorial problem that can require appreciable
computational time for a large number of variables. The examples illustrate the potential
usefulness of LDA in four different types of multivariate analyses.

1032 V.E. KANE, R. C. WARD AND G. J. DAVIS

REFERENCES

B. AHAMAD (1967), An analysis of crimes by the method ofprincipal components, Appl. Stat., 16, pp. 17-35.
T. W. ANDERSON (1958), An Introduction to Multivariate Statistical Analysis, John Wiley, New York.
A. E. BEATON, O. B., RUBIN AND J. L. BARONE (1976), The acceptability of regression solutions: Another look

at computational accuracy, J. Amer. Statist. Assoc., 71, pp. 158-168.
D. A. BELSEY, E. KtJH AND R. E. WELSCH (1980), Regression Diagnostics, John Wiley, New York.
R. A. FISHER (1936), The use of multiple measurements in taxonomic problems, Ann. Eugenics, 7, pp. 179-188.
G. GOLUB, V. KLEMA AND G. W. STEWART (1976), Rank degeneracy and least squares problems, Technical Report

STAN-SC-76;559, Stanford Univ., Stanford, CA.
A. R. HAKSTIAN, W. T. ROGERS AND R. B. CATTELL (1982), The behavior ofnumber-of-factors rules with simulated

data, Multi-vat. Behav. Res., 17, pp. 193-219.
H. H. HARMAN (1976), Modern Factor Analysis, Univ. Chicago Press, Chicago.
G. P. MCCABE (1982), Principal variables, Univ. Tech. Rep. 82-3, Purdue Univ., West Lafayette, IN.
B. N. PARLETT (1980), The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ.
C. R. RAO (1973), Linear Statistical Inference and Its Applications, John Wiley, New York.
R. C. WARD, G. J. DAVIS AND V. E. KANE (1982), An algorithm for assessing linear dependencies in multivariate

data, ACM Trans. Math. Software, to appear.

SIAM J. Scl. STAT. COMPUT.
Vol. 6, No. 4, October 1985

(C) 1985 Society for Industrial and Applied Mathematics
017

ALGORITHMS FOR NONLINEAR LEAST SQUARES WITH LINEAR
INEQUALITY CONSTRAINTS*

S. J. WRIGHT’f AND J. N. HOLT

Abstract. Two algorithms for solving nonlinear least squares problems with general linear inequality constraints
are described. At each step, the problem is reduced to an unconstrained linear least squares problem in the subspace
defined by the active constraints, which is solved using the Levenberg-Marquardt method. The desirability of
leaving an active constraint is evaluated at each step, using a different technique for each of the two algorithms.
Each step is constrained to be within a circular region of trust about the current approximate minimizer, whose
radius is updated according to the quality of the step after each iteration. Comparisons of the relative performance
of the two algorithms on small problems and on a larger exponential data-fitting problem are presented.

Key words, nonlinear least squares, linear inequality constraints, Levenberg-Marquardt method, singular
value decomposition

1. Introduction. A great deal has been published recently on the unconstrained non-
linear least squares problem. The best-known algorithms include those of Gill and Murray
[6], Mor6 [15], and Dennis, Gay, and Welsch [3]. (See also Dennis [2] and Nazareth [16]
for reviews.) An interesting comparison of the performance of several widely available
algorithms on a standard set of test problems has been presented by Hiebert [9].

Little has appeared, however, on the constrained nonlinear least squares problem. Holt
and Fletcher [11] deal with certain simple linear constraints, and Lindstr6m [14] presents
an algorithm for nonlinear constraints. Of course, these problems could also be handled by
standard nonlinear programming codes, but these do not exploit the structure of the sum-
of-squares objective function.

The algorithm of Holt and Fletcher allows only bounds and monotonicity constraints
on the variables. The two algorithms described here are based on the reasoning of that paper,
but allow for general linear constraints. One is a direct extension of the method of Holt and
Fletcher, while the other makes use of the method of Bunch and Nielsen l] for updating
least squares solutions when an extra variable (corresponding to relaxation of an active
constraint) is added to the problem.

Computational experience with the two algorithms is reported, using some standard
problems with added constraints as a basis for comparison.

2. Overview of the algorithms.
2.1. Statement of the problem. We consider the following problem:

(2.1) minimize z(x) I(x)llR
i=1

(2.2) subject toArx ->_ b,

where x E", b E", A E" E", andf/G C2, 1, 2,.-., m. There must be at least
one point x E" which satisfies (2.2) (i.e. is feasible). At any such point, we divide the
columns of A into two matrices C and D, and divide b correspondingly into two vectors c
and d, such that

(2.3) Crx c, C
_
E" E’, <-_ s,

Drx>d, DE E-’.

*Received by the editors October 19, 1982, and in revised form March 29, 1984.
fDepartment of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721.
tDepartment of Mathematics, University of Queensland, St. Lucia, Brisbane 4067, Australia.

1033

1034 s.J. WRIGHT AND J. N. HOLT

Constraints corresponding to C are known as active constraints at x, while those in D are
inactive constraints at x. We will refer to the set of indices of active constraints at x as
(x). It is assumed that for all feasible x, the matrix C has full rank, otherwise there is
redundancy in the constraint specification.

The algorithms also allow for linear equality constraints, which are permanently stored
in the matrix C, and are treated in the same way as active constraints except that they are
not considered for deletion. We can thus virtually eliminate them from the problem, and
they are not discussed further.

Throughout the paper, I1"11 will denote I1"11=.
2.2. Principle of the algorithms. Given an initial point x), we aim to generate a

sequence of updates {IixCk)}, k 0, 1,..., so that {xCk/ 2)} defined by

X+ l) Xt) -t- X

converges to a constrained stationary point of (2.1), while retaining feasibility at each
iteration.

We will need to make use of the concept of a "working set" of constraints. That is, a
set of constraints assumed to hold as equality constraints throughout some subsection of the
algorithm. (See Gill, Murray and Wright [7].) Such a set will be denoted by w.

The general iteration of either algorithm, from a current iterate x with active constraint
set /(x), is described by the informal code in Fig. 1.

(i) compute a candidate update Yo using w=(x), set sw,==-sw and y*= Yo.
(ii) if (an anti-zigzagging test is passed)

then if (not "crude" convergence)
then compute further candidate updates Yi, using ,w (x) i, E (x)

if (one of these, say Yr, is acceptable according to predictive criterion)
then set ,w, ,(x) r and y* Yr.

else compute first-order Lagrange multiplier estimates, Ai, @ (x). Let Aq min(A).
if (/q<0)

then compute a candidate update yq using w-----(x)- q, set Sw.=-w and y*= yq.
else set "fine" convergence flag, go to (iii).

(iii) scale y* if necessary to avoid infeasibility, i.e. y*: cy*, 0<ce <= I.
(iv) if (sufficient function decrease at x + y*)

then set fix y* and update x to x + ix, increase trust region if appropriate.
else decrease trust region,

generate a new candidate update using
go to (iii)

FIG. 1. Informal code for a general iteration of either algorithm.

In step (i) of the iteration, we solve the constrained linear least squares problem

(2.4) minimize {So IIf+ Jyll2, Ilyll--< h, CTy 0}
Y

where f and J are the function value vector and its Jacobian matrix at x. The condition
CTy 0 ensures that ,w (x).

h is a parameter defining a region of trust for the linearization. The region of trust is
dynamically adjusted at each iteration as described in 6. Basically, it will be small if, in
recent iterations, the actual reduction in the sum of squares has been small relative to the
reduction predicted by the linear model and large if the prediction has been accurate. As

NONLINEAR LEAST SQUARES WITH LINEAR CONSTRAINTS 1035

we shall see in 3, (2.4) can be reformulated as an unconstrained linear least squares problem
in En-t.

As can be seen from the informal code, in step (ii) of the iteration, the possibility exists
of relaxing the working set to generate further candidate updates. We aim here to solve the
problems

(2.5) minimize {S IIf //yll=, Ilyll -< h, ry 0}, 1,..’, t.
Y

Each of these problems attempts to predict the effect of relaxing one of the constraints active
at x. is the matrix C of (2.3) with the ith column, ci, deleted. The constraints ry 0
ensure that w (x)- i. Yi, the solution of (2.5), can only be accepted as a feasible
candidate update if

C//’y/> 0,

indicating movement into the feasible region. Eventually, when "crude" convergence applies,
Lagrange multiplier estimates are used as in conventional active set methods.

The crucial difference between the two algorithms presented in this paper is that the
first computes approximate solutions to (2.5), while the second solves (2.5) exactly.

In subsequent sections, the informal concepts introduced in Fig. are formalized,
numerical details of the computation are explained, and convergence results are presented.
Finally some numerical examples complete the paper.

3. Solution of problem (2.4). For the matrix C of active constraints at x, we can find
matrices Q and R such that

QC=[--], QEnEn, QQr=QrQ=l,RE’E’,uppertriangular.

If we define n’= n-t, and partition Q as

then

(3.1)

Q:
LQ2_]}n’

0 Cry [RT O]Qy RTQ,y :ff Q,y O.

We define the vector p by

then from (3.1), p 0 and hence

=p;

(3.2) Y Qp2.

Since Ilyll Ilpll IIp=ll, (2.4) becomes

(3.3) minimize {So IIf+ J T 2,a2p211 lip211 <-- h}
P2

It is a simple matter to show that the solution of (3.3) can be written as the solution p2(A),
for some A =>0, of the unconstrained problem

1036 s.J. WRIGHT AND J. N. HOLT

(3.4) minimize {ill+ JQTpiII2 +

See for example Lawson and Hanson [13]. That is

((JO2) (JO) + ,I) ,(jo)Tf.(3.) p()

If JQ is rank deficient, then we find p(0) by taking the limit of (3.5) to get

p2(0) -(JQ)*f

where(JQ)* is the Moore-Penrose pseudoinverse of JQ. If llp:(0)ll h, then p2(0) is the
solution to (3.3). Otherwise there is a Z*>0 such that Ilp2(A*)ll h, in which case p2(A*)
is the unique solution to (3.3).

To solve (3.5), we find the singular value decomposition (SVD) of JQ, written as

where U E x E ohogonal, V E’ x E’ ohogonal, and S E’’ x E"’ diagonal, with
diagonal elements s s Sr > 0, where r N n’ is the rank of JQ. The s’s are the
singular values of the matrix. The solution of (3.5) is then

((-.= s +
where U consists of the first n’ columns of U, S+ is the diagonal matrix of order n with
diagonal elements

s[, 1,2,...,r,
s 0, i>r,

and T is the diagonal matrix of order n’ with diagonal elements

+ , l, ,... r,
t O, > r.

We note from (3.6) that

(3.7)
(uTf)2s/2

Ilp=(A)ll=- .,, (s/ +
and since we require IIp2(a)ll h, we choose a to be the smallest nonnegative value for
which this constraint holds. The numerical solution of the resulting equation is discussed in
6.

In some algorithms, scaling is introduced into (2.4) by replacing the condition
Ilyll--< h with Ilnyll--< h, where B is some diagonal matrix.

4. Handling of constraints.
4.1. Constraint relaxation (problem (2.5)). We now consider reformulation of the

problem (3.4) to take account of relaxation of one of the active constraints.
Suppose the ith active constraint is to be relaxed. Recalling that C is the matrix C with

column deleted, then

NONLINEAR LEAST SQUARES WITH LINEAR CONSTRAINTS 1037

where/ is the matrix R with column deleted. To return/ to upper triangular form, we
need to premultiply by (t- i) Givens rotations (see, for example, Lawson and Hanson [13])"

(G, G,_ G,+ ,)QC

where G E’-’ F’-’ is upper triangular. Thus defined by

Q=G,"’Gi+,Q

is the orthogonal matrix which reduces C to upper triangular form. Since the Givens rotation
Gj affects only rows j- and j of the matrix Q, it can be seen that the last n’ rows of Q
and Q are the same, hence Q has the form

hee , has
The resulting augmented linear least squares problem has an extra variable, and can be

written as

(4.1) minimize IIJ[q, Q]P2 + fll2 + A2IIP2112.

We write [p p] so that pq is the component of y which is normal to the manifold
of cuently active constraints.

To ensure that the ith constraint is indeed being relaxed and not violated, we require
that

(4.2) 0 < c [Q2p2 + pq] peq,
so p must be nonzero with the same sign as cq.

Methods for finding a solution of (4.1) are discussed in 5.
4.2. Addition of a constraint to the active set. Once the search direction has been

deteined by selecting an acceptable candidate update, say s, we may not be able to take
the full step, since this may cause violation of previously inactive constraints. Using the
notation of (2.3), we choose a as the largest value in the inteal (0,1] for which

(4.3) DT(x + aS) d

is satisfied, where, from (2.3), Dr describes the inactive constraints at x. If strict inequality
holds in (4.3) for 1, then no new constraints have been encountered. Otherwise, we
add a constraint to the active set by removing the appropriate column from D and appending
it to the active constraint matrix C. Then

[Cel= --and we update the QR decomposition by premultiplying by a Householder reflector. R is
not changed in this process.. Slfifegeterble (4.1)aesritrelfi criteria. The
working set of constraints here is the active set at x less one constraint.

1038 s.J. WRIGHT AND J. N. HOLT

5.1. Method of the first algorithm. In the first algorithm, we use a simple method
of finding an approximate solution to the augmented problem (4. l), given the SVD of
JQ, which is used in the solution of the original problem (3.7). The method is an extension
of the method of Holt and Fletcher l] for bounds and monotonicity constraints.

When 2r [p P2] we can rewrite (4.1) as

minimize JQP2 + (f + PJqi)lla + A2P + ,xllpll.
P,P2

For fixed p, the solution of (5.1) is

u;(f -]" OJli)S
(5.2) p - A v,

Sj
2 +

where u, s, vj arise from the SVD of JQ. If we use the notation

then, from Lawson and Hanson [13], the predicted sum of squares at the solution will be

(5. (o o (o +
s + I j=r+l

Following Holt and Fletcher, we define vectors r/and K by

’.J
Jij(O)

SJ + A2, j 1,

(ij(O), j > r,

IuJqi sj2
A

K= +h2’

[uZq,,

Then from (5.3),

P(o) + pu +
and hence the minimum sum of squares is attained when

,qrK
P Pi* KTK

Using (4.2), we check to see that Pi* has the correct sign. If so, we compare it with two
positive tolerances e and e2. If Ip*l<e,, then it is too small and we do not consider constraint
for relaxation. If Ip*l> e2, then its magnitude is decreased to e2.

Once Pi(Pi*) Pi* has been calculated for each active constraint, we find the minimum,
say Pk*. Following Holt and Fletcher, the kth constraint is relaxed if

Pk* < P(O),
where P(0) is the predicted minimum value of the sum of squares on the current active
constraint manifold.

The value of h used during the solution of the augmented problem is the same value
used in (3.4) to ensure that IIpll -<- h. However, despite the limit on the size of/9, since the
working set has changed, this A may not be optimal for the constraint 11211 --< h. We could
be unwittingly altering the region of trust in solving the augmented problem. This difficulty

NONLINEAR LEAST SQUARES WITH LINEAR CONSTRAINTS 1039

is overcome in the second algorithm, which allows the optimal choice of A for the augmented
problem.

5.2. Method ofthe second algorithm. In this algorithm, we explicitly find the solution
of (4.1) by updating the SVD of JQ to take account of the appended column Jqi. This
allows us to solve directly for 2 and to choose Ai as the smallest nonnegative value of A
such that IIll < h,

The SVD update technique is due to Bunch and Nielsen 1]. To find the solution 2,
we need the updated values of the matrices S and V, and the updated value of Urf. By
solving the secular equation

n’ jqi)j2 E=, + l(UrJq,)
(5.4) g(r) + (

j=l Sj --T T

for ’r, "",’rn,/ , we obtain the squares of the new singular values gk. In solving (5.4), use
is made of theorems concerning distribution of the singular values. Deflation of the problems
occurs when

(i) JQ is rank deficient,
(ii) some of the singular values of JQ are equal,
(iii) any of the first n’ + elements of UrJqi are zero.
For each new singular value gk, we define a diagonal matrix T En’x En’, with jth

diagonal element (sj- g). The kth column of the updated V matrix is then given by

["JqiII VT S]-1

where W consists of the first n’ elements of UrJqi, and 3’ is a positive scalar chosen to
normalize t3. The kth element of the updated Urf vector is given by the formula

ff [lljqillwT S(Uf) (Jqi)Tf].

Once the updated SVD has been obtained, we calculate Ai to fit the step length parameter
h. Then a formula similar to (5.3) is used to calculate the predicted sum of squares P* if
constraint is the one being relaxed. If Pi is the best result so far obtained, we explicitly
find 2 and check the sign of p; if this is correct, we calculate y and store it.

After all active constraints have been checked, and P* is the minimum predicted sum
of squares, we relax the kth active constraint if

Pt* < (.9)P(O).

The relaxation threshold is higher than in the first algorithm because we have found the true
solution of the augmented problem, and not just an approximation to it.

5.3. Complexity of the algorithms. Operations common to both algorithms include
the formation of JQ, the formation of qi and Jq; for each active constraint, the SVD of
JQ, and function and Jacobian evaluations. Together, these require O(mn:) multiplications
and divisions.

The first algorithm requires very little extra work, only 4m + 5n operations per con-
straint. Most of the work in the second algorithm lies in the solution of the secular equation
(5.4) during the SVD update. The complexity is a fairly large multiple of n and n. For
small- and medium-sized problems, say n -_< 10, rn =< 40, the first algorithm can be signif-
icantly faster. For larger problems, however, the operations in common to the two algorithms
tend to take much longer than those peculiar to each algorithm. The second algorithm is

1040 s.J. WRIGHT AND J. N. HOLT

favored in these cases because it usually takes fewer iterations to reach a solution. These
observations are borne out by the numerical results of 8.

It would be possible to implement an algorithm similar in principle to those described
here, but using the QR factorization of JQ2 instead of the singular value decomposition.
Firstly, the solution of the augmented problem would be easier, since it is a trivial matter
to update a QR factorization after the addition of a column. On the other hand, solution of
(6.1) (i.e. selection of damping parameter A to fit step size parameter hmax) becomes more
lengthy since the quantities Uf and si are not explicitly available. Instead, it will be necessary
to calculate y for a number of different values of A, as in Mor6 15]. Since at each iteration
we need to solve a number of equations similar in form to (6.1) (one for each augmented
problem), this represents substantial extra work. Because of these two opposing consider-
ations, it is not possible to say whether the use of a QR factorization would result in faster
or slower algorithms in general than the ones presented here. This would depend on the size
of JQ2 and the size of the actual constraint set at each step.

6. Trust region control. A global trust region parameter, hmax, is maintained and
updated as the iterations progress. There are good reasons for explicitly considering hma
rather than the corresponding A. (See Fletcher [5].) The rules for updating hma are described
later in this section. The value of hma at the start of an iteration measures the maximum
allowable stepsize permitted in this iteration. Of course, it may not be achievable because
it may exceed the current Gauss-Newton steplength (i.e. corresponding to k 0). For this
reason we maintain, in a given iteration, a "working" trust region, h, and the corresponding
damping parameter k, derived from hma as follows:

(i) Compute ho (corresponding to h =/,min, where /min > 0, the minimum allowable
value of A, is necessary for the convergence properties of 7 to hold).

(ii) Compute hcritical 0.5ho, and the corresponding hcritic,.
(iii) if (hmax ho),

then (set h ho, h =/min)
else if (ho > hmax hcritical)

then (set h hcriticaJ and h Acritic,j)
else if (hcritical > hmax)

then (set h hma and obtain h by solving

(6.1) . (s] + A2)h2ma (ll;f)g

This algorithm is essentially that used by Holt and Fletcher 11 using the ideas of Fletcher
[4]. The reader is referred to [11, 5] for a discussion of its motivation.

Using the working trust region parameter h, we compute an update x and z(x + x).
The strategy for modifying the trust region depends on the ratio, q, of actual to predicted

decrease in the objective function. Following the ideas of Fletcher [4] and Mor6 [15], we
aim to keep this ratio at an acceptable level, q is compared with two constants 7r and 7r2
(0 < "/’’1 < "/’/’2 < 1). If ff < 7r, insufficient predicted decrease has occurred and we decrease
h by fitting a quadratic in/x to z(x + Sx) using the values of z(x), z(x + ix) and xrVz(x)
as interpolation data. If/.t* minimizes the quadratic, we decrease h by multiplying it by
unless/.* is not in (1/1o, V2) in which case we first set/.* to the nearest endpoint. This is
identical to the procedure of Mor6 [15]. An inner iteration is then performed with the
decreased h, and the procedure repeated if necessary until a sufficient decrease is obtained.
At the completion of the iteration, following Holt and Fletcher 11], the global trust region
parameter hm,x is updated as follows.

NONLINEAR LEAST SQUARES WITH LINEAR CONSTRAINTS 1041

if (h < min(hcritic, hmax), (; an inner iteration occurred))
then (set hma h (; a decrease))
else if (> 7r2 and a 1)

then (set hmx + h (; an increase))
else (leave hma unchanged).

The method of computing the Levenberg-Marquardt parameter A corresponding to the
trust region h in (6.1) is essentially that of Hebden [8] with the safeguarding scheme of
Mor6 15]. We define the function

(6.2)

and aim to solve the equation

hma
for A2 iteratively. We make the rational approximation

(2) (2) P
(qWA2)

where p and q are determined by enforcing the conditions and ’ ’ at the cuent
iterate A, say. We then find the next iterate by solving the system

(2) hmax
for A.

Algorithm (5.5) of 15] is used to safeguard the iterates generated, and achieve quadratic
convergence to A which solves (6.1).

7. Convergence of the algorithm.
7.1. Use of Lagrange multipliers. The tests described in 5 are not the only tests

used to determine whether or not constraint relaxation will occur. When the iterates appear
to be converging, a Lagrange multiplier test is prefeed, to satisfy the conditions of our
convergence result. First-order Lagrange multiplier estimates can be obtained by solving the
linear least squares problem

minllfX Jfll

where C, as defined earlier, is the active constraint matrix. We choose q to minimize A,
1,..-,t. If Aq < 0, we relax the coesponding active constraint. If Aq 0, we continue

iterating on the cuent manifold.

7.2. Avoidance of zigzagging. Zigzagging is a phenomenon which can adversely
affect the perfoance of active set methods such as the one being described here. It occurs
when the iterates do not eventually stay on the one active constraint manifold, but instead
oscillate between different manifolds. This tends to considerably slow down, or even prevent,
convergence.

Zigzagging will most likely occur if we perform some soa of relaxation test at each
iteration. We aim to find a role which will prevent zigzagging and yet allow the active
constraint manifold to be changed when it appears likely that it is not the one on which the
solution lies.

Fletcher [5] proposes a role based on a second-order estimate of function reduction at
each stage. Following him, we define this estimate as

1042 s.J. WRIGHT AND J. N. HOLT

A<k)=frj r jrj rQ2)(Q2 Q2 + AI) (Qjr)f

where f and J are evaluated at x<k). Using the fact that

x) r r r QjrfQ(QJ JQ + AI) -’

we obtain

(7.1) A<) x<)r(JrJ + AI)x<).

Also we define a sequence of integers {/(k)} such thin l(k) is the greatest iteration index prior
to k on which a constraint is relaxed. We only consider constraint relaxation at iteration k
if

(7.2) A) z) z)).

This is the anti-zigzagging test referred to in 2. The idea is that if zigzagging occurs, the
right-hand side of (7.2) will go to zero, and hence A<)--> 0. This suggests that convergence
will occur for the subsequence of points on the same manifold. Fletcher [5] has a convergence
result [5, Thm. 11.3.1] for certain algorithms which use this rule. We will show in the next
subsection that this result can be applied to the second of our methods.

7.3. Convergence to a Kuhn-Tucker point. We present in this section a convergence
result for the second algorithm, in which 8x at each iteration is the exact minimizer of
IIJx / fll= on a certain active constraint manifold (see 5.2).

As mentioned in 7.1 and shown in the informal code in 2, we use Lagrange multiplier
relaxation tests in place of the tests described in 5 when "crude" convergence has occurred
on the current manifold. We use criteria similar to those of Dennis, Gay and Welsch [3]
our "crude convergence flag" is set if any of the following three conditions hold:

maxl6xl(a)
max(Ix, + xil " Ix,I)

(b) Z(X) < ea

z(x) z(x + x)
(c) < e,

z(x)

< ex (relative x-convergence),

(absolute function convergence),

(relative function convergence),

where ex, ea and e, are small positive tolerances. Since {z<)} is a decreasing sequence,
bounded below by 0, it can be seen that there exists an integer K such that one of the
conditions (b) or (c) will hold for all k > K. Hence after the Kth iteration, the crude
convergence flag will always be set at step (ii) of the informal code of 2, and so the
Lagrange multiplier test will always be used after this stage. In proving convergence, then,
we can ignore the first branch of the conditional statement in step (ii) of the code, since the
"predictive" relaxation tests are performed only finitely often.

Before applying Fletcher’s result to our second algorithm we need to show that the
sequence of iterates cannot have multiple accumulation points. To do this, we need the
"sufficient decrease" condition in step (iv) of Fig. 1, which is

z(k) z(k +
(7.3) ’- z‘,- (llf //x<’ll / A=llx<’ll=) >-- r,

(where f and J are evaluated at x<)). Expanding the denominator and dropping the superscript
on ix<k), we obtain

NONLINEAR LEAST SQUARES WITH LINEAR CONSTRAINTS 1043

But

_fjix=’f JQ2(Q2J JQ2 + A21) Q2Jrf
T T T T8x Q2(QJ JQ + A21)Qx

8xr(QQ2)(JrJ + AI)(QQ2)x

since ix is the exact solution of a problem of the form (3.4) or (4.1). For notational simplicity,
Q here is either the Q of (3.4) or (q Q)r of (4.1) as appropriate. Since 8x Qp for
some vector p, we have

Qx p

and so the denominator is equal to

(jrj2 + AI)Qp xr(JrJ + AI)x ALIIx(’II= since A Ami
Hence, from the sufficient decrease condition,

(7 4) z() z(+ ’, > , ALnllx(’ll IIx(’ll= <(z,-z(+’,)
Amin

Note that (7.4) still applies if x() is scaled to retain feasibility.
We can derive a similar inequality from (7.3) involving the reduced gradient. We do

this by making the observation that since the objective function is C in the region of interest,
the 2-norm of J is bounded. Hence the eigenvalues of jrj and QdrjQ are bounded above.
It can also be shown, using a Taylor series argument, that 2 as A in (7.3) and
hence we can always choose a finite value of A for which the sufficient decrease condition
is satisfied. Since the denominator in (7.3) is equal to

T T T Tf jQ(Qj jQ + AI) Qjrf

jand the eigenvalues of (Q Q + AI) are bounded above and below, there exists > 0
such that

T T T Tf JQ2(Q2J JQ2 + A21) Qjrf >_ rllQ=jfll=.

Hence from (7.3),

(7.5) zk) z+)_--> rrllQ=Jfllz

where Q2 refers to the manifold on which ixk) lies. If x<k) and xk+ !) are both on the same
active constraint manifold, then Qz refers to the manifold of x<k). If not, then we can use
(7.1) and (7.2) to show that

(7.6) z(k) z(’<)) > A()----- r,rllazJfll
where, again, Q2 refers to the manifold of x<). In either case, since {z<)} is bounded below
and decreasing, we can see that the reduced gradient Q2jrf approaches zero for any sub-
sequence of points whch lie on the same active constraint manifold.

The following lemma shows that the sequence of iterates {x<)} can have only one
accumulation point.

LEMMA. If we assume that G(x), the Hessian of z(x), satisfies urG(x)u _-> a > 0 for
all u with Ilull=- and x {xlz(x) -< z(x1)) and x feasible}, then the sequence of iterates

generated by the second algorithm cannot have multiple accumulation points.

1044 s.J. WRIGHT AND J. N. HOLT

Proof. Firstly, we prove that there cannot be an infinite number of accumulation points.
If this were true, then there must be at least one active constraint manifold ’ which holds
an infinity of such points, denoted by {yi}= . Since each Yi is the limit of a subsequence
from {xtk)}, we deduce from (7.5) and (7.6) that

Q2Jf(y) 0 for all i,

where Q2 is appropriate to /’. If we restrict our region of interest {xlz(x) =< z(x<)) and x
feasible} to ’, we have a compact set, and so the sequence {yi} must have at least one
accumulation point, say y. Assume WLOG that y--> y. Then

(yi_ y)r(jrf(yi) jrf(y)) (y;- y)rG(y)(y,- y)---- as i---- .
2 Ily;- yll

But since we can find ai such that

we have

and hence

Yi- Y aai,

a(Qzjrf(y,.) Qzjrf(y))

aQG(y)Qa
--->0 as i----> .

2 Ilaill
But this gives a contradiction since the eigenvalues of G are bounded away from zero.

Hence there can be only a finite number of accumulation points. If there are more than
one, then we can find two accumulation points x’ and x" and a subsequence{xk’} such
that

x’--> x’ and x’)--> x".

Hence [lx<’]l--> Ilx’-x"[[which contradicts (7.4) as ki ---> w. Hence there is only one accu-
mulation point. 1--]

It follows from the compactness of our region of interest that this accumulation point
x* is in fact the limit of the sequence {xt)}. We now present our convergence result.

THEOREM. If we assume that A -->_ /min at each step, that the active constraint matrix
C has full rank at all feasible x, and that the eigenvalues of the Hessian are bounded away
from zero in the region.

{xlz(x) --< z(x)) and x feasible},

then our second method, which solves the augmentedproblem (4.1) as in 5.2, will converge
to a Kuhn-Tucker point x* from any feasible initial point. In addition, if strict complemen-
tarity holds at x* (i.e. all Lagrange multipliers positive) then no zigzagging can occur and
o(x<k)) o(x*) for k sufficiently large.

Proof. If A(x<k)) is constant for k sufficiently large, then Q2 will be constant. Hence
from (7.5) the reduced gradient approaches zero. Since the active set does not change, all
Lagrange multipliers must be non-negative and so x* is a Kuhn-Tucker point.

Otherwise the sequence of integers {l(k)} in (7.2) is unbounded. Because {z<)} is bounded
below and decreasing, z<)- z<")) --> 0 and hence A<k) --> 0 on the subsequence of iterates
for which (7.2) holds. We have shown in the lemma that x<) --> x*, so the remainder of
the proof follows that of Fletcher [5, p. 117].

NONLINEAR LEAST SQUARES WITH LINEAR CONSTRAINTS 1045

Note. For the first of our algorithms (which solves (4.1) approximately, as described
in 5.1), convergence to a Kuhn-Tucker point follows as in the above theorem in the case
where (xk) is constant for k sufficiently large. However the argument used to show that
{xk)} does not have multiple accumulation points cannot be applied. Nevertheless, the algo-
rithm performs well in practice, and it would be of interest if a similar theorem to the above
could be proved for it.

7.4. Termination details. We only test for termination if the fine convergence flag
has been set in step (ii). This flag can be deactivated if the set of active constraints is
subsequently changed. Termination can take two forms:

(a) Fine convergence. Following Dennis, Gay and Welsch, this can only occur when
the condition

(7.7) z(x) z (x + ix)<_--2(z(x) P)

is satisfied, where P is the predicted sum of squares at x + x. If (7.7) is not satisfied, we
regard our model as being unsatisfactory at x. In addition, one of the conditions (a), (b) or
(c) above must hold, with the right-hand sides scaled by a "fine convergence factor", denoted
by CF.

(b) False convergence. This occurs when the iterates appear to be converging, but
(7.7) does not hold. The criterion is

max(lx + &,] / Ix,I)
7.5. Numerical parameters. All computations have been carried out in single pre-

cision on the DEC-KL-10 for which machine epsilon is 0.745 10 -8, except for the SVD
update routine, which is programmed in double precision. In the SVD of JQ, singular
values which differ by less than 10-6 are taken to be equal; in particular, singular values
less than 10-6 are taken to be zero.

The machine-independent numerical parameters are
(i) the bounds on the magnitude of Pi in the first algorithm, which are set to

t 10-4"(1 + Ilxll) and ez h/2,
(ii) the parameters 7r and 7r2 in damping control which are set to 7rt =. and "rr2 .75,
(iii) the fine convergence factor CF, which is set to 10 -3.
The other numerical parameters to be set by the user are to some extent machine

dependent. In the current implementation they are set to ex 10 -6, Ea-" 10 -8, En 10 -6,
eF 10-5 and /min 10-6. Amin should be set no greater than the smallest nonzero singular
value able to be returned by the SVD routine.

$. Numerical examples. The two algorithms were tried first on a set of small test
problems which were modified from examples in Hock and Schittkowski 10]. They had 2
to 5 variables, 2 to 7 f.’s in the sum of squares, and up to 8 constraints. There was a mixture
of zero-residual and nonzero residual problems. Both algorithms gave the correct solutions
for all 16 examples. A total of 100 iterations and 5.99 seconds of DEC-10 CPU time (over
all the examples) was required by the first algorithm, as against 97 iterations and 7.16
seconds for the second algorithm. As expected, the first algorithm gave decidedly better
performance on these small examples.

A larger example due to Osborne [17] was also tested. This is an exponential data-
fitting problem with n 11 and rn 65, with

fi(x) Yi- xe -xSt’ x2e
--x6(ti--x9) x3e-X7(ti-xto) x4e

X8(t 11)

1046 s.J. WRIGHT AND J. N. HOLT

where the values of Yi and ti are given in 17]. Two constraints were applied, being modi-
fications of the equality constraints in Kaufman and Pereyra 12]:

X -- 2X2 + 3X "k- 4X4 6.270063,

x + x3 >= 1.741584.

These were chosen to be slightly inactive at the solution, and hence were a good test of the
power of the methods to leave constraints.

Two test runs were produced. On the first, the starting vector was (1.3, .65, .65, .7,
.6, 3., 5., 7., 2., 4.5, 4.5)r. On the second, the same vector aplied except that x was
initially 5.5 and not 4.5. Both algorithms converged to the correct solution; however, the
first had to resort to Lagrange multiplier estimates to relax one of the constraints. A com-
parison of iterations and running times is shown in Table 1.

TABLE
lterations/CPU time (secs)for two test runs of the
Osborne problem.

Test
Algorithm" 16/9.89

12/8.71

10/5.75

8/4.91

TABLE 2
Test run offirst algorithm.

Iteration
Active

z(x) constraints h ho

5.262 .4098
(4 inner iterations)

4.885 1,2 .4098

2.759 1,2 .8196

1.008 1,2 1.639

.4026 1,2 3.278

.2927 1,2 5.612

.1121 7.147
(1 inner iteration)

.7441 (- 1) 7.147
(1 inner iteration)

.5767 1) 7.147

.4154 (- 1) 7.383

.4146 (- 1) 7.405

.4101 (- 1) 7.405

(constraint relaxed after examination of Lagrange multipliers)

13 .4014 (-1) 7.514

14 .4014 (- 1) 7.526

15 .4014 (- 1) 7.526

16 .401377 (- 1) 7.526

480.74

22.82

14.86

2.532

7.087

4.668

3.070

2.183

1.312

.2358

.2225 1)

.1390 (-2)

.4843

.1091

.1267 (- 1)

.1143 (-2)

NONLINEAR LEAST SQUARES WITH LINEAR CONSTRAINTS 1047

TABLE 3
Test run of second algorithm.

Iteration
Active

z(x) constraints hmax ho

5.262
(4 inner iterations)

2 4.885

3 2.759

4 1.008

5 .4026

6 .2227

7 .1243
(1 inner iteration)

8 .1082
(1 inner iteration)

9 .4241 (- 1)

10 .4014 (- 1)

.4014 (- l)

12 .401377 (- 1)

.4098 480.74

1,2 .4098 22.82

1,2 .8196 14.86

1,2 1.639 2.532

1,2 3.278 7.067

3.278 4.668

3.278 2.852

3.278 2.038

4.062 .7836

4.162 .1003

4.168 .5710 (-2)

4.168 .1424 (-2)

It is seen that the savings in iteration count for the second algorithm leads to a significant
reduction in running time. The greater power of the second algorithm to leave constraints
is further illustrated by Tables 2 and 3, which compare performance on the first test run.

9. Conclusions. Two practical algorithms have been presented for the important, but
little-treated problem of nonlinear least squares with general linear constraints. The methods
use a Gauss-Newton-Marquardt approach with a dynamically-determined region of trust for
the iterations. Numerical examples have been presented. Unlike the unconstrained problem,
standard batteries of test examples do not yet exist; hence modifications to the unconstrained
test examples were necessary to thoroughly exercise the code. A suggestion for future work
is to establish a comprehensive set of test problems. Work is currently underway to produce
an algorithm for the important special case where the Jacobian is large and sparse. The
present codes are appropriate for small- to medium-sized problems, where the computation
of the singular value decomposition of the reduced Jacobian is practical. Copies of the code
are available from the authors.

Acknowledgments. One of us (S.J.W.) wishes to acknowledge the support of an
Australian Postgraduate Research Award. We also wish to thank the referees of an earlier
version of the paper, whose suggestions and criticism were appropriate and appreciated.

REFERENCES

[1] J. R. BUNCH AND C. P. NIELSEN, Updating the singular value decomposition, Numer. Math., 31 (1978),
pp. 1-129.

[2] J. E. DENNIS, Nonlinear least squares and equations, The State of the Art in Numerical Analysis, D. Jacobs,
ed., Academic Press, New York, 1977, pp. 269-312.

[3] J. E. DENNIS, D. M. GAY, AND R. E. WELSCH, An adaptive non-linear least squares algorithm, ACM, Trans.
Math. Software, 7 (1981)pp. 348-368.

[4] R. Fletcher, A modified Marquardt subroutine for non-linear least squares, Harwell Report AERE-R.6799,
1972.

1048 S.J. WRIGHT AND J. N. HOLT

[5] R. FLETCHER, Practical Methods of Optimization, Volume 2: Constrained Optimization, John Wiley, New
York, 1981.

[6] P. E. GILL AND W. MURRAY, Algorithms for the solution of the nonlinear least squares problem, SIAM J.
Numer. Anal., 15 (1978), pp. 977-992.

[7] P. E. GLEE, W. MURRAY AND M. H. WRIGHT, Practical Optimization, Academic Press, New York, 1981.
[8] M. O. HEBDEN, An algorithm for minimization using exact second derivatives, Harwell Report AERE TP515,

1973.
[9] K. L. HIEBERT, An evaluation of mathematical software that solves nonlinear least squares problems, ACM

Trans. Math. Software, 7 (198 l) pp. l- 16.
10] W. HOCK AND K. SCHITTKOWSKI, Test examplesfor nonlinearprogramming codes, Lecture Notes in Economics

and Mathematical Systems 187, Springer-Verlag, New York, 1981.
J. N. HOLT AND R. FLETCHER, An algorithm for constrained non-linear least squares, J. Inst. Maths Applics,

23 (1979), pp. 449-463.
12] L. KAUFMAN AND V. PEREYRA, A method for separable, non-linear least squares problems with separable

nonlinear equality constraints, SIAM J. Numer. Anal., 15 (1978), p. 12-20.
[13] C. L. LAWSON AND R. J. HANSON, Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, NJ,

1974.
14] P. LINDSTROM, A working algorithm based on the Gauss-Newton methodfor non-linear least squares problems

with non-linear constraints, Report UMINF-79-80, Institute of Information Processing, University of
Umea, 1980.

[15] J. J. MORI, The Levenberg-Marquardt algorithm: Implementation and Theory, Numerical Analysis, Lecture
Notes in Mathematics 630, G. Watson, ed., Springer-Verlag, New York, 1978, pp. 105-116.

[16] L. NAZARETH, Some recent approaches to solving large residual nonlinear least squares problems, SIAM
Rev. 22 (1980), pp. l-l I.

[17] M. R. OSBORNE, Some aspects of non-linear least squares calculations, Numerical Methods for Non-Linear
Optimisation, F. Lootsma, ed., Academic Press, New York, 1972.

SIAM J. Scl. STAT. COMPUT.
Vol. 6, No. 4, October 1985

(C) 1985 Society for Industrial and Applied Mathematics
018

SOLVING ELLIPTIC DIFFERENCE EQUATIONS ON A
LINEAR ARRAY OF PROCESSORS*

Y. SAAD’]’, A. SAMEH: AND P. SAYLOR:I:

Abstract. In this paper we consider the organization of three iterative methods for solving self-adjoint elliptic
difference equations on a set of linearly connected processors. These algorithms are the cyclic Chebyshev semi-
iterative scheme, a preconditioned conjugate gradient method, and a generalization of the Chebyshev method. We
also compare their performance on this multiprocessor as a function of the cost of interprocessor communication.

Key words, elliptic difference equations, multiprocessors, conjugate gradient method, Chebyshev methods,
parallel algorithms

1. Introduction. Numerical methods for solving elliptic partial differential equations
have been among the most important applications made possible by the digital computer.
The literature in this area is extensive and is still evolving, see for example [Schu81], in
particular the articles by Rice and Young regarding the two software packages ELLPACK
and ITPACK respectively. With the advent of array and vector computers such as the ILLIAC
IV and the Cray-1, respectively, some studies have been performed to determine the speedup
that may be achieved by direct and iterative numerical methods for solving elliptic difference
equations on these computers ([Miur71], [Eric72], [BuGH77], and [GePV78]). In this paper
we concern ourselves only with iterative methods for solving self-adjoint elliptic difference
equations on a multiprocessor [Same81]. Specifically, we consider the cyclic Chebyshev
semi-iterative scheme, the conjugate gradient method, and a generalization of the Chebyshev
method which we call the block-Stiefel iteration.

We assume that our hypothetical multiprocessor consists of a number of linearly con-
nected processors, where each processor can simultaneously transmit a previously computed
floating-point number to either of its immediate neighbors, and receive another, while
performing an arithmetic operation. We further assume that an arithmetic operation consumes
one time step, while the cost of transmitting and receiving a floating-point number is >--
time steps.

In order to illustrate our above assumption regarding overlapping the computation and
communication (i.e. the fact that the linear array of processors is pipelined), we present the
following example. See Fig. 1. Let each processor j, _-< j _-< p- 1, be responsible for
computing the scalar-vector multiplication vj aju and transmitting it to processor j + 1.
After processor j performs the multiplication v a2u, where ui(vi), <- <-_ n, is the ith
element of u(v), it issues an instruction for transmitting v to processor j + 1, and proceeds
to compute v2 aju2. The quantity v, therefore, reaches processor j + time steps after
it has become available in processor j, and from now on vi, 2 -< _-< n, becomes available
in the local memory of processor j + following each subsequent time step. Hence, the cost
of computing v au2 in each processorj, and transmitting it to processorj + is (n + + 1)
time steps.

The main objective of this paper is twofold: we demonstrate the organization of the
cyclic Chebyshev semi-iterative and the conjugate gradient schemes on a pipelined linear

*Received by the editors November 9, 1982, and in revised form May 1, 1984. An early version of this paper
appeared in the proceedings of CONPAR81, Springer-Verlag. This work has been partially supported by the
National Science Foundation under grants MCS 79-18394 and MCS 81-17010.

fDepartment of Computer Science, Yale University, New Haven, Connecticut 06520.
tDepartment of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.

1049

1050 Y. SAAD, A. SAMEH AND P. SAYLOR

Proc. j Proc. j +

19i

192

193

194

195 192

FIG. 1. Example 2 time steps.

array of processors, and introduce the block-Stiefel iteration. We show that the latter algo-
rithm, with optimal parameters, can be superior to the conjugate gradient method on our
hypothetical multiprocessor. This occurs when the (preconditioned) finite-difference operator
has a certain eigenvalue distribution, or when is much larger than 1.

There are several reasons to consider a linear array of processors for handling the above
problem. Such arrays are relatively easy to construct and expand. They deliver high per-
formance (speedup is roughly equal to the number of processors) by using both multipro-
cessing and pipelining. Furthermore, such a linear array of processors can be easily configured
by connecting an equal number of nonfaulty cells on a wafer, e.g. see [AuCa78], [GaSW82],
[FuVa82], and [LeLe83]. In this case, the wafer is attached to a host computer as an
inexpensive peripheral device.

2. A model problem. In order to illustrate a suitable organization of each of the above
three algorithms on our multiprocessor, we consider the following second order, self-adjoint
elliptic problem on the unit square

(2.1)
Ox -x -y b(x, y)-y + c(x, y)u f(x, y)

for 0 < x,y < 1, with Dirichlet boundary conditions. We assume that a(x,y) and b(x,y) are
positive, and c(x,y) is nonnegative.

Superimposing a square grid over the unit square with a mesh size h 1/(n + 1), where
n is an even integer, and using the five-point difference scheme with line red-black ordering
[Youn71], we obtain a positive-definite linear system of order n

(2.2) Cu f

whose solution u yields an approximation of u(x,y) in the unit square. Further, the matrix
C is of the form

F]C Fr TB

ELLIPTIC EQUATIONS ON A LINEAR ARRAY OF PROCESSORS 1051

where

Tr diag(A1, A3,’", An_ l),

TB diag(Aa, A4,"’, An),

and

nl
B2 B3

B4 B5

B._a Bn_l

Matrices Ai and Bi are tridiagonal and diagonal respectively of order n. The system (2.2),
which can be written in the form

(2.3) Fr TB UB f,

may be transformed into a more convenient form for each of the three iterative schemes
under consideration. Let

Ai L/D/L/r, < < n

be the factorization for each of the positive definite tridiagonal matrices Ai, where Li is unit
lower bidiagonal and D; is diagonal with positive elements. Hence, we can write

T LRDRLr and T L,DBLr,
where

L. diag(Ll, L3,..., L,_),

LR diag(L2, L4,.’’’, L),

DR diag(D, D3,’", Dn_),

D. diag(Da, D4,’", Dn).

Now, the system (2.3) may be written as

(2.4)

where rn n2/2,

Gr I W g,

(2.5)

1-1/2WB

1052 Y. SAAD, A. SAMEH AND P. SAYLOR

Here

(2.6) {f n-,/2 Lzi_ n’2R diag zi- .2i- .-.zi- ,},

e diag{l2, D 1,2 L2,n,,2t-2i l,

n
1__<i__<-

2

are unit lower bidiagonal matrices, and

(2.7) D-,/2 F D-,,2

in which

and
nI2, D+,"2 B2,D ,,2, < <

remain diagonal matrices. Such a transformation of (2.3) is referred to as the Cuthill-Varga
normalization technique [CuVa59], [HaYo81].

It is well known [Varg 62] that the block-Jacobi iterative scheme

(2.8) ’, o Lw’ "’j + g.
g"

converges to a solution of (2.4), barring roundoff error, for arbitrary w(oR) and W(om. In other
words the spectral radius of

(2.9)

is less than 1.

3. Preprocessing stage. Throughout this paper we assume that the number of processors
is p n/2. The algorithms, however, may be reorganized in an obvious way if p<n/2.
Using a(x,y), b(x,y), c(x,y), and f(x,y) each processor j generates A2j_, A2j; the corre-
sponding portions of the right-han side f2jz,, f2j; and B2j_ , B2. The cost of the preprocessing
stage, i.e. the cost of obtaining F, LR, Ln, g, and gn, may be outlined as follows. Each
processor j, <-_ j <-_ n/2, performs the following:

r and A2j L2j D2j L, at the1. Obtains the factorization Azj_ Lzj- D2_ Lzy_ i,

cost of 8(n- 1) time steps. (The contents of the local memories of the n/2 processors, for
n- 12, are shown in Fig. 2a.)

2. Forms the diagonal matrices D I/2 l’--1/2_, andD 1/2 and transmits ---2j-, to processorj
at the cost of 2n square roots, and (2n + @ + 1) time steps.

3. Obtains Lzj-,, and Lzj, see (2.6), at the cost of 4(n- 1) time steps.
4. Computes llz./_, D_,l/2 Bzj_ D_,I/2 and 2j D+1’/2 B2 D 1/2, and transmits 2j

to processor j + 1, at a cost of (4n + q + 1) time steps. (The reason that we would like to
store I12j_2, !2_ k’ and l2j in processor j will become apparent later as we discuss the
multiplication of F by a vector.)

ELLIPTIC EQUATIONS ON A LINEAR ARRAY OF PROCESSORS 1053

Proc.

I)l, LI
D2, L2

BI

Proc. 2

93, L3
D4, L4

B3

,f4

Proc. 3

B5

f,f6

Proc. 4

DT, L7
Ds, L8

B7

f7, f

Proc. 5

D9, L9
Do, L,o

B

Proc. 6

DII, LII
D!2, LI2

nil

fll,

FIG. 2a.

n-t/a 2, and g2i D ’/: 2i, where2i andS:,5 Obtains the vectors gai- -2i- -1

are the solutions of the systems L2;_ fai- fi- and L2i i f2i, respectively, at the
cost of (6n- 4) time steps.

Hence the total cost of the preprocessing stage is roughly To 24n +2 time steps,
and 2n square roots As we shall see later, this cost is comparable to the cost of only one
iteration of any of the three iterative schemes discussed in this paper. Figure 2b shows the
contents of the n/2 processors after the preprocessing stage (n 12).

Proc.

gl, g2

Proc. 2

D3, 3
D4, -4

fi3

g3, g4

Proc. 3

fi5

gs, g6

Proc. 4

fi7

gT, g8

fi9
ill()

g9, glo

Proc. 6

fill

ill0

gl g12

FIG. 2b.

4. The cyclic Chebyshev semi-iterative method (CCSI). Golub and Varga [GoVa
61 have developed a scheme for accelerating the convergence of any iterative method of
the form (2.8). It can be stated as follows. Let W(oR) be an arbitrary initial approximation of
wR, and w((gB- Grw(o)). Now, for k= 1,2,3,..., we construct the iterates

(4. la)

and

(4. lb)

where

(4. lc)

and

(4. ld)

(R) (R) + (R)Aw2k 2W2k W2k 2 Cl2k

(B) "F A. (B)
2k + W2k- O2k+ /W2k- 1,

(R) (B) (R)Aw2_ 2 (g G 1)W2k W2k 2

(n) Gr. (R)x (B)Aw2k- (gn w:k w2k-1.

1054 Y. SAAD, A. SAMEH AND P. SAYLOR

The acceleration parameters aj are given by

2
a2 2 1o

2’ Oj+ tO2CXj/4 J >- 2,

where p is the spectral radius of 14 in (2.9).
We would like to point out that by the kth iteration we mean obtaining w2,’(’) and

w(n) from (’) and (n) respectively. Let2k + W2k W2k 1,

v(R))’r)T (R)TxT
2k--2 (y yR n/2

and

)r, (2B)r,... ,(mrrw2"()- (Y Y :2,

If the spectral radius p is known beforehand, and p2 and /92/4 are contained in the local
memory of each processor j, <-_ j <-_ n/2, together with y).)and y)n), each CCSI iteration
may be efficiently organized on our multiprocessor, in the sense that the resulting speedup
over its sequential counterpart is almost n/2.

An iteration consists of two main tasks:

(i) given vectors a (ar, r r r r r
", bn/2) a a, bj ,a/2) b (b i, and scalar with aj,

and a confained in the local memory of processor j, obtain c a + ab; and
(ii) given a vector a (a,.. r r [a,,2) with aj E contained in processor j, compute

d=G a or e=Gr a.

Task (i) requires no interprocessor communications and is accomplished at the cost of 2n
time steps. Task (ii), however, does require interprocessor communications. The computation
of d G a f.,; " f., r a can be divided into three stages:

1. lb a, consists of solving n/2 independent unit lower bidiagonal systems,bi ai, <=j <-_ n/2, one per processor (cost 2(n- 1) steps).
2. c (cr, r r I] b_ + I] b. Here, each processor j,c/2) b, wherec= 2- 2-1

computes i]_, b (cost =n steps), computes B2bj and transmits it to processor j +
(cost n + @ + steps), and finally e is computed as the sum of the previous two vectors
(cost n steps) for a total cost of 3n + @ + time steps.

3. IR d e is solved as in stage in 2(n- 1) steps.
Consequently, task (ii) consumes (7n + -3) time steps.
As a result, in iteration k,-wg) may be obtained in 11 n + - 3 time steps, if we assume

that the acceleration parameter a is available in all n/2 processors. Vector w2,-)+ is then
computed in another In +- 3 steps plus 3 additional steps to compute a2,/ . Hence, the
cost of one iteration of CCSI is roughly T(CCSI)= 22n + 2b time steps, a speedup of
approximately n/2 over the sequential scheme.

5. The conjugate gradient method (CG). We consider the conjugate gradient algo-
rithm applied to the reduced system

(5. a) (I GrG) wa (ga Gr g),

or

(5. lb) Kv b.

This will be referred to as the (RS-CG) scheme; see [HaLY80] and [HaYo 81]. When K is
left in the form (I GrG), where G is as given by the first of equations (2.5), this algorithm

ELLIPTIC EQUATIONS ON A LINEAR ARRAY OF PROCESSORS 1055

requires the additional preprocessing task of computing b =g- GrgR. As indicated in tasks
(i) and (ii) in 4, b may be obtained in approximately T 8n + $ time steps; here we are
adopting the storage scheme shown in Fig. 2a.

The CG algorithm applied to (5. b) is given by:

(a) Initial step

Vo: arbitrary

ro b- K Vo
T

Po ro, Po ro ro.
(b) For j O, 1,2,..., obtain the following

1. q/= Kpj
2. /j pqj
3.

(5.2) 4. v/,= v +
5. r+ r- aq
6. pj+, ry+,r+,
7. [j= pg+,/pg
8. p+ rj+ +/3p.

In addition to fundamental tasks (i) and (ii), discussed in 4, we see that inner products
are necessary for the iterations (5.2):

(iii) Given two vectors a (ar, r r r r nbn/2), aj ban/2) and b (bi, with and
contained in processor j, the inner product arb is computed and made available
in all processors in [(2.5n- 2)+ (n- 2)] time steps.

This task is realized as follows. Compute in each processor j, <= j <- n/2, the inner
product 0j afb (cost 2n- steps). Sequentially obtain the partial sum vi Oi + 02 +"" + Oi
in processor by shifting to the right and adding until v/2 arb is contained in processor
n/2 (cost (n/2 1)(tp + 1) steps). Finally, shift to the left until each processor contains arb
(cost (n/2 1)).

Now, from the cost of each of the three fundamental tasks discussed earlier, it can be
shown that each iteration (5.2) consumes approximately T(CG) 26n + 2nO time steps. In
the RS-CG scheme, however, the preprocessing cost To(CG) is the sum of To (3), T (cost
of forming the right-hand side of (5.1b)), and the cost of computing to, i.e., roughly
15n + 2g,. Hence, To(CG)-47n + 5tp time steps. (The preprocessing cost for CCSI is.
slightly less, i.e, To(CCSI) To + 7n + g,= 29n + 3.)

Note that, on our multiprocessor, the time needed by one CG iteration is approximately
(1.18 + .09g,) times more costly than one CCSI iteration. For large g,, and an unfavorable
(for CG) distribution of the eigenvalues of K, CCSI with optimal parameters may be com-
petitive with the RS-CG scheme.

6. The block-Stiefel algorithm (BST). In this section we consider a generalization
of the Stiefel iteration applied to the reduced system (5. b)

Kv=b.

Let v and/x be estimates of the smallest and largest eigenvalues of K, i.e.

1056 Y. SAAD, A. SAMEH AND P. SAYLOR

0 < /,? < /. [,/2 /./,m LL < 1.

The classical Steifel iteration [Stie58] may be given as follows:

(a) Initial step

Vo: arbitrary

ro b Kvo
v Vo + y-ro;r b- Kv.

(b) For j 1,2,3,.." obtain the following"

1. AVi tojrj + (y% 1)Av_,
(6.1) 2. v.i+l vj + Ave,

3. r/+l b- Kvj+.

Here, y= fl/a, in which

and

2

--!

j>=l

Ilroll_ - ()

In the optimal case v =/x and
Suppose now that v is an estimate of an interior eigenvalue/z.,.+ 1, where s is a small

integer

0</x <...< < <...< <[a[%. < 1/--- L[+1 /Xm /X < 1.

Consequently, if ro xim= ,r/;zi, where zi is the eigenvector of K corresponding to/xi, then
rj can be expressed as

(6.4) r Z 7qiPj(li)zi + Z l"liPj(l’l’i)zi-- rj + rj’.
i= i=s+

As a result

with tOo 2/3,.
This iterative scheme produces residuals r that satisfy the relation

(6.2) rj Pj(K)ro

where Pj(A) is a polynomial of degree j given by

(6.3) Pj(A)
-rj(fl- teA) v--_< A_--</x,

in which the Chebyshev polynomial (is defined by

 cos(jcos-’O, I1 -< 1,
,(3 cosh(jcosh-’O, -> 1.

ELLIPTIC EQUATIONS ON A LINEAR ARRAY OF PROCESSORS 1057

While rj’ is damped out quickly as j increases, i.e., for/3 (/x + u)/(/x- ,)

Ilrj’ll __<(6.5)
IIr;ll=

the term rj is damped out at a much slower rate,

IIrll
IIrll=

The basic strategy of the block-Stiefel algorithm is to annihilate the contributions of
the eigenvectors zl,z,".,z. to the residuals rj so that eventually IIrll approaches zero as
j’-- 1/7"j[(m +/-/’s+ I)/(l’l’m s+l)] rather than Kj 1/7[(/Xm + IXl)/(tXm--/Xl)] as in the clas-
sical Stiefel iteration [Ruti 59]. Let Z [z, z2,’", z.,.] be the orthonormal matrix consisting
of the s-smallest eigenvectors. Then, from the fact that r -K(v- v) a projection process
[Hous64] produces the improved iterate, vj + Z(ZrKZ) IZrr,
for which the corresponding residual f) -- b Kf, has zero projection onto z, _-< _-< s, i.e.,

Zr’ 0. Note that ZrKZ diag(/x,-.
The preprocessing cost for this algorithm is identical to that of the RS-CG scheme in

5. We are assuming for the time being that we also have the optimal parameters/x [’m,

=/X.,.+ where s is a small integer (2 or 3) such that/x.</x.,./ l, and ’k<<:k for k not too
large, together with a reasonable approximation of the eigenpairs/xi and zi -<_ -< s. From
earlier discussions it can be verified that a single iteration (6.1) consumes T(BST)=20n + 2
time steps, again realizing a speedup of approximately n/2 over the corresponding sequential
scheme. In order to avoid the computation of inner products in each iteration, we adopt an
unconventional stopping criterion. Once ’1, the right-hand side of (6.5), drops below a given
tolerance we consider IIrTIl= to be sufficiently damped and start the projection step. Therefore,
once vl/ and r/ are obtained, the improved iterate v/ is computed by

(6.6) ’,/ v,+ + /x(zr,+)z.
i=1

If each eigenvector is z (Z(li)T, -(i)T\T (i)
"./) with z) residing in the local memory of processor

j, (6.6) may be computed at the cost of approximately T’(BST)= (4.5 +)ns time steps.
While it is reasonable to expect that the optimal parameters /x and t, /X --<-- /X <

1, .,. =< V </X,.+) are known, for example as a result of previously solving problem (5. b)
with a different right-hand side using the CG algorithm, it may not be reasonable to assume
that Z is known a priori. In this case the projection step (6.6) may be performed as follows.

Let k l-s + 1, where is determined as before, i.e. so that Zk(fl) is large enough to

assure that IIrZll= is negligible compared to IIr;,ll=. Now, from (6.2) and (6.4)

rk Pk(K)Zy,

where yr= (r/, r/2, "", r/.), or

r Zw

in which

T
wt (ri,P,(t.t,),..., rlsP,(Ix,)).

1058 Y. SAAD, A. SAMEH AND P. SAYLOR

Consequently,

R [r_,.+ , r_,.+,..., rd Z[w_+ , w_,.+,..., wd
Let

(6.7) R QU

be the orthogonal factorization of RI where QI has orthonormal columns and UI is upper
triangular of order s. As a resullt

in which Oi is an orthogonal matrix of order s, and

(6.8) "i+, v1+, + Q,_.,.+, (QL.,.+ ,KQ,_.,.+ ,)- ,Q,_.,.+r ,r,+

has the desired property that Zrl+ ---0. Note that the eigenvalues of Q_.+ tKQI-.+ are
good approximations of/x,...,/x.,..

The projection stage consists of the six steps shown below. The cost of each step can
be readily estimated, based on the cost of each of the three fundamental tasks (i)-(iii)
considered earlier.

1. The modified Gram-Schmidt factorization RI QIUI, where

Ql=[ql-.,.+,-",ql], Ui= P Pz,.

is given by

for/= 1,2,--.,s
()

q,

forj + 1,...,s
T (i)

Pij qi r/-s+j

+ (i)
I-s+j-- rl-s+j- Pijqi.

Since each residual ri -= rl 1) is computed so that its first n elements are in processor 1, its
second n elements in processor 2, and so on, it can be shown that Q is determined in
approximately

[(1.25 + 0.5)$2n -I- (4.25 + 0.5q0sn]

time steps with each qi replacing ri in the local memories of the n/2 processors.
2. Obtain the s inner-products % qrr +, s + -<_ -_< l, and store them in processor

1, [cost (2.5 + 0.5q,)sn time steps].
3. Compute the upper triangular part of the symmetric matrix S Q’KQI and store it

in processor 1, [cost (1.25 + 0.25)s2n + (16 + 0.25O)sn time steps].
4. Solve the linear system Sd c, where cT= (3,1_.,. + ,’", 3’), sequentially in processor

in O(s3) time steps.
5. Transmit each element i erd to all processors, where ei is the vector with as

the ith component and zero elsewhere, and compute d’ =QId= Zl=l-.,.+qi, [cost
(n/2 + s)b + 2sn time steps]. Note that, while processor j is transmitting 6 to processor

ELLIPTIC EQUATIONS ON A LINEAR ARRAY OF PROCESSORS 1059

j + 1, processor i, j- s + <= <=j- 1, is transmitting tj_i+ to processor + 1, (s <<
n/2).

6. Finally, ,,+ v,+ + d’ is obtained in n time steps.
For small s, 2 or 3, the cost of this projection stage, following the BST iterations (6.1),

is given by

T"(BST)- (2.5 + 0.75)s2n + (23 + 1.25ff)sn

time steps.

7. Some remarks. The three methods discussed above have been implemented on the
CDC CYBER 175 at the University of Illinois, for which the arithmetic precision is roughly
14 decimal digits. They were used to solve problem (2.1) with a(x,y)= b(x, y)=
1, c(x, y) f(x, y) 0.1, h 1/33 (i.e., n 32), and with the Dirichlet boundary conditions
u(x, y) 0. The results are shown in Figs. 3-5, where the base 10 logarithm of the relative
error in the solution appears as a function of the number of iterations for each algorithm.
An initial iterate that does not favor any one algorithm was used for all three schemes. For
the block-Stiefel algorithm, we have used/x2 < ,-.044518 </x3, i.e. s 2, and/x L
(the spectral radius of K- .999746). Figure 5 shows the results of four experiments; ter-
minating the iteration stage by performing a projection stage, (6.8), after j 40, 50, 60,
and 70 iterations, for which ’j (fl) 107 109, 10 and 103

Performing the projection stage in BST after j= 70 iterations, i.e. after
Ilrjll=/llr,ll= 10 -13, we achieve a relative error in the solution of 10 -9. The CCSI and CG
schemes require 90 and 30 iterations, respectively, to achieve the same level of the relative
error. On a sequential machine, the CG algorithm would certainly be the scheme that requires
the least number of time steps for the iteration stage for this problem. The same holds true

-4

-8

-10

-12

CCSI

6Z 1oo

Iterations

FIo. 3.

1060 Y. SAAD, A. SAMEH AND P. SAYLOR

o

o

o

-4

-6

-El

-10

-12

CG

20

Iterations

FIG. 4.

o -2

-4

-6

-8

-10

-12

BBST

20 60

Iterations

FIG. 5.

ELLIPTIC EQUATIONS ON A LINEAR ARRAY OF PROCESSORS 1061

on our multiprocessor with = 1. This, however, may not be the case as the value of
increases.

Now, in order to achieve a relative error of 10 -9 or less in the solution of the above
model problem (n 32), the cost of each algorithm is given by:

(i) cyclic Chebyshev semi-iterative (with optimal parameters)

Lotal(CCSI) 90*T(CCSI),

(ii) conjugate gradient (reduced system)

Ttota,(CG 30*T(CG),

(iii) block-Stiefel iterations (with optimal parameters and projection step via (6.8))

Ztal(BST 70*T(BST) + T"(BST),

where for the sake of summary, for n 32 and s 2, we have

T(CCSI) -704 + 2,

T(CG) 832 + 64,
T(BST) 640 + 2,

T"(BST) 1792 + 1761p.

Hence, for this problem, when s 2, CCSI and BST become superior to RS-CG on linear
array of processors only if is greater than 22 and 14, respectively. Such large values of

ff are not unrealistic in certain designs, e.g. see [CoFi83].

8. Further comments on CG and BST. In this section we explore a little further the
relative merits of the CG and BST methods. We shall assume that the (two) smaller eigen-
values are either known or else known to be isolated from the larger eigenvalues. In such
a case, when good information is available concerning the spectrum, the BST method
performs favorably. This should be expected. The CG method requires no such information
but, for this advantage, a price is paid in computing two inner products at each step.

We have compared the performance of the conjugate gradient and the block-Stiefel
algorithms for solving a system of linear equations, where the eigenvalues of the symmetric
positive-definite matrix of coefficients, K, have the following distribution,

0 < l, < ’1’2 <]’3 Lrn < 1.

In our experiments we have taken rn 512, /x .01, and/22 .02. The rest of the 510
eigenvalues are uniformly distributed in [/z3,/Xm] with/x, 0.9998 and/-*3 taking the values
0.1998, 0.5998, and 0.8998. In these experiments the matrix of coefficients is diagonal.

TABLE

0.1998

0.5998

16 x 10

2x 10

No. of iterations
(CG)

26

14

6 eigenvalue spacing within the cluster [/x3,

2 x 10-13

4 X 10-13

4 x 10-3

1062 Y. SAAD, A. SAMEH AND P. SAYLOR

TABLE 2

/1,3

0.1998

0.5998

No. of iterations (BST) &llrll

Projection step via (6.6)

16 9 10-13

2 10

3 10-7

Projection step vis (6.8)

22

10

5 X |0-12

7 10-13

3 x 10

(Since behavior of convergence depends only on the spectrum, this assumption is justified.)
Table shows the number of iterations required by the conjugate gradient method to ensure
that the 2-norm of the residual is O(10-6). Table 2 shows the corresponding results for the
block-Stiefel scheme with the optimal parameters v=/x3 and/x =/Xm, and both options of
the projection step, i.e. via (6.6) when the eigenvectors corresponding to /xl and /x2 are
available, and via (6.8).

Were the eigenvalues of K in (5. b) distributed as in the above example (note that
rn n:/2 512, i.e. n 32, and s 2), the BST scheme would have a definite advantage
over the conjugate gradient method. If

TI’o,.,(BST) (no. of iterations)*T(BST) + T’(BST),

denotes the cost of the block-Stiefel iterations with the projection step performed via (6.6),
where T’(BST) 64(4.5 + q,), then the average of the ratio T[ot(BST)/Ttot,I(CG) for the three
choices of ,=/x3 is given by 0.45 for q,= 1, and 0.30 for q,= 10. While with the projection
step (6.8), the average of the ratio T[,,,BST/Tto,,I(CG) is given by 0.70 and 0.50, for q,=
and 10, respectively.

We avoid the question of whether any matrix would have this distribution. We illustrate
only what would occur if such information were available.

9. Summary. We have studied the iterative solution of elliptic difference equations
on a simple multiprocessor, namely, a linearly connected array of processors. If the matrix
is in line red-block form, we show how to perform a matrix vector multiply efficiently on
such a multiprocessor. We consider three iterative methods, CCSI, CG, and BST. We
determine the work required for each method in terms of interprocessor communication
time, q,, and the number of unknowns, and observe that for large values of ,, but, nevertheless
for values inherent in reasonable designs, the CG method may be at a disadvantage compared
to the other two methods.

At the end of the paper, we briefly study an important feature of the BST method. The
method exploits information about the spectrum, and we consider an example to illustrate
this. If a few small eigenvalues are isolated, then this property improves the performance
of the BST method as compared to the CG method.

Acknowledgments. We wish to thank Dr. J. Grcar and Dr. E. Kamgnia for their help
in performing some of the numerical experiments. We would also like to thank the referees
for their suggestions.

REFERENCES

[AuCa78] R. AUBBUSON AND I. CATT, Wafer-scale integration-fault-tolerant procedure, IEEE J. Solid-State Cir-
cuits, SC-13 (1978), pp. 339-344.

ELLIPTIC EQUATIONS ON A LINEAR ARRAY OF PROCESSORS 1063

[BuGh77] B. BUZBEE, G. GOLUB AND J. HOWELL, Vectorization for the CRAY-I of some methods for solving
elliptic difference equations, High Speed Computer and Algorithm Organization, D. Kuck, D. Lawrie
and A. Sameh, eds., Academic Press, New York, 1977, pp. 255-272.

[CoFi83] ROBERT COOK, RAPHAEL FINKEL, DAVID DEWITT, LAWRENCE LANDWEBER AND THOMAS VIRGILIO, The
crystal nugget, Computer Sciences Technical Report No. 499, Computer Sciences Dept., Univ. Wis-
consin, Madison, April 1983.

[CuVa59] E. CUTHILL AND RICHARD S. VARGA, A method ofnormalized block iteration, J. Assoc. Comput. Mach.,
6 (1959), pp. 236-244.

[Eric72] J. ERICKSEN, Iterative and direct methods for solving the Poisson’s equation and their adaptability to

Illiac IV, CAC document No. 60, Univ. Illinois at Urbana-Champaign, December 1972.
[FuVa82] D. FUSSELL AND P. VARMAN, Fault-tolerant wafer-scale architecturefor VLSI, Proc. 9th Annual Sym-

posium on Computer Architecture, IEEE Computer Society Press, 1982, pp. 190-198.
[GaSW82] D. GAJSKI, A. SAMEH AND J. WISNIEWSKI, Iterative algorithms for tridiagonal matrices on a WSI-

multiprocessor, Proc. 1982 International Conference on Parallel Processing, Batcher, Meilander, and
Potter, eds., IEEE Computer Society Press, 1982, pp. 82-89.

[GePV78] A. GEORGE, W. POOLE AND R. VOIGT, Analysis of dissection algorithms for vector computers, Comp.
Math. Appl., 4 (1978), pp. 287-304.

[GoVa61] G. GOLUB AND R. VARGA, Chebyshev semi-iterative methods, successive over-relaxation methods, and
second order Richardson iterative methods, Parts and If, Numer. Math., 3 (1981), pp. 147-168.

[HaLY80] L. HAGEMAN, F. LUK AND D. YOUNG, On the equivalence of certain iterative acceleration methods,
SIAM J. Numer. Anal., 17 (1980), pp. 852-873.

[HaYoSl] Lous A. HAGEMAN AND DAVID M. YOUNG, Applied lterative Methods, Academic Press, New York,
1981.

[Hous64] A. HOUSEHOLDER, The Theory of Matrices in Numerical Analysis, Blaisdell, Waltham, MA, 1964.
[LeLe83] F. LEIGHTON AND C. LEISERSON, Wafer-scale integration of systolic arrays, TM-236, Laboratory for

Computer Science, Massachusetts Institute of Technology, Cambridge, 1983.
[MiurTl] K. MUIRA, The block-iterative methodfor Illiac IV, CAC document No. 41, Univ. Illinois at Urbana-

Champaign, July 197 I.
[Ruti59] H. RUTISHAUSER, Refined iterative methodsfor computation of the solution and the eigenvalues of self-

adjoint boundary value problems, Theory of Gradient Methods, M. Engli, Th. Ginsburg, H. Rutishauser
and E. Stiefel, eds., Springer-Verlag, Heidelburg, 1959.

[SameSl] A. SAMEH, Parallel algorithms in numerical linear algebra, CREST Conference, Bergamo, Italy, July
1981.

[SchuSl] M. SCHULTZ, ed., Elliptic Problem Solvers, Academic Press, New York, 1981.
[Stie58] E. STIEFEL, Kernel polynomials in linear algebra and their numerical applications, Nat. Bur. Standards,

Appl. Math. Series 49, 1958, pp. 1-22.
[Varg62] R. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
[Youn71 D. YOUNG, Iterative Solution of Large Linear Systems, Academic Press, New York, 197 I.

	SJOCE_V06_i1_p0001.pdf
	SJOCE_V06_i1_p0015.pdf
	SJOCE_V06_i1_p0030.pdf
	SJOCE_V06_i1_p0045.pdf
	SJOCE_V06_i1_p0049.pdf
	SJOCE_V06_i1_p0061.pdf
	SJOCE_V06_i1_p0069.pdf
	SJOCE_V06_i1_p0085.pdf
	SJOCE_V06_i1_p0104.pdf
	SJOCE_V06_i1_p0118.pdf
	SJOCE_V06_i1_p0128.pdf
	SJOCE_V06_i1_p0144.pdf
	SJOCE_V06_i1_p0158.pdf
	SJOCE_V06_i1_p0169.pdf
	SJOCE_V06_i1_p0182.pdf
	SJOCE_V06_i1_p0193.pdf
	SJOCE_V06_i1_p0209.pdf
	SJOCE_V06_i1_p0220.pdf
	SJOCE_V06_i2_p0253.pdf
	SJOCE_V06_i2_p0268.pdf
	SJOCE_V06_i2_p0285.pdf
	SJOCE_V06_i2_p0297.pdf
	SJOCE_V06_i2_p0314.pdf
	SJOCE_V06_i2_p0334.pdf
	SJOCE_V06_i2_p0349.pdf
	SJOCE_V06_i2_p0365.pdf
	SJOCE_V06_i2_p0376.pdf
	SJOCE_V06_i2_p0390.pdf
	SJOCE_V06_i2_p0410.pdf
	SJOCE_V06_i2_p0425.pdf
	SJOCE_V06_i2_p0438.pdf
	SJOCE_V06_i2_p0452.pdf
	SJOCE_V06_i2_p0464.pdf
	SJOCE_V06_i2_p0492.pdf
	SJOCE_V06_i3_p0505.pdf
	SJOCE_V06_i3_p0515.pdf
	SJOCE_V06_i3_p0532.pdf
	SJOCE_V06_i3_p0542.pdf
	SJOCE_V06_i3_p0562.pdf
	SJOCE_V06_i3_p0573.pdf
	SJOCE_V06_i3_p0582.pdf
	SJOCE_V06_i3_p0599.pdf
	SJOCE_V06_i3_p0617.pdf
	SJOCE_V06_i3_p0639.pdf
	SJOCE_V06_i3_p0652.pdf
	SJOCE_V06_i3_p0670.pdf
	SJOCE_V06_i3_p0684.pdf
	SJOCE_V06_i3_p0698.pdf
	SJOCE_V06_i3_p0712.pdf
	SJOCE_V06_i3_p0742.pdf
	SJOCE_V06_i3_p0761.pdf
	SJOCE_V06_i3_p0771.pdf
	SJOCE_V06_i3_p0781.pdf
	SJOCE_V06_i3_p0791.pdf
	SJOCE_V06_i4_p0793.pdf
	SJOCE_V06_i4_p0833.pdf
	SJOCE_V06_i4_p0843.pdf
	SJOCE_V06_i4_p0853.pdf
	SJOCE_V06_i4_p0865.pdf
	SJOCE_V06_i4_p0882.pdf
	SJOCE_V06_i4_p0911.pdf
	SJOCE_V06_i4_p0923.pdf
	SJOCE_V06_i4_p0939.pdf
	SJOCE_V06_i4_p0951.pdf
	SJOCE_V06_i4_p0967.pdf
	SJOCE_V06_i4_p0977.pdf
	SJOCE_V06_i4_p0983.pdf
	SJOCE_V06_i4_p1004.pdf
	SJOCE_V06_i4_p1013.pdf
	SJOCE_V06_i4_p1022.pdf
	SJOCE_V06_i4_p1033.pdf
	SJOCE_V06_i4_p1049.pdf

